
Da
ta

An
aly

tic
s

Data Analytics for Non-Life Insurance Pricing
– Lecture Notes –

Mario V. Wüthrich
RiskLab Switzerland

Department of Mathematics
ETH Zurich

Christoph Buser
AXA

versicherungen

Version October 27, 2021

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

2

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sPreface and Terms of Use

Lecture notes. These notes are the basis of our lecture on Data Analytics for Non-
Life Insurance Pricing at ETH Zurich. They aim at giving insight and education
to practitioners, academics and students in actuarial science on how to apply machine
learning methods for statistical learning. There is some overlap in these notes with our
book Statistical Foundations of Actuarial Learning and its Applications
which treats the topic of deep learning in much more depth, see [141]

Prerequisites. The prerequisites for these lecture notes are a solid education in math-
ematics, in particular, in probability theory and statistics. Moreover, knowledge in sta-
tistical software such as R is required.

Terms of Use. These lecture notes are an ongoing project which is continuously revised
and updated. Of course, there may be errors in the notes and there is always room for
improvement. Therefore, we appreciate any comment and/or correction that readers may
have. However, we would like you to respect the following rules:

• These notes are provided solely for educational, personal and non-commercial use.
Any commercial use or reproduction is forbidden.

• All rights remain with the authors. They may update the manuscript or withdraw
the manuscript at any time. There is no right of availability of any (old) version of
these notes. The authors may also change these terms of use at any time.

• The authors disclaims all warranties, including but not limited to the use or the
contents of these notes. On using these notes, you fully agree to this.

• Citation: please use the SSRN URL https://ssrn.com/abstract=2870308

• All included figures were produced by the authors with the open source software R.

Versions of the 1st edition of these notes (before 2019):
November 15, 2016; January 27, 2017; March 28, 2017; October 25, 2017; June 11, 2018

Versions of the 2nd edition of these notes (after 2019):
February 5, 2019; June 4, 2019; September 10, 2020

3

Electronic copy available at: https://ssrn.com/abstract=2870308

https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

4

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sAcknowledgment

Firstly, we thank RiskLab and the Department of Mathematics of ETH Zurich, who
have always strongly supported this project. A special thank you goes to Peter Reinhard
(AXA Insurance, Winterthur) who has initiated this project by his very supportive and
forward-looking anticipation.

Secondly, we kindly thank Patrick Zöchbauer who has written his MSc ETH Mathematics
thesis under our supervision at AXA-Winterthur on “Data Science in Non-Life Insurance
Pricing: Predicting Claims Frequencies using Tree-Based Models”. This MSc thesis has
been a great stimulus for these lecture notes and it has also supported us to get more
easily into this topic. This thesis is awarded the Walter Saxer Insurance Price 2016.

Next we thank the Institute of Statistical Mathematics (ISM), Tokyo, and, in particular,
Prof. Tomoko Matsui (ISM) and Prof. Gareth Peters (University College London, UCL,
and Heriot-Watt University, Edinburgh) for their support. Part of these notes were
written while MVW was visiting ISM.

We kindly thank Philippe Deprez, John Ery and Andrea Gabrielli who have been carefully
reading preliminary versions of these notes. This has helped us to substantially improve
the outline.

Finally, we thank many colleagues and students for very fruitful discussions, providing
data and calculating examples. We mention in particular: Michel Baes, Peter Blum,
Hans Bühlmann, Peter Bühlmann, Patrick Cheridito, Philippe Deprez, Paul Embrechts,
Andrea Ferrario, Andrea Gabrielli, Guojun Gan, Guangyuan Gao, Donatien Hainaut,
Christian Lorentzen, Nicolai Meinshausen, Michael Merz, Alexander Noll, Gareth Peters,
Ronald Richman, Ulrich Riegel, Robert Salzmann, Jürg Schelldorfer, Pavel Shevchenko,
Olivier Steiger, Qikun Xiang, Xian Xu.

Zurich, October 27, 2021 Mario V. Wüthrich & Christoph Buser

5

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

6

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sContents

1 Introduction to Non-Life Insurance Pricing 11
1.1 Introduction . 11
1.2 The compound Poisson model . 13

1.2.1 Model assumptions and first properties 13
1.2.2 Maximum likelihood estimation: homogeneous case 16
1.2.3 Poisson deviance loss . 17

1.3 Prediction uncertainty . 19
1.3.1 Generalization loss . 19
1.3.2 Cross-validation on test samples 23
1.3.3 Leave-one-out cross-validation . 24
1.3.4 K-fold cross-validation . 24
1.3.5 Stratified K-fold cross-validation 25

1.4 Example: homogeneous Poisson model . 25

2 Generalized Linear Models 29
2.1 Heterogeneous Poisson claims frequency model 29
2.2 Multiplicative regression model . 31
2.3 Deviance residuals and parameter reduction 34
2.4 Example in car insurance pricing . 36

2.4.1 Pre-processing features: categorical feature components 36
2.4.2 Pre-processing features: continuous feature components 39
2.4.3 Data compression . 45
2.4.4 Issue about low frequencies . 47
2.4.5 Models GLM3+ considering all feature components 49
2.4.6 Generalized linear models: summary 53

2.5 Classification problem . 54
2.5.1 Classification of random binary outcomes 54
2.5.2 Logistic regression classification . 55

2.6 Maximum likelihood estimation . 59

3 Generalized Additive Models 61
3.1 Generalized additive models for Poisson regressions 61

3.1.1 Natural cubic splines . 62
3.1.2 Example in motor insurance pricing, revisited 66
3.1.3 Generalized additive models: summary 74

7

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

8 Contents

3.2 Multivariate adaptive regression splines 74

4 Credibility Theory 77
4.1 The Poisson-gamma model for claims counts 77

4.1.1 Credibility formula . 77
4.1.2 Maximum a posteriori estimator 80
4.1.3 Example in motor insurance pricing 80

4.2 The binomial-beta model for classification 82
4.2.1 Credibility formula . 82
4.2.2 Maximum a posteriori estimator 83

4.3 Regularization and Bayesian MAP estimators 83
4.3.1 Bayesian posterior parameter estimator 83
4.3.2 Ridge and LASSO regularization 84

4.4 Markov chain Monte Carlo method . 87
4.4.1 Metropolis–Hastings algorithm . 88
4.4.2 Gibbs sampling . 90
4.4.3 Hybrid Monte Carlo algorithm . 90
4.4.4 Metropolis-adjusted Langevin algorithm 92
4.4.5 Example in Markov chain Monte Carlo simulation 93
4.4.6 Markov chain Monte Carlo methods: summary 96

4.5 Proofs of Section 4.4 . 99

5 Neural Networks 101
5.1 Feed-forward neural networks . 101

5.1.1 Generic feed-forward neural network construction 101
5.1.2 Shallow feed-forward neural networks 105
5.1.3 Deep feed-forward neural networks 115
5.1.4 Combined actuarial neural network approach 127
5.1.5 The balance property in neural networks 132
5.1.6 Network ensemble . 133

5.2 Gaussian random fields . 137
5.2.1 Gaussian Bayesian neural network 137
5.2.2 Infinite Gaussian Bayesian neural network 138
5.2.3 Bayesian inference for Gaussian random field priors 139
5.2.4 Predictive distribution for Gaussian random field priors 140
5.2.5 Step function activation . 141

6 Classification and Regression Trees 145
6.1 Binary Poisson regression trees . 145

6.1.1 Binary trees and binary indexes . 146
6.1.2 Pre-processing features: standardized binary splits 147
6.1.3 Goodness of split . 147
6.1.4 Standardized binary split tree growing algorithm 151
6.1.5 Example in motor insurance pricing, revisited 154
6.1.6 Choice of categorical classes . 155

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Contents 9

6.2 Tree pruning . 157
6.2.1 Binary trees and pruning . 157
6.2.2 Minimal cost-complexity pruning 158
6.2.3 Choice of the best pruned tree . 164
6.2.4 Example in motor insurance pricing, revisited 166

6.3 Binary tree classification . 169
6.3.1 Empirical probabilities . 169
6.3.2 Standardized binary split tree growing algorithm for classification 170

6.4 Proofs of pruning results . 175

7 Ensemble Learning Methods 177
7.1 Bootstrap simulation . 177

7.1.1 Non-parametric bootstrap . 177
7.1.2 Parametric bootstrap . 179

7.2 Bagging . 179
7.2.1 Aggregating . 180
7.2.2 Bagging for Poisson regression trees 181

7.3 Random forests . 183
7.4 Boosting machines . 187

7.4.1 Generic gradient boosting machine 187
7.4.2 Poisson regression tree boosting machine 190
7.4.3 Example in motor insurance pricing, revisited 195
7.4.4 AdaBoost algorithm . 198

8 Telematics Car Driving Data 201
8.1 Description of telematics car driving data 202

8.1.1 Simple empirical statistics . 202
8.1.2 The velocity-acceleration heatmap 206

8.2 Cluster analysis . 208
8.2.1 Dissimilarity function . 208
8.2.2 Classifier and clustering . 210
8.2.3 K-means clustering algorithm . 212
8.2.4 Example . 213

8.3 Principal component analysis . 215

A Motor Insurance Data 221
A.1 Synthetic data generation . 221
A.2 Descriptive analysis . 225

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

10 Contents

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 1

Introduction to Non-Life
Insurance Pricing

1.1 Introduction

The non-life insurance section ASTIN (Actuarial STudies In Non-life insurance) of the
International Actuarial Association (IAA) has launched a working party on big data and
data analytics in 2014. The resulting document [4] states in its introduction:

”The internet has changed and continues to change the way we engage with the
tangible world. The resulting change in communication platforms, commercial
trade and social interactions make the world smaller and the data bigger. Whilst
the fundamentals of analyzing data have not changed, our approach to collating
and understanding data, creating accessible and useful information, developing
skill sets and ultimately transforming huge and ever-growing repositories of data
into actionable insights for our employers, shareholders and our communities
more generally has entered a new paradigm.
As a corollary, this has made the fundamentals of data processing, modeling
techniques and aligning business structures accordingly more important - no
longer can existing approaches suffice - we now face the pressures of a faster
moving world, blurring business lines which make customer-centricity surpass
a siloed product/service focus and challenges to the actuary being central to
predictive modeling.
We too need to evolve, working intelligently with a wide cross-function of skill
sets such as data experts, data scientists, economists, statisticians, mathemati-
cians, computer scientists and, so as to improve the transformation of data to
information to customer insights, behavioral experts. This is a necessary evolu-
tion for actuaries and the profession to remain relevant in a high-tech business
world.”

The goal of these lecture notes is to face this paradigm. We aim at giving a broad
toolbox to the actuarial profession so that they can cope with these challenges, and so
that they remain highly competitive in their field of competence. In these lecture notes we
start from the classical actuarial world of generalized linear models, generalized additive

11

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

12 Chapter 1. Introduction to Non-Life Insurance Pricing

models and credibility theory. These models form the basis of the deeper statistical
understanding. We then present several machine learning techniques such as neural
networks, regression trees, bagging techniques, random forests and boosting machines.
One can view these machine learning techniques as non-parametric and semi-parametric
statistics approaches, with the recurrent goal of optimizing a given objective function to
receive optimal predictive power. In a common understanding we would like to see these
machine learning methods as an extension of classical actuarial models, and we are going
to illustrate how classical actuarial methods can be embedded into these non-parametric
machine learning approaches, benefiting from both the actuarial world and the machine
learning world. These lecture notes have also served as a preliminary version to our book
[141] which treats the topic of statistical modeling and deep learning in much more depth,
and the reader will notice that there is some (unavoidable) overlap between these lecture
notes and our book [141].
A second family of methods that we are going to meet in these lecture notes are so-called
unsupervised learning methods (clustering methods). These methods aim at finding
common structure in data to cluster these data. We provide an example of unsupervised
learning by analyzing telematics car driving data which poses the challenge of selecting
feature information from high frequency data. For a broader consideration of unsuper-
vised learning methods we refer to our tutorial [107].

We close this short introductory section by briefly reviewing major developments iden-
tified in the China InsurTech Development White Paper [27]. The notion of Insurance
Technology (InsurTech) is closely related to Financial Technology (FinTech), and it is a
commonly used term for technology and innovation in the insurance industry. Among
other things it compromises the following key points:

• artificial intelligence, machine learning and statistical learning, which may learn
and accumulate useful knowledge through data;

• big data analytics, which deals with fact that data may be massive;

• cloud computing, which may be the art of performing real-time operations;

• block chain technology, that may be useful for a more efficient and anonymous
exchange of data;

• internet of things, which involves the integration and interaction of physical devices
(e.g. wearables, sensors) through computer systems to reduce and manage risk.

The actuarial profession has started several initiatives in data analytics and machine
learning to cope with these challenges. We mention the working party “Data Science” of
the Swiss Association of Actuaries (SAV) that aims at building a toolbox for the actuarial
profession:

https://www.actuarialdatascience.org/

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://www.actuarialdatascience.org/

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 13

The SAV working party has prepared several tutorials on actuarial developments in ma-
chine learning. These tutorials are supported by computer code that can be downloaded
from GitHub.1 In the present lecture notes we work with synthetic data for which we
exactly know the true data generating mechanism. This has the advantage that we can
explicitly back-test the quality of all our models presented. In typical real world appli-
cations this is not the case and one needs to fully rely on estimated models. This is
demonstrated in the tutorials of the SAV working party which describe several statistical
modeling techniques on real insurance data, see [43, 89, 101, 119, 120]. We highly rec-
ommend readers to perform similar analysis on their own real data, because one crucial
pillar of statistical modeling is to derive the right intuition and understanding for the
data and the models used.

1.2 The compound Poisson model

In this section we introduce the basic statistical approach for modeling non-life insurance
claims. This approach splits the total claim amount into a compound sum which accounts
for the number of claims and determines the individual claim sizes.

1.2.1 Model assumptions and first properties

The classical actuarial approach for non-life insurance portfolio modeling uses a com-
pound random variable with N describing the number of claims that occur within a fixed
time period and Z1, . . . , ZN describing the individual claim sizes. The total claim amount
in that fixed time period is then given by

S = Z1 + . . .+ ZN =
N∑
k=1

Zk.

The main task in non-life insurance modeling is to understand the structure of such total
claim amount models. The standard approach uses a compound distribution for S.

Throughout, we assume to work on a sufficiently rich probability space (Ω,F ,P).

Model Assumptions 1.1 (compound distribution). The total claim amount S is given
by the following compound random variable on (Ω,F ,P)

S = Z1 + . . .+ ZN =
N∑
k=1

Zk,

with the three standard assumptions:

(1) N is a discrete random variable which takes values in N0;

(2) Z1, Z2, . . . are independent and identically distributed (i.i.d.);

(3) N and (Z1, Z2, . . .) are independent.
1https://github.com/JSchelldorfer/ActuarialDataScience

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://github.com/JSchelldorfer/ActuarialDataScience

Da
ta

An
aly

tic
s

14 Chapter 1. Introduction to Non-Life Insurance Pricing

Remarks.

• If S satisfies the three standard assumptions (1)-(3) of Model Assumptions 1.1 we
say that S has a compound distribution. N is called claims count and Zk, k ≥ 1,
are the individual claim sizes or claim severities.

• The compound distribution has been studied extensively in the actuarial literature.
The aim here is to give more structure to the problem so that it can be used for
answering complex pricing questions on heterogeneous insurance portfolios.

In the sequel we assume that the claims count random variable N can be modeled by a
Poisson distribution. We therefore assume that there exist an expected (claims) frequency
λ > 0 and a volume v > 0.
We say that N has a Poisson distribution, write N ∼ Poi(λv), if

P [N = k] = e−λv
(λv)k

k! for all k ∈ N0.

The volume v > 0 often measures the time exposure in yearly units. Therefore, through-
out these notes, the volume v is called years at risk. If a risk is insured part of the year,
say, 3 months we set v = 1/4.

For a random variable Z we denote its coefficient of variation by Vco(Z) = Var(Z)1/2/E[Z]
(subject to existence). We have the following lemma for the Poisson distribution.

Lemma 1.2. Assume N ∼ Poi(λv) for fixed λ, v > 0. Then

E[N] = λv = Var(N) and Vco(N) = Var(N)1/2

E[N] =
√

1/λv → 0 as v →∞.

Proof. See Proposition 2.8 in Wüthrich [135]. 2

Lemma 1.3. Assume that Ni, i = 1, . . . , n, are independent and Poisson distributed with
means λivi > 0. We have

N =
n∑
i=1

Ni ∼ Poi
(

n∑
i=1

λivi

)
.

Proof. This easily follows by considering the corresponding moment generating functions and using the
independence assumption, for details see Wüthrich [135], Chapter 2. 2

Definition 1.4 (compound Poisson model). The total claim amount S has a compound
Poisson distribution, write

S ∼ CompPoi(λv,G),

if S has a compound distribution with N ∼ Poi(λv) for given λ, v > 0 and individual
claim size distribution Z1 ∼ G.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 15

Proposition 1.5. Assume S ∼ CompPoi(λv,G). We have, whenever they exist,

E[S] = λv E[Z1], Var(S) = λv E[Z2
1], Vco(S) =

√
1
λv

√
Vco(Z1)2 + 1.

Proof. See Proposition 2.11 in Wüthrich [135]. 2

Remarks.

• If S has a compound Poisson distribution with fixed expected frequency λ > 0 and
fixed claim size distribution G having finite second moment, then the coefficient of
variation converges to zero at speed v−1/2 as the years at risk v increase to infinity.
In industry, this property is often called diversification property.

• The compound Poisson distribution has the so-called aggregation property and the
disjoint decomposition property. These are two extremely beautiful and useful prop-
erties which explain part of the popularity of the compound Poisson model, we refer
to Theorems 2.12 and 2.14 in Wüthrich [135] for more details. The aggregation
property for the Poisson distribution has already been stated in Lemma 1.3. It
tells us that we can aggregate independent Poisson distributed random variables
and we stay within the family of Poisson distributions.

• The years at risk v > 0 may have different interpretation in the compound Poisson
context: either (i) we may consider a single risk which is insured over v accounting
years, or (ii) we have a portfolio of independent compound Poisson risks and then
v measures the volume of the aggregated portfolio (in years at risk). The latter
uses the aggregation property which says that also the aggregated portfolio has
a compound Poisson distribution (with volume weighted expected frequency), see
Theorem 2.12 in Wüthrich [135].

One crucial property of compound distributions is that we have the following decompo-
sition of their expected values

E[S] = E[N] E[Z1] = λv E[Z1],

where for the second identity we have used the Poisson model assumption, see Proposition
1.5, and where we assume S ∈ L1(Ω,F ,P). This implies that for the modeling of the
pure risk premium E[S] we can treat the (expected) number of claims E[N] and the
(expected) individual claim sizes E[Z1] separately in a compound model. We make the
following restriction here:

In the present notes, for simplicity, we mainly focus on the
modeling of the claims count N , and we only give broad indication
about the modeling of Zk. We do this to not overload these notes.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

16 Chapter 1. Introduction to Non-Life Insurance Pricing

In many situations it is more appropriate to consider volume scaled quantities. For the
claims count N we may consider the claims frequency defined by

Y = N

v
. (1.1)

In the Poisson model, the claims frequency Y has the following two properties

E[Y] = λ and Var(Y) = λ/v.

From this we see that confidence bounds for frequencies based on standard deviations
Var(Y)1/2 =

√
λ/v get more narrow with increasing years at risk v > 0. This is the

reason why the equal balance (diversification) concept on a portfolio level works. This
is going to be crucial in the subsequent chapters where we aim at detecting structural
differences between different risks in terms of expected frequencies.

Anticipatory, one often rewrites (1.1) as follows

Y = λ+ ε,

where ε is centered with variance λ/v. In this form, λ describes the structural behavior of
Y and ε is understood as the noise term that describes the random deviation/fluctuation
around the structural term when running the experiment. In all what follows, we try
to separate the structural behavior from the random noise term, so that we are able to
quantify the price level (pure risk premium) of individual insurance policies.

1.2.2 Maximum likelihood estimation: homogeneous case

Assume that N has a Poisson distribution with volume v > 0 and expected frequency
λ > 0, that is, N ∼ Poi(λv). For predicting this random variable N , we would typically
like to use its expected value E[N] = λv as predictor because this minimizes the mean
square error of prediction (MSEP); we highlight this in more detail in Section 1.3, below.
However, this predictor is only useful if the parameters are known. Typically, we know
the volume v > 0 but, in general, we do not assume knowledge of the true expected
frequency λ. Hence, we need to estimate this latter parameter.
This estimation task is solved by assuming that one has a family of independent random
variables N1, . . . , Nn with Ni ∼ Poi(λvi) for all i = 1, . . . , n. Note that for the time
being we assume a homogeneous portfolio in the sense that all random variables Ni are
assumed to have the same expected frequency λ > 0; this is going to be relaxed in
the subsequent chapters. Based on this model assumption one aims at estimating the
common frequency parameter λ from given observations N = (N1, . . . , Nn)′. The joint
log-likelihood function of these observations is given by

λ 7→ `N (λ) =
n∑
i=1
−λvi +Ni log(λvi)− log(Ni!).

The parameter estimation problem is then commonly solved by calculating the maximum
likelihood estimator (MLE), which is the parameter value λ that maximizes the log-
likelihood function, i.e., from the class of homogeneous Poisson models the one is selected

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 17

that assigns the highest probabibility to the actual observation N . Thus, the MLE λ̂ for
λ is found by the solution of

∂

∂λ
`N (λ) = 0. (1.2)

This solution is given by

λ̂ =
∑n
i=1Ni∑n
i=1 vi

≥ 0. (1.3)

Note that ∂2

∂λ2 `N (λ) < 0 for any λ > 0.2 The MLE is unbiased for λ, i.e. E[λ̂] = λ, and
its variance is given by

Var(λ̂) = λ∑n
i=1 vi

,

which converges to zero as the denominator goes to infinity. This allows us to quantify
the parameter estimation uncertainty by the corresponding standard deviation. This is
going to be important in the analysis of heterogeneous portfolios, below.

1.2.3 Poisson deviance loss

Instead of maximizing the log-likelihood function we could also try to minimize an appro-
priate objective function. The canonical objective function under our model assumptions
is the Poisson deviance loss. We define the maximal log-likelihood (which is received
from the saturated model)

`N (N) =
n∑
i=1
−Ni +Ni logNi − log(Ni!). (1.4)

The saturated model is obtained by letting each observation Ni have its own parame-
ter λi

def.= E[Ni]/vi. These individual parameters are estimated by their corresponding
individual MLEs λ̂i = Ni/vi, that is, each policy i receives its own individual MLE pa-
rameter. We set the i-th term on the right-hand side of (1.4) equal to zero if Ni = 0 (we
use this terminology throughout these notes).

The (scaled) Poisson deviance loss for expected frequency λ > 0 is defined by

D∗(N , λ) = 2 (`N (N)− `N (λ))

= 2
n∑
i=1
−Ni +Ni logNi + λvi −Ni log (λvi)

=
n∑
i=1

2 Ni

[
λvi
Ni
− 1− log

(
λvi
Ni

)]
≥ 0, (1.5)

where the i-th term in (1.5) is set equal to 2λvi for Ni = 0.

Remarks.

• Each term under the summation in (1.5) is non-negative because the saturated
model maximizes each of these terms individually (by choosing the individual MLEs

2If λ̂ =
∑

i
Ni/
∑

i
vi = 0, which happens with positive probability in the Poisson model, we get a

degenerate model.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

18 Chapter 1. Introduction to Non-Life Insurance Pricing

λ̂i = Ni/vi). Therefore, D∗(N , λ) ≥ 0 for any λ > 0. Note that we even receive
non-negativity in (1.5) if we choose arbitrary policy-dependent expected frequencies
λi > 0 instead of the homogeneous expected frequency parameter λ.3

• Maximizing the log-likelihood function `N (λ) in λ is equivalent to minimizing the
deviance loss function D∗(N , λ) in λ.

• The deviance loss can be generalized to the exponential dispersion family which
contains many interesting distributions such as the Gaussian, the Poisson and the
gamma models. We refer to Section 4.1.2 in [141].

We close this section by analyzing the expected deviance loss

E[D∗(N,λ)] = 2E [λv −N −N log(λv/N)] = 2E [N log(N/λv)] ,

of a Poisson distributed random variable N with expected value E[N] = λv > 0.

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●

0 1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

E[N]

ex
pe

ct
ed

 d
ev

ia
nc

e
lo

ss

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●
●
●
●
●
●●●●

●●
●●●

●●●●●
●●

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

E[N]

ex
pe

ct
ed

 d
ev

ia
nc

e
lo

ss ●

●

Figure 1.1: Expected deviance loss E[D∗(N,λ)] = 2E[N log(N/λv)] of a claims count
N ∼ Poi(λv) as a function of its expected value E[N] = λv on two different scales; these
plots are obtained by Monte Carlo simulation, the blue dot shows mean E[N] = 5.16%,
the vertical cyan dotted lines show means E[N] = 5.16%± 4.58%.

Figure 1.1 illustrates this expected deviance loss on two different scales for the expected
number of claims E[N] = λv. The example which we are going to study in these notes
has an average expected number of claims of λv = 5.16%. This gives an expected
deviance loss of 30.9775 · 10−2 (blue dot in Figure 1.1). This is going to be important for
the understanding of the remainder of these notes. Note that this value is bigger than
27.7278 ·10−2 given in (A.5) in the appendix. This difference is explained by the fact that
the latter value has been obtained on a heterogeneous portfolio. In this heterogeneous
portfolio the individual policies have a standard deviation in expected numbers of claims
of 4.58%, see Figure A.1 in the appendix. The cyan vertical dotted lines in Figure 1.1

3Policy dependent expected frequency parameters λi are going to be crucial in the subsequent chapters
because the general goal of these notes is to price heterogeneous insurance portfolios.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 19

(rhs) provide two policies with expected numbers of claims of 5.16%± 4.58%. If we
average their expected deviance losses we receive 26.3367 ·10−2 which corresponds to the
cyan dot in Figure 1.1 (rhs).

1.3 Prediction uncertainty

In this section we quantify prediction uncertainty. This is mainly done in terms of the
Poisson model and the Poisson deviance loss. For the general case within the exponential
dispersion family and more insight we refer to Chapter 4 of [141], in particular, we mention
that deviance losses are strictly consistent scoring functions for mean estimation which
is important in forecast evaluation, see Gneiting [55].

1.3.1 Generalization loss

Assume we have n observations, called cases, given by

D = {(N1, v1) , . . . , (Nn, vn)} . (1.6)

D stands for data. Typically, we do not know the true data generating mechanism of D.
Therefore, we make a model assumption: assume that all n cases (Ni, vi) are independent
and thatNi are Poisson distributed with expected frequency λ > 0. We infer the expected
frequency parameter λ from this data D. We denote the resulting estimator by λ̂, for
the moment this can by any (sensible) D-dependent estimator for λ. We would like
to analyze how well this estimator performs on cases which have not been seen during
the estimation procedure of λ. In machine learning this is called generalization of the
estimated model to unseen data, and the resulting error is called generalization error,
out-of-sample error or prediction error.
To analyze this generalization error we choose a new random variable N ∼ Poi(λv),
which is independent from the data D and which has the same expected frequency λ.
The frequency Y = N/v of this new random variable is predicted by

Ŷ = Ê [Y] = λ̂. (1.7)

Note that we deliberately write Ê because it is estimated from the data D.

Proposition 1.6 (MSEP generalization loss). Assume that all cases in D are indepen-
dent and Poisson distributed having the same expected frequency λ > 0. Moreover, let
case (N, v) be independent of D and Poisson distributed with the same expected frequency
λ. We predict Y = N/v by Ŷ = λ̂, where the D-based estimator λ̂ is assumed to be square
integrable. This prediction has MSEP

E
[(
Y − Ŷ

)2
]

=
(
E [Y]− E

[
Ŷ
])2

+ Var(Ŷ) + Var(Y).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

20 Chapter 1. Introduction to Non-Life Insurance Pricing

Proof of Proposition 1.6. The first step is done to bring the terms into the same order as in the
statement of the proposition, in the second last step we use independence between D and (N, v),

E
[(
Y − Ŷ

)2
]

= E
[(
Ŷ − Y

)2
]

= E
[(
Ŷ − E[Y] + E[Y]− Y

)2
]

= E
[(
Ŷ − E[Y]

)2
]

+ E
[
(E[Y]− Y)2]+ 2 E

[(
Ŷ − E[Y]

)
(E[Y]− Y)

]
= E

[(
E [Y]− E

[
Ŷ
]

+ E
[
Ŷ
]
− Ŷ

)2
]

+ Var(Y)

=
(
E [Y]− E

[
Ŷ
])2

+ Var(Ŷ) + Var(Y).

This proves the proposition. 2

Remarks 1.7 (generalization loss, part I).

• The first term on the right-hand side of the statement of Proposition 1.6 denotes
the squared bias, the second term the estimation variance and the last term the
pure randomness (process variance) involved in the prediction problem. In general,
we try to minimize simultaneously the bias and the estimation variance in order
to get accurate predictions. Usually, these two terms compete in the sense that
a decrease in one of them typically leads to an increase in the other one. This
phenomenon is known as the bias-variance trade-off for which one needs to find a
good balance (typically by controlling the complexity of the model). This is crucial
for heterogeneous portfolios and it is going to be the main topic of these notes. We
also refer to Section 7.3 in Hastie et al. [62] for the bias-variance trade-off.

• If we are in the atypical situation of having a homogeneous (in λ) Poisson portfolio
and if we use the D-based MLE λ̂, the situation becomes much more simple. In
Section 1.2.2 we have seen that the MLE λ̂ is unbiased and we have determined
its estimation variance. Henceforth, we receive in this special (simple) case for the
MSEP generalization loss

E
[(
Y − Ŷ

)2
]

=
(
E [Y]− E

[
λ̂
])2

+ Var(λ̂) + Var(Y) = 0 + λ∑n
i=1 vi

+ λ

v
.

We emphasize that this is an atypical situation because usually we do not assume
to have a homogeneous portfolio and, in general, the MLE is not unbiased.

Proposition 1.6 considers the MSEP which implicitly implies that the weighted square
loss function is the objective function of interest. However, in Section 1.2.2 we have been
considering the Poisson deviance loss as objective function (to obtain the MLE) and,
therefore, it is canonical to measure the generalization loss in terms of the out-of-sample
Poisson deviance loss. Under the assumptions of Proposition 1.6 this means that we aim
at studying

E[D∗(N, λ̂)] = 2E
[
λ̂v −N −N log(λ̂v/N)

]
.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 21

Proposition 1.8 (Poisson deviance generalization loss). Assume that all cases in D are
independent and Poisson distributed having the same expected frequency λ > 0. Moreover,
let case (N, v) be independent of D and Poisson distributed with the same expected fre-
quency λ. We predict N by λ̂v, where the D-based estimator λ̂ is assumed to be integrable
and λ̂ ≥ ε, P-a.s., for some ε > 0. This prediction has Poisson deviance generalization
loss

E[D∗(N, λ̂)] = E[D∗(N,λ)] + E(λ̂, λ),

with estimation loss defined by

E(λ̂, λ) = 2v
(
E
[
λ̂
]
− λ− λE

[
log

(
λ̂/λ

)])
≥ 0.

Proof of Proposition 1.8. The assumptions on λ̂ imply log ε ≤ E[log λ̂] ≤ logE[λ̂] <∞. We have

E[D∗(N, λ̂)] = 2E
[
λ̂v − λv + λv −N −N log(λv/N)−N log(λ̂/λ)

]
.

The first claims follows by the independence between N and λ̂. There remains the proof of the positivity
of the estimation loss. Observe

λ̂− λ− λ log
(
λ̂/λ
)

= λ (x− 1− log x) = λg(x),

where we have defined x = λ̂/λ > 0, and the last identity defines the function g(x) = x− 1− log x. The
claim now follows from log x ≤ x− 1 with that latter inequality being strict for x 6= 1. 2

Remarks 1.9 (generalization loss, part II).

• The estimation loss E(λ̂, λ) simultaneously quantifies the bias and the estimation
volatility. Again, we try to make this term small by controlling the bias-variance
trade-off.

• If we want to use the D-based MLE λ̂ of Section 1.2.2 for estimating λ, we need to
insure positivity, P-a.s., i.e. we need to exclude degenerate models. We set λ̂ε = λ̂+ε
for some ε > 0. We receive Poisson deviance generalization loss for the MLE-based
estimator λ̂ε

E[D∗(N, λ̂ε)] = E[D∗(N,λ)] + 2vε− 2vλE
[
log

(
λ̂ε/λ

)]
,

with

E(λ̂ε, λ) = 2vε− 2E[λv log(λ̂εv/(λv))] ≥ 0,
E[D∗(N,λ)] = −2E [N log(λv/N)] ≥ 0.

Note that we may also use λ̂ε = max{λ̂, ε} for guaranteeing positivity, P-a.s., but
in this case the bias is more difficult to determine.

• In view of the Poisson deviance generalization loss we can determine the optimal
estimator for λ w.r.t. optimization criterion

λ̂∗ = arg min
µ

E[D∗(N,µ)] = arg min
µ

2E[µv −N −N log(µv/N)].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

22 Chapter 1. Introduction to Non-Life Insurance Pricing

This minimizer is given by λ̂∗ = E[N]/v which implies that the Poisson deviance
loss is strictly consistent for the expected value according to Gneiting [55]; strict
consistency is a property needed to perform back-testing, we refer to Section 4.1.3
in [141].

We close this section by comparing the square loss function, the Poisson deviance loss
function and the absolute value loss function.

Example 1.10. In this example we illustrate the three different loss functions:

L(Y, λ, v = 1) = (Y − λ)2 ,

L(Y, λ, v = 1) = 2 [λ− Y − Y log (λ/Y)] ,
L(Y, λ, v = 1) = |Y − λ| ,

the first one is the square loss function, the second one the Poisson deviance loss function
and the third one the absolute value loss function.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●

0 2 4 6 8 10

0
20

40
60

80

loss functions

Y

lo
ss

 L

square loss
Poisson deviance loss
absolute value loss

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

loss functions

Y

lo
ss

 L

square loss
Poisson deviance loss
absolute value loss

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

loss functions

Y

lo
ss

 L

square loss
Poisson deviance loss
absolute value loss

Figure 1.2: Loss functions Y 7→ L(Y, λ, v = 1) with λ = 5.16% for different scales on the
x-axis (and y-axis).

These three loss functions are plotted in Figure 1.2 for an expected frequency of λ =
5.16%. From this plot we see that the pure randomness is (by far) the dominant term:
the random variable Y = N (for v = 1) lives on the integer values N0 and, thus, every
positive outcome Y ≥ 1 substantially contributes to the loss L(·), see Figure 1.2 (middle).
A misspecification of λ only marginally contributes (for small λ); this is exactly the class
imbalance problem that makes model calibration of low frequency examples so difficult.
Moreover, we see that the Poisson deviance loss reacts more sensitively than the square
loss function for claims N ∈ {1, . . . , 8} for our expected frequency choice of λ = 5.16%.
Formula (6.4) and Figure 6.2 in McCullagh–Nelder [93] propose the following approxi-
mation, we also refer to Figure 5.5 in [141],

L(Y, λ, v = 1) ≈ 9Y 1/3
(
Y 1/3 − λ1/3

)2
.

Thus, Poisson deviance losses have a rather different behavior from square losses. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 23

1.3.2 Cross-validation on test samples

Assessment of the quality of an estimated model is done by analyzing the generalization
loss, see Propositions 1.6 and 1.8. That is, one back-tests the estimated model on cases
that have not been seen during the estimation procedure. However, the true generaliza-
tion loss cannot be determined because typically the true data generating mechanism is
not known. Therefore, one tries to assess the generalization loss empirically.

Denote by λ̂ 7→ L(Y, λ̂, v) a (non-negative) loss function, for examples see Example 1.10.
The generalization loss for this loss function is defined by (subject to existence)

LL = E
[
L(Y, λ̂, v)

]
.

If the amount of data D in (1.6) is very large, we are tempted to partition the data D into
a learning sample DB and a test sample DBc with B ⊂ {1, . . . , n} labeling the cases DB =
{(Ni, vi); i ∈ B} ⊂ D considered for learning the model, and with Bc = {1, . . . , n} \ B
labeling the remaining test cases.

Based on the learning sample DB we construct the predictor λ̂B for Y = N/v, see (1.7),
and we use the test sample DBc to estimate the generalization loss empirically by

Loos
L = Ê

[
L(Y, λ̂, v)

]
= 1
|Bc|

∑
i∈Bc

L(Yi, λ̂B, vi). (1.8)

The upper index in Loos
L indicates that we do an out-of-sample analysis (estimation)

because the data for estimation and back-testing has been partitioned into a learning
sample and a disjoint back-testing sample.

The out-of-sample Poisson deviance loss is analogously estimated by, assume λ̂B > 0,

Loos
D = Ê[D∗(N, λ̂)] = 1

|Bc|
∑
i∈Bc

2 Ni

[
λ̂Bvi
Ni
− 1− log

(
λ̂Bvi
Ni

)]
≥ 0. (1.9)

In many situations it is too optimistic to assume that we can partition data D into a
learning sample and a test sample because often the volume of the data is not sufficiently
big. A naïve way to solve this problem is to use the whole data D for learning the model
and then back-testing this model on the same data. The model estimated from the whole
data D is denoted by λ̂ (assume λ̂ > 0).

The in-sample Poisson deviance loss is defined by

Lis
D = 1

n
D∗(N , λ̂) = 1

n

n∑
i=1

2 Ni

[
λ̂vi
Ni
− 1− log

(
λ̂vi
Ni

)]
, (1.10)

i.e. this is exactly the empirical Poisson deviance loss of the estimated model.

This in-sample loss Lis
D is prone to over-fitting because it prefers more complex models

that can follow observations more closely. However, this smaller in-sample loss does

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

24 Chapter 1. Introduction to Non-Life Insurance Pricing

not necessarily imply that a more detailed model generalizes better to unseen cases.
Therefore, we need other evaluation methods. These are discussed next.

1.3.3 Leave-one-out cross-validation

Choose i ∈ {1, . . . , n} and consider partition Bi = {1, . . . , n} \ {i} and Bci = {i}. This
provides on every Bi a predictor for Y = N/v given by

λ̂(−i) def.= λ̂Bi .

The leave-one-out cross-validation loss for loss function L(·) is defined by

Lloo
L = 1

n

n∑
i=1

L
(
Yi, λ̂

(−i), vi
)
.

Leave-one-out cross-validation uses all data D for learning: the data D is split into a
training set DBi for (partial) learning and a validation set D{i} for an out-of-sample
validation iteratively for all i ∈ {1, . . . , n}. Often the leave-one-out cross-validation is
computationally too expensive as it requires fitting n times the model which is for large
insurance portfolios too exhaustive.

1.3.4 K-fold cross-validation

ForK-fold cross-validation we choose an integerK ≥ 2 and partition {1, . . . , n} randomly
into K disjoint subsets B1, . . . ,BK of roughly the same size. This provides for every
k = 1, . . . ,K a training set

D(−Bk) = {(Ni, vi); i /∈ Bk} ⊂ D,

and the corresponding estimator for the expected frequency λ

λ̂(−Bk) def.= λ̂{1,...,n}\Bk .

The K-fold cross-validation loss for loss function L(·) is defined by

LCV
L = 1

n

K∑
k=1

∑
i∈Bk

L
(
Yi, λ̂

(−Bk), vi
)
≈ 1

K

K∑
k=1

1
|Bk|

∑
i∈Bk

L
(
Yi, λ̂

(−Bk), vi
)
.

Note that we use the whole data D for learning. As for leave-one-out cross-validation we
split this learning data into a training set D(−Bk) for (partial) learning and a validation
set DBk for out-of-sample validation. This is done for all k = 1, . . . ,K, and the out-of-
sample (generalization) loss is then estimated by the resulting average cross-validation
loss. K-fold cross-validation is the method typically used, and in many applications one
chooses K = 10. We do not further elaborate on this choice here, but we refer to the
related literature.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 25

1.3.5 Stratified K-fold cross-validation

K-fold cross-validation partitions {1, . . . , n} into K disjoint random subsets B1, . . . ,BK
of approximately the same size. If there are outliers then these outliers may fall into the
same subset Bk, and this may disturb K-fold cross-validation results
Stratified K-fold cross-validation distributes outliers more equally across the partition.
This is achieved by ordering the observations Yi = Ni/vi, i = 1, . . . , n, that is, Y(1) ≥
Y(2) ≥ . . . ≥ Y(n), with a deterministic rule if there is more than one observation of the
same size. Then we build urns Uj of size K for j = 1, . . . , dn/Ke (the last urn Udn/Ke
may be smaller depending on the cardinality of n and K)

Uj =
{
Y(i); (j − 1)K + 1 ≤ i ≤ jK

}
.

Urn U1 receives the K largest observations, urn U2 contains the next K largest observa-
tions, etc. Then we define the partition (Dk)k=1,...,K of D for k = 1, . . . ,K by

Dk =
{
choose randomly from each urn U1, . . . ,Udn/Ke one case (without replacement)

}
,

where ”choose randomly (without replacement)” is meant in the sense that all urns are
randomly distributed resulting in the partitioned data Dk, k = 1, . . . ,K.
K-fold cross-validation is now applied to the partition D1, . . . ,DK . Note that this does
not necessarily provide the same result as the original K-fold cross-validation because in
the stratified version it is impossible that the two largest outliers fall into the same set
of the partition (supposed that they are bigger than the remaining observations).

Summary. To estimate the generalization loss we typically choose the (stratified)K-fold
Poisson deviance cross-validation loss given by

LCV
D = 1

n

K∑
k=1

∑
i∈Bk

2
[
λ̂(−Bk)vi −Ni −Ni log

(
λ̂(−Bk)vi
Ni

)]
≥ 0. (1.11)

Remark. Evaluation of the K-fold Poisson deviance cross-validation loss (1.11) requires
that the (random) partition B1, . . . ,BK of D is chosen such that λ̂(−Bk) > 0 for all
k = 1, . . . ,K. This is guaranteed in stratified K-fold cross-validation as soon as we have
K observations with Ni > 0. For non-stratified K-fold cross-validation the situation is
more complicated because the positivity constraint may fail with positive probability (if
we have too many claims with Ni = 0).

1.4 Example: homogeneous Poisson model

Throughout these notes we consider a synthetic motor-third party liability (MTPL) car
insurance portfolio. This portfolio consists of n = 500′000 car insurance policies having
claims Ni information and years at risk information vi ∈ (0, 1], for i = 1, . . . , n. The
simulation of the data is described in Appendix A, in particular, we refer to Listing A.2
which sketches this data D.4 In a first (homogeneous) statistical model we assume

Ni
ind.∼ Poi(λvi) for i = 1, . . . , n,

4The data is available from https://people.math.ethz.ch/~wmario/Lecture/MTPL_data.csv

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://people.math.ethz.ch/~wmario/Lecture/MTPL_data.csv

Da
ta

An
aly

tic
s

26 Chapter 1. Introduction to Non-Life Insurance Pricing

and with given expected frequency λ > 0. The MLE for λ of this data D is given by, see
(1.3),

λ̂ =
∑n
i=1Ni∑n
i=1 vi

= 10.2691%.

This should be compared to the true average frequency λ̄? = 10.1991% given in (A.4).
Thus, we have a small positive bias in our estimate. The in-sample Poisson deviance loss
is given by Lis

D = 29.1065 · 10−2.

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%

Table 1.1: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters.

Next, we calculate the 10-fold cross-validation losses (1.11). The results are presented in
columns LCV

D (non-stratified and stratified versions) of Table 1.1. We observe that this
10-fold cross-validation losses of 29.1066 ·10−2 and 29.1065 ·10−2, respectively, match the
in-sample loss Lis

D = 29.1065 ·10−2, i.e. we do not have any sign of over-fitting, here. The
column ’run time’ shows the total run time needed,5 and ’# param.’ gives the number
of estimated model parameters.
Finally, we determine the estimation loss E(λ̂, λ?) w.r.t. the true model λ?, see Appendix
A and Proposition 1.8. We emphasize that we are in the special situation here of knowing
the true model λ? because we work with synthetic data. This is an atypical situation in
practice and therefore we highlight all values in green color which can only be calculated
because we know the true model. Using in-sample loss (1.10) we derive

Lis
D = 1

n

n∑
i=1

2 Ni

[
λ?(xi)vi
Ni

− λ?(xi)vi
Ni

+ λ̂vi
Ni
− 1− log

(
λ?(xi)vi
Ni

)
− log

(
λ̂

λ?(xi)

)]

= 1
n
D∗(N , λ?) + Ê(λ̂, λ?) + 1

n

n∑
i=1

2 (λ?(xi)vi −Ni) log
(

λ̂

λ?(xi)

)
, (1.12)

where the first term is the Poisson deviance loss w.r.t. the true model λ?, see (A.5),

1
n
D∗(N , λ?) = 1

n

n∑
i=1

2
[
λ?(xi)vi −Ni −Ni log

(
λ?(xi)vi
Ni

)]
= 27.7278 · 10−2.

The second term in (1.12) is defined by

Ê(λ̂, λ?) = 1
n

n∑
i=1

2vi

[
λ̂− λ?(xi)− λ?(xi) log

(
λ̂

λ?(xi)

)]
= 1.3439 · 10−2 ≥ 0. (1.13)

5All run times are measured on a personal laptop Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
1.99GHz with 16GB RAM.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 1. Introduction to Non-Life Insurance Pricing 27

This is an estimate for the estimation loss E(λ̂, λ?) w.r.t. the true model λ?.6 The
last term in (1.12) refers to over-fitting, in average it disappear if the estimation λ̂ is
independent from N . In our case it takes value

1
n

n∑
i=1

2 (λ?(xi)vi −Ni) log
(

λ̂

λ?(xi)

)
= 0.0348 · 10−2,

i.e. it is negligible w.r.t. the other terms.
We will use the estimated estimation loss Ê(λ̂, λ?) as a measure of accuracy in all models
considered, below. Note that we have Ê(λ̂, λ?) = 0 if and only if λ̂ = λ?(xi) for all
i = 1, . . . , n. Thus, obviously, if we have heterogeneity between the expected frequencies
of the insurance policies, the estimation loss cannot be zero for a homogeneous model. �

Summary. In practice, model assessment is done w.r.t. cross-validation losses, see Table
1.1. In our special situation of knowing the true model and the true expected frequency
function λ?(·), we will use the estimation loss Ê(λ̂, λ?) for model assessment. This also
allows us to check whether we draw the right conclusions based on the cross-validation
analysis.
In mathematical statistics, the estimation loss (1.13) is related to the risk stemming from
a decision rule. In our situation the decision rule is the MLE N 7→ λ̂ = λ̂(N) which is
compared to the true parameters (λ?(xi))i=1,...,n in terms of the loss function under the
summation in (1.13).

6Strictly speaking we should consider the estimation loss E(λ̂ε, λ?) of λ̂ε = max{λ̂, ε} for some ε > 0,
because we need a strictly positive estimator, P-a.s., see Proposition 1.8.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

28 Chapter 1. Introduction to Non-Life Insurance Pricing

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 2

Generalized Linear Models

Generalized linear models (GLMs) are popular statistical models that are used in the
framework of the exponential dispersion family (EDF). For standard references on GLMs
and the EDF we refer to Nelder–Wedderburn [98] and McCullagh–Nelder [93]. We present
the Poisson claims count model within a GLM framework in this chapter. This extends
the homogeneous Poisson portfolio consideration of Section 1.2.2 to the heterogeneous
case. Similar derivations can be done for individual claim sizes using, for instance, a
gamma or a log-normal distribution for individual claim sizes, for details we refer to
Ohlsson–Johansson [102] and Wüthrich–Merz [141]. Additionally, we introduce a classi-
fication problem in this chapter which is based on the Bernoulli model and which describes
a logistic regression problem, see Section 2.5 below.

2.1 Heterogeneous Poisson claims frequency model

Assume that the claims count random variable N has a Poisson distribution with given
years at risk v > 0 and expected frequency λ > 0. We aim at modeling the expected
frequency λ > 0 such that it allows us to incorporate structural differences (heterogene-
ity) between different insurance policies and risks; such structural differences are called
systematic effects in the statistical literature. Assume we have q-dimensional features
x = (x1, . . . , xq)′ ∈ X belonging to the set of all possible features (called feature space
X). A regression function λ(·) maps this feature space X to expected frequencies

λ : X → R+, x 7→ λ = λ(x). (2.1)

The feature x describes the risk characteristics of a certain insurance policy, see Example
2.1 below, and λ(·) describes the resulting structural differences (systematic effects) in
the expected frequency described by these features.

Terminology. There is different terminology and we use the ones in italic letters.

• x is called feature, covariate, explanatory variable, independent variable, predictor
variable, measurement vector.

• λ is called (expected) response, dependent variable, regressand, regression func-
tion, classifier (the latter three terminologies also depend on the particular type of

29

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

30 Chapter 2. Generalized Linear Models

regression problem considered, this is further highlighted below).

• The components of x can be continuous, discrete or even finite. In the finite and
discrete cases we distinguish between ordered (ordinal) and unordered (nominal)
components (called categorical components). For instance, xl ∈ {female,male} is a
nominal categorical feature component. The case of two categories is called binary.

Our main goal is to find the regression function λ(·) as a function of the features x ∈ X
and to understand the systematic effects and their sensitivities in each feature component
xl of x. In general, available observations are noisy, that is, we cannot directly observe
λ(x), but only the frequency Y = N/v, which is generated by

Y = λ(x) + ε,

with residual (noise) term ε satisfying in the Poisson case

E[ε] = 0 and Var(ε) = λ(x)/v.

Example 2.1 (car insurance). We model the claims frequency of Y = N/v with feature
x by

P [Y = k/v] = P [N = k] = exp {−λ(x)v} (λ(x)v)k

k! for k ∈ N0,

with given years at risk v > 0 and regression function λ(·) given by (2.1). We may now
think of features x = (x1, . . . , xq) characterizing different car drivers with, for instance,
x1 describing the age of the driver (continuous component), x2 describing the price of the
car (continuous component or discrete ordinal component if of type “cheap”, “average”,
“expensive”), x3 describing the gender of the driver (binary component), etc. The goal is
to find (infer) the regression function λ(·) so that it optimally characterizes the underlying
risks in terms of the chosen features x ∈ X . This inference needs to be done from noisy
claims count observations N and the chosen features may serve as proxies for other
(unobservable) risk drivers such as driving experience, driving skills, etc. �

In view of the previous example it seems advantageous to include as many feature compo-
nents as possible in the model. However, if the feature space is too complex and too large
this will lead to a poor model with a poor predictive performance (big generalization loss,
see Section 1.3). The reason for this being that we have to infer the regression function
from a finite number of observations, and the bigger the feature space the more likely that
irrelevant feature information may play a special role in a particular (finite) observation
sample. For this reason it is important to carefully choose relevant feature information.
In fact, feature extraction is one of the best studied and understood fields in actuarial
practice with a long tradition. The Swiss car insurance market has been deregulated in
1996 and since then sophisticated pricing models have been developed that may depend
on more than 30 feature components. One may ask, for instance, questions like “What
is a sports car?”, see Ingenbleek–Lemaire [72].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 31

2.2 Multiplicative regression model

A commonly used technique to infer a regression function λ(·) is the MLE method within
the family of GLMs. We consider the special case of the Poisson model with a multiplica-
tive regression structure in this chapter. This multiplicative regression structure leads to
a log-linear functional form (or the log-link, respectively).
Assume X ⊂ Rq and that the regression function λ(·) is characterized by a parameter
vector β = (β0, β1, . . . , βq)′ ∈ Rq+1 such that for x ∈ X we have representation

x 7→ log λ(x) = β0 + β1x1 + . . .+ βqxq
def.= 〈β,x〉. (2.2)

The last definition uses a slight abuse of notation because the features x ∈ X are ex-
tended by a zero component x0 ≡ 1 for the intercept component β0. Formula (2.2)
assumes that all feature components are real-valued. This requires that categorical fea-
ture components are transformed (pre-processed); a detailed treatment and description
of categorical feature components’ pre-processing is provided in Section 2.4.1, below.
The task is to infer β from cases (Ni,xi, vi) ∈ D, where we extend definition (1.6) of the
data to

D = {(N1,x1, v1) , . . . , (Nn,xn, vn)} , (2.3)

with xi ∈ X being the feature information of policy i = 1, . . . , n. Assume that all cases
are independent with Ni being Poisson distributed with expected frequency λ(xi) given
by (2.2). The joint log-likelihood function of the data D under these assumptions is given
by

β 7→ `N (β) =
n∑
i=1
− exp〈β,xi〉vi +Ni (〈β,xi〉+ log vi)− log(Ni!). (2.4)

The MLE may be found by the solution of1

∂

∂β
`N (β) = 0. (2.5)

We calculate the partial derivatives of the log-likelihood function for 0 ≤ l ≤ q

∂

∂βl
`N (β) =

n∑
i=1
− exp〈β,xi〉vixi,l +Nixi,l =

n∑
i=1

(−λ(xi)vi +Ni)xi,l = 0, (2.6)

where xi = (xi,1, . . . , xi,q)′ ∈ X describes the feature of the i-th case in D, and for the
intercept β0 we add components xi,0 = 1. We define the design matrix X ∈ Rn×(q+1) by

X = (xi,l)1≤i≤n,0≤l≤q, (2.7)

thus, each row 1 ≤ i ≤ n describes the feature x′i of case i. Observe that (Xβ)i =
〈β,xi〉 = log λ(xi) and (X′N)l =

∑n
i=1Nixi,l. This allows us to rewrite (2.6) as follows

(X′N)l =
n∑
i=1

exp {(Xβ)i} vixi,l =
(
X′V exp {Xβ}

)
l ,

1Formula (2.5) is a bit a sloppy notation of saying that the gradient ∇β`N (β) is equal to the zero
vector in Rq+1. Solutions to (2.5) give critical points, maximas have negative definite Hessians, and in
case of a concave log-likelihood function we have a unique maximum.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

32 Chapter 2. Generalized Linear Models

where we define the weight matrix V = diag(v1, . . . , vn) and where the exponential func-
tion exp {Xβ} is understood element-wise. We have just derived the following statement:

Proposition 2.2. The solution β̂ to the MLE problem (2.5) in the Poisson case (2.4)
may be found by the solution of

X′V exp{Xβ} = X′N .

This optimization problem in Proposition 2.2 is solved numerically using Fisher’s scor-
ing method or the iteratively re-weighted least squares (IRLS) method, see Nelder–
Wedderburn [98]. These algorithms are versions of the Newton–Raphson algorithm to
find roots of sufficiently smooth functions.

This MLE β̂ is then used to estimate the regression function λ(·) and we set for x ∈ X

x 7→ λ̂(x) = exp〈β̂,x〉, (2.8)

which provides the predictor for case (Y,x, v) in the Poisson GLM situation

Ŷ = Ê [Y] = λ̂(x) = exp〈β̂,x〉.

Remarks 2.3.

• The Hessian of `N (β) is given by

Hβ`N (β) = −X′ diag (exp〈β,x1〉v1, . . . , exp〈β,xn〉vn)X ∈ R(q+1)×(q+1). (2.9)

Below we make assumptions on the rank of the design matrix X, which is necessary
to have uniqueness of the MLE in Proposition 2.2. In fact, if X has full rank q+1 ≤ n
then we have a negative definite Hessian Hβ`N (β) which provides a unique MLE.
This follows from the property that (2.4) provides a concave optimization problem
in a minimal representation if X has full rank.

• In the derivation of the MLE (2.5) we assume that we know the true functional
form for λ(·) of the data generating mechanism and only its parameter β needs to
be inferred, see (2.2). Typically, the true data generating mechanism is not known
and (2.8) is used as an approximation to the true (but unknown) mechanism. In
the next chapters we present methods that assume less model structure in λ(·).

• The log-linear structure (2.2) for the expected frequency implies a multiplicative
tariff structure (systematic effects)

Ŷ = Ê [Y] = λ̂(x) = exp〈β̂,x〉 = exp{β̂0}
q∏
l=1

exp{β̂lxl}. (2.10)

The term exp{β̂0} from the intercept β̂0 describes the base premium and the factors
exp{β̂lxl} describe the adjustments according to the feature components xl. These
factors exp{β̂lxl} are typically around 1 (if β̂0 is appropriately normalized). More-
over, they can easily be interpreted. For instance, increasing feature component

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 33

xl from value 1 to value 2 adds an additional relative loading of size exp{β̂l} to
the price; and this relative loading is independent of any other feature component
values.

• Formula (2.10) shows that the feature components interact in a multiplicative way
in our Poisson GLM. One of the main tasks below is to analyze whether this mul-
tiplicative interaction is appropriate.

• The so-called score is obtained by the gradient of the log-likelihood function

s(β,N) = ∂

∂β
`N (β) = X′N − X′V exp{Xβ}.

Under the assumption that the data D has been generated by this Poisson GLM
we have E[s(β,N)] = 0 and we obtain Fisher’s information I(β) ∈ R(q+1)×(q+1),
see also Section 2.6 in the appendix,

I(β) = E
[
s(β,N)s(β,N)′

]
= −E

[
∂

∂β
s(β,N)

]
= −Hβ`N (β).

From Proposition 2.2 we obtain unbiasedness of the volume-adjusted MLE (2.8)
for the expected number of claims, see also Proposition 2.4, below. Moreover, the
Cramér–Rao bound is attained, which means that we have a uniformly minimum
variance unbiased (UMVU) estimator, see Section 2.7 in Lehmann [87].

Fisher’s information matrix I(β) plays a crucial role in uncertainty quantification
of MLEs within GLMs. In fact, one can prove asymptotic normality of the MLE β̂ if
the volumes go to infinity and the asymptotic covariance matrix is a scaled version
of the inverse of Fisher’s information matrix, we refer to Chapter 6 in Lehmann
[87], Fahrmeir–Tutz [41] and Chapter 5 in Wüthrich–Merz [141].

Finally, we consider the so-called balance property, see Theorem 4.5 in Bühlmann-Gisler
[18]. This is an important property in insurance to receive the right price calibration on
the portfolio level.

Proposition 2.4 (balance property). Under the assumptions of Proposition 2.2 we have
for the MLE β̂

n∑
i=1

viλ̂(xi) =
n∑
i=1

vi exp〈β̂,xi〉 =
n∑
i=1

Ni.

Proof. The proof is a direct consequence of Proposition 2.2. Note that the first column in the design
matrix X is identically equal to 1 (modeling the intercept). This implies

n∑
i=1

vi exp〈β̂,xi〉 = (1, . . . , 1)V exp{Xβ} = (1, . . . , 1)N =
n∑
i=1

Ni.

This proves the claim. 2

Remark 2.5. The balance property holds true in general for GLMs within the EDF as
long as we work with the canonical link. The canonical link of the Poisson model is the
log-link, which exactly tells us that for regression function (2.2) the balance property has
to hold. For more background on canonical links we refer to McCullagh–Nelder [93] and
Section 5.1.5 in [141].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

34 Chapter 2. Generalized Linear Models

2.3 Deviance residuals and parameter reduction

There are several ways to assess goodness of fit and to evaluate the generalization loss
introduced in Section 1.3. For analyzing the generalization loss we consider the (strat-
ified) K-fold Poisson deviance cross-validation loss described in (1.11), modified to the
heterogeneous case. The (heterogeneous) Poisson deviance loss for regression function
(2.2) is given by, see also (1.5),

D∗(N , λ) =
n∑
i=1

2 Ni

[
λ(xi)vi
Ni

− 1− log
(
λ(xi)vi
Ni

)]
≥ 0. (2.11)

Note, again, that minimizing this Poisson deviance loss provides the MLE β̂ under as-
sumption (2.2).
For the goodness of fit we may consider the (in-sample) Pearson’s residuals. We set
Yi = Ni/vi for 1 ≤ i ≤ n

δ̂Pi = Ni − λ̂(xi)vi√
λ̂(xi)vi

=
√
vi
Yi − λ̂(xi)√

λ̂(xi)
. (2.12)

These Pearson’s residuals should roughly be centered with unit variance (and close to
independence) under our model assumptions. Therefore, we can consider scatter plots of
these residuals (in relation to their features) and we should not detect any structure in
these scatter plots.
Pearson’s residuals δ̂Pi , 1 ≤ i ≤ n, are distribution-free, i.e. they do not (directly) ac-
count for a particular distributional form. They are most appropriate in a (symmetric)
Gaussian case. For other distributional models one often prefers deviance residuals. The
reason for this preference is that deviance residuals are more robust (under the right
distributional choice): note that the expected frequency parameter estimate λ̂ appears
in the denominator of Pearson’s residuals in (2.12). This may essentially distort Pear-
son’s residuals. Therefore, we may not want to rely on weighted residuals. Moreover,
Pearson’s residuals do not account for the distributional properties of the underlying
model. Therefore, Pearson’s residuals can be heavily distorted by skweness and extreme
observations (which look very non-Gaussian).
The Poisson deviance residuals are defined by

δ̂Di = sgn
(
Ni − λ̂(xi)vi

)√√√√2 Ni

[
λ̂(xi)vi
Ni

− 1− log
(
λ̂(xi)vi
Ni

)]
. (2.13)

Remarks.

• If we allow for an individual expected frequency parameter λi for each observation
Ni, then the MLE optimal model is exactly the saturated model with parameter
estimates λ̂i = Ni/vi, see also (1.4). Therefore, each term in the summation on the
right-hand side of the above deviance loss (2.11) is non-negative, i.e.

2 Ni

[
λ̂(xi)vi
Ni

− 1− log
(
λ̂(xi)vi
Ni

)]
≥ 0,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 35

for all 1 ≤ i ≤ n. This implies that the deviance loss is bounded from below by
zero, and a sequence of parameters (βt)t≥1 that is decreasing in the sequence of
deviance losses (D∗(N , λ = λβt))t≥1 may provide convergence to a (local) minimum
w.r.t. that loss function. This is important in any numerical optimization such as
the gradient descent algorithm that we will meet below.

• Observe that maximizing the log-likelihood `N (β) for parameter β is equivalent to
minimizing the deviance loss D∗(N , λ = λβ) for β. In this spirit, the deviance loss
plays the role of the canonical objective function that should be minimized.

• D∗(N , λ̂) is the scaled Poisson deviance loss. Within the EDF there is a second
deviance statistics that accounts for potential over- or under-dispersion φ 6= 1. In
the Poisson model this does not apply because by definition φ = 1. Nevertheless,
we can determine this dispersion parameter empirically on our data. There are two
different estimators. Pearson’s (distribution-free) dispersion estimate is given by

φ̂P = 1
n− (q + 1)

n∑
i=1

(
δ̂Pi

)2
,

and the deviance dispersion estimate is given by

φ̂D = 1
n− (q + 1)

n∑
i=1

(
δ̂Di

)2
= D∗(N , λ̂)
n− (q + 1) . (2.14)

Pearson’s dispersion estimate should be roughly equal to 1 to support our model
choice. The size of the deviance dispersion estimate depends on the size of the
expected number of claims λv, see Figure 1.1. For our true expected frequency λ?

we receive φ̂D = D∗(N , λ?)/n = 27.7228 · 10−2, see (A.5).

Finally, we would like to test whether we need all components in β ∈ Rq+1 or whether a
lower dimensional nested model can equally well explain the observations N . We assume
that the components in β are ordered in the appropriate way, otherwise we permute them
(and accordingly the columns of the design matrix X).

Null hypothesis H0: β1 = . . . = βp = 0 for given 1 ≤ p ≤ q.

1. Calculate the deviance loss D∗(N , λ̂full) in the full model with MLE β̂ ∈ Rq+1.

2. Calculate the deviance loss D∗(N , λ̂H0) under the null hypothesis H0 with MLE
β̂ ∈ Rq+1−p.

Define the likelihood ratio test statistics, see Lemma 3.1 in Ohlsson–Johansson [102],

χ2
D = D∗(N , λ̂H0)−D∗(N , λ̂full) ≥ 0. (2.15)

Under H0, the likelihood ratio test statistics χ2
D is approximately χ2-distributed with

p degrees of freedom. Alternatively, one could use a Wald statistics instead of χ2
D. A

Wald statistics is a second order approximation to the log-likelihood function which is
motivated by asymptotic normality of the MLE β̂. The z-test in the R output in Listing
2.2 refers to a rooted Wald statistics; for more details we refer to Section 5.3.2 in [141].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

36 Chapter 2. Generalized Linear Models

Remarks 2.6.

• Analogously, the likelihood ratio test and the Wald test can be applied recursively
to a sequence of nested models. This leads to a step-wise reduction of model
complexity, this is similar in spirit to the analysis of variance (ANOVA) in Listing
2.7, and it is often referred to as backward model selection, see drop1 below.

• The tests presented apply to nested models. If we want to selected between non-
nested models we can use cross-validation.

2.4 Example in car insurance pricing

We consider a car insurance example with synthetic data D generated as described in Ap-
pendix A. The portfolio consists of n = 500′000 car insurance policies for which we have
feature information xi ∈ X ? and years at risk information vi ∈ (0, 1], for i = 1, . . . , n.
Moreover, for each policy i we have an observation Ni. These (noisy) observations were
generated from independent Poisson distributions based on the underlying expected fre-
quency function λ?(·) as described in Appendix A.2 Here, we assume that neither the
relevant feature components, the functional form nor the involved parameters of this ex-
pected frequency function λ?(·) are known (this is the typical situation in practice), and
we aim at inferring an expected frequency function estimate λ̂(·) from the data D.3

2.4.1 Pre-processing features: categorical feature components

We have 4 categorical (nominal) feature components gas, brand, area and ct in our
data D. These categorical feature components need pre-processing (feature engineering)
for the application of the Poisson GLM with regression function (2.2) because they are
not real-valued. Component gas ∈ {Diesel, Regular} is binary and is transformed to
0 and 1, respectively. The area code is ordinal and is transformed by {A, . . . ,F} 7→
{1, . . . , 6} ⊂ R, see Figure A.9. Thus, there remains the car brand and the Swiss cantons
ct. Car brand has 11 different levels and there are 26 Swiss cantons, see (A.1). We
present dummy coding to transform these categorical feature components to numerical
representations.

For illustrative purposes, we demonstrate dummy coding on the feature component car
brand. In a first step we use binary coding to illustrate which level a selected car has.
In Table 2.1 we provide the one-hot encoding of the car brands on the different rows.
Each brand is mapped to a basis vector in R11, i.e. each car brand is represented in
one-hot encoding by a unit vector x(1h) ∈ {0, 1}11 with

∑11
l=1 x

(1h)
l = 1. This mapping is

illustrated by the different rows in Table 2.1. In a second step we need to ensure that
the resulting design matrix X (which includes an intercept component, see (2.7)) has
full rank. This is achieved by declaring one level to be the reference level (this level is
modeled by the intercept β0). Dummy coding then only measures relative differences

2The true (typically unknown) expected frequency is denoted by λ?(·) and the corresponding feature
space by X ?, i.e. we have true regression function λ? : X ? → R+.

3The data is available from https://people.math.ethz.ch/~wmario/Lecture/MTPL_data.csv

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://people.math.ethz.ch/~wmario/Lecture/MTPL_data.csv

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 37

B1 1 0 0 0 0 0 0 0 0 0 0
B10 0 1 0 0 0 0 0 0 0 0 0
B11 0 0 1 0 0 0 0 0 0 0 0
B12 0 0 0 1 0 0 0 0 0 0 0
B13 0 0 0 0 1 0 0 0 0 0 0
B14 0 0 0 0 0 1 0 0 0 0 0
B2 0 0 0 0 0 0 1 0 0 0 0
B3 0 0 0 0 0 0 0 1 0 0 0
B4 0 0 0 0 0 0 0 0 1 0 0
B5 0 0 0 0 0 0 0 0 0 1 0
B6 0 0 0 0 0 0 0 0 0 0 1

Table 2.1: One-hot encoding x(1h) ∈ R11 for car brand, encoded on the different rows.

to this reference level. If we declare B1 to be the reference level, we can drop the first
column of Table 2.1. This provides the dummy coding scheme for car brand given in
Table 2.2.

B1 0 0 0 0 0 0 0 0 0 0
B10 1 0 0 0 0 0 0 0 0 0
B11 0 1 0 0 0 0 0 0 0 0
B12 0 0 1 0 0 0 0 0 0 0
B13 0 0 0 1 0 0 0 0 0 0
B14 0 0 0 0 1 0 0 0 0 0
B2 0 0 0 0 0 1 0 0 0 0
B3 0 0 0 0 0 0 1 0 0 0
B4 0 0 0 0 0 0 0 1 0 0
B5 0 0 0 0 0 0 0 0 1 0
B6 0 0 0 0 0 0 0 0 0 1

Table 2.2: Dummy coding xbrand ∈ R10 for car brand, encoded on the different rows.

We define the part of the feature space X that belongs to car brand as follows

X brand =
{
xbrand ∈ {0, 1}10;

10∑
l=1

xbrand
l ∈ {0, 1}

}
⊂ R10. (2.16)

That is, the resulting part X brand of the feature space X is 10 dimensional, the feature
components can only take values 0 and 1, and the components of xbrand add up to either
0 or 1, indicating to which particular car brand a specific policy is belonging to. Note
that this feature space may differ from the original feature space X ? of Appendix A. For
the 26 Swiss cantons we proceed completely analogously receiving X ct ⊂ {0, 1}25 ⊂ R25

with, for instance, canton ZH being the reference level.

Remarks 2.7.

• If we have k categorical classes, then we need k − 1 indicators (dummy variables)
to uniquely identify the parametrization of the (multiplicative) model including an

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

38 Chapter 2. Generalized Linear Models

intercept. Choice (2.16) assumes that one level is the reference level. This reference
level is described by the intercept β0. All other levels are measured relative to this
reference level and are described by regression parameters βl, with 1 ≤ l ≤ k − 1,
see also (2.10). This parametrization is called dummy coding or treatment contrast
coding where the reference level serves as control group and all other levels are
described by dummy variables relative to this control group.

• Other identification schemes (contrasts) are possible, as long as they lead to a full
rank in the design matrix X. For instance, if we have the hypothesis that the first
level is the best, the second level is the second best, etc., then we could consider
Helmert’s contrast coding diagram given in Table 2.3. For illustrative purposes we
only choose k = 5 car brands in Table 2.3.

B1 4/5 0 0 0
B2 -1/5 3/4 0 0
B3 -1/5 -1/4 2/3 0
B4 -1/5 -1/4 -1/3 1/2
B5 -1/5 -1/4 -1/3 -1/2

Table 2.3: Helmert’s contrast coding xHelmert ∈ R4 encoded on the different rows.

This coding in Table 2.3 has the following properties: (i) each column sums to zero,
(ii) all columns are orthogonal, and (iii) each level is compared to the mean of the
subsequent levels, see also (2.17), below. In view of (2.2), this provides regression
function for policy i (restricted to 5 car brand levels, only)

〈β,xHelmert
i 〉 =

β0 + 4
5β1 i is car brand B1,

β0 − 1
5β1 + 3

4β2 i is car brand B2,
β0 − 1

5β1 − 1
4β2 + 2

3β3 i is car brand B3,
β0 − 1

5β1 − 1
4β2 − 1

3β3 + 1
2β4 i is car brand B4,

β0 − 1
5β1 − 1

4β2 − 1
3β3 − 1

2β4 i is car brand B5.

Observe that the mean over all risk classes is described by β0. For a given level, say
car brand B2, the subsequent levels have the same mean (on the log scale) except
in the variable to which it is compared to:

(log-) mean of car brand B2: β0 −
1
5β1 + 3

4β2, (2.17)

(log-) mean over car brands B3, B4, B5: β0 −
1
5β1 −

1
4β2,

thus, the difference in this comparison is exactly one unit of β2.

• The choice of the explicit identification scheme does not have any influence on the
prediction, i.e. different (consistent) parametrizations lead to the same prediction.
However, the choice of the identification may be important for the interpretation
of the parameters (see the examples above) and it is important, in particular, if we
explore parameter reduction techniques, e.g., backward selection.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 39

• If we have k = 2 categorical classes (binary case), then dummy coding is equivalent
to a continuous consideration of that component.

Conclusion 2.8. If we consider the 5 continuous feature components age, ac, power,
area and log(dens) as log-linear, the binary component gas as 0 or 1, and the 2
categorical components brand and ct by dummy coding we receive a feature space
X = R5 × {0, 1} × X brand ×X ct ⊂ Rq of dimension q = 5 + 1 + 10 + 25 = 41.

2.4.2 Pre-processing features: continuous feature components

In view of the previous conclusion, we need to ask ourselves whether a log-linear con-
sideration of the continuous feature components age, ac, power, area and log(dens) in
regression function (2.2) is appropriate.

●

●

●

●

●
●

●

●●

●
●

●
●
●●●

●●
●●●●

●

●●●●
●
●●

●●●●●●●●●
●
●

●●
●

●
●●●

●

●

●

●
●
●

●
●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●
●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

observed log−frequency per age of driver

age of driver

fr
eq

ue
nc

y

18 23 28 33 38 43 48 53 58 63 68 73 78 83 88

●

●

●

● ● ●
●

●
● ● ●

● ●
● ● ● ●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

observed log−frequency per age of car

age of car

fr
eq

ue
nc

y

0 2 4 6 8 10 13 16 19 22 25 28 31 34

●

●
● ●

●

● ●
●

●
● ● ●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

observed log−frequency per power of car

power of car

fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9 10 11 12

●
●

●
●

●

●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

observed log−frequency per area code

area code

fr
eq

ue
nc

y

A B C D E F

●

●

● ●
●

●
●

● ●

●

●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

observed log−frequency per log density

log density

fr
eq

ue
nc

y

0 1 2 3 4 5 6 7 8 9 10

Figure 2.1: Observed marginal log-frequencies of the continuous feature components age,
ac, power, area and log(dens).

In Figure 2.1 we illustrate the observed marginal log-frequencies of the continuous feature
components age, ac, power, area and log(dens) provided by the data D in Appendix A.
We see that some of these graphs are (highly) non-linear and non-monotone which does
not support the log-linear assumption in (2.2). This is certainly true for the components
age and ac. The other continuous feature components power, area and log(dens) need
a more careful consideration because these marginal plots in Figure 2.1 can be (rather)
misleading. Note that these marginal plots involve interactions between feature compo-
nents and, thus, these marginal plots may heavily be influenced by such interactions.
For instance, log(dens) at the lower end may suffer from insufficient years at risk and
interactions with other feature components that drive low expected frequencies.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

40 Chapter 2. Generalized Linear Models

GLM modeling decision. To keep the outline of the GLM chapter simple we assume
that the components power, area and log(dens) can be modeled by a log-linear approach,
and that the components age and ac need to be modeled differently. These choices are
going to be challenged and revised later on.

The first way to deal with non-linear and non-monotone continuous feature components
in GLMs is to partition them and then treat them as (nominal) categorical variables. We
will present an other treatment in Chapter 3 on generalized additive models (GAMs). In
Figure 2.2 we provide the chosen categorization which gives us a partition of age into 8
’age classes’ and of ac into 4 ’ac classes’ (which hopefully are homogeneous w.r.t. claims
frequency).

age class 1: 18-20
age class 2: 21-25
age class 3: 26-30
age class 4: 31-40
age class 5: 41-50
age class 6: 51-60
age class 7: 61-70
age class 8: 71-90
ac class 0: 0
ac class 1: 1
ac class 2: 2
ac class 3: 3+

●

●

●

●

●
●

●

●●

●
●

●
●
●●●

●●
●●●●

●

●●●●
●
●●

●●●●●●●●●
●
●

●●
●

●
●●●

●

●

●

●
●
●

●
●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●
●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

observed log−frequency per age of driver

age of driver

fr
eq

ue
nc

y

18 23 28 33 38 43 48 53 58 63 68 73 78 83 88

●

●

●

● ● ●
●

●
● ● ●

● ●
● ● ● ●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

observed log−frequency per age of car

age of car

fr
eq

ue
nc

y

0 2 4 6 8 10 13 16 19 22 25 28 31 34

Figure 2.2: (lhs) Chosen ’age classes’ and ’ac classes’; (rhs) resulting partition.

Listing 2.1: Categorical classes for GLM
1 c1 <- c(18 , 21, 26, 31, 41, 51, 61, 71, 91)
2 ageGLM <- cbind (c(18:90) ,c(rep(paste (c1 [1] ," to",c1 [2] -1 , sep ="") ,...
3 dat$ageGLM <- as. factor (ageGLM [dat$age -17 ,2])
4 dat$ageGLM <- relevel (dat$ageGLM , ref ="51 to60 ")
5 dat$acGLM <- as. factor (pmin(dat$ac ,3))
6 levels (dat$acGLM) <- c(" ac0 "," ac1 "," ac2 "," ac3 +")

In Listing 2.1 we give the R code to receive this partitioning. Note that we treat these
age and ac classes as categorical feature components. In R this is achieved by declaring
these components being of factor type, see lines 3 and 5 of Listing 2.1. For the GLM
approach we then use dummy coding to bring these (new) categorical feature components
into the right structural form, see Section 2.4.1. On line 4 of Listing 2.1 we define

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 41

the reference level of ’age class’ for this dummy coding, and for ’ac class’ we simply
choose the first one ac0 as reference level. Thus, in full analogy to Section 2.4.1, we
obtain X age ⊂ {0, 1}7 ⊂ R7 for modeling ’age classes’, and X ac ⊂ {0, 1}3 ⊂ R3 for
modeling ’ac classes’. This implies that our feature space considers 3 log-linear continuous
feature components power, area and log(dens), the binary feature component gas and 4
categorical feature components ’age class’, ’ac class’, brand and ct. This equips us with
feature space

X = R3 × {0, 1} × X age ×X ac ×X brand ×X ct ⊂ Rq,

of dimension q = 3 + 1 + 7 + 3 + 10 + 25 = 49.

Remarks 2.9 (feature engineering).

• The choice of ’age classes’ and ’ac classes’ has been done purely expert based by
looking at the marginal plots in Figure 2.2 (rhs). They have been built such that
each resulting class is as homogeneous as possible in the underlying frequency. In
Chapter 6 we will meet regression trees which allow for a data driven selection of
classes.

• Besides the heterogeneity between and within the chosen classes, one should also
pay attention to the resulting volumes. The smallest ’age class’ 18to20 has a
total volume of 1’741.48 years at risk, the smallest ’ac class’ ac0 a total volume of
14’009.20 years at risk. The latter is considered to be sufficiently large, the former
might be critical. We come back to this in formula (2.20), below. Thus, in building
categorical classes one needs to find a good trade-off between homogeneity within
the classes and minimal sizes of these classes for reliable parameter estimation.

• A disadvantage of this categorical coding of continuous variables is that the topology
gets lost. For instance, after categorical coding as shown in Figure 2.2 it is no
longer clear that, e.g., ages 70 and 71 are neighboring ages (in categorical coding).
Moreover, the resulting frequency function will not be continuous at the boundaries
of the classes. Therefore, alternatively, one could also try to replace non-monotone
continuous features by more complex functions. For instance, we could map age to
a 4 dimensional function having regression parameters βl, . . . , βl+3 ∈ R

age 7→ βlage + βl+1 log(age) + βl+2age2 + βl+3age3.

In this coding we keep age as a continuous variable and we allow for more mod-
eling flexibility by providing a pre-specified functional form that will run into the
regression function.

• In (2.10) we have seen that if we choose the log-link function then we get a multi-
plicative tariff structure. Thus, all feature components interact in a multiplicative
way. If we have indication that interactions have a different structure, we can model
this structure explicitly. As an example, we may consider

(age, ac) 7→ βlage + βl+1ac + βl+2age/ac2.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

42 Chapter 2. Generalized Linear Models

This gives us systematic effect (under log-link choice)

exp{βlage} exp{βl+1ac} exp{βl+2age/ac2}.

This shows that GLMs allow for a lot of modeling flexibility, but the modeling has
to be done explicitly by the modeler. This requires deep knowledge about the data,
so that features can be engineered and integrated in the appropriate way.

Example 2.10 (example GLM1). In a first example we only consider feature information
age and ac, and we choose the (categorical) feature pre-processing as described in Listing
2.1. In the next section on ’data compression’ it will become clear why we are starting
with this simplified example.
We define feature space X = X age ×X ac ⊂ Rq which has dimension q = 7 + 3 = 10, and
we assume that the regression function λ : X → R+ is given by the log-linear form (2.2).

Listing 2.2: Results of example GLM1 (Example 2.10)
1 Call:
2 glm(formula = claims ~ ageGLM + acGLM , family = poisson (), data = dat ,
3 offset = log(expo))
4
5 Deviance Residuals :
6 Min 1Q Median 3Q Max
7 -1.1643 -0.3967 -0.2862 -0.1635 4.3409
8
9 Coefficients :

10 Estimate Std. Error z value Pr(>!z!)
11 (Intercept) -1.41592 0.02076 -68.220 < 2e -16 ***
12 ageGLM18to20 1.12136 0.04814 23.293 < 2e -16 ***
13 ageGLM21to25 0.48988 0.02909 16.839 < 2e -16 ***
14 ageGLM26to30 0.13315 0.02473 5.383 7.32e -08 ***
15 ageGLM31to40 0.01316 0.01881 0.700 0.48403
16 ageGLM41to50 0.05644 0.01846 3.058 0.00223 **
17 ageGLM61to70 -0.17238 0.02507 -6.875 6.22e -12 ***
18 ageGLM71to90 -0.13196 0.02983 -4.424 9.71e -06 ***
19 acGLMac1 -0.60897 0.02369 -25.708 < 2e -16 ***
20 acGLMac2 -0.79284 0.02588 -30.641 < 2e -16 ***
21 acGLMac3 + -1.08595 0.01866 -58.186 < 2e -16 ***
22 ---
23 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
24
25 (Dispersion parameter for poisson family taken to be 1)
26
27 Null deviance : 145532 on 499999 degrees of freedom
28 Residual deviance : 141755 on 499989 degrees of freedom
29 AIC: 192154
30
31 Number of Fisher Scoring iterations : 6

The MLE β̂ ∈ Rq+1 is then calculated using the R package glm. The results are presented
in Listing 2.2. We receive q+ 1 = 11 estimated MLE parameters (lines 11-21), the inter-
cept being β̂0 = −1.41592. Thus, the reference risk cell (51to60, ac0) has an expected
frequency of λ̂(x) = exp{−1.41592} = 24.27%. All other risk cells are measured relative
to this reference cell using the multiplicative structure (2.10).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 43

The further columns on lines 11-21 provide: column Std. Error gives the estimated
standard deviation σ̂l in β̂l, for details we refer to (2.33) in the appendix Section 2.6 where
Fisher’s information matrix is discussed; the column z value provides the rooted Wald
statistics under the null hypothesis βl = 0 (for each component 0 ≤ l ≤ q individually), it
is defined by zl = β̂l/σ̂l; finally, the last column Pr(>!z!) gives the resulting (individual
two-sided) p-values for these null hypotheses under asymptotic normality. These null
hypotheses should be interpreted as there does not exist a significant difference between
the considered level 1 ≤ l ≤ q and the reference level (when using dummy coding).
Note that these tests cannot be used to decide whether a categorical variable should be
included in the model or not.4

Line 28 of Listing 2.2 gives the unscaled in-sample Poisson deviance loss, i.e. nLis
D =

D∗(N , λ̂) = 141′755. This results in an in-sample loss of Lis
D = 28.3510 · 10−2, see

also Table 2.4. Line 27 gives the corresponding value of the homogeneous model (called
null model) only considering an intercept, this is the model of Section 1.4. This allows
us to consider the likelihood ratio test statistics (2.15) for the null hypothesis H0 of
the homogeneous model versus the alternative heterogeneous model considered in this
example.

χ2
D = D∗(N , λ̂H0)−D∗(N , λ̂full) = 145′532− 141′755 = 3′777.

This test statistics has approximately a χ2-distribution with q = 10 degrees of freedom.
The resulting p-value is almost zero which means that we highly reject the homogeneous
model in favor of the model in this example.
Finally, Akaike’s information criterion (AIC) is given, and Fisher’s scoring method for
parameter estimation has converged in 6 iterations.

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.1) GLM1 3.1s 11 28.3543 28.3544 0.6052 28.3510 10.2691%

Table 2.4: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 1.1.

Exactly in the same structure as in Table 1.1, we present the corresponding cross-
validation losses LCV

D , the estimation loss Ê(λ̂, λ?) and the in-sample loss Lis
D on line

(Ch2.1) of Table 2.4. Note that the estimation loss is given by

4The rooted Wald statistics uses a second order Taylor approximation to the log-likelihood. Based
on asymptotic normality it allows for a z-test under known dispersion or a t-test for estimated dispersion
whether a variable can be dropped from the full model. However, if we have categorical features, one
has to be more careful because in this case the p-value only indicates whether a level significantly differs
from the reference level.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

44 Chapter 2. Generalized Linear Models

Ê(λ̂, λ?) = 1
n

n∑
i=1

2vi

[
λ̂(xi)− λ?(xi)− λ?(xi) log

(
λ̂(xi)
λ?(xi)

)]
= 0.6052 · 10−2,

and this estimation loss can only be calculated because we know the true model λ?, here.
We observe that these loss figures are clearly better than in the homogeneous model on
line (Ch1.1), but worse compared to the true model λ? on line (ChA.1). We also observe
that we have a negligible over-fitting because cross-validation provides almost the same
numbers compared to the in-sample loss.5

Next we estimate the dispersion parameter φ. The resulting Pearson’s and deviance
estimators are

φ̂P = 1.0061 and φ̂D = 28.3516 · 10−2.

The Pearson’s estimator shows a small over-dispersion, the deviance estimator is more
difficult to interpret because its true level for small frequencies is typically not exactly
known, see also Figure 1.1. Note that the deviance dispersion estimate (2.14) scales with
the number of parameters q, that is, the degrees of freedom are given by 500′000−(q+1) =
499′989. This slightly corrects for model complexity. However, the resulting estimate is
bigger than the cross-validation loss in our example.

●

●

●

●

●
●

●

●●
●
●
●●

●●●
●●

●●●●
●
●●●●●

●●
●●●●●●●●●

●●
●●

●
●●●●

●
●
●
●●

●
●●

●

●
●●

●
●●●

●

●

●

●

●

●

●

●
●

0.
0

0.
1

0.
2

0.
3

0.
4

GLM1: estimated frequency of age

age of driver

fr
eq

ue
nc

y

18 23 28 33 38 43 48 53 58 63 68 73 78 83 88

● observed
GLM1 estimated

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

0.
0

0.
1

0.
2

0.
3

0.
4

GLM1: estimated frequency of ac

age of car

fr
eq

ue
nc

y

0 2 4 6 8 10 13 16 19 22 25 28 31 34

● observed
GLM1 estimated

Figure 2.3: Estimated marginal frequencies in example GLM1 for age and ac.

In Figure 2.3 we present the resulting marginal frequency estimates (averaged over our
portfolio); these are compared to the marginal observations. The orange graphs reflect
the MLEs provided in Listing 2.2. The graphs are slightly wiggly which is caused by the
fact that we have a heterogeneous portfolio that implies non-homogeneous multiplicative
interactions between the feature components age and ac.
Finally, in Figure 2.4 we show the resulting Pearson’s and deviance residuals. The dif-
ferent colors illustrate the underlying years at risk vi ∈ (0, 1], i = 1, . . . , n. As previously
mentioned, we observe that Pearson’s residuals are not very robust for small years at risk
vi (red color) because we divide by these (small) volume measures for Pearson’s residual

5Cross-validation is done on the same partition for all models considered in these notes. Run time
measures the time to fit the model once on a personal laptop Intel(R) Core(TM) i7-8550U CPU @
1.80GHz 1.99GHz with 16GB RAM.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 45

Figure 2.4: Deviance residuals δ̂Di versus Pearson’s residuals δ̂Pi ; the colors illustrate the
underlying years at risk vi ∈ (0, 1].

definition (2.12). In general, one should work with deviance residuals because this is a
distribution-adapted version of the residuals and considers skewness and tails in the right
way (supposed that the model choice is appropriate). This finishes the example for the
time being. �

2.4.3 Data compression

We note that Example 2.10 only involves d = 8 · 4 = 32 different risk cells for the
corresponding ’age classes’ and ’ac classes’, see also Figure 2.2. Within these risk cells we
assume that the individual insurance policies are homogeneous, i.e. can be characterized
by a common feature value x+

k ∈ X = X age×X ac ⊂ Rq with q = 10. Running the R code
in Listing 2.2 may be time consuming if the number of policies n is large. Therefore,
we could/should try to first compress the data accordingly. For independent Poisson
distributed random variables this is rather simple, the aggregation property of Lemma
1.3 implies that we can consider sufficient statistics on the d = |X | = 32 different risk
cells. These are described by the (representative) features {x+

1 , . . . ,x
+
d } = X . We define

the aggregated portfolios in each risk cell k = 1, . . . , d by

N+
k =

n∑
i=1

Ni1{xi=x+
k
} and v+

k =
n∑
i=1

vi1{xi=x+
k
}. (2.18)

Observe that Ni and vi are on an individual insurance policy level, whereas N+
k and v+

k

are on an aggregated risk cell (portfolio) level. The consideration of the latter provides a
substantial reduction in computational time when calculating the MLE β̂ of β because
the n = 500′000 observations are compressed to d = 32 aggregated observations (sufficient
statistics). Lemma 1.3 implies that all risk cells k = 1, . . . , d are independent and Poisson
distributed

N+
k ∼ Poi

(
λ(x+

k)v+
k

)
.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

46 Chapter 2. Generalized Linear Models

The joint log-likelihood function on the compressed data D+ = {(N+
k ,x

+
k , v

+
k); k =

1, . . . , d} is given by

`N+(β) =
d∑

k=1
− exp〈β,x+

k 〉v
+
k +N+

k

(
〈β,x+

k 〉+ log v+
k

)
− log(N+

k !). (2.19)

We introduce the design matrix X+ = (x+
k,l)1≤k≤d,0≤l≤q as above, and the MLE β̂ is

found as in Proposition 2.2.

Listing 2.3: Aggregation/compression of risk cells
1 > dat <- ddply (dat , .(ageGLM , acGLM), summarize ,expo=sum(expo), claims =sum(claims))
2 > str(dat)
3 ’data.frame ’: 32 obs. of 4 variables :
4 $ ageGLM : Factor w/ 8 levels "51 to60 " ,"18 to20 " ,..: 1 1 1 1 2 2 2 2 3 3 ...
5 $ acGLM : Factor w/ 4 levels "ac0 "," ac1 "," ac2 " ,..: 1 2 3 4 1 2 3 4 1 2 ...
6 $ expo : num 3144.4 6286.4 5438.8 38209.8 38.6 ...
7 $ claims : int 712 817 618 3174 19 31 12 410 179 192 ...

In Listing 2.3 we provide the R code for the data compression in each risk cell. Note that
ageGLM and acGLM describe the categorical classes, see also Listing 2.1.

Example 2.10, revisited (example GLM2). We revisit example GLM1 (Example 2.10),
but calculate the MLE β̂ directly on the aggregated risk cells received from Listing 2.3.
The results are presented in Listing 2.4.
We note that the result for the MLE β̂ is exactly the same, compare Listings 2.2 and
2.4. Of course, this needs to be the case due to the fact that we work with (aggregated)
sufficient statistics in the latter version. The only things that change are the deviance
losses because we work on a different scale now. We receive in-sample loss Lis

D+ =
D∗(N+, λ̂)/d = 32.1610/32 = 1.0050 on the aggregate data D+. The degrees of freedom
are d− (q + 1) = 32− 11 = 21, this results in dispersion parameter estimates

φ̂P = 1.5048 and φ̂D = 1.5315.

Thus, we obtain quite some over-dispersion which indicates that our regression function
choice misses important structure.
In Figure 2.5 (lhs) we plot deviance residuals versus Pearson’s residuals, the different
colors showing the volumes of the underlying risk cells. We note that the two versions of
residuals are almost identical on an aggregate risk cell level. Figure 2.5 (rhs) gives the
Tukey–Anscombe plot which plots the residuals versus the fitted means. In this plot we
would not like to discover any structure.
In Figure 2.6 we plot the estimated marginal frequencies of example GLM2 (on the
different categorical levels). We notice that the observed frequencies N+

k /v
+
k (marginally

aggregated) exactly match the estimated expected frequencies λ̂(x+
k) (also marginally

aggregated). This is explained by the fact that the Poisson GLM method with categorical
coding provides identical results to the method of the total marginal sums by Bailey [7]
and Jung [76], see Section 7.1 in Wüthrich [135]. This also explains why the average
estimated frequencies of the homogeneous model and example GLM1 are identical in the
last column of Table 2.4. This finishes example GLM2. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 47

Listing 2.4: Results of example GLM2
1 Call:
2 glm(formula = claims ~ ageGLM + acGLM , family = poisson (), data = dat ,
3 offset = log(expo))
4
5 Deviance Residuals :
6 Min 1Q Median 3Q Max
7 -1.9447 -0.8175 -0.1509 0.6370 1.9360
8
9 Coefficients :

10 Estimate Std. Error z value Pr(>!z!)
11 (Intercept) -1.41592 0.02076 -68.220 < 2e -16 ***
12 ageGLM18to20 1.12136 0.04814 23.293 < 2e -16 ***
13 ageGLM21to25 0.48988 0.02909 16.839 < 2e -16 ***
14 ageGLM26to30 0.13315 0.02473 5.383 7.32e -08 ***
15 ageGLM31to40 0.01316 0.01881 0.700 0.48403
16 ageGLM41to50 0.05644 0.01846 3.058 0.00223 **
17 ageGLM61to70 -0.17238 0.02507 -6.875 6.22e -12 ***
18 ageGLM71to90 -0.13196 0.02983 -4.424 9.71e -06 ***
19 acGLMac1 -0.60897 0.02369 -25.708 < 2e -16 ***
20 acGLMac2 -0.79284 0.02588 -30.641 < 2e -16 ***
21 acGLMac3 + -1.08595 0.01866 -58.186 < 2e -16 ***
22 ---
23 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
24
25 (Dispersion parameter for poisson family taken to be 1)
26
27 Null deviance : 3809.473 on 31 degrees of freedom
28 Residual deviance : 32.161 on 21 degrees of freedom
29 AIC: 305.12
30
31 Number of Fisher Scoring iterations : 3

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

deviance versus Pearson's residuals

deviance residuals

P
ea

rs
on

's
 r

es
id

ua
ls

10000

20000

30000

40000

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

0 1000 2000 3000 4000

−
2

−
1

0
1

2

Tukey−Anscombe plot

fitted means

de
vi

an
ce

 r
es

id
ua

ls

Figure 2.5: Example GLM2: (lhs) deviance versus Pearson’s residuals, (rhs) Tukey–
Anscombe plot.

2.4.4 Issue about low frequencies

In the previous section we have worked on aggregated data D+ (sufficient statistics).
This aggregation is possible on categorical classes, but not necessarily if we consider
continuous feature components. This is exactly the reason why we have been starting

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

48 Chapter 2. Generalized Linear Models

●

●

●
● ● ●

● ●

0.
0

0.
1

0.
2

0.
3

0.
4

GLM2: estimated frequency ageGLM

age of driver

fr
eq

ue
nc

y

18to20 21to25 26to30 31to40 41to50 51to60 61to70 71to90

● observed
GLM2 estimated

●

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

GLM2: estimated frequency acGLM

age of car

fr
eq

ue
nc

y

ac0 ac1 ac2 ac3+

● observed
GLM2 estimated

Figure 2.6: Estimated marginal frequencies in GLM2 Example 2.10 for ’age classes’ and
’ac classes’ risk cells.

by only considering two categorized feature components in Example 2.10 (GLM1 and
GLM2). In this section we would like to emphasize a specific issue in insurance of having
rather low expected frequencies in the range of 3% to 20%. If, for instance, λ(x) = 5%
and v = 1 then we obtain for N ∼ Poi(λ(x)v)

E[N] = 0.05 and Var(N)1/2 = 0.22.

This indicates that the pure randomness is typically of much bigger magnitude than pos-
sible structural differences (see also Figure 1.2), and we require a lot of information to
distinguish good from bad car drivers. In particular, we need portfolios having appropri-
ate volumes (years at risk). If, instead, these drivers would have observations of 10 years
at risk, i.e. v = 10, then magnitudes of order start to change

E[N] = 0.50 and Var(N)1/2 = 0.71.

If we take confidence bounds of 2 standard deviations we obtain for the expected fre-
quency λ(x) the following intervalλ(x)− 2

√
λ(x)
v

, λ(x) + 2

√
λ(x)
v

 . (2.20)

This implies for λ(x) = 5% that we need v = 2′000 years at risk to detect a structural
difference to an expected frequency of 4%. Of course, this is taken care of by building
sufficiently large homogeneous sub-portfolios (we have n = 500′000 policies). But if the
dimension of the feature space X is too large or if we have too many categorical feature
components then we cannot always achieve to obtain sufficient volumes for parameter
estimation (and a reduction of dimension technique may need to be applied). Note that
the smallest ’age class’ 18to20 is rather heterogeneous but it only has a total volume of
1’741.48 years at risk, see Remarks 2.9. Moreover, these considerations also refer to the
remark after Example 2.1.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 49

2.4.5 Models GLM3+ considering all feature components

In this section we consider the a GLM considering all feature components and based
on our GLM modeling decision on page 40: we assume that the components power,
area and log(dens) can be modeled by a log-linear approach, component gas is binary,
the components age and ac are modeled categorically according to Figure 2.2, and the
remaining feature components brand and ct are categorical. This gives us the feature
space

X = R3 × {0, 1} × X age ×X ac ×X brand ×X ct ⊂ Rq,

of dimension q = 3 + 1 + 7 + 3 + 10 + 25 = 49. We call this model example GLM3.

Listing 2.5: Results of example GLM3
1 Call:
2 glm(formula = claims ~ power + area + log(dens) + gas + ageGLM +
3 acGLM + brand + ct , family = poisson (), data = dat , offset = log(expo))
4
5 Deviance Residuals :
6 Min 1Q Median 3Q Max
7 -1.1944 -0.3841 -0.2853 -0.1635 4.3759
8
9 Coefficients :

10 Estimate Std. Error z value Pr(>!z!)
11 (Intercept) -1.7374212 0.0455594 -38.135 < 2e -16 ***
12 power -0.0008945 0.0031593 -0.283 0.777069
13 area 0.0442176 0.0192701 2.295 0.021755 *
14 log(dens) 0.0318978 0.0143172 2.228 0.025884 *
15 gasRegular 0.0491739 0.0128676 3.822 0.000133 ***
16 ageGLM18to20 1.1409863 0.0483603 23.593 < 2e -16 ***
17 .
18 ageGLM71to90 -0.1264737 0.0300539 -4.208 2.57e -05 ***
19 acGLMac1 -0.6026905 0.0237064 -25.423 < 2e -16 ***
20 acGLMac2 -0.7740611 0.0259994 -29.772 < 2e -16 ***
21 acGLMac3 + -1.0242291 0.0204606 -50.059 < 2e -16 ***
22 brandB10 -0.0058938 0.0445983 -0.132 0.894864
23 .
24 brandB5 0.1300453 0.0292474 4.446 8.73e -06 ***
25 brandB6 -0.0004378 0.0332226 -0.013 0.989486
26 ctAG -0.0965560 0.0274785 -3.514 0.000442 ***
27 .
28 ctVS -0.1110315 0.0317446 -3.498 0.000469 ***
29 ctZG -0.0724881 0.0463526 -1.564 0.117855
30 ---
31 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
32
33 Null deviance : 145532 on 499999 degrees of freedom
34 Residual deviance : 140969 on 499950 degrees of freedom
35 AIC: 191445

The results for the MLE β̂ are provided in Listing 2.5 and the run time is found in Table
2.5. From Listing 2.5 we need to question the modeling of (all) continuous variables
power, area and log(dens). Either these variables should not be in the model or we
should consider them in a different functional form.
In Table 2.5 we state the resulting loss figures of model GLM3. They are better than
the ones of model GLM1 (only considering the two age and ac classes, respectively), but
there is still room for improvements compared to the true model λ?.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

50 Chapter 2. Generalized Linear Models

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.1) GLM1 3.1s 11 28.3543 28.3544 0.6052 28.3510 10.2691%
(Ch2.3) GLM3 12.0s 50 28.2125 28.2133 0.4794 28.1937 10.2691%
(Ch2.4) GLM4 14.0s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch2.5) GLM5 13.3s 56 28.1508 28.1520 0.4128 28.1292 10.2691%

Table 2.5: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 2.4.

As a first model modification we consider power as categorical, merging powers above
and including 9 to one class, thus, we consider 9 different ’power classes’. This equips us
with a new feature space

X = X power × R2 × {0, 1} × X age ×X ac ×X brand ×X ct ⊂ Rq, (2.21)

of dimension q = 8 + 2 + 1 + 7 + 3 + 10 + 25 = 56. We call this new model GLM4. The
results are presented in Listing 2.6.
Based on this analysis we keep all components in the model. In particular, we should
keep the variable power but a log-linear shape is not the right functional form to consider
power. This also becomes apparent from the cross-validation analysis given in Table 2.5
on line (Ch2.4). Note that the number of parameters has been increasing from 11 (GLM1)
to 57 (GLM4), and at the same time over-fitting is increasing (difference between cross-
validation loss LCV

D and in-sample loss Lis
D). The cross-validation loss has decreased by

28.3543− 28.1502 = 0.2041 which is consistent with the decrease of 0.1915 in estimation
loss Ê(λ̂, λ?) from GLM1 to GLM4.
Another important note is that all GLMs fulfill the balance property of Proposition 2.4.
This is also seen from the last column in Table 2.5.
Next we consider an analysis of variance (ANOVA) which nests GLMs w.r.t. the consid-
ered feature components. In this ANOVA, terms are sequentially added to the model.
Since the order of this sequentially adding is important, we re-order the components on
lines 2 and 3 of Listing 2.6 as follows acGLM, ageGLM, ct, brand, powerGLM, gas, log(dens)
and area. This ordering is based on the rationale that the first one is the most important
feature component and the last one is the least important one. The ANOVA is then done
in R by the command anova.
In Listing 2.7 we present the results of this ANOVA. The column Df shows the number
of model parameters βl, 1 ≤ l ≤ q, the corresponding feature component uses. The
column Deviance shows the amount of reduction in in-sample deviance loss D∗(N , λ̂)
when sequentially adding this feature component, and the last column Resid.Dev shows
the remaining in-sample deviance loss. We note that gas and area lead to a comparably
small decrease of in-sample loss which may question the use of these feature components
(in the current form). We can calculate the corresponding p-values of the χ2-test statistics

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 51

Listing 2.6: Results of example GLM4
1 Call:
2 glm(formula = claims ~ powerGLM + area + log(dens) + gas + ageGLM +
3 acGLM + brand + ct , family = poisson (), data = dat , offset = log(expo))
4
5 Deviance Residuals :
6 Min 1Q Median 3Q Max
7 -1.1373 -0.3820 -0.2838 -0.1624 4.3856
8
9 Coefficients :

10 Estimate Std. Error z value Pr(>!z!)
11 (Intercept) -1.903e+00 4.699e -02 -40.509 < 2e -16 ***
12 powerGLM2 2.681e -01 2.121e -02 12.637 < 2e -16 ***
13 powerGLM3 2.525e -01 2.135e -02 11.828 < 2e -16 ***
14 powerGLM4 1.377e -01 2.113e -02 6.516 7.22e -11 ***
15 powerGLM5 -2.498e -02 3.063e -02 -0.816 0.414747
16 powerGLM6 3.009e -01 3.234e -02 9.304 < 2e -16 ***
17 powerGLM7 2.214e -01 3.240e -02 6.835 8.22e -12 ***
18 powerGLM8 1.103e -01 4.128e -02 2.672 0.007533 **
19 powerGLM9 -1.044e -01 4.708e -02 -2.218 0.026564 *
20 area 4.333e -02 1.927e -02 2.248 0.024561 *
21 log(dens) 3.224e -02 1.432e -02 2.251 0.024385 *
22 gasRegular 6.868e -02 1.339e -02 5.129 2.92e -07 ***
23 ageGLM18to20 1.142 e+00 4.836e -02 23.620 < 2e -16 ***
24 .
25 .
26 ctZG -8.123e -02 4.638e -02 -1.751 0.079900 .
27 ---
28 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
29
30 (Dispersion parameter for poisson family taken to be 1)
31
32 Null deviance : 145532 on 499999 degrees of freedom
33 Residual deviance : 140641 on 499943 degrees of freedom
34 AIC: 191132

Listing 2.7: ANOVA results 1
1 Analysis of Deviance Table
2
3 Model : poisson , link: log
4
5 Response : claims
6
7 Terms added sequentially (first to last)
8
9

10 Df Deviance Resid . Df Resid . Dev
11 NULL 499999 145532
12 acGLM 3 2927.32 499996 142605
13 ageGLM 7 850.00 499989 141755
14 ct 25 363.29 499964 141392
15 brand 10 124.37 499954 141267
16 powerGLM 8 315.48 499946 140952
17 gas 1 50.53 499945 140901
18 log(dens) 1 255.22 499944 140646
19 area 1 5.06 499943 140641

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

52 Chapter 2. Generalized Linear Models

Listing 2.8: ANOVA results 2
1 Analysis of Deviance Table
2
3 Model : poisson , link: log
4
5 Response : claims
6
7 Terms added sequentially (first to last)
8
9

10 Df Deviance Resid . Df Resid . Dev
11 NULL 499999 145532
12 acGLM 3 2927.32 499996 142605
13 ageGLM 7 850.00 499989 141755
14 ct 25 363.29 499964 141392
15 brand 10 124.37 499954 141267
16 powerGLM 8 315.48 499946 140952
17 gas 1 50.53 499945 140901
18 area 1 255.20 499944 140646
19 log(dens) 1 5.07 499943 140641

Listing 2.9: drop 1 analysis
1 Single term deletions
2
3 Model :
4 claims ~ acGLM + ageGLM + ct + brand + powerGLM + gas + areaGLM +
5 log(dens)
6 Df Deviance AIC LRT Pr(>Chi)
7 <none > 140641 191132
8 acGLM 3 142942 193426 2300.61 < 2.2e -16 ***
9 ageGLM 7 141485 191962 843.91 < 2.2e -16 ***

10 ct 25 140966 191406 324.86 < 2.2e -16 ***
11 brand 10 140791 191261 149.70 < 2.2e -16 ***
12 powerGLM 8 140969 191443 327.68 < 2.2e -16 ***
13 gas 1 140667 191156 26.32 2.891e -07 ***
14 areaGLM 1 140646 191135 5.06 0.02453 *
15 log(dens) 1 140646 191135 5.07 0.02434 *
16 ---
17 Signif . codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(2.15) with Df degrees of freedom. These p-values are all close to zero except for area
and log(dens). These p-value are 2.5%, which may allow to work with a model reduced
by area and/or log(dens).
One may argue that the ANOVA in Listing 2.7 is not “fully fair” for area because this
feature component is considered as the last one in this sequential analysis. Therefore, we
revert the order in a second analysis putting log(dens) to the end of the list, see Listing
2.8. Indeed, in this case we come to the conclusion that feature component log(dens)
may not be necessary. In fact, these two feature components seem to be exchangeable
which is explained by the fact that they are very highly correlated, see Table A.2 in the
appendix.
For these reasons we study another model GLM5 where we completely drop area. The
cross-validation results are provided on line (Ch2.5) of Table 2.5. These cross-validation

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 53

losses LCV
D are slightly bigger for model GLM5 compared to model GLM4, therefore, we

decide to keep area in the model, and we work with feature space (2.21) for the GLM.
Remark that this decision is wrong because the estimation loss of 0.4128 in model GLM5
is smaller than the 0.4137 of model GLM4. However, these estimation losses Ê(λ̂, λ?) are
not available in typical applications where the true data generating mechanism λ? is not
known.

AIC
(Ch2.3) GLM3 191’445
(Ch2.4) GLM4 191’132
(Ch2.5) GLM5 191’135

Table 2.6: Akaike’s information criterion AIC.

Alternatively to cross-validation, we could also compare Akaike’s information criterion
(AIC). In general, the model with the smallest AIC value should be preferred; for the
validity of the use of AIC we refer to Section 4.2.3 in [141]. In view of Table 2.6 we reach
to the same conclusion as with cross-validation losses in this example.
The ANOVA in Listing 2.7 adds one feature component after the other. In practice, one
usually does model selection rather by backward selection. Therefore, one starts with a
complex/full model and drops recursively the least significant variables. If we start with
the full model we can perform a drop1 analysis which is given in Listing 2.9: this analysis
individually drops each variable from the full model. Based on this analysis we would
first drop areaGLM because it has the highest p-value (received from the Wald statistics,
see Section 2.6). However, this p-value is smaller than 5%, therefore, we would not drop
any variable on a 5% significance level. The same conclusion is drawn from AIC because
the full model has the smallest value. This finishes the GLM example. �

2.4.6 Generalized linear models: summary

In the subsequent chapters we will introduce other regression model approaches. These
approaches will challenge our (first) model choice GLM4 having q + 1 = 57 parameters
and feature space (2.21). We emphasize the following points:

• We did not fully fine-tune our model choice GLM4. That is, having n = 500′000
observations we could provide better feature engineering. For instance, we may
explore explicit functional forms for ac or age. Moreover, in feature engineering
we should also explore potential interactions between the feature components, see
Remarks 2.9.

• Exploring functional forms, for instance, for age also has the advantage that neigh-
boring ’age classes’ stand in a neighborhood relationship to each other. This is not
the case with the categorization used in Figure 2.2.

• Another issue we are going to meet below is over-parametrization and over-fitting.
To prevent from over-fitting one may apply regularization techniques which may
tell us that certain parameters or levels/labels are not needed. Regularization will
be discussed in Section 4.3.2, below.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

54 Chapter 2. Generalized Linear Models

• Finally, we may also question the Poisson model assumption. In many real appli-
cations one observes so-called zero-inflated claims counts which means that there
are too many zero observations in the data. In this case often a zero-inflated
Poisson (ZIP) model is used that adds an extra point mass to zero. If we face
over-dispersion, then also an negative binomial model should be considered.

2.5 Classification problem

For classification we consider the following data

D = {(Y1,x1) , . . . , (Yn,xn)} , (2.22)

with features xi ∈ X and responses Yi taking values in a finite set Y. For instance, we
may consider genders Y = {female,male}. In general, we call the elements of Y classes or
levels, and we represent the classes by a finite set of integers (labels) Y = {0, . . . , J − 1},
for a given J ∈ N. These classes can either be of ordered type (e.g. small, middle, large)
or of categorical type (e.g. female, male). Our goal is to construct a classification on X .
That is, we aim at constructing a classifier

C : X → Y, x 7→ y = C(x). (2.23)

This classifier may, for instance, describe the most likely outcome y ∈ Y of a (noisy)
response Y having feature x. The classifier C provides a finite partition of the feature
space X given by

X =
⋃
y∈Y
X (y), X (y) = {x ∈ X ; C(x) = y} . (2.24)

2.5.1 Classification of random binary outcomes

Typically, also in classification the data generating mechanism is not known. Therefore,
we make a model assumption under which we infer a classifier C of the given data D. Let
us focus on the binary situation Y = {0, 1}. We assume that all responses of the cases
(Yi,xi) in D are independent and generated by the following probability law

π1(x) = P [Y = 1] = p(x) and π0(x) = P [Y = 0] = 1− p(x), (2.25)

for a given (but unknown) probability function

p : X → [0, 1], x 7→ p(x). (2.26)

Formula (2.25) describes a Bernoulli random variable Y . A classifier C : X → {0, 1} can
then be defined by

C(x) = argmax
y∈Y

πy(x),

with a deterministic rule if both πy(x) are equally large. C(x) is the most likely outcome
of Y = Y (x). Of course, this can be generalized to multiple response classes J ≥ 2
with corresponding probabilities π0(x), . . . , πJ−1(x) for features x ∈ X . This latter

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 55

distribution is called categorical distribution. For simplicity we restrict to the binary
(Bernoulli) case here.
If for all features x there exists y ∈ Y with πy(x) = 1, there is no randomness involved,
i.e. the responses Y are not noisy, and we obtain a deterministic classification problem.
Nevertheless, also in this case we typically need to infer the unknown partition (2.24).

2.5.2 Logistic regression classification

Assume we consider the binary situation and the probability function (2.26) can be
described by a logistic functional form through the scalar product 〈β,x〉 given in (2.2).
This means that we assume for given β ∈ Rq+1

p(x) = exp〈β,x〉
1 + exp〈β,x〉 , or equivalently 〈β,x〉 = log

(
p(x)

1− p(x)

)
. (2.27)

The aim is to estimate β with MLE methods. Assume we have n independent responses
in D, given by (2.22), all being generated by a model of the form (2.25)-(2.26). The joint
log-likelihood under assumption (2.27) is then given by, we set Y = (Y1, . . . , Yn)′,

`Y (β) =
n∑
i=1

Yi log p(xi) + (1− Yi) log(1− p(xi)) =
n∑
i=1

Yi 〈β,xi〉 − log(1 + exp〈β,xi〉).

We calculate the partial derivatives of the log-likelihood function for 0 ≤ l ≤ q

∂

∂βl
`Y (β) =

n∑
i=1

(
Yi −

exp〈β,xi〉
1 + exp〈β,xi〉

)
xi,l = 0.

Proposition 2.11. The solution β̂ to the MLE problem (2.25)-(2.26) in the logistic case
is given by the solution of

X′
exp{Xβ}

1 + exp{Xβ} = X′Y ,

for design matrix X given by (2.7) and where the ratio is understood element-wise.

If the design matrix X has full rank q+ 1 ≤ n, the log-likelihood function is concave and,
henceforth, the MLE is unique. Moreover, the root search problem of the score function
in Proposition 2.11 is solved by Fisher’s scoring method or the IRLS algorithm, see also
Section 2.2.

The estimated logistic probabilities are obtained by

π̂1(x) = p̂(x) = exp〈β̂,x〉
1 + exp〈β̂,x〉

and π̂0(x) = 1− π̂1(x) = 1
1 + exp〈β̂,x〉

.

This provides estimated classifier

Ĉ(x) = argmax
y∈Y

π̂y(x), (2.28)

with a deterministic rule if both π̂y(x) are equally large.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

56 Chapter 2. Generalized Linear Models

Remarks 2.12.

• Model (2.25)-(2.26) was designed for a binary classification problem with two re-
sponse classes J = 2 (Bernoulli case). Similar results can be derived for multiple
response classes J > 2 (categorical case).

• The logistic approach (2.27) was used to obtain a probability p(x) ∈ (0, 1). This
is probably the most commonly used approach, but there exist many other (func-
tional) modeling approaches which are in a similar spirit to (2.27).

• In machine learning, the logistic regression assumption (2.27) is also referred to the
sigmoid activation function φ(x) = (1 + e−x)−1 for x ∈ R. We come back to this in
the neural network chapter, see Table 5.1.

• In categorical problems with more than two classes one often replaces the logistic
regression function by the so-called softmax function.

• Note that πy(x) is by far more sophisticated than C(x). For instance, if Y is an
indicator whether a car driver has an accident or not, i.e.,

Y = 1{N≥1},

then we have in the Poisson case

π1(x) = p(x) = P [Y = 1] = P [N ≥ 1] = 1− exp{−λ(x)v} = λ(x)v + o (λ(x)v) ,
(2.29)

as λ(x)v → 0. Thus, π1(x) ≈ λ(x)v for typical car insurance frequencies, say, of
magnitude 5% and one year at risk v = 1. This implies that in the low frequency
situation we obtain classifier C(x) = 0 for all policies.

Moreover, for small expected frequencies λ(x) we could also use the logistic re-
gression modeling approach and (2.29) to infer the regression model, we refer to
Sections 3.3 and 3.4 in Ferrario et al. [43].

In analogy to the Poisson case we can consider the deviance loss in the binomial case
given by

D∗(Y , p̂) = 2
(
`Y (Y)− `Y (β̂)

)
(2.30)

= −2
n∑
i=1

Yi 〈β̂,xi〉 − log(1 + exp〈β̂,xi〉),

because the saturated model provides log-likelihood equal to zero. Similar to (2.15) this
allows us for a likelihood ratio test for parameter reduction. It also suggests the Pearson’s
residuals and the deviance residuals, respectively,

δ̂Pi = Yi − p̂(xi)√
p̂(xi)(1− p̂(xi))

,

δ̂Di = sgn (Yi − 0.5)
√
−2
(
Yi 〈β̂,xi〉 − log(1 + exp〈β̂,xi〉)

)
.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 2. Generalized Linear Models 57

Finally, for out-of-sample back-testing and cross-validation one often considers the prob-
ability of misclassification as generalization loss

P
[
Y 6= Ĉ(x)

]
,

for a classifier Ĉ(·) estimated from randomly chosen i.i.d. data (Yi,xi) ∼ P, i = 1, . . . , n,
where the distribution P has the meaning that we choose at random a policy with feature
xi and corresponding classifier Yi, and where (Y,x) is independent of Ĉ(·) having the same
distribution as the cases (Yi,xi).
Based on a learning sample DB we estimate the classifier by ĈB(·) and using the test
sample DBc we can estimate the probability of misclassification defined by

Loos
1{6=}

= P̂
[
Y 6= Ĉ(x)

]
= 1
|Bc|

∑
i∈Bc

1{Yi 6=ĈB(xi)}
, (2.31)

we also refer to Section 1.3.2. Thus, we use the loss function for misclassification

L(Y, C(x)) = 1{Y 6=C(x)}. (2.32)

We can then apply the same techniques as in Section 1.3.2, i.e. the leave-one-out cross-
validation or the K-fold cross-validation to estimate this generalization loss.

In relation to Remarks 2.12 one should note that for rare events the misclassification rate
should be replaced by other loss functions. In the binary situation with π1(x)� 1/2 for
all x ∈ X , the trivial predictor Y ≡ 0, a.s., obtains an excellent misclassification rate (be-
cause of missing sensitivity of this loss function towards rare events); in machine learning
this problem is often called class imbalance problem. The binomial deviance loss (2.30)
is also referred to the cross-entropy loss which may be used instead of misclassification.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

58 Chapter 2. Generalized Linear Models

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sAppendix to Chapter 2

2.6 Maximum likelihood estimation

Under fairly general conditions, the MLE satisfies asymptotic normality properties con-
verging to a multivariate standard Gaussian distribution if properly normalized, see The-
orem 6.2.3 in Lehmann [87]. In particular, the MLE is asymptotically unbiased with
asymptotic variance described by the inverse of Fisher’s information matrix.
The log-likelihood function is in our Poisson GLM given by, see (2.4),

β 7→ `N (β) =
n∑
i=1
− exp〈β,xi〉vi +Ni (〈β,xi〉+ log vi)− log(Ni!),

and the MLE is found by the roots of
∂

∂β
`N (β) = 0.

Assuming full rank q+ 1 ≤ n of the design matrix X we receive a unique solution to this
root search problem because under this assumption the log-likelihood function is concave.
Fisher’s information matrix is in this Poisson GLM given by the negative Hessian, see
(2.9),

I(β) =
(
−E

[
∂2

∂βl∂βr
`N (β)

])
0≤l,r≤q

=
(

n∑
i=1

vi exp〈β,xi〉xi,lxi,r

)
0≤l,r≤q

= −Hβ`N (β).

Fisher’s information matrix can be estimated by

I(β̂) =
(

n∑
i=1

vi exp〈β̂,xi〉xi,lxi,r

)
0≤l,r≤q

=
(

n∑
i=1

vi exp
{

(Xβ̂)i
}
xi,lxi,r

)
0≤l,r≤q

= X′ V
β̂
X,

with estimated diagonal working weight matrix

V
β̂

= diag
(
exp

{
(Xβ̂)1

}
v1, . . . , exp

{
(Xβ̂)n

}
vn
)

= diag
(
V exp{Xβ̂}

)
.

The inverse of the estimated Fisher’s information matrix I(β̂)−1 can now be used to
estimate the covariance matrix of the estimate β̂ − β. In particular, we may use for
0 ≤ l ≤ q

σ̂l =
√(
I(β̂)−1

)
l,l
, (2.33)

as the estimated standard error in the MLE β̂l. The diagonal matrix V
β̂
can be obtained

from the R output by using d.glm$weights if we set d.glm <- glm(...).

59

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

60 Chapter 2. Generalized Linear Models

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 3

Generalized Additive Models

In the previous chapter we have assumed that the log-linear model structure (2.2) is ap-
propriate for expected frequency modeling. We have met situations where this log-linear
model structure has not really been justified by statistical analysis (feature components
age or power). We have circumvented this problem by building categorical classes and
then estimating a regression parameter for each of these categorical classes individually.
This approach may lead to over-parametrization and may neglect dependencies between
neighboring classes (if there is a natural ordering). In the present section we allow for
more flexibility in model assumption (2.2) by considering generalized additive models
(GAMs). This chapter is based on Hastie et al. [62], Ohlsson–Johansson [102], Pruscha
[106], Wood [134] and Bühlmann–Mächler [20].

3.1 Generalized additive models for Poisson regressions

Assume we are in modeling setup (2.1) and we would like to estimate the regression
function λ(·). In this chapter we replace the log-linear approach (2.2) by the following
model assumption

log λ(x) = β0 +
q∑
l=1

fl(xl), (3.1)

where fl(·), l = 1, . . . , q, are sufficiently nice functions and β0 ∈ R denotes the intercept.

Remarks 3.1.

• In approach (3.1) we assume that all feature components are real-valued. Categor-
ical components are treated by dummy coding.

• Models of type (3.1) are called generalized additive models (GAMs), here applied to
the Poisson case with log-link function (which is the canonical link for the Poisson
model). GAMs go back to Hastie–Tibshirani [60, 61], we also refer to Wood [134].

• Approach (3.1) does not allow for non-multiplicative interactions between the fea-
ture components. More general versions of GAMs are available in the literature.
These may capture other interactions between feature components by, for instance,

61

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

62 Chapter 3. Generalized Additive Models

considering functions fl1,l2(xl1 , xl2) for pair-wise interactions. For interactions be-
tween categorical and continuous feature components we also refer to Section 5.6
in [102]. Here, for simplicity, we restrict to models of type (3.1).

• At the moment, the functions fl(·), l = 1, . . . , q, are not further specified. A neces-
sary requirement to make them uniquely identifiable in the calibration procedure
is a normalization condition. For given data D we require that the functions fl
satisfy for all l = 1, . . . , q

1
n

n∑
i=1

fl(xi,l) = 0. (3.2)

• The log-link in (3.1) leads to a multiplicative tariff structure

λ(x) = exp {β0}
q∏
l=1

exp {fl(xl)} . (3.3)

Normalization (3.2) then implies that exp{β0} describes the base premium and we
obtain multiplicative correction factors exp{fl(xl)} relative to this base premium
for features x ∈ X , we also refer to (2.10).

In the sequel of this section we consider natural cubic splines for the modeling of fl.

3.1.1 Natural cubic splines

A popular approach is to use natural cubic splines for the functions fl(·) in (3.1). Choose
a set of m knots u1 < . . . < um on the real line R and define the function f : [u1, um]→ R
as follows:

f(x) = ht(x), for x ∈ [ut, ut+1), (3.4)

where for t = 1, . . . ,m − 1 we choose cubic functions ht(x) = αt + ϑtx + γtx
2 + δtx

3 on
R. For the last index t = m− 1 we extend (3.4) to the closed interval [um−1, um].
We say that the function f defined in (3.4) is a cubic spline if it satisfies the following
differentiability (smoothing) conditions in the (internal) knots u2 < . . . < um−1

ht−1(ut) = ht(ut), h′t−1(ut) = h′t(ut) and h′′t−1(ut) = h′′t (ut), (3.5)

for all t = 2, . . . ,m − 1. Function f has 4(m − 1) parameters and the constraints (3.5)
reduce these by 3(m− 2). Therefore, a cubic spline has m+ 2 degrees of freedom.
Observe that (3.5) implies that a cubic spline is twice continuously differentiable on the
interval (u1, um). If we extend this cubic spline f twice continuously differentiable to an
interval [a, b] ⊃ [u1, um] with linear extensions on [a, u1] and [um, b], we call this spline
natural cubic spline. This provides two additional boundary constraints f ′′(x) = 0 on
[a, u1] ∪ [um, b], thus, h′′1(u1) = h′′m−1(um) = 0, and reduces the degrees of freedom by 2.
Therefore, a natural cubic spline has m degrees of freedom.
Note that a natural cubic spline can be represented by functions x 7→ (x − ut)3

+, t =
1, . . . ,m. Namely,

f(x) = α0 + ϑ0x+
m∑
t=1

ct(x− ut)3
+, with

m∑
t=1

ct = 0 and
m∑
t=1

ctut = 0, (3.6)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 3. Generalized Additive Models 63

gives a natural cubic spline. The two side constraints ensure that we have a smooth
linear extension above um. This again provides m degrees of freedom and these natural
cubic splines (with m given knots) build an m-dimensional linear space. The knots
u1 < . . . < um play a particularly special role: assume that in these knots we are
given values f∗1 , . . . , f∗m. Then, there exists a unique natural cubic spline f on [a, b] with
f(ut) = f∗t for all t = 1, . . . ,m, see Theorem 5.1 in [102].

We would like to solve the following optimization problem:

Find the intercept β0 and the natural cubic splines f1, . . . , fq satisfying normalization
conditions (3.2) such that the following expression is minimized:

D∗(N , λ) +
q∑
l=1

ηl

∫ bl

al

(
f ′′l (xl)

)2
dxl, (3.7)

with observations N = (N1, . . . , Nn)′, intercept and natural cubic splines given by
f = (β0; f1, . . . , fq) and determining the GAM regression function λ(·) by (3.1), tun-
ing parameters ηl ≥ 0, l = 1, . . . , q, and Poisson deviance loss given by

D∗(N , λ) =
n∑
i=1

2 Ni

[
λ(xi)vi
Ni

− 1− log
(
λ(xi)vi
Ni

)]
,

where the right-hand side is set equal to 2λ(xi)vi for Ni = 0. The supports [al, bl] of the
natural cubic splines fl should contain all observed feature components xi,l of D.

Remarks 3.2.

• We refer to page 35 for the interplay between maximizing the log-likelihood function
and minimizing the deviance loss. In short, we are minimizing the in-sample loss
in (3.7), modeled by the deviance loss D∗(N , λ), which is equivalent to maximizing
the corresponding log-likelihood function, subject to regularization conditions that
we discuss next.

• The regularization conditions for the natural cubic splines fl

∫ bl

al

(
f ′′l (xl)

)2
dxl =

∫ uml,l

u1,l

(
f ′′l (xl)

)2
dxl (3.8)

guarantee in the optimization of (3.7) that the resulting (optimal) functions fl do
not look too wildly over their domains [al, bl] ⊃ [u1,l, uml,l], where u1,l, . . . , uml,l are
theml knots of fl. In particular, we want to prevent from over-fitting to the data D.
The tuning parameters ηl ≥ 0 balance the influence of the regularization conditions
(3.8). Appropriate tuning parameters are (often) determined by cross-validation.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

64 Chapter 3. Generalized Additive Models

• Usually, one starts from a more general optimization problem, namely, minimize

D∗(N , λ) +
q∑
l=1

ηl

∫ bl

al

(
f ′′l (xl)

)2
dxl

=
n∑
i=1

2
[
eβ0+

∑q

l=1 fl(xi,l)vi −Ni −Ni

(
β0 +

q∑
l=1

fl(xi,l)
)

+Ni log(Ni/vi)
]

+
q∑
l=1

ηl

∫ bl

al

(
f ′′l (xl)

)2
dxl (3.9)

over β0 ∈ R and over all (normalized) functions f1, . . . , fq that are twice continu-
ously differentiable on their domains.

� Assume that the feature component xl has exactly ml ≤ n different values
x∗1,l < . . . < x∗ml,l among the observations D. This implies that the deviance
loss D∗(N , λ) only depends on these values f∗i,l = fl(x∗i,l) for i = 1, . . . ,ml and
l = 1, . . . , q, see middle line of (3.9).

� Theorem 5.1 (part 1) in [102] says that for given values (x∗i,l, f∗i,l)i=1,...,ml there
exists a unique natural cubic spline f∗l on [al, bl] with f∗l (x∗i,l) = f∗i,l for all i =
1, . . . ,ml. Thus, a choice (x∗i,l, f∗i,l)i=1,...,ml completely determines the natural cubic
spline f∗l .

� Theorem 5.1 (part 2) in [102] says that any twice continuously differentiable
function fl with fl(x∗i,l) = f∗i,l for all i = 1, . . . ,ml, has a regularization term (3.8)
that is at least as big as the one of the corresponding natural cubic spline f∗l .

For these reasons we can restrict the (regularized) optimization to natural cubic
splines. This basically means that we need to find the optimal values (f∗i,l)i=1,...,ml
in the feature components/knots (x∗i,l)i=1,...,ml subject to regularization conditions
(3.8) for given tuning parameters ηl ≥ 0 and normalization (3.2) for l = 1, . . . , q.

• Note that ml < n is quite common, for instance, our n = 500′000 car drivers only
have ml = 90 − 18 + 1 = 73 different drivers’ ages, see Appendix A. In this case,
the deviance loss D∗(N , λ) is for feature component xl completely determined by
the values f∗i,l = fl(x∗i,l), i = 1, . . . ,ml = 73. For computational reasons one may
even merge more of the feature component values (by rounding/bucketing) to get
less values f∗i,l and knots ui,l = x∗i,l in the optimization.

Since natural cubic splines with given knots x∗1,l, . . . , x∗ml,l build an ml-dimensional linear
space, we may choose ml linearly independent basis functions s1,l, . . . , sml,l (of the form
(3.6)) and represent the natural cubic splines fl on [al, bl] by

fl(xl) =
ml∑
k=1

βk,lsk,l(xl), (3.10)

for unique constants β1,l, . . . , βml,l. Observe that (3.10) brings us fairly close to the
GLM framework of Chapter 2. Assume that all natural cubic splines fl are represented
in the form (3.10), having parameters β1,l, . . . , βml,l and corresponding basis functions

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 3. Generalized Additive Models 65

s1,l, . . . , sml,l, then we can rewrite (3.1) as

log λ(x) = β0 +
q∑
l=1

ml∑
k=1

βk,lsk,l(xl)
def.= 〈β, s(x)〉, (3.11)

where the last identity defines the scalar product between β = (β0, β1,1, . . . , βmq ,q)′ and
s(x) = (1, s1,1(x1), . . . , smq ,q(xq))′ ∈ Rr+1. Moreover, note that for these natural cubic
splines we have∫ bl

al

(
f ′′l (xl)

)2
dxl =

∫ uml,l

u1,l

(
ml∑
k=1

βk,ls
′′
k,l(xl)

)2

dxl

=
ml∑

k,j=1
βk,lβj,l

∫ uml,l

u1,l
s′′k,l(xl)s′′j,l(xl)dxl

def.=
ml∑

k,j=1
βk,lβj,l ω

(l)
k,j .

Therefore, optimization problem (3.7) is transformed to (we drop the irrelevant terms):

Minimize over β ∈ Rr+1 the objective function
n∑
i=1

2 [exp 〈β, s(xi)〉vi −Ni〈β, s(xi)〉] + β′ Ω(η) β, (3.12)

with block-diagonal matrix Ω(η) = diag(0,Ω1, . . . ,Ωd) ∈ R(r+1)×(r+1) having blocks

Ωl = Ωl(ηl) = ηl
(
ω

(l)
k,j

)
k,j=1,...,ml

∈ Rml×ml ,

for l = 1, . . . , q, tuning parameters η = (η1, . . . , ηq)′, and under side constraints (3.2).

The optimal parameter β̂ of this optimization problem is found numerically.

Remarks 3.3.

• The normalization conditions (3.2) provide identifiability of the parameters:

0 =
n∑
i=1

fl(xi,l) =
n∑
i=1

ml∑
k=1

βk,lsk,l(xi,l) =
ml∑
k=1

(
βk,l

n∑
i=1

sk,l(xi,l)
)
.

Often these conditions are not explored at this stage, but functions are only adjusted
at the very end of the procedure. In particular, we first calculate a relative estimator
and the absolute level is only determined at the final stage of the calibration.
This relative estimator can be determined by the back-fitting algorithm for additive
models, for details see Algorithm 9.1 in Hastie et al. [62] and Section 5.4.2 in
Ohlsson–Johansson [102].

• A second important remark is that the calculation can be accelerated substantially
if one “rounds” the feature components, i.e., for instance, for the feature component
dens we may choose the units in hundreds, which substantially reduces ml and,
hence, the computational complexity, because we obtain less knots and hence a
lower dimensional β. Often one does not lose (much) accuracy by this rounding
and, in particular, one is less in the situation of a potential over-parametrization
and over-fitting, we also refer to Section 2.4.3 on data compression.

• In the example below, we use the command gam from the R package mgcv.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

66 Chapter 3. Generalized Additive Models

3.1.2 Example in motor insurance pricing, revisited

We present two applications of the GAM approach. We revisit the car insurance example
of Section 2.4 which is based on the data generated in Appendix A. The first application
only considers the two feature components age and ac, this is similar to Example 2.10.
The second application considers all feature components, similarly to Section 2.4.5.

Example 3.4 (example GAM1). We consider the same set-up as in Example 2.10
(GLM1) but we model the feature components age and ac by natural cubic splines.
Note that we have m1 = 73 different ages of drivers and m2 = 36 different ages of cars.
For computational reasons, it is important in GAM calibrations that data is compressed
accordingly, as described in Section 2.4.3. This gives us at most m1m2 = 73 · 36 = 2′628
different risk cells. In our data D, only 2′223 of these risk cells are non-empty, i.e. have a
volume v+

k > 0, for the latter see also (2.18). Thus, the data is reduced from n = 500′000
observations to a sufficient statistics of size d = 2′223.1

Listing 3.1: Results of example GAM1
1 Family : poisson
2 Link function : log
3
4 Formula :
5 claims ~ s(age , bs = "cr", k = k1) + s(ac , bs = "cr", k = k2)
6
7 Parametric coefficients :
8 Estimate Std. Error z value Pr(>!z!)
9 (Intercept) -2.39356 0.02566 -93.29 <2e -16 ***

10 ---
11 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
12
13 Approximate significance of smooth terms :
14 edf Ref.df Chi.sq p- value
15 s(age) 12.48 15.64 1162 <2e -16 ***
16 s(ac) 17.43 20.89 3689 <2e -16 ***
17 ---
18 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
19
20 R-sq .(adj) = 0.963 Deviance explained = 65%
21 UBRE = -0.012852 Scale est. = 1 n = 2223

The natural cubic splines approach is implemented in the command gam of the R package
mgcv, and the corresponding results are provided in Listing 3.1. The feature components
s(age,bs=”cr”,k=k1) and s(di,bs=”cr”,k=k2) are being modeled as continuous vari-
ables (indicated by s(·)) and we fit cubic splines (indicated by bs=”cr”). The parameters
k1 = m1 = 73 and k2 = m2 = 36 indicate how many knots we would like to have for each
of the two feature components age and ac. Note that we choose the maximal number of
possible knots (different labels) here, see also Remarks 3.2. This number is usually too
large and one should choose a lower number of knots for computational reasons. We did
not specify the tuning parameters ηl in Listing 3.1. If we drop these tuning parameters
in the R command gam, then a generalized cross-validation (GCV) criterion or an un-
biased risk estimator (UBRE) criterion is applied to determine good tuning parameters

1This data compression reduces the run time of the GAM calibration from 1’018 seconds to 1 second!

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 3. Generalized Additive Models 67

(internally). The GCV criterion considers a scaled in-sample loss given by

GCV(η) = (1−M(η)/n)−2 Lis
D =

(
n

n−M(η)

)2
Lis
D, (3.13)

where M(η) is the effective degrees of freedom of the model. This effective degrees of
freedom is obtained from the corresponding influence matrix, for more details we refer to
Wood [134], Section 3.2.3, and Hastie et al. [62], Section 7.10.1. The GCV criterion has
the advantage over K-fold cross-validation that it is computationally much more fast,
which is important in the optimization algorithm. We can extract the resulting optimal
tuning parameters with the command gam$sp which provides (η1, η2) = (273′401, 2′591)
in our example. The column edf in Listing 3.1 shows the effective degrees of freedom
which corresponds to the number of knots needed (for this optimal tuning parameters),
for details we refer to Section 5.4.1 in Hastie et al. [62]. If edf is close to 1 then we
basically fit a straight line which means that we can use the GLM (log-linear form)
for this feature component. The last two columns on lines 15-16 of Listing 3.1 give
an approximate χ2-test for assessing the significance of the corresponding smooth term.
The corresponding p-values are roughly zero which says that we should keep both feature
components.

20 40 60 80

−
0.

5
0.

0
0.

5
1.

0
1.

5

age

s(
ag

e,
12

.4
8)

0 5 10 20 30

−
0.

5
0.

0
0.

5
1.

0
1.

5

ac

s(
ac

,1
7.

43
)

20 40 60 80

−
1

0
1

2
3

4
5

age

s(
ag

e,
12

.4
8)

0 5 10 20 30

−
1

0
1

2
3

4
5

ac

s(
ac

,1
7.

43
)

Figure 3.1: GAM1 results with (η1, η2) = (273′401, 2′591), and k1 = 73 and k2 = 36; (lhs)
fitted splines s(age,bs=”cr”,k=k1) and s(di,bs=”cr”,k=k2) excluding observations,
and (rhs) including observations; note that (η1, η2) is determined by GCV here.

In Figure 3.1 we provide the resulting marginal plots for age and ac. These are excluding
(lhs) and including (rhs) the observations (and therefore have different scales on the y-
axis). Moreover, we provide confidence bounds in red color. From these plots it seems
that age is fitted well, but that ac is over-fitting for higher ages of the car, thus, one
should either decrease the number of knots k2 or increase the tuning parameter η2.
In Figure 3.2 we provide the resulting two dimensional surface (from two different angles).
We observe a rather step slope for small age and small ac which reflects the observed
frequency behavior.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

68 Chapter 3. Generalized Additive Models

age

ac

linear predictor

age

ac

linear predictor

Figure 3.2: GAM1 results with (η1, η2) = (273′401, 2′591), and k1 = 73 and k2 = 36 from
two different angles.

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.1) GLM1 3.1s 11 28.3543 28.3544 0.6052 28.3510 10.2691%
(Ch3.1) GAM1 1.1s 108 28.3248 28.3245 0.5722 28.3134 10.2691%

Table 3.1: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 2.4.

In Table 3.1 we provide the corresponding prediction results on line (Ch3.1). The number
of parameters ’# param.’ is determined by the number of chosen knots minus one,
i.e. k1 + k2− 1 = m1 +m2− 1 = 73 + 36− 1 = 108, where the minus one corresponds to
the intercept parameter minus two normalization conditions (3.2). We observe a smaller
in-sample loss Lis

D of GAM1 compared to GLM1, i.e. the GAM can better adapt to the
data D than the GLM (considering the same feature components age and ac). This
shows that the choices of the categorical classes for age and ac can be improved in the
GLM approach. This better performance of the GAM carries over to the cross-validation
losses LCV

D and the estimation loss Ê(λ̂, λ?). We also note that the difference between the
in-sample loss and the cross-validation loss increases, which shows that the GAM has a
higher potential for over-fitting than the GLM, here.
In Figure 3.3 we present the results for different choices of the tuning parameters ηl. For
small tuning parameters (ηl = 10 in our situation) we obtain wiggly pictures which follow
closely the observations. For large tuning parameters (ηl = 10′000′000 in our situation)
we obtain rather smooth graphs with small degrees of freedom, see Figure 3.3 (rhs).
Thus, we may get either over-fitting (lhs) and under-fitting (rhs) to the data.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 3. Generalized Additive Models 69

20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

age

s(
ag

e,
70

.2
)

0 5 10 20 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

ac

s(
ac

,3
2.

28
)

20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

age

s(
ag

e,
4.

64
)

0 5 10 20 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

ac

s(
ac

,2
.1

3)

Figure 3.3: GAM1 results with (lhs) (η1, η2) = (10, 10) and (rhs) (η1, η2) =
(10′000′000, 10′000′000) for k1 = 73 and k2 = 36.

20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

age

s(
ag

e,
9.

53
)

0 5 10 20 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

ac

s(
ac

,1
1.

3)

20 40 60 80

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

age

s(
ag

e,
3.

99
)

0 5 10 20 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

ac

s(
ac

,3
.9

8)

Figure 3.4: GAM1 results with number of knots (lhs) k1 = 12 and k2 = 17 and (rhs)
k1 = 5 and k2 = 5; note that (η1, η2) is determined by GCV here.

In Figure 3.4 we change the number of knots (k1, k2) and we let the optimal tuning
parameters be determined using the GCV criterion. We note that for less knots the
picture starts to smooth and the confidence bounds get more narrow because we have
less parameters to be estimated. For one knot we receive a log-linear GLM component.
Finally, we evaluate the quality of the GCV criterion. From Listing 3.1 we see that the
effective degrees of freedom are M(η) = 1 + 12.48 + 17.43 = 30.91. Thus, we obtain

GCV(η) =
(

n

n−M(η)

)2
Lis
D =

(500′000
500′000− 30.91

)2
28.3134 · 10−2 = 28.3166 · 10−2.

This is smaller than the K-fold cross-validation errors LCV
D on line (Ch3.1) of Table 3.1.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

70 Chapter 3. Generalized Additive Models

This indicates that GCV is likely to under-estimate over-fitting here. This closes our first
GAM example. �

Example 3.5 (example GAM2/3). In our second example we consider all available
feature components. We keep gas, brand and ct as categorical. All other feature
components are modeled with natural cubic splines, using the GCV criterion to de-
termine the optimal tuning parameters ηl. To keep computational time under con-
trol we use data compression, and before that we modify log(dens)/2 to be rounded
to one digit (which gives 48 different values). The data is then compressed corre-
spondingly leading to d = 235′163 compressed observations.2 This compression gives
us 73 + 36 + 12 + 2 + 11 + 6 + 48 + 26 + 1− 8 = 207 parameters to be estimated. This
should be compared to Conclusion 2.8.

Listing 3.2: Results of example GAM2
1 Family : poisson
2 Link function : log
3
4 Formula :
5 claims ~ s(age , bs =" cr", k=73) + s(ac , bs =" cr", k=36) + s(power , bs =" cr", k=12)
6 + gas + brand + s(area , bs =" cr", k=6) + s(densGAM , bs =" cr", k=48) + ct
7
8 Parametric coefficients :
9 Estimate Std. Error z value Pr(>!z!)

10 (Intercept) -2.254150 0.020420 -110.391 < 2e -16 ***
11 gasRegular 0.073706 0.013506 5.457 4.83e -08 ***
12 brandB10 0.044510 0.045052 0.988 0.323174
13 .
14 brandB5 0.107430 0.029505 3.641 0.000271 ***
15 brandB6 0.020794 0.033406 0.622 0.533627
16 ctAG -0.094460 0.027672 -3.414 0.000641 ***
17 .
18 ctZG -0.079805 0.046513 -1.716 0.086208 .
19 ---
20 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
21
22 Approximate significance of smooth terms :
23 edf Ref.df Chi.sq p- value
24 s(age) 13.132 16.453 1161.419 <2e -16 ***
25 s(ac) 17.680 21.147 2699.012 <2e -16 ***
26 s(power) 9.731 10.461 311.483 <2e -16 ***
27 s(area) 1.009 1.016 5.815 0.0164 *
28 s(densGAM) 5.595 7.071 10.251 0.1865
29 ---
30 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
31
32 R-sq .(adj) = 0.115 Deviance explained = 4.74%
33 UBRE = -0.56625 Scale est. = 1 n = 235163

The estimation results are presented in Listing 3.2. The upper part (lines 10-18) shows
the intercept estimate β̂0 as well as the estimates for the categorical variables gas, brand
and ct. A brief inspection of these numbers shows that we keep all these variables in the
model.

2The data compression takes 44 seconds.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 3. Generalized Additive Models 71

20 40 60 80

−
0.

5
0.

0
0.

5
1.

0
1.

5

age

s(
ag

e,
13

.1
3)

0 5 10 20 30

−
0.

5
0.

0
0.

5
1.

0
1.

5
ac

s(
ac

,1
7.

68
)

2 4 6 8 10 12

−
0.

5
0.

0
0.

5
1.

0
1.

5

power

s(
po

w
er

,9
.7

3)

1 2 3 4 5 6

−
0.

5
0.

0
0.

5
1.

0
1.

5

area

s(
ar

ea
,1

.0
1)

0 2 4 6 8 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

densGAM

s(
de

ns
G

A
M

,5
.6

)

Figure 3.5: GAM2 results: marginal splines approximation of the continuous feature
components age, ac, power, area and log(dens).

The lower part of Listing 3.2 (lines 24-28) shows the results of the 5 continuous fea-
ture components age, ac, power, area and log(dens). The first 3 continuous feature
components should be included in this natural cubic spline form. The effective degrees
of freedom of the feature component area is very close to 1, which suggests that this
component should be modeled in log-linear form. Finally, the component log(dens) does
not seem to be significant which means that we may drop it from the model. In Figure
3.5 we show the resulting marginal spline approximations, which confirm the findings of
Listing 3.2, in particular, area is log-linear whereas log(dens) can be modeled by almost
a horizontal line (respecting the red confidence bounds and keeping in mind that area
and dens are strongly positively correlated, see Table A.2).

In Table 3.2 we provide the resulting losses of model GAM2 on line (Ch3.2). Firstly, we
see that the run time of the calibration takes roughly 10 minutes, i.e. quite long. This
run time could be reduced if we choose less knots in the natural cubic splines. Secondly,
we observe that the estimation loss Ê(λ̂, λ?) and the in-sample loss Lis

D become smaller

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

72 Chapter 3. Generalized Additive Models

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.2) GAM2 678s 207 – – 0.3877 28.0927 10.2690%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%

Table 3.2: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 2.5.

compared to model GLM4 which shows that the categorization in GLM4 is not optimal.
We refrain from calculating the cross-validation losses for model GAM2 because this
takes too much time. Finally, in Figure 3.6 we illustrate the resulting two-dimensional
surfaces of the continuous feature components ac, power, age and log(dens).

ac

po
w

er

linear predictor

age

de
ns

G
A

M

linear predictor

Figure 3.6: GAM2 results of the continuous components ac, power, age and log(dens).

In view of Listing 3.2 we may consider a simplified GAM. We model the feature compo-
nents age and ac by natural cubic splines having k1 = 14 and k2 = 18 knots, respectively,
because the corresponding effective degrees of freedom in Listing 3.2 are 13.132 and 17.680
(the tuning parameters ηl are taken equal to zero for these two components). The com-
ponent power is transformed to a categorical variable because the effective degrees of
freedom of 9.731 is almost equal to the number of levels (these are 11 parameters under
dummy coding), suggesting that each label should have its own regression parameter βl.
The component area is considered in log-linear form, the component dens is dropped
from the model, and gas, brand and ct are considered as categorical variables. We call
this model GAM3. The calibration of this GAM takes roughly 50 seconds, which makes
it feasible to perform K-fold cross-validation.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 3. Generalized Additive Models 73

Listing 3.3: Results of example GAM3
1 Family : poisson
2 Link function : log
3
4 Formula :
5 claims ~ s(age , bs = "cr", k = 14) + s(ac , bs = "cr", k = 18)
6 + powerCat + gas + brand + area + ct
7
8 Parametric coefficients :
9 Estimate Std. Error z value Pr(>!z!)

10 (Intercept) -2.674145 0.032674 -81.844 < 2e -16 ***
11 powerGAM2 0.264250 0.021278 12.419 < 2e -16 ***
12 .
13 powerGAM12 -0.275665 0.109984 -2.506 0.012197 *
14 gasRegular 0.072807 0.013526 5.383 7.34e -08 ***
15 brandB10 0.045986 0.045066 1.020 0.307524
16 .
17 brandB5 0.107218 0.029511 3.633 0.000280 ***
18 brandB6 0.021155 0.033407 0.633 0.526560
19 area 0.084586 0.005360 15.782 < 2e -16 ***
20 ctAG -0.102839 0.027335 -3.762 0.000168 ***
21 .
22 ctZG -0.085552 0.046349 -1.846 0.064917 .
23 ---
24 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
25
26 Approximate significance of smooth terms :
27 edf Ref.df Chi.sq p- value
28 s(age) 13 13 1192 <2e -16 ***
29 s(ac) 17 17 2633 <2e -16 ***
30 ---
31 Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
32
33 R-sq .(adj) = 0.0334 Deviance explained = 3.44%
34 UBRE = -0.71863 Scale est. = 1 n = 500000

The results are presented on line (Ch3.3) of Table 3.2 and in Listing 3.3 (we do not choose
any regularization here because the chosen numbers of knots are assumed to be optimal).
We conclude that this model GAM3 has a clearly better performance than model GLM4.
It is slightly worse than GAM2, however, this comes at a much lower run time. For this
reason we prefer model GAM3 in all subsequent considerations.

In Figure 3.7 (lhs) we provide the scatter plot of the resulting estimated frequencies
(on the log scale) between the two models GLM4 and GAM3. The colors illustrate the
years at risk vi on a policy level. The cloud of frequencies lies on the 45 degrees axis
which indicates that model GLM4 and model GAM3 make similar predictions λ̂(xi) on
a policy level. In Figure 3.7 (middle and rhs) we compare these predictions to the true
frequencies λ?(xi) (which are available for our synthetic data). These two clouds have
a much wider diameter which says that the models GLM4 and GAM3 have quite some
room for improvements. This is what we are going to explore in the next chapters. This
finishes the GAM example. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

74 Chapter 3. Generalized Additive Models

Figure 3.7: Resulting estimated frequencies (on the log scale) of models GLM4 and
GAM3, also compared to the true frequencies.

3.1.3 Generalized additive models: summary

We have seen that GAMs provide an improvement over GLMs for non log-linear feature
components. In particular, GAMs make it redundant to categorize non log-linear feature
components in GLM applications. This has the advantage that the ordinal relationship
is kept. The drawback of GAMs is that they are computationally more expensive than
GLMs.
We have not explored interactions beyond multiplicative structures, yet. This may be
a main reason why the comparisons in Figure 3.7 (middle and rhs) do not look fully
convincing. Having 500’000 observation we could directly explore such interactions in
GLMs and GAMs, see also Remarks 2.9. We refrain from doing so but we will provide
other data driven methods below.

3.2 Multivariate adaptive regression splines

The technique of multivariate adaptive regression splines (MARS) uses piece-wise linear
basis functions. These piece-wise linear basis functions have the following two forms on
X ⊂ Rq:

x 7→ h−t,l(x) = (xl − t)+ or x 7→ h+t,l(x) = (t− xl)+, (3.14)

for a given constant t and a given feature component xl. The pair in (3.14) is called
reflected pair with knot t for feature component xl. These reflected pairs consist of
so-called rectified linear unit (ReLU) or hinge functions. We define the set of all such
reflected pairs that are generated by the features in D. These are given by the basis

H = {h−tl,l(·), h+tl,l(·); l = 1, . . . , q and tl = x1,l, . . . , xn,l} .

Note that H spans a space of continuous piece-wise linear functions (splines). MARS
makes the following modeling approach: choose the expected frequency function as

x 7→ log λ(x) = β0 +
M∑
m=1

βmhm(x), (3.15)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 3. Generalized Additive Models 75

for given M ≥ 0, and hm(·) are functions from the basis H or products of such basis
functions in H. The latter implies that the non-zero part of hm(·) can also be non-linear.

Observe that this approach is rather similar to the GAM approach with natural cubic
splines. The natural cubic splines are generated by functions x 7→ (xl− t)3

+ with t = xi,l,
see (3.6), which can be obtained by multiplying the basis function h−t,l(x) ∈ H three
times with itself.

This model is fit by an iterative (stage-wise adaptive) algorithm that selects at each step
a function hm(·) of the present calibration, and splits this function into the two (new)
functions

x 7→ hm1(x) = hm(x) (xl − xi,l)+ and x 7→ hm2(x) = hm(x) (xi,l − xl)+ ,

for some l = 1, . . . , q and i = 1, . . . , n. Thereby, it chooses the additional optimal split
(in terms of m, l and xi,l) to obtain the new (refined) model

log λ(x) = β0 +
∑
m′ 6=m

βm′hm′(x) + βm1hm(x)h−xi,l,l(x) + βm2hm(x)h+xi,l,l(x)

= β0 +
∑
m′ 6=m

βm′hm′(x) + βm1hm1(x) + βm2hm2(x). (3.16)

The optimal split can be determined relative to a loss function, for instance, one can
consider the resulting in-sample loss from the Poisson deviance loss. This way we may
grow a large complex model (in a stage-wise adaptive manner). By backward pruning
(deletion) some of the splits may be deleted again, if they do not contribute sufficiently to
the reduction in cross-validation error. For computational reasons, in MARS calibrations
one often uses the GCV criterion, which provides a more crude error estimation in terms
of an adjusted in-sample error, see (3.13) above and (9.20) in Hastie et al. [62]. We do
not provide more details on pruning and deletion here, but pruning in a similar context
will be treated in more detail in Chapter 6 in the context of regression trees.
We remark the that refinement (3.16) can also be understood as a boosting step. Boosting
is going to be studied in Section 7.4.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

76 Chapter 3. Generalized Additive Models

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 4

Credibility Theory

In Chapter 2 on GLMs we have seen that many years at risk are needed in order to
draw statistically firm conclusions. This holds true, in particular, for problems with low
expected frequencies. In this chapter we present credibility methods that allow us to
smooth predictors and estimators with other sources of information in situations where
we do not have sufficient volume or in situations where we have outliers. Credibility
methods are based on Bayesian statistics. We do not present the entire credibility theory
framework here, but we only consider some special cases that are related to the Pois-
son claims frequency model and to a binary classification problem. For a comprehensive
treatment of credibility theory we refer to the book of Bühlmann–Gisler [18]. Along the
way we also meet the important technique of regularization. Moreover, we discuss simu-
lation methods such as the Markov chain Monte Carlo (MCMC) method to numerically
calculate Bayesian posterior distributions.

4.1 The Poisson-gamma model for claims counts

4.1.1 Credibility formula

In Section 1.2 we have assumed that N ∼ Poi(λv) for a fixed expected frequency pa-
rameter λ > 0 and for given years at risk v > 0. In this chapter we do not assume
that the expected frequency parameter λ is fixed, but it is modeled by a strictly positive
random variable Λ. This random variable Λ may have different interpretations: (i) there
is some uncertainty involved in the true expected frequency parameter and we reflect this
uncertainty by a random variable Λ; (ii) we have a heterogeneous portfolio of different
risks and we choose at random a policy from this portfolio. The latter is similar to a het-
erogeneous situation where a priori all policies are equivalent. Here, we make a specific
distributional assumption for Λ by choosing a gamma prior distribution having density
for θ ∈ R+

π(θ) = cγ

Γ(γ) θ
γ−1 exp {−cθ} ,

with shape parameter γ > 0 and scale parameter c > 0. Note that the mean and variance
of the gamma distribution are given by γ/c and γ/c2, respectively. For more information
on the gamma distribution we refer to Section 3.2.1 in Wüthrich [135].

77

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

78 Chapter 4. Credibility Theory

Definition 4.1 (Poisson-gamma model). Assume there is a fixed given volume v > 0.

• Conditionally, given Λ, the claims count N ∼ Poi(Λv).

• Λ ∼ Γ(γ, c) with prior shape parameter γ > 0 and prior scale parameter c > 0.

Theorem 4.2. Assume N follows the Poisson-gamma model of Definition 4.1. The
posterior distribution of Λ, conditional on N , is given by

Λ|N ∼ Γ (γ +N, c+ v) .

Proof. The Bayes’ rule says that the posterior density of Λ, given N , is given by (up to normalizing
constants)

π(θ|N) ∝ e−θv
(θv)N

N !
cγ

Γ(γ) θ
γ−1e−cθ ∝ θγ+N−1e−(c+v)θ.

This is a gamma density with the required properties. 2

Remarks 4.3.

• The posterior distribution is again a gamma distribution with updated parameters.
The parameter update is given by

γ 7→ γpost = γ +N and c 7→ cpost = c+ v.

Often γ and c are called the prior parameters and γpost and cpost the posterior
parameters.

• The remarkable property of the Poisson-gamma model is that the posterior distri-
bution belongs to the same family of distributions as the prior distribution. There
are more examples of this kind, many of these examples belong to the EDF with
conjugate priors, see Bühlmann–Gisler [18].

• For the estimation of the unknown parameter Λ we obtain the following prior
estimator and the corresponding posterior (Bayesian) estimator

λ
def.= E[Λ] = γ

c
,

λ̂post def.= E[Λ|N] = γpost

cpost = γ +N

c+ v
.

• Assume that the claims counts N1, . . . , Nn are conditionally, given Λ, independent
and Poisson distributed with conditional means Λvi, for i = 1, . . . , n. Lemma 1.3
implies that

N =
n∑
i=1

Ni|Λ ∼ Poi
(

Λ
n∑
i=1

vi

)
.

Thus, we can apply Theorem 4.2 also to the aggregate portfolio N =
∑
iNi, if the

claims counts Ni all belong to the same frequency parameter Λ.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 79

• The unconditional distribution of N under the Poisson-gamma model is a negative
binomial distribution, see Proposition 2.20 in Wüthrich [135].

Corollary 4.4. Assume N follows the Poisson-gamma model of Definition 4.1. The
posterior estimator λ̂post has the following credibility form

λ̂post = αλ̂+ (1− α)λ,

with credibility weight α and observation based estimator λ̂ given by

α = v

c+ v
∈ (0, 1) and λ̂ = N

v
.

The (conditional) mean square error of this estimator is given by

E
[(

Λ− λ̂post
)2
∣∣∣∣N] = γpost

(cpost)2 = (1− α) 1
c
λ̂post.

Proof. In view of Theorem 4.2 we have for the posterior mean

λ̂post = γ +N

c+ v
= v

c+ v

1
v
N + c

c+ v

γ

c
= α λ̂+ (1− α) λ.

This proves the first claim. For the estimation uncertainty we have

E
[(

Λ− λ̂post
)2
∣∣∣∣N] = Var (Λ|N) = γpost

(cpost)2 = (1− α) 1
c
λ̂post.

This proves the claim. 2

Remarks 4.5.

• Corollary 4.4 shows that the posterior estimator λ̂post is a credibility weighted
average between the prior guess λ and the MLE λ̂ with credibility weight α ∈ (0, 1).

• The credibility weight α has the following properties (which balances the weights
given in the posterior estimator λ̂post):

1. for volume v →∞: α→ 1;

2. for volume v → 0: α→ 0;

3. for prior uncertainty going to infinity, i.e. c→ 0: α→ 1;

4. for prior uncertainty going to zero, i.e. c→∞: α→ 0.

Note that
Var (Λ) = γ

c2 = 1
c
λ.

For c large we have an informative prior distribution, for c small we have a vague
prior distribution and for c = 0 we have a non-informative or improper prior distri-
bution. The latter means that we have no prior parameter knowledge (this needs
to be understood in an asymptotic sense). These statements are all done under the
assumption that the prior mean λ = γ/c remains constant.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

80 Chapter 4. Credibility Theory

• In motor insurance it often happens that N = 0. In this case, λ̂ = 0 and we cannot
meaningfully calibrate a Poisson model with MLE because we receive a degenerate
model. However, the resulting posterior estimator λ̂post = (1 − α)λ > 0 still leads
to a sensible model calibration in the credibility approach. This is going to be
important in the application of Poisson regression trees in Chapter 6.

4.1.2 Maximum a posteriori estimator

In the previous section we have derived the posterior estimator λ̂post for the claims
frequency based on observation N . We have calculated the posterior distribution of Λ,
given N . Its log-likelihood function is given by

log π(θ|N) ∝ (γ +N − 1) log θ − (c+ v) θ.

If we maximize this log-likelihood function we receive the maximum a posteriori (MAP)
estimator given by

λ̂MAP = γ +N − 1
c+ v

= λ̂post − α

v
. (4.1)

Note that the MAP estimator is always positive for γ > 1, the latter corresponds to a
prior coefficient of variation γ−1/2 being bounded from above by 1. Thus, if we have a
prior distribution for Λ which is informative with maximal coefficient of variation of 1,
the MAP estimator will always be positive.

4.1.3 Example in motor insurance pricing

The credibility formula of Corollary 4.4 is of particular interest when the portfolio is small,
i.e. if v is small, because in that case we receive a credibility weight α that substantially
differs from 1. To apply this model we a need prior mean λ = γ/c > 0 and a scale
parameter c > 0. These parameters may either be chosen from expert opinion or they
may be estimated from broader portfolio information. In the present example we assume
broader portfolio information and we calibrate the model according to Section 4.10 of
Bühlmann–Gisler [18], for full details we refer to this latter reference.

Model Assumptions 4.6. Assume we have independent portfolios i = 1, . . . , n all
following the Poisson-gamma model of Definition 4.1 with portfolio dependent volumes
vi > 0 and portfolio independent prior parameters γ, c > 0.

This model is a special case of the Bühlmann–Straub model, see Bühlmann–Gisler [18].
Corollary 4.4 implies that for each portfolio i = 1, . . . , n we have

λ̂post
i = αiλ̂i + (1− αi)λ,

with credibility weights αi and observation based estimators λ̂i given by

αi = vi
c+ vi

∈ (0, 1) and λ̂i = Ni

vi
,

and the prior mean is given by λ = γ/c. The optimal estimator (in a credibility sense,
homogeneous credibility estimator) of this prior parameter is given by

λ̂α = 1∑n
i=1 αi

n∑
i=1

αiλ̂i.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 81

Thus, there only remains to determine the scale parameter c > 0. To estimate this
last parameter we apply the iterative procedure given in Bühlmann–Gisler [18], pages
102–103. This procedure provides estimates τ̂2 and λ̂0 from which we estimate

ĉ = λ̂0/τ̂
2,

for details we refer to Bühlmann–Gisler [18]. This then provides estimated credibility
weights

α̂i = vi
ĉ+ vi

∈ (0, 1). (4.2)

We apply this credibility model to the car insurance pricing data generated in Appendix
A. As portfolios i = 1, . . . , n we choose the 26 Swiss cantons ct and we consider the
corresponding volumes vi and the observed number of claims Ni in each Swiss canton. For
the first analysis we consider the whole portfolio which provides a total of

∑
i vi = 253′022

years at risk. The largest Swiss canton ZH has 42′644 years at risk, and the smallest Swiss
canton AI has 1′194 years at risk. For the second example we only consider drivers with
an age below 20 for which we have a total of

∑
i vi = 1′741 years at risk. The largest

Swiss canton ZH has 283 years at risk (drivers below age 20), and the smallest Swiss
canton AR has 4 years at risk in this second example.
If we consider the entire portfolio we obtain fast convergence of the iterative procedure
(4 iterations) and we set ĉ = 456 and λ̂α = 10.0768% (based on the entire portfolio). We
use this same estimate ĉ = 456 for both examples, the entire portfolio and the young
drivers only portfolio. From this we can calculate the estimated credibility weights α̂i
for all Swiss cantons i = 1, . . . , n. The results are presented in Figure 4.1. For the entire

credibility weights young drivers only

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.14
0.16
0.18
0.21
0.24
0.25
0.26
0.31
0.38

Figure 4.1: Estimated credibility weights (4.2) of (lhs) the entire portfolio and of (rhs)
the young drivers only portfolio.

portfolio the estimated credibility weights lie between 72% and 99%. For the young
drivers only portfolio the estimated credibility weights are between 0.8% and 40%. Using
these credibility weights we could then calculate the Bayesian frequency estimators (which
are smoothed versions of the MLE frequency estimators). This finishes our example. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

82 Chapter 4. Credibility Theory

4.2 The binomial-beta model for classification

4.2.1 Credibility formula

There is a similar credibility formula for the binary classification problem when we assume
that the prior distribution of the parameter is given by a beta distribution.

Definition 4.7 (Binomial-beta model).

• Conditionally, given Θ, Y1, . . . , Yn are i.i.d. Bernoulli distributed with success prob-
ability Θ.

• Θ ∼ Beta(a, b) with prior parameters a, b > 0.

Theorem 4.8. Assume Y1, . . . , Yn follow the binomial-beta model of Definition 4.7. The
posterior distribution of Θ, conditional on Y = (Y1, . . . , Yn), is given by

Θ|Y ∼ Beta
(
a+

n∑
i=1

Yi, b+ n−
n∑
i=1

Yi

)
def.= Beta

(
apost, bpost

)
.

Proof. Using the Bayes’ rule, the posterior density of Θ is given by (up to normalizing constants)

π(θ|Y) ∝

(
n∏
i=1

θYi(1− θ)1−Yi

)
θa−1(1− θ)b−1.

This is a beta density with the required properties. 2

For the estimation of the unknown success probability we obtain the following prior and
posterior (Bayesian) estimators

p
def.= E[Θ] = a

a+ b
,

p̂post def.= E[Θ|Y] = apost

apost + bpost = a+
∑n
i=1 Yi

a+ b+ n
.

Corollary 4.9. Assume Y1, . . . , Yn follow the binomial-beta model of Definition 4.7. The
posterior estimator p̂post has the following credibility form

p̂post = α p̂+ (1− α) p.

with credibility weight α and observation based estimator p̂ given by

α = n

a+ b+ n
∈ (0, 1) and p̂ =

∑n
i=1 Yi
n

.

The (conditional) mean square error of this estimator is given by

E
[(

Θ− p̂post
)2
∣∣∣∣Y] = 1

1 + a+ b+ n
p̂post

(
1− p̂post

)
.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 83

Proof. For the estimation uncertainty we have

E
[(

Θ− p̂post)2
∣∣∣Y] = Var (Θ|Y) = apostbpost

(1 + apost + bpost)(apost + bpost)2 .

This proves the claim. 2

4.2.2 Maximum a posteriori estimator

In the previous section we have derived the posterior estimator p̂post. The corresponding
log-likelihood function was given by

log π(θ|Y) ∝
(
a+

n∑
i=1

Yi − 1
)

log θ +
(
b+ n−

n∑
i=1

Yi − 1
)

log(1− θ).

If we maximize this log-likelihood function we receive the MAP estimator

p̂MAP = a+
∑n
i=1 Yi − 1

a+ b+ n− 2 = a+ b+ n

a+ b+ n− 2

(
p̂post − α

n

)
.

Here, we require that a > 1 for having a MAP estimator that has a positive probability
for any observation Y .

4.3 Regularization and Bayesian MAP estimators

4.3.1 Bayesian posterior parameter estimator

For illustrative purposes we reconsider the GLM of Chapter 2. However, the theory
presented in this section applies to any other parametric regression model. We consider
GLM (2.4) for independent cases (Ni,xi, vi) ∈ D. The joint density of these cases is for
regression parameter β given by

fβ(N1, . . . , Nn) = exp {`N (β)} =
n∏
i=1

e− exp〈β,xi〉vi (exp〈β,xi〉vi)Ni
Ni!

.

Bayesian modeling in this context means that we choose a prior density π(β) for the
regression parameter β. The joint distribution of the cases and the regression parameter
then reads as

f(N1, . . . , Nn,β) =
n∏
i=1

e− exp〈β,xi〉vi (exp〈β,xi〉vi)Ni
Ni!

π(β). (4.3)

After having observed data D, the parameter vector β has posterior density

π (β| D) ∝ f(N1, . . . , Nn,β), (4.4)

where we have dropped the normalizing constants. Thus, we receive an explicit functional
form for the posterior density of the parameter vector β, conditionally given the data
D. Simulation methods like MCMC algorithms, see Section 4.4, or sequential Monte
Carlo (SMC) samplers then allow us to evaluate numerically the Bayesian (credibility)
estimator

β̂
post = E [β| D] =

∫
β π (β| D) dβ. (4.5)

This Bayesian estimator considers both, the prior information π(β) and the data D.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

84 Chapter 4. Credibility Theory

4.3.2 Ridge and LASSO regularization

The joint distribution of the data and the regression parameter (4.3) can also be viewed
as a regularized version of the log-likelihood function `N (β), where the prior density π
is used for regularization. We have already met this idea in the calibration of GAMs, see
(3.7). Assume that π(β) ∝ exp{−η‖β‖pp} for some tuning parameter η > 0 and ‖ · ‖p
denoting the Lp-norm for some p ≥ 1. In this case we receive joint log-likelihood function
of data and regression parameter

`N (β) + log π(β) ∝
n∑
i=1
− exp〈β,xi〉vi +Ni (〈β,xi〉vi + log vi)− η‖β‖pp. (4.6)

If we now calculate the MAP estimator β̂MAP we receive an Lp-regularized version of the
MLE β̂ given in Proposition 2.2. Maximization of objective function (4.6) implies that
too large values for β are punished (regularized/shrunk towards zero) with regularization
parameter (tuning parameter) η > 0. In particular, this helps us to control complex
models to not over-fit to the data (in-sample).

Remarks 4.10 (ridge and LASSO regularization).

• The last term in (4.6) tries to keep β small. Typically, the intercept β0 is excluded
from this regularization because otherwise regularization induces a bias towards 0,
see balance property of Proposition 2.4.

• For a successful application of regularization one requires that all feature compo-
nents live on the same scale. This may require scaling using, for instance, the
MinMaxScaler, see (5.14), below. Categorical feature components may require a
group treatment, see Section 4.3 in Hastie et al. [63].

• p = 2 gives a Gaussian prior distribution, and we receive the so-called ridge reg-
ularization or Tikhonov regularization [127]. Note that we can easily generalize
this ridge regularization to any Gaussian distribution. Assume we have a prior
mean b and a positive definite prior covariance matrix Σ, then we can consider
component-specific regularization

log π(β) ∝ − η

2 (β − b)′Σ−1 (β − b) .

• p = 1 gives a Laplace prior distribution, and we receive the so-called LASSO
regularization (least absolute shrinkage and selection operator), see Tibshirani
[126]. LASSO regularization shrinks (unimportant) components to exactly zero,
i.e. LASSO regularization can be used for variable selection.

• Optimal tuning parameters η are determined by cross-validation.

Example 4.11 (regularization of GLM1). We revisit Example 2.10 (GLM1) and we
apply ridge and LASSO regularization according to (4.6). We consider the feature com-
ponents age and ac using the categorical classes as defined in Figure 2.2.
The R code is provide in Listing 4.1. On line 1 we define the design matrix only con-
sisting of the categorized ’age class’ and ’ac class’, respectively. On lines 2-3 we fit

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 85

Listing 4.1: R code glmnet for regularization
1 X <- model . matrix (~ ageGLM + acGLM , dat)
2 glm. ridge <- glmnet (x=X,y= dat$claims , family =" poisson ", alpha =0, offset =log(dat$expo))
3 exp(predict (glm.ridge , newx=X, newoffset =log(dat$expo)))

this regularized regression model. Parameter alpha = 0 gives ridge regularization, and
alpha = 1 gives LASSO regularization. Running this algorithm as in Listing 4.1 fits
the regularized GLM for 100 different values of the tuning parameter η. These tuning
parameters are in [0.00137, 13.72341] for ridge regularization and in [0.00004, 0.01372]
for LASSO regularization in our example. Moreover, the intercept β0 is excluded from
regularization.

−6 −4 −2 0 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

log(eta)

co
ef

fic
ie

nt
s

10 10 10 10 10

0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

L1 norm

co
ef

fic
ie

nt
s

10 10 10 10 10

Figure 4.2: Estimated regression parameters β̂MAP under ridge regularization, the x-axis
shows (lhs) log(η) and (rhs) the total L1-norm of the regression parameter (excluding
the intercept), in blue color are the parameters for the ’age classes’ and in orange color
the ones for the ’ac classes’, see also Listing 2.2.

In Figure 4.2 we illustrate the resulting ridge regularized regression parameters β̂MAP for
different tuning parameters η (excluding the intercept). We observe that the components
in β̂MAP shrink with increasing tuning parameter towards the homogeneous model.
In Table 4.1 lines (Ch4.1)-(Ch4.3) we present the resulting errors for different tuning
parameters. We observe that choosing different tuning parameters η ≥ 0 continuously
closes the gap between the homogeneous model and model GLM1.
In Figure 4.3 we illustrate the resulting LASSO regularized regression parameters β̂MAP

for different tuning parameters η. We see that this is different from ridge regularization
because parameters are set/shrunk to exactly zero for increasing tuning parameter η.
The x-axis on the top of Figure 4.3 shows the number of non-zero components in β̂MAP

(excluding the intercept). We note that at η = 0.0001 the regression parameter for
age31to40 set to zero and at η = 0.0009 the one for age41to50 is set to zero. Since
age51to60 is the reference label, this LASSO regularization implies that we receive one
large age class from age 31 to age 60 for η = 0.0009. Lines (Ch4.4)-(Ch4.6) of Table

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

86 Chapter 4. Credibility Theory

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch4.1) ridge η = 13.723 13s† 11 1.3439 29.1065 10.2691%
(Ch4.2) ridge η = 0.1438 13s† 11 1.0950 28.8504 10.2691%
(Ch4.3) ridge η = 0.0014 13s† 11 0.6091 28.3547 10.2691%
(Ch4.4) LASSO η = 0.0137 7s† 1 1.3439 29.1065 10.2691%
(Ch4.5) LASSO η = 0.0009 7s† 9 0.6329 28.3791 10.2691%
(Ch4.6) LASSO η = 0.0001 7s† 11 0.6053 28.3511 10.2691%
(Ch2.1) GLM1 3.1s 11 28.3543 28.3544 0.6052 28.3510 10.2691%

Table 4.1: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, the run time† is received by
simultaneously fitting the model for 100 tuning parameters η, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 2.4.

−10 −9 −8 −7 −6 −5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

log(eta)

co
ef

fic
ie

nt
s

10 9 9 9 6 1

0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

L1 norm

co
ef

fic
ie

nt
s

0 3 6 8 9

Figure 4.3: Estimated regression parameters β̂MAP under LASSO regularization, the x-
axis shows (lhs) log(η) and (rhs) the total L1-norm of the regression parameter (excluding
the intercept), in blue color are the parameters for the ’age classes’ and in orange color
the ones for the ’ac classes’, see also Listing 2.2.

4.1 show that also LASSO regularization closes the gap between the homogeneous model
and model GLM1. This finishes this example. �

In the previous example we have seen that the ridge and LASSO regressions behave
fundamentally differently, namely, LASSO regression shrinks certain parameters perfectly
to zero whereas ridge regression does not. We briefly analyze the reason therefore, and
we give some more insight into regularization. For references we refer to Hastie et al. [63],
Chapter 16 in Efron–Hastie [37], and Chapter 6 in Wüthrich–Merz [141]. We start from
the following optimization problem

arg min
β

− `N (β), subject to ‖β‖pp ≤ t, (4.7)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 87

−20 −10 0 10 20

−
20

−
10

0
10

20

ridge regularization

feature 1

fe
at

ur
e

2
●

●

●
●

MLE
ridge regularized

−20 −10 0 10 20

−
20

−
10

0
10

20

LASSO regularization

feature 1

fe
at

ur
e

2

●

●

●
●

MLE
LASSO regularized

Figure 4.4: Illustration of optimization problem (4.7) under a budget constraint (lhs) for
p = 2 and (rhs) p = 1; this figure is taken from Wüthrich–Merz [141].

for some given budget constraint t ∈ R+ and p ≥ 1. This is a convex optimization prob-
lem with a convex constraint. Version (4.6) is obtained as the Lagrange version of this
optimization problem (4.7) with fixed Lagrange multiplier η. We illustrate optimization
problem (4.7) in Figure 4.4. The red dot shows the MLE that maximizes the uncon-
strained log-likelihood `N (β). The convex curve around this MLE shows a level set of
the log-likelihood function given by {β; `N (β) = c0} for a given level c0. The blue area
shows the constraint in (4.7), the (lhs) shows a Euclidean ball for p = 2 and the (rhs)
shows a square for p = 1. The optimal regularized estimate for β is obtained by the
tangential intersection of the appropriate level set with the blue budget constraint. This
is illustrated by the orange dots. We observe that for p = 1 this might be in the corner of
the square (Figure 4.4, rhs), this is the situation where the parameter for the first feature
component shrinks exactly to zero. For p = 2 this does not happen, a.s.

4.4 Markov chain Monte Carlo method

In this section we give the basics of Markov chain Monte Carlo (MCMC) simulation
methods. We refrain from giving rigorous derivations and proofs but we refer to the
relevant MCMC literature like Congdon [28], Gilks et al. [53], Green [57, 58], Johansen
et al. [75], Neal [97] or Robert [113].
A main problem in Bayesian modeling is that posterior distributions of type (4.4) cannot
be found explicitly, i.e. we can neither directly simulate from that posterior distribution
nor can we calculate the (posterior) Bayesian credibility estimator (4.5) explicitly. In
this section we provide an algorithm that helps us to approximate posterior distributions.
For this discussion we switchback the notation from β to Θ because the latter is more
standard in a Bayesian modeling context.
In a nutshell, if a probability density π(θ) (or π(θ|D) in a Bayesian context) of a random
variable Θ is given up to its normalizing constant (i.e. if we explicitly know its functional
form in θ), then we can design a discrete time Markov process that converges (in distribu-

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

88 Chapter 4. Credibility Theory

tion) to π (or π(·|D), respectively). More precisely, we can design a (time inhomogeneous)
Markov process that converges (under reversibility, irreducibility and aperiodicity) to its
(unique) stationary distribution (also called equilibrium distribution).
Assume for simplicity that π is discrete. If the (irreducible and aperiodic) Markov chain
(Θ(t))t≥0 has the following invariance property for π

π(θi) =
∑
θj

π(θj) P
[
Θ(t+1) = θi

∣∣∣Θ(t) = θj
]
, for all θi and t ≥ 0, (4.8)

then π is the (unique) stationary distribution of (Θ(t))t≥0. Based on the latter property,
we can use the samples (Θ(t))t>t0 as an empirical approximation to π after the Markov
chain has sufficiently converged, i.e. for sufficiently large t0. This t0 is sometimes also
called the burn-in period.
Thus, we are aiming at constructing an irreducible and aperiodic Markov chain that
satisfies invariance property (4.8) for π. A Markov chain is said to fulfill the detailed
balance condition (is reversible) w.r.t. π if the following holds for all θi, θj and t ≥ 0

π(θi) P
[
Θ(t+1) = θj

∣∣∣Θ(t) = θi
]

= π(θj) P
[
Θ(t+1) = θi

∣∣∣Θ(t) = θj
]
. (4.9)

We observe that the detailed balance condition (4.9) implies the invariance property
(4.8) for π (sum both sides over θj). Therefore, reversibility is sufficient to obtain the
invariance property. The aim now is to design (irreducible and aperiodic) Markov chains
that are reversible for π; the limiting samples of these Markov chains can be used as
empirical approximations to π. Crucial for this design is that we only need to know the
functional form of the density π; note that the normalizing constant of π cancels in (4.9).

4.4.1 Metropolis–Hastings algorithm

The goal is to design an irreducible and aperiodic Markov chain that fulfills the detailed
balance condition (4.9) for density π. The main idea of this design goes back to Metropolis
and Hastings [95, 64] and uses an acceptance-rejection method.
Assume that the Markov chain is in state Θ(t) at algorithmic time t and we would like
to simulate the next state Θ(t+1) of the chain. For the simulation of this next state we
choose a proposal density q(·|Θ(t)) that may depend on the current state Θ(t) (and also
on the algorithmic time t, not indicated in the notation).

Metropolis–Hastings Algorithm.

1. In a first step we simulate a proposed next state

Θ∗ ∼ q(·|Θ(t)).

2. Using this proposed state we calculate the acceptance probability

α(Θ(t),Θ∗) = min
{
π(Θ∗)q(Θ(t)|Θ∗)
π(Θ(t))q(Θ∗|Θ(t))

, 1
}
. (4.10)

3. Simulate independently U ∼ Uniform[0, 1].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 89

4. Set for the state at algorithmic time t+ 1

Θ(t+1) =
{

Θ∗ if U ≤ α(Θ(t),Θ∗),
Θ(t) otherwise.

Lemma 4.12. This algorithm satisfies the detailed balance condition (4.9) for π, and
hence is invariant according to (4.8) for π.

This lemma is proved in Section 4.5, below.

Thus, the Metropolis–Hastings (MH) algorithm provides a reversible Markov chain that
converges to the stationary distribution π (under irreducibility and aperiodicity). The
crucial point why this algorithm works for densities π that are only known up to their
normalizing constants lies in the definition of the acceptance probability (4.10); note
that the acceptance probability is the only place where π is used. In the definition of
the acceptance probability (4.10) we consider the ratio π(Θ∗)/π(Θ(t)) and therefore the
normalizing constant cancels.

The remaining freedom is the choice of the (time inhomogeneous) proposal densities q.
In general, we aim at using a choice that leads to a fast convergence to the stationary
distribution π. However, such a “good” choice is not straightforward. In a Gaussian
context it was proved that the optimal average acceptance rate of the proposal in the
MH algorithm is 0.234, see Roberts et al. [114].

A special case is the so-called random walk Metropolis–Hastings (RW-MH) algorithm
(also called Metropolis algorithm). It is obtained by choosing a symmetric proposal
density, i.e. q(θi|θj) = q(θj |θi). In this case the acceptance probability simplifies to

α(Θ(t),Θ∗) = min
{
π(Θ∗)
π(Θ(t))

, 1
}
.

If Θ is not low dimensional, then often a block update MH algorithm is used. Assume that
Θ = (Θ1, . . . ,ΘK) can be represented by K components. In that case a MH algorithm
can be applied iteratively to each component separately, and we still obtain convergence
of the Markov chain to its stationary distribution π. Assume we are in state Θ(t) at
algorithmic time t and we would like to simulate the next state Θ(t+1). The block update
MH algorithm works as follows:

Block Update Metropolis–Hastings Algorithm.

1. Initialize the block update Θ(t+1) = Θ(t).

2. Iterate for components k = 1, . . . ,K

(a) simulate a proposed state Θ∗k ∼ qk(·|Θ(t+1)) for component Θk of Θ, and set

Θ∗ = (Θ(t+1)
1 , . . . ,Θ(t+1)

k−1 ,Θ∗k,Θ
(t+1)
k+1 , . . . ,Θ(t+1)

K); (4.11)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

90 Chapter 4. Credibility Theory

(b) calculate the acceptance probability of this newly proposed component

α(Θ(t+1),Θ∗) = min
{

π(Θ∗)qk(Θ
(t+1)
k |Θ∗)

π(Θ(t+1))qk(Θ∗k|Θ(t+1))
, 1
}

;

(c) simulate independently U ∼ Uniform[0, 1];

(d) set for the component k at algorithmic time t+ 1

Θ(t+1)
k =

{
Θ∗k if U ≤ α(Θ(t+1),Θ∗),
Θ(t)
k otherwise.

Observe that this block update MH algorithm updates component by component of
Θ(t) to obtain Θ(t+1). The (notation in the) initialization is (only) used to simplify
the description of the block update, i.e. in fact the initialization does not update any
component. This is reflected in (4.11) by the fact that components 1 to k−1 are already
updated, component k is about to get updated, and components k + 1 to K are not
updated yet. This block update MH algorithm is of special interest for Gibbs sampling,
which is described next.

4.4.2 Gibbs sampling

The block update MH algorithm is of special interest if it is possible to perform condi-
tional sampling. Assume that for all k = 1, . . . ,K the density π is so nice that we can
directly sample from the conditional distributions

Θk|(Θ1,...,Θk−1,Θk+1,...,ΘK) ∼ π(·|Θ1, . . . ,Θk−1,Θk+1, . . . ,ΘK).

In this case we may choose as proposal distribution for Θ∗k in the above block update
MH algorithm (called Gibbs sampling in this case)

Θ∗k ∼ qk(·|Θ(t+1)) (d)= π(·|Θ(t+1)
1 , . . . ,Θ(t+1)

k−1 ,Θ(t+1)
k+1 , . . . ,Θ(t+1)

K) ∝ π(Θ∗),

where we use notation (4.11). These proposals are always accepted because α ≡ 1.

4.4.3 Hybrid Monte Carlo algorithm

The hybrid Monte Carlo (HMC) algorithm goes back to Duane et al. [34] and is well de-
scribed in Neal [97]. Note that the abbreviation HMC is also used for Hamiltonian Monte
Carlo because the subsequent Markov process dynamics are based on Hamiltonians.
Represent the density π as follows

π(θ) = exp {log π(θ)} ∝ exp {`(θ)} .

Observe that ` is the log-likelihood function of π, (potentially) up to a normalizing
constant. The acceptance probability (4.10) in the MH algorithm then reads as

α(Θ(t),Θ∗) = exp
(
min

{
`(Θ∗)− `(Θ(t)) + log q(Θ(t)|Θ∗)− log q(Θ∗|Θ(t)), 0

})
.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 91

In physics −`(θ) can be interpreted as the potential energy of the system in state θ. We
enlarge this system by also accounting for its momentum. In physics this is done by
considering the kinetic energy (and using the law of conservation of energy). Assume
that Θ and Ψ are independent with joint density

f(θ, ψ) = π(θ)g(ψ) ∝ exp {`(θ)− k(ψ)} .

We assume that −`(·) and k(·) are differentiable, playing the role of potential and kinetic
energy, respectively, and we define the Hamiltonian

H(θ, ψ) = −`(θ) + k(ψ).

Assume that the dimension of θ = (θ1, . . . , θr) is r ∈ N, then a typical choice for ψ =
(ψ1, . . . , ψr) and its kinetic energy is

k(ψ) =
r∑
l=1

ψ2
l

2τ2
l

= 1
2ψ
′
(
diag(τ2

1 , . . . , τ
2
r)
)−1

ψ,

for given parameters τl > 0. In other words, g(ψ) is a Gaussian density with independent
components Ψ1, . . . ,Ψr and covariance matrix T = diag(τ2

1 , . . . , τ
2
r). The goal is to

design a reversible, irreducible and aperiodic Markov process that has f as stationary
distribution (note that we silently change to a continuous space and time setting, for
instance, for derivatives being well-defined).
The crucial point now is the construction of the Markov process dynamics. Assume
that we are in state (Θ(t),Ψ(t)) at time t and we would like to study an infinitesimal
time interval dt. For this we consider a change (in infinitesimal time) that leaves the
total energy in the Hamiltonian unchanged (law of conservation of energy). Thus, for all
components l = 1, . . . , r we choose the dynamics at time t

dΘ(t)
l

dt
= Ψ(t)

l

τ2
l

and dΨ(t)
l

dt
= ∂`(θ)

∂θl

∣∣∣∣
Θ(t)

. (4.12)

This implies for the change in the Hamiltonian at time t

dH(Θ(t),Ψ(t))
dt

=
r∑
l=1

[
∂H(θ, ψ)
∂θl

∣∣∣∣
(Θ(t),Ψ(t))

dΘ(t)
l

dt
+ ∂H(θ, ψ)

∂ψl

∣∣∣∣
(Θ(t),Ψ(t))

dΨ(t)
l

dt

]

=
r∑
l=1

[
−∂`(θ)

∂θl

∣∣∣∣
Θ(t)

dΘ(t)
l

dt
+ ∂k(ψ)

∂ψl

∣∣∣∣
Ψ(t)

dΨ(t)
l

dt

]
= 0.

Thus, a Markov process (Θ(t),Ψ(t))t≥0 which moves according to (4.12) leaves the total
energy in the Hamiltonian unchanged. Moreover, this dynamics preserves the volumes,
see (3.8) in Neal [97], and it is reversible w.r.t. f(θ, ψ). This implies that f(θ, ψ) is an
invariant distribution for this (continuous-time) Markov process (Θ(t),Ψ(t))t≥0. Note,
however, that this Markov process is not irreducible because it cannot leave a given total
energy state (and hence cannot explore the entire state space) for a given starting value.
This deficiency can be corrected by randomizing the total energy level. Furthermore, for
simulation we also need to discretize time in (4.12). These two points are described next.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

92 Chapter 4. Credibility Theory

First, we mention that we can apply Gibbs sampling for the update of the kinetic en-
ergy state Ψ(t), given Θ(t), simply by using the Gaussian density g(ψ). Assume we
are in position (Θ(t),Ψ(t)) at algorithmic time t ∈ N0 and we aim at simulating state
(Θ(t+1),Ψ(t+1)). We do this in two steps, first we move the kinetic energy level and then
we move along the corresponding (discretized) constant Hamiltonian level.

Hybrid (Hamiltonian) Monte Carlo Algorithm.

1. Using Gibbs sampling, we set

Ψ̂(t+1)
∣∣∣
Θ(t)

∼ N
(
0, T = diag(τ2

1 , . . . , τ
2
r)
)
.

2. For fixed step size ε > 0 and number of steps L ∈ N, we initialize θ∗(0) = Θ(t) and
ψ∗(0) = Ψ̂(t+1), and we consider the leapfrog updates for j = 1, . . . , L

ψ∗(j − 1/2) = ψ∗(j − 1) + ε

2 ∇θ`(θ
∗(j − 1)),

θ∗(j) = θ∗(j − 1) + ε T−1ψ∗(j − 1/2),
ψ∗(j) = ψ∗(j − 1/2) + ε

2 ∇θ`(θ
∗(j)).

This provides a proposal for the next state

(Θ∗,Ψ∗) = (θ∗(L),−ψ∗(L)).

Accept this proposal with acceptance probability

α
(
(Θ(t), Ψ̂(t+1)), (Θ∗,Ψ∗)

)
= exp

(
min

{
−H(Θ∗,Ψ∗) +H(Θ(t), Ψ̂(t+1)), 0

})
,

(4.13)
otherwise keep (Θ(t), Ψ̂(t+1)).

We give some remarks. Observe that in step 2 we may update both components Θ(t)

and Ψ̂(t+1). If the leapfrog discretization were exact (i.e. no discretization error), then it
would define, as in (4.12), a reversible Markov process that leaves the total energy and
the total volume unchanged, see Section 3.1.3 in Neal [97]. This would imply that the
acceptance probability in (4.13) is equal to 1. The MH step with acceptance probability
(4.13) corrects for the discretization error (corrects for a potential bias). Moreover, since
the kinetic energy k(ψ) is symmetric with respect to zero, the reflection of the momentum
in the proposal Ψ∗ would not be necessary (if we perform Gibbs sampling in step 1).
Note that the wanted distribution π is obtained by considering the (for the first compo-
nent) marginalized Markov process (Θ(t),Ψ(t))t≥0 asymptotically.

4.4.4 Metropolis-adjusted Langevin algorithm

The above HMC algorithm provides as special case for L = 1 the Metropolis-adjusted
Langevin algorithm (MALA), studied in Roberts–Rosenthal [115].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 93

First, observe that the Gibbs sampling step of Ψ̂(t+1) is independent of everything else,
and we can interpret this Gibbs sampling step as a proposal distribution for updating
Θ(t), in particular, because we are only interested into the marginalized process (Θ(t))t≥0
of (Θ(t),Ψ(t))t≥0. The leapfrog update for L = 1 reads as

Θ∗ = Θ(t) + ε2

2 T−1∇θ log π(Θ(t)) + ε T−1Ψ̂(t+1),

Ψ∗ = −Ψ̂(t+1) − ε

2 ∇θ log π(Θ(t))− ε

2 ∇θ log π(Θ∗).

From the first line we see that the proposal is chosen as

Θ∗|Θ(t) ∼ N
(

Θ(t) + ε2

2 T
−1∇θ log π(Θ(t)), ε2T−1

)
. (4.14)

Lemma 4.13. The acceptance probability obtained from (4.13) for L = 1 is equal to the
acceptance probability of the MH algorithm using proposal (4.14).

This lemma is proved in Section 4.5, below.

Remarks and interpretation. The motivation for the study of the MALA has been
that the classical MH algorithm may have a poor performance in higher dimensions,
because the Markov process may behave like a random walk that explores the space in
a rather inefficient way. The idea is to endow the process with an appropriate drift so
that it finds the relevant corners of the space more easily. For this purpose the Langevin
diffusion is studied: assume that (Wt)t≥0 is an r-dimensional Brownian motion on our
probability space, then we can consider the r-dimensional stochastic differential equation

dΘ(t) = 1
2∇θ log π(Θ(t))dt+ dWt.

When π is sufficiently smooth, then π is a stationary distribution of this Langevin dif-
fusion. The MALA described by the proposals (4.14) is then directly obtained by a
discretized version of this Langevin diffusion for T = 1 and for ε describing the step size.
The acceptance-rejection step then ensures convergence to the appropriate stationary
distribution π. In Roberts–Rosenthal [115] it was proved that (under certain assump-
tions) the optimal average acceptance rate of the MALA is 0.574. Note that this is vastly
different from the 0.234 in the classical MH algorithm, see Roberts et al. [114]. In Neal
[97] it is argued that also the MALA may have a too random walk-like behavior and the
full power of HMC algorithms is only experienced for bigger L’s reflecting bigger steps
along the (deterministic) Hamiltonian dynamics.

4.4.5 Example in Markov chain Monte Carlo simulation

In this section we make a simple example for the density π that allows us to empirically
compare the performance of the MH algorithm, the MALA and the HMC algorithm.
We choose dimension r = 10 (which is not large) and let Σ ∈ Rr×r be a positive definite
covariance matrix, the explicit choice is provided in Figure 4.5. We then assume that

π
(d)= N (0,Σ).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

94 Chapter 4. Credibility Theory

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

1

2

3

4

5

6

7

8

9

10

Figure 4.5: Choice of covariance matrix Σ.

Thus, π is a centered multivariate Gaussian density. Of course, in this case we could
directly simulate from π. Nevertheless, we will use the MCMC algorithms to approximate
samples of π. This allows us to study the performance of these algorithms.

Figure 4.6: Trace plots of the first component Θ(t)
1 of (Θ(t))t=0,...,10000 of (lhs, black) the

MH algorithm, (middle, blue) the MALA, and (rhs, red) the HMC algorithm with L = 5.

We start with the MH algorithm. For the MH algorithm we choose proposal distribution

Θ∗ ∼ q(·|Θ(t)) (d)= N (Θ(t), ε21).

Thus, we do a RW-MH choice and the resulting acceptance probability is given by

α
(
Θ(t),Θ∗

)
= exp

(
min

{
−1

2(Θ∗)′Σ−1Θ∗ + 1
2(Θ(t))′Σ−1Θ(t), 0

})
.

The parameter ε > 0 is fine-tuned so that we obtain an average acceptance rate of roughly
0.234. The trace plot of the first component (Θ(t)

1)t is given in Figure 4.6 (lhs, black).
Note that we choose starting point Θ(0) = (10, . . . , 10)′ and the burn-in takes roughly
t0 = 1000 algorithmic steps.
Next we study the MALA. We choose proposal

Θ∗ ∼ q(·|Θ(t)) (d)= N
(

Θ(t) − ε2

2 Σ−1Θ(t), ε21

)
,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 95

from which the acceptance probability can easily be calculated, see also (4.17). The
parameter ε = 0.23 is fine-tuned so that we obtain an average acceptance rate of roughly
0.574. The trace plot of the first component (Θ(t)

1)t is given in Figure 4.6 (middle, blue).
Note that we choose starting point Θ(0) = (10, . . . , 10)′ and the burn-in is faster than in
the RW-MH algorithm.
Finally, we consider the HMC algorithm. We choose exactly the same ε = 0.23 as in
the MALA above, but we merge L = 5 steps along the Hamiltonian dynamics. We then
apply the following steps. First, we simulate Ψ̂(t+1) ∼ N (0,1). The leapfrog updates are
obtained by initializing θ∗(0) = Θ(t) and ψ∗(0) = Ψ̂(t+1), and updating for j = 1, . . . , 5

θ∗(j) =
(
1− ε2

2 Σ−1
)
θ∗(j − 1) + ε ψ∗(j − 1),

ψ∗(j) = ψ∗(j − 1)− ε

2 Σ−1 (θ∗(j − 1) + θ∗(j)) .

This provides a proposal for the next state (Θ∗,Ψ∗) = (θ∗(5),−ψ∗(5)). The acceptance
probability for this move is then easily calculated from (4.13). For this parametrization
we obtain an average acceptance rate of 0.698. The trace plot of the first component
(Θ(t)

1)t is given in Figure 4.6 (rhs, red). The striking difference is that we get much better
mixing than in the RH-MH algorithm and in the MALA. This is confirmed by looking at

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

auto−correlation in MCMC samples

time lag

au
to

co
rr

el
at

io
n

MH samples
MALA samples
HMC(5) samples

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

auto−correlation in MCMC samples

time lag

au
to

co
rr

el
at

io
n

HMC(3) samples
HMC(5) samples
HMC(10) samples

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

auto−correlation in MCMC samples

time lag

au
to

co
rr

el
at

io
n

HMC(5) samples
HMC(7) samples
HMC(10) samples

Figure 4.7: Autocorrelations of the first component Θ(t)
1 of (Θ(t))t=t0+1,...,10000 (after

burn-in t0 = 1000) of (lhs) the MH algorithm (black), the MALA (blue) and the HMC
algorithm with L = 5 (red); (middle) the HMC algorithm for L = 3, 5, 10 (orange, red,
magenta); and (rhs) the HMC algorithm for constant total move Lε = 1.15 (red, pink,
brown).

the resulting empirical auto-correlations in the samples. They are presented in Figure 4.7
(lhs) for the first component of Θ(t). From this we conclude that we should clearly favor
the HMC algorithm with L > 1. In Figure 4.8 we also present the resulting QQ-plots
(after burn-in t0 = 1000). They confirm the previous statement, in particular, the tails
of the HMC algorithm look much better than in the other algorithms.
In the HMC algorithm we still have the freedom of different choices of L and ε. For the
above chosen ε = 0.23 we present three different choices of L = 3, 5, 10 in Figure 4.9. In
this case L = 10 has the best mixing properties, also confirmed by the autocorrelation
plot in Figure 4.7 (middle). However, L should also not be chosen too large because the

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

96 Chapter 4. Credibility Theory

Figure 4.8: QQ-plots of the first component Θ(t)
1 of (Θ(t))t=t0+1,...,10000 (after burn-in

t0 = 1000) of (lhs, black) the MH algorithm, (middle, blue) the MALA, and (rhs, red)
the HMC algorithm with L = 5.

Figure 4.9: Trace plots of the first component Θ(t)
1 of (Θ(t))t=0,...,10000 of the HMC algo-

rithm for (lhs, orange) L = 3, (middle, red) L = 5, and (rhs, magenta) L = 10.

leapfrog update may use too much computational time for large L. Hoffman–Gelman
[67] have developed the no-U-turn sampler (NUTS) which fine-tunes L in an adaptive
way.
From Figure 4.9 we also observe that the choice of L does not influence the average
acceptance probability too much. In Figure 4.10 we chose Lε = 5 · 0.23 = 1.15 constant,
i.e. we decrease the step size and increase the number of steps. Of course, this implies
that we follow more closely the Hamiltonian dynamics and the average acceptance rate is
increasing, see Figure 4.10 from left to right. In Figure 4.7 (rhs) we present the resulting
autocorrelation picture. From this we conclude, that L = 10 with original step size
ε = 0.23, Figure 4.7 (middle, magenta), provides the best mixture of the Markov chain
in our example (and should be preferred here). This finishes the example. �

4.4.6 Markov chain Monte Carlo methods: summary

We have met several simulation algorithms to numerically approximate the density π.
Typically, these algorithms are used to determine posterior densities of type (4.4). These
posterior densities are known up to the normalizing constants. This then allows one

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 4. Credibility Theory 97

Figure 4.10: Trace plots of the first component Θ(t)
1 of (Θ(t))t=0,...,10000 of the HMC

algorithm for (lhs, red) L = 5 and ε = 0.23, (middle, pink) L = 7 and ε = 0.23 · 5/7, and
(rhs, brown) L = 10 and ε = 0.23/2, i.e. the total move Lε = 1.15 is constant.

to empirically calculate the posterior Bayesian parameter (4.5). The advantage of the
posterior Bayesian parameter is that we receive a natural regularization (determined by
the choice of the prior distribution) and, moreover, we can quantify parameter estimation
uncertainty through the posterior distribution of this parameter.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

98 Chapter 4. Credibility Theory

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sAppendix to Chapter 4

4.5 Proofs of Section 4.4

Proof of Lemma 4.12. The MH algorithm provides transition probability for algorithmic time t ≥ 0

pt+1|t(θi, θj) = P
[

Θ(t+1) = θj
∣∣Θ(t) = θi

]
=
{

q(θj |θi) α(θi, θj) for θi 6= θj ,
q(θi|θi) +

∑
θk
q(θk|θi) (1− α(θi, θk)) for θi = θj .

For the detailed balance condition we need to prove for all θi, θj and t ≥ 0

π(θi) pt+1|t(θi, θj) = π(θj) pt+1|t(θj , θi). (4.15)

The case θi = θj is trivial, so consider the case θi 6= θj . We assume first that

π(θj) q(θi|θj) ≥ π(θi) q(θj |θi). (4.16)

In this case we have acceptance probability α(θi, θj) = 1, and, thus, pt+1|t(θi, θj) = q(θj |θi). We start from
the right-hand side in (4.15), note that under (4.16) we have α(θj , θi) = π(θi) q(θj |θi)/π(θj) q(θi|θj) ≤ 1,

π(θj) pt+1|t(θj , θi) = π(θj) q(θi|θj) α(θj , θi) = π(θj) q(θi|θj)
π(θi) q(θj |θi)
π(θj) q(θi|θj)

= π(θi) q(θj |θi) = π(θi) pt+1|t(θi, θj).

This proves the first case. For the opposite sign in (4.16) we have α(θj , θi) = 1, and we read the last
identities from the right to the left as follows

π(θi) pt+1|t(θi, θj) = π(θi) q(θj |θi) α(θi, θj) = π(θi) q(θj |θi)
π(θj) q(θi|θj)
π(θi) q(θj |θi)

= π(θj) q(θi|θj) = π(θj) pt+1|t(θj , θi).

This proves the lemma. 2

Proof of Lemma 4.13. The acceptance probability in (4.13) for L = 1 is

α
(

(Θ(t), Ψ̂(t+1)), (Θ∗,Ψ∗)
)

= min
(
π(Θ∗)
π(Θ(t))

exp
{
−1

2(Ψ∗)′T−1Ψ∗ + 1
2(Ψ̂(t+1))′T−1Ψ̂(t+1)

}
, 1
)
.

Note that we have identity

z = Ψ∗ + ε

2 ∇θ log π(Θ∗) = −Ψ̂(t+1) − ε

2 ∇θ log π(Θ(t)).

We define a∗ = ε
2 ∇θ log π(Θ∗) and a(t) = ε

2 ∇θ log π(Θ(t)). Then we obtain

(Ψ∗)′T−1Ψ∗ − (Ψ̂(t+1))′T−1Ψ̂(t+1) = (z − a∗)′T−1(z − a∗)− (z + a(t))′T−1(z + a(t))
= −2(a∗ + a(t))′T−1z + (a∗)′T−1a∗ − (a(t))′T−1a(t).

For z we have using the proposal Θ∗

z = −Ψ̂(t+1) − ε

2 ∇θ log π(Θ(t)) = 1
ε
T
(
Θ(t) −Θ∗

)
.

99

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

100 Chapter 4. Credibility Theory

Therefore, we obtain

(Ψ∗)′T−1Ψ∗ − (Ψ̂(t+1))′T−1Ψ̂(t+1) = − 2
ε

(a∗ + a(t))′
(
Θ(t) −Θ∗

)
+ (a∗)′T−1a∗ − (a(t))′T−1a(t).

This provides acceptance probability (4.13) for L = 1 being the minimum of 1 and

π(Θ∗)
π(Θ(t))

exp
{1
ε

(a∗ + a(t))′
(
Θ(t) −Θ∗

)
− 1

2(a∗)′T−1a∗ + 1
2(a(t))′T−1a(t)

}
.

If we run an MH algorithm with proposal (4.14), we obtain acceptance probability being the minimum
of 1 and

π(Θ∗)
π(Θ(t))

exp
{
− 1

2ε2

(
Θ(t) −Θ∗ − εT−1a∗

)′
T
(
Θ(t) −Θ∗ − εT−1a∗

)}
exp
{
− 1

2ε2 (Θ∗ −Θ(t) − εT−1a(t))′ T (Θ∗ −Θ(t) − εT−1a(t))
} . (4.17)

Since the last two displayed formulas are identical, we obtain the same acceptance probability and the
claim follows. 2

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 5

Neural Networks

5.1 Feed-forward neural networks

Feed-forward neural networks are popular methods in data science and machine learn-
ing. Originally, they have been inspired by the functionality of brains and have their
roots in the 1940s. In essence, feed-forward neural networks can be understood as high-
dimensional non-linear regression functions, and resulting statistical models can be seen
as parametric regression models. However, due to their high-dimensionality and non-
interpretability of parameters, they are often called non-parametric regression models.
Typically, one distinguishes between two types of feed-forward neural networks: (i) shal-
low feed-forward neural networks having one hidden layer, (ii) and deep feed-forward
neural networks with more than one hidden layer. These will be described in detail
in this chapter. This description is based on the q-dimensional feature space X ⊂ Rq

introduced in Chapter 2 and we will again analyze regression problems of type (2.1).

Remark. We use neural networks for modeling regression functions. However, neural
networks can be seen in a much broader context. They describe a powerful approximation
framework to continuous functions. In fact, neural networks provide a general toolbox of
basis functions that can be composed to a very flexible approximation framework. This
may be seen in a similar way as the splines and MARS frameworks presented in Chapter
3 or as the toolbox of wavelets and other families of basis functions.

5.1.1 Generic feed-forward neural network construction

In this section we describe the generic architecture of feed-forward neural networks. Ex-
plicit examples and calibration techniques are provided in the subsequent sections. This
section follows Chapter 7 of Wüthrich–Merz [141], and for a more in-depth introduction
we refer to this latter reference.

Activation functions

The first important ingredient (hyperparameter) of a neural network architecture is the
choice of the activation function φ : R → R. Since we would like to approximate non-
linear regression functions, these activation functions should be non-linear. Table 5.1

101

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

102 Chapter 5. Neural Networks

summarizes common choices. The first two examples in Table 5.1 are differentiable (with

sigmoid/logistic activation function φ(x) = (1 + e−x)−1 φ′ = φ(1− φ)
hyperbolic tangent activation function φ(x) = tanh(x) φ′ = 1− φ2

step function activation φ(x) = 1{x≥0}
rectified linear unit (ReLU) activation function φ(x) = x1{x≥0}

Table 5.1: Typical choices of (non-linear) activation functions.

easy derivatives). This is an advantage in algorithms for model calibration that involve
derivatives.
The hyperbolic tangent activation function satisfies

x 7→ tanh(x) = ex − e−x

ex + e−x
= 2e2x

1 + e2x − 1 = 2
(
1 + e−2x

)−1
− 1. (5.1)

The right-hand side uses the sigmoid activation function. The hyperbolic tangent is
symmetric w.r.t. the origin, and this symmetry is an advantage in fitting deep network
architectures. We illustrate the sigmoid activation function in more detail. It is given by

x 7→ φ(x) = ex

1 + ex
=
(
1 + e−x

)−1 ∈ (0, 1). (5.2)

Figure 5.1 shows the sigmoid activation function x 7→ φ(wx) for w ∈ {1/4, 1, 4} and

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sigmoid function

x

si
gm

oi
d

w=4
w=1
w=1/4

Figure 5.1: Sigmoid activation function x 7→ φ(wx) for w ∈ {1/4, 1, 4} and x ∈ (−10, 10).

x ∈ (−10, 10). We see that the signal is deactivated for small values of x, and it gets
fully activated for big values, and w determines the intensity of activation. The increase
of activation takes place in the neighborhood of the origin and it may be shifted by an
appropriate choice of translation (also called intercept), i.e. x 7→ φ(w0 + wx) for a given
intercept w0 ∈ R. The sign of w determines the direction of the activation.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 103

Neural network layers

A neural network consist of (several) neural network layers. Choose hyperparameters
qm−1, qm ∈ N and an activation function φ : R → R. A neural network layer is a
mapping

z(m) : Rqm−1 → Rqm z 7→ z(m)(z) =
(
z

(m)
1 (z), . . . , z(m)

qm (z)
)′
,

that has the following form. Neuron z(m)
j , 1 ≤ j ≤ qm, is described by

z
(m)
j = z

(m)
j (z) = φ

(
w

(m)
j,0 +

qm−1∑
l=1

w
(m)
j,l zl

)
def.= φ〈w(m)

j , z〉, (5.3)

for given network weights w(m)
j = (w(m)

j,l)0≤l≤qm−1 ∈ Rqm−1+1.
Neuron z(m)

j corresponds to a GLM regression w.r.t. feature z ∈ Rqm−1 that consists of
a scalar product and then measures the resulting activation of this scalar product in a
non-linear fashion φ. Function (5.3) is called ridge function. A ridge function can be
seen as a data compression because it reduces the dimension from qm−1 to 1. Since this
dimension reduction goes along with a loss of information, we consider simultaneously qm
different ridge functions in a network layer. This network layer has a network parameter
W (m) = (w(m)

1 , . . . ,w
(m)
qm) of dimension qm(qm−1 + 1).

Often we abbreviate a neural network layer as follows

z 7→ z(m)(z) = φ〈W (m), z〉. (5.4)

Feed-forward neural network architecture

A feed-forward neural network architecture is a composition of several neural network
layers. The first layer is the input layer which is exactly our feature space X ⊂ Rq, and
we set q0 = q for the remainder of this chapter. We choose a hyperparameter d ∈ N
which denotes the depth of the neural network architecture. The activations in the m-th
hidden layer for 1 ≤ m ≤ d are obtained by

x ∈ X 7→ z(m:1)(x) def.=
(
z(m) ◦ · · · ◦ z(1)

)
(x) ∈ Rqm . (5.5)

We use the neurons z(d:1)(x) ∈ Rqd in the last hidden layer as features in the final
regression. We choose the exponential activation function because our responses are
unbounded and live on the positive real line. This motivates the output layer (regression
function)

x ∈ X 7→ λ(x) = exp

β0 +
qd∑
j=1

βjz
(d:1)
j (x)

 = exp
〈
β, z(d:1)(x)

〉
, (5.6)

with output network weights β = (βj)0≤j≤qd ∈ Rqd+1. Thus, (5.6) defines a general
regression function which has a network parameter θ = (β,W (d), . . . ,W (1)) of dimension
r = qd + 1 +

∑d
m=1 qm(qm−1 + 1). The general aim is to fix a neural network architecture

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

104 Chapter 5. Neural Networks

for the regression model, and fit the resulting network parameter θ ∈ Rr as good as
possible to the data.

ac

age

claims

ac

age

claims

Figure 5.2: (lhs) Neural network of depth d = 1 with two-dimensional input feature
x = (age, ac)′ and q1 = 5 hidden neurons; (rhs) neural network of depth d = 2 with
two-dimensional input feature x = (age, ac)′ and 2 hidden layers with q1 = 8 and q2 = 5
hidden neurons, respectively; input layer is in blue color, hidden layers are in black color,
and output layer is in red color.

If Figure 5.2 we illustrate two different feed-forward neural network architectures. These
have network parameters θ of dimensions r = 21 and r = 75, respectively.

Remarks 5.1.

• The neural network introduced in (5.6) is called feed-forward because the signals
propagate from one layer to the next (directed acyclic graph). If the network has
loops it is called recurrent neural network.

• Often, neural networks of depth d = 1 are called shallow networks, and neural
networks of depth d ≥ 2 are called deep networks.

• Here, we have defined a generic feed-forward neural network architecture for a re-
gression problem. Similar architectures can be defined for classification problems.
In that case the output layer will have multiple neurons, and often the softmax
activation function is chosen to turn the output activations into categorical proba-
bilities for classification.

We briefly summarize the models studied so far which brings a common structure to
regression problems. We have studied three different types of regression functions:

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 105

Generalized linear models (GLMs): see (2.2),

x 7→ λ(x) = exp 〈β,x〉 .

Generalized additive models (GAMs): see (3.11),

x 7→ λ(x) = exp 〈β, s(x)〉 .

Feed-forward neural networks: see (5.6),

x 7→ λ(x) = exp
〈
β, z(d:1)(x)

〉
.

In all three examples we choose the log-link function which results in the exponential
output activation. In the exponent, we have a scalar product in all three cases. In
the first case, the feature x directly runs into the scalar product. As we have seen
in Chapter 2 this requires feature engineering so that this log-linear form provides a
reasonable regression function for the problem to be solved. In GAMs the linear structure
in the exponent is replaced by natural cubic splines which directly pre-process features
into an appropriate structure so that we can apply the scalar product on the log-scale.
Finally, neural networks allow for even more modeling flexibility in feature engineering
x 7→ z(d:1)(x), in particular, w.r.t. interactions as we will see below.

5.1.2 Shallow feed-forward neural networks

We start by analyzing shallow feed-forward neural networks, thus, we choose networks
of depth d = 1. Figure 5.2 (lhs) shows such a shallow neural network. We start from
q0-dimensional features x = (x1, . . . , xq0)′ ∈ X ⊂ Rq0 (we have set q0 = q). The hidden
layer with q1 neurons is given by (for notational convenience we drop the upper index
m = 1 in the shallow network case)

x 7→ z = z(x) = φ〈W,x〉 ∈ Rq1 . (5.7)

The output layer is then received by

x 7→ log λ(x) = β0 +
q1∑
j=1

βjzj(x) = 〈β, z(x)〉, (5.8)

with output network weights β = (βj)0≤j≤q1 ∈ Rq1+1. Thus, we have network parameter
θ = (β,W) of dimension r = q1 + 1 + q1(q0 + 1).

Universality theorems

Functions of type (5.8) provide a very general family of regression functions (subject
to the choice of the output activation). The following statements have been proved by
Cybenko [29], Hornik et al. [69] and Leshno et al. [88]: shallow neural networks (under
mild conditions on the activation function) can approximate any compactly supported
continuous function arbitrarily well (in supremum norm or L2-norm), if we allow for an

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

106 Chapter 5. Neural Networks

arbitrary number of hidden neurons q1 ∈ N. Thus, shallow neural networks are dense in
the class of compactly supported continuous functions; and shallow neural networks are
sufficiently flexible to approximate any desired (sufficiently regular) regression function.
These results are called universality theorems. A famous similar statement goes back to
Kolmogorov [82] and his student Arnold [3] who were considering Hilbert’s 13th problem
which is related to the universality theorems. Thus, the universality theorems tell us that
shallow neural networks are sufficient, nevertheless we are also going to use deep neural
networks, below, because they have a better approximation capacity at lower complexity.

Example 5.2. We provide a simple illustrative example for the functioning of shallow
neural networks. We make two different choices for the activation function φ. We start
by choosing the step function activation, see Table 5.1,

φ(x) = 1{x≥0}.

Note that inside the activation function (5.7) we consider the scalar products
∑q0
l=1wj,lxl

which are translated by intercepts wj,0. For the step function activation we are interested
in analyzing the property, for j = 1, . . . , q1,

q0∑
l=1

wj,lxl
?
≥ − wj,0.

For illustration we choose q0 = q1 = 2. The blue line in Figure 5.3 (lhs) corresponds

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

step function activation

x1

x2

first hidden neuron
second hidden neuron

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

step function activation

z1

z2

● ●

● ●●

Figure 5.3: Step function activation for q0 = q1 = 2 (lhs) x ∈ R2 and (rhs) z ∈ {0, 1}2.

to the translated scalar product of the first hidden neuron z1(x) and the red line to the
second hidden neuron z2(x). In our example, all x above the blue line are mapped to
z = (1, z2)′ and all x below the blue line to z = (0, z2)′. Similarly, all x above the
red line are mapped to z = (z1, 1)′ and all x below the red line to z = (z1, 0)′. Thus,
under the step function activation we have four possible values z ∈ {0, 1}2 for the neuron
activation, see colored dots in Figure 5.3 (rhs). This network can have at most four
different expected responses.
As a second example we consider the sigmoid activation function provided in (5.2) for
q0 = q1 = 2, and exactly the same parameters W as in the step function activation of

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 107

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

sigmoid activation function

x1

x2

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sigmoid activation function

z1

z2

Figure 5.4: Sigmoid activation for q0 = q1 = 2 (lhs) x ∈ R2 and (rhs) z ∈ [0, 1]2.

Figure 5.3. We consider the straight lines in the feature plane x ∈ R2 in Figure 5.4 (lhs)
and map these lines to the z unit square [0, 1]2. The blue line leaves the component z1(x)
invariant and the red line leaves the component z2(x) invariant. All other lines that are
non-parallel to the blue and the red lines (e.g. the green, dark-green and magenta lines)
connect the corners (0, 0) and (1, 1) or (1, 0) and (0, 1) of the unit square in the z graph,
see Figure 5.4 (rhs).
The ridge function reduces in the scalar product 〈wj ,x〉 the dimension from q0 to 1.
Observe that x 7→ zj(x) = φ〈wj ,x〉 is constant on hyperplanes orthogonal to wj and
the gradient points into the direction of wj , i.e. ∇xφ〈wj ,x〉 = φ′〈wj ,x〉wj (subject to
differentiability of the activation function φ). �

Gradient descent method for shallow neural networks

Assume we have chosen the shallow feed-forward neural network (5.7)-(5.8) for our regres-
sion modeling problem. The remaining difficulty is to find the optimal network parameter
θ = (β,W) of that model. State-of-the-art of neural network calibration uses variants of
the gradient descent method.

Initial remark. The choices of the activation function φ, the depth d of the neural
network and the numbers (qm)1≤m≤d of hidden neurons are considered to be hyperpa-
rameters. Therefore, we fit the network parameter θ conditionally given these hyperpa-
rameters. As stated in the universality theorems on page 105, a shallow neural network
with an arbitrary number q1 of neurons is sufficient to approximate any compactly sup-
ported continuous function. This illustrates that a large value of q1 may likely lead to
over-fitting of the regression model to the data because we can approximate a fairly
large class of functions with that neural network model. This suggests to go for a low
dimensional neural network. But this is only half of the story: for model fitting (slight)
over-parametrization is often needed in the gradient descent method, otherwise the algo-
rithm may have poor convergence properties. Thus, the crucial point in gradient descent
calibration is in most of the cases to stop the optimization algorithm at the right moment

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

108 Chapter 5. Neural Networks

to prevent an over-parametrized model from over-fitting; this is called early stopping. We
will discuss these issues in more detail below.

We illustrated the gradient descent algorithm on an explicit example. Assume that the
expected frequency is modeled by (5.8), and we set

µ(x) = log λ(x) = β0 +
q1∑
j=1

βjzj(x) = 〈β, z〉 = 〈β, z(x)〉,

with hidden neurons z satisfying (5.7) for a differentiable activation function φ. Under
the Poisson assumption

Ni
ind.∼ Poi (λ(xi)vi) , for i = 1, . . . , n,

we obtain Poisson deviance loss

D∗(N , λ) =
n∑
i=1

2 [λ(xi)vi −Ni −Ni log (λ(xi)vi) +Ni logNi]

=
n∑
i=1

2
[
eµ(xi)vi −Ni −Niµ(xi) +Ni log(Ni/vi)

]
.

The goal is to make this Poisson deviance loss D∗(N , λ) small in network parameter
θ which is equivalent to determining the MLE for θ. Typically, this optimal network
parameter cannot be determined explicitly because the complexity of the problem is too
high.1 The idea therefore is to design an algorithm that iteratively improves the network
parameter by looking for locally optimal moves.
We calculate the gradient of the Poisson deviance loss D∗(N , λ) w.r.t. θ

∇θD∗(N , λ) =
n∑
i=1

2
[
eµ(xi)vi −Ni

]
∇θµ(xi) =

n∑
i=1

2 [λ(xi)vi −Ni]∇θµ(xi).

The last gradient is calculated component-wise. We have

∂

∂β
µ(x) = (z0(x), z(x)′)′ = z+(x) ∈ Rq1+1, (5.9)

where we set z0(x) ≡ 1 for the intercept β0. For j = 1, . . . , q1 and l = 0, . . . , q0 we have

∂

∂wj,l
µ(x) = βjφ

′
(
wj,0 +

q0∑
k=1

wj,kxk

)
xl = βjφ

′〈wj ,x〉xl,

where we set x0 = 1 for the intercepts wj,0. For the hyperbolic tangent activation function
we have φ′ = 1 − φ2, see Table 5.1. This implies for the hyperbolic tangent activation
function

∂

∂wj,l
µ(x) = βj

(
1− zj(x)2

)
xl. (5.10)

Collecting all terms, we obtain the gradient under the hyperbolic activation function
choice

∇θµ(x) =
(
z+(x)′, β1

(
1− z1(x)2

)
x0, . . . , βq1

(
1− zq1(x)2

)
xq0

)′
∈ Rr,

1The issue of not being able to find a global optimizer is discussed in more detail in Remarks 5.3.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 109

with dimension r = q1 + 1 + q1(q0 + 1).
The first order Taylor expansion of the Poisson deviance loss D∗(N , λ) in θ is given by,
we set λ = λθ and λ̃ = λ

θ̃
,

D∗(N , λ̃) = D∗(N , λ) +∇θD∗(N , λ)′
(
θ̃ − θ

)
+ o

(
‖θ̃ − θ‖2

)
,

for ‖θ̃ − θ‖2 → 0. Therefore, the negative gradient −∇θD∗(N , λ) gives the direction for
θ of the maximal local decrease in Poisson deviance loss.

Assume we are in position θ(t) after the t-th algorithmic step of the gradient descent
method which provides regression function x 7→ λ(t)(x) = λθ(t)(x) with network param-
eter θ(t). For a given learning rate %t+1 > 0, the gradient descent algorithm updates this
network parameter θ(t) by

θ(t) 7→ θ(t+1) = θ(t) − %t+1∇θD∗(N , λ(t)). (5.11)

This update provides new in-sample Poisson deviance loss

D∗(N , λ(t+1)) = D∗(N , λ(t))− %t+1
∥∥∥∇θD∗(N , λ(t))

∥∥∥2

2
+ o (%t+1) ,

for %t+1 → 0. Iteration of this algorithm decreases the Poisson deviance loss step by step.

Remarks 5.3.

• Iteration of algorithm (5.11) does not increase the complexity of the model (which
is fixed by the choices of q0 and q1); this is different from the gradient boosting
machine presented in Chapter 7 on stage-wise adaptive learning, which increases
the number of parameters in each iteration of the algorithm.

• By appropriately fine-tuning (tempering) the learning rate %t+1 > 0, the gradient
descent algorithm will converge to a local minimum of the objective function. This
may lead to over-fitting for a large hyperparameter q1 (in an over-parametrized
model). Therefore, in neural network calibrations it is important to find a good
balance between minimizing in-sample losses and over-fitting. Typically, the data is
partitioned into a training set and a validation set. The gradient descent algorithm
is performed on the training set (in-sample), and over-fitting is tracked on the
validation set (out-of-sample), and as soon as there are signs of over-fitting on the
validation data, the gradient descent algorithm is early stopped.

• Early stopped solutions are not unique, even if the stopping criterion is well-defined.
For instance, two different initial values (seeds) of the algorithm may lead to dif-
ferent solutions. This issue is a major difficulty in insurance pricing because it
implies that “best” prices are not unique in the sense that they may depend on the
(random) selection of a seed, for a broader discussion we refer to Section 7.4.4 in
[141]. More colloquially speaking this means that we have many competing models
of similar quality, and we do not have an objective criterion to select one of them.
This is further discussed in Section 5.1.6, below.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

110 Chapter 5. Neural Networks

• The learning rate %t+1 > 0 is usually chosen sufficiently small so that the update is
still in the region of a locally decreasing deviance loss. Fine-tuning of this learning
rate is crucial (and sometimes difficult).

• One may try to use higher order terms in the Taylor expansion (5.11). In most cases
this is computationally too costly and one prefers other techniques like momentum-
based updates, see (5.12)-(5.13).

• Big data has not been discussed, yet. If the number n of observations in D is
very large, then the gradient calculation ∇θD∗ involves high-dimensional matrix
multiplications. This may be very slow in computations. Therefore, typically, the
stochastic gradient descent (SGD) method is used. The SGD method considers for
each step in (5.11) only a (random) sub-sample (batch) of all observations in D. In
one epoch the SGD algorithm runs through all cases in D once. In applications one
usually chooses the batch size and the number of epochs the SGD method should
be iterated.

If one considers all observations in D simultaneously, then one receives the optimal
direction and for this reason that latter is sometimes also called steepest gradient
descent method.

• The initial value for the network parameter in the gradient descent algorithm should
be taken at random to avoid any kind of symmetry that may trap the algorithm in
a saddle point.

Listing 5.1: Steepest gradient descent method for a shallow neural network
1 n <- nrow(X) # number of observations in design matrix X
2 z <- array (1, c(q1+1, n)) # dimension of the hidden layer
3 z[-1,] <- tanh(W %*% t(X)) # initialize neurons for W
4 lambda <- exp(t(beta) %*% z) # initialize frequency for beta
5 for (t1 in 1: epochs){
6 delta .2 <- 2*(lambda * dat$expo - dat$claims)
7 grad.beta <- z %*% t(delta .2)
8 delta .1 <- (beta [-1,] %*% delta .2) * (1 - z[-1 ,]^2)
9 grad.W <- delta .1 %*% as. matrix (X)

10 beta <- beta - rho [2] * grad.beta/sqrt(sum(grad.beta ^2))
11 W <- W - rho [1] * grad.W/sqrt(sum(grad.W^2))
12 z[-1,] <- tanh(W %*% t(X))
13 lambda <- exp(t(beta) %*% z)
14 }

In Listing 5.1 we illustrate the implementation of the gradient descent algorithm for
a shallow neural network having hyperbolic tangent activation function. On line 1 we
extract the number of observations in the design matrix X, see also (2.7). On lines 2-4
we initialize the regression function λ for an initial network parameter θ(0) = (β,W) (not
further specified in Listing 5.1). Lines 7 and 9 give the gradient of the objective function
for the hyperbolic tangent activation function. On lines 10-11 we update the network
parameter as in (5.11) with different learning rates for the different layers. Finally, on
lines 12-13 we calculate the updated regression function.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 111

Similar to the Newton method one may try to consider second order terms (Hessians)
in gradient descent steps. However, this is not feasible computationally. Therefore,
one tries to mimic second order terms by momentum-based gradient descent methods,
see Rumelhart et al. [117]. Choose a momentum coefficient ν ∈ [0, 1) and initialize
momentum v(0) = 0 ∈ Rr.
We replace update (5.11) by

v(t) 7→ v(t+1) = νv(t) − %t+1∇θD∗(N , λ(t)), (5.12)
θ(t) 7→ θ(t+1) = θ(t) + v(t+1). (5.13)

For ν = 0 we have the classical gradient descent method, for ν > 0 we also consider
previous gradients (with exponentially decaying rates).

Another improvement has been proposed by Nesterov [99]. Nesterov has noticed that
(for convex functions) the gradient descent update may behave in a zig-zag manner. He
proposed the following adjustment. Initialize ϑ(0) = θ(0). Update

θ(t) 7→ θ(t+1) = ϑ(t) − %t+1∇θD∗(N , λϑ(t)),

ϑ(t) 7→ ϑ(t+1) = θ(t+1) + t

t+ 3(θ(t+1) − θ(t)).

Note that this is a special momentum update.

The R interface to Keras2 offers predefined gradient descent methods; for technical details
we refer to Sections 8.3 and 8.5 in Goodfellow et al. [56].

Predefined gradient descent methods

• ’adagrad’ chooses learning rates that differ in all directions of the gradient and that
consider the directional sizes of the gradients (’ada’ stands for adapted);

• ’adadelta’ is a modified version of ’adagrad’ that overcomes some deficiencies of the
latter, for instance, the sensitivity to hyperparameters;

• ’rmsprop’ is another method to overcome the deficiencies of ’adagrad’ (’rmsprop’
stands for root mean square propagation);

• ’adam’ stands for adaptive moment estimation, similar to ’adagrad’ it searches
for directionally optimal learning rates based on the momentum induced by past
gradients measured by an `2-norm;3

• ’nadam’ is a Nesterov [99] accelerated version of ’adam’.

2Keras is a user-friendly API to TensorFlow, see https://tensorflow.rstudio.com/keras/
3We would like to indicate that there is an issue with ’adam’. The explanation of the functioning of

’adam’ is based on Lemma 10.3 in Kingma–Ba [81], however this lemma is not correct.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://tensorflow.rstudio.com/keras/

Da
ta

An
aly

tic
s

112 Chapter 5. Neural Networks

Pre-processing features

We have learned how to pre-process categorical feature components in Section 2.4.1.
Choosing a fixed reference level, a categorical feature component with k labels can be
transformed into a (k − 1)-dimensional dummy vector, for an example see (2.16). We
will use this dummy coding here for categorical feature components. In the machine
learning community often one-hot encoding is preferred because it is (slightly) simpler
and the full rank property of the design matrix X is not an important property in an
over-parametrized model.
For the gradient descent method to work properly (and not get trapped) we also need
to pre-process continuous feature components. A necessary property therefore is that
all feature components live on a comparable scale, otherwise the gradient is dominated
by components that live on a bigger scale. In many cases the so-called MinMaxScaler is
used. Denote by x−l and x+

l the minimal and maximal feature value of the continuous
feature component xl. Then we transform this continuous feature components for all
cases 1 ≤ i ≤ n by

xi,l 7→ xMM
i,l = 2 xi,l − x−l

x+
l − x

−
l

− 1 ∈ [−1, 1]. (5.14)

If the resulting feature values (xMM
i,l)1≤i≤n cluster in interval [−1, 1], for instance, because

of outliers in feature values, we should first transform them non-linearly to get more
uniform values. For convenience we will drop the upper index in xMM

i,l in the sequel.

Example 5.4 (example SNN1). We consider the same set-up as in Example 2.10 (GLM1)
and Example 3.4 (GAM1). That is, we only use the feature components age and ac in
the regression model. We choose two different shallow neural network architectures, a
first one having q1 = 5 hidden neurons and a second one having q1 = 20 hidden neurons,
respectively. The first one is illustrated in Figure 5.2 (lhs).
In a first analysis we study the convergence behavior of the gradient descent algorithm for
these two shallow neural network architectures (having network parameters of dimensions
r = 21 and r = 81, respectively). We therefore partition the data D into a training set
and a validation set of equal sizes. As in Example 3.4 (GAM1) we compress the data
because we only have 73 different age’s and 36 different ac’s which results in at most
2’628 non-empty risk cells. In fact, the training data has 2’120 non-empty risk cells and
the validation data has 2’087 non-empty risk cells. We then run the gradient descent
algorithm on this compressed data (sufficient statistics).
In order to perform the network calibration we use the R interface to Keras which uses
a TensorFlow backend.4 The corresponding code is provided in Listing 5.2. On line 1
we start the keras library and on lines 3-4 we define the design matrix X and the offsets
log(vi). On lines 6-9 we define the shallow neural network, and the output weights β
are initialized on line 9 to give the homogeneous MLE λ̂. On lines 11-13 we merge the
network part with the offset, and we choose the exponential response activation function
for the output layer (this part does not involve any trainable weights). On lines 15-16
the model is defined, the optimizer is specified and the objective function is chosen. Line

4see https://keras.io/backend/

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://keras.io/backend/

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 113

Listing 5.2: Shallow neural network with q1 hidden neurons in Keras
1 library (keras)
2
3 Design <- layer_input (shape = c(q0), dtype = ’float32 ’, name = ’Design ’)
4 LogVol <- layer_input (shape = c(1) , dtype = ’float32 ’, name = ’LogVol ’)
5
6 Network = Design %>%
7 layer_dense (units =q1 , activation =’tanh ’, name=’Layer1 ’) %>%
8 layer_dense (units =1, activation =’linear ’, name=’Network ’,
9 weights =list(array (0, dim=c(q1 ,1)) , array (log(lambda0), dim=c (1))))

10
11 Response = list(Network , LogVol) %>% layer_add (name=’Add ’) %>%
12 layer_dense (units =1, activation =k_exp , name = ’Response ’, trainable =FALSE ,
13 weights =list(array (1, dim=c(1 ,1)) , array (0, dim=c (1))))
14
15 model <- keras_model (inputs = c(Design , LogVol), outputs = c(Response))
16 model %>% compile (optimizer = optimizer_nadam (), loss = ’poisson ’)
17
18 summary (model)
19
20 model %>% fit(X.train , Y.train , validation_data =list(X.vali ,Y.vali),
21 epochs =10000 , batch_size =nrow(X. train), verbose =0)

18 summarizes the model which provides the output of Listing 5.3.

Listing 5.3: Shallow neural network with q1 = 5 in Keras: model summary
1 Layer (type) Output Shape Param # Connected to
2 ===
3 Design (InputLayer) (None , 2) 0
4 ___
5 Layer1 (Dense) (None , 5) 15 Design [0][0]
6 ___
7 Network (Dense) (None , 1) 6 Layer1 [0][0]
8 ___
9 LogVol (InputLayer) (None , 1) 0

10 ___
11 Add (Add) (None , 1) 0 Network [0][0]
12 LogVol [0][0]
13 ___
14 Response (Dense) (None , 1) 2 Add [0][0]
15 ===
16 Total params : 23
17 Trainable params : 21
18 Non - trainable params : 2

On lines 20-21 of Listing 5.2 we fit this model on the training data and we validate it
on the validation data. As batch size we choose the size of the observations (steepest
gradient descent method) and we run the gradient descent algorithm for 10’000 epochs
using the nadam optimizer. We illustrate the convergence behavior in Figure 5.5.
We observe that we receive a comparably slow convergence behavior for both shallow
neural networks. We do not see any sign of over-fitting after 10’000 gradient descent
iterations. Moreover, there is not any visible difference between the two shallow neural
networks.
(For no specific reason,) we select the shallow neural network with q1 = 20 hidden neu-

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

114 Chapter 5. Neural Networks

Figure 5.5: Convergence of the gradient descent algorithm for the two shallow neural
networks with q1 = 5, 20 hidden neurons; blue gives the training set (in-sample) and red
gives the validation set (out-of-sample).

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.1) GLM1 3.1s 11 28.3543 28.3544 0.6052 28.3510 10.2691%
(Ch3.1) GAM1 1.1s 108 28.3248 28.3245 0.5722 28.3134 10.2691%
(Ch5.0) SNN1 q1 = 20 87s 81 – – 0.5730 28.3242 10.2096%

Table 5.2: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 3.1.

rons, and we fit this network over 20’000 epochs on the entire (compressed) data. We call
this model SNN1. The results are illustrated on line (Ch5.0) of Table 5.2. An observa-
tion is that the neural network model is better than model GLM1 and comparably good
as model GAM1, however, it uses much more computational time for calibration than
model GAM1. We interpret the results as follows: (1) Model GLM1 is not competitive
because the building of the classes for age and ac does not seem to have been done in
the most optimal way. (2) Model GAM1 is optimal if the feature components age and ac
only interact in a multiplicative fashion, see (3.3). This seems to be the case here,5 thus,
model GAM1 is optimal in some sense, and model SNN1 (only) tries to mimic model
GAM1.
In Figure 5.6 we plot the resulting marginal frequencies of the three models GLM1,
GAM1 and SNN1. For the feature component age we do not see much (visible) differences
between models GAM1 and SNN1. For the feature component ac the prediction of model

5In fact, the discovery that model GAM1 and model SNN1 are similarly good unravels some details
of our choice of the true regression function λ?.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 115

● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 30 40 50 60 70 80 90

0.
0

0.
1

0.
2

0.
3

0.
4

comparison of GLM1, GAM1 and SNN1

age of driver

ex
pe

ct
ed

 fr
eq

ue
nc

y

● GLM1
GAM1
SNN1

●

●

●

● ●

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

comparison of GLM1, GAM1 and SNN1

age of car

ex
pe

ct
ed

 fr
eq

ue
nc

y

● GLM1
GAM1
SNN1

Figure 5.6: Comparison of predicted frequencies in the models GLM1, GAM1 and SNN1.

SNN1 looks like a smooth version of the one of model GAM1. Either model GAM1 over-
fits for higher ages of cars or model SNN1 is not sufficiently sensitive in this part of
the feature space. From the current analysis it is difficult to tell which model is better,
and we may work with both of them. Note that these higher ages of cars have very
small volumes (years at risk), see Figure A.5, and therefore may be influenced by special
configurations of other feature components. This finishes this example. �

In a next analysis we should incorporate all feature components of the individual cases.
Before doing so, we briefly discuss deep feed-forward neural networks. In the previous
example we have seen that the gradient descent algorithm may converge very slowly.
This may even be more pronounced if we have interactions between feature components
because modeling of interactions needs more neurons q1 in the hidden layer. For this
reason, we switch to deep neural networks before discussing the example on all feature
components.

5.1.3 Deep feed-forward neural networks

As mentioned above, often deep neural networks are more efficient in model calibration,
in particular, if the regression function has interactions between the feature components.
For this reason, we study deep feed-forward neural networks in this section.

In view of definition (5.6), feed-forward neural networks of depth d ≥ 2 are given by

x ∈ X 7→ µ(x) = log λ(x) = β0 +
qd∑
j=1

βjz
(d:1)
j (x) =

〈
β, z(d:1)(x)

〉
,

with composition z(d:1)(x) = (z(d) ◦ · · · ◦ z(1))(x) based on hidden layers 1 ≤ m ≤ d

z ∈ Rqm−1 7→ z(m)(z) = φ〈W (m), z〉 ∈ Rqm .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

116 Chapter 5. Neural Networks

Complexity of deep neural networks

Above we have met the universality theorems which say that shallow neural networks are
sufficient from a pure approximation point of view. We present a simple example that
can easily be reconstructed by a neural network of depth d = 2, but it cannot easily be
approximated by a shallow one. Choose a two-dimensional feature space X = [0, 1]2 and
define the regression function λ : X → R+ by

x 7→ λ(x) = 1 + 1{x2≥1/2} + 1{x1≥1/2, x2≥1/2} ∈ {1, 2, 3}. (5.15)

This regression function is illustrated in Figure 5.7. The aim is to model this regression
function with a neural network having step function activation. We rewrite regression

regression function lambda

feature component X1

fe
at

ur
e

co
m

po
ne

nt
 X

2

1.0

1.5

2.0

2.5

3.0

0.25

0.5

0.75

0.
25 0.
5

0.
75

Figure 5.7: Regression function (5.15).

function (5.15) choosing step function activations: for x ∈ X we define the first hidden
layer

z(1)(x) =
(
z

(1)
1 (x), z(1)

2 (x)
)′

=
(
1{x1≥1/2},1{x2≥1/2}

)′
∈ {0, 1}2.

This provides us with

λ(x) = 1 + 1{x2≥1/2} + 1{x1≥1/2}1{x2≥1/2}

= 1 + z
(1)
2 (x) + z

(1)
1 (x) z(1)

2 (x)
= 1 + 1{z(1)

2 (x)≥1/2} + 1{z(1)
1 (x)+z(1)

2 (x)≥3/2}

= 1 + z
(2)
1

(
z(1)(x)

)
+ z

(2)
2

(
z(1)(x)

)
,

with neurons in the second hidden layer given by

z(2)(z) =
(
z

(2)
1 (z), z(2)

2 (z)
)′

=
(
1{z2≥1/2},1{z1+z2≥3/2}

)′
, for z ∈ [0, 1]2.

Thus, we obtain deep neural network regression function

x 7→ λ(x) =
〈
β, z(2:1)(x)

〉
=
〈
β, (z(2) ◦ z(1))(x)

〉
, (5.16)

with output weights β = (1, 1, 1)′ ∈ R3. We conclude that a deep neural network with
d = 2 hidden layers and q1 = q2 = 2 hidden neurons, i.e. with totally 4 hidden neurons,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 117

can perfectly replicate example (5.15). With shallow neural networks there is no similarly
efficient way of constructing this regression function with only a few neurons.

Unfortunately, there is no general theory about optimal choices of deep feed-forward
neural network architectures. Some examples give optimal numbers of hidden layers
under additional assumptions on the feature space, see, for instance, Shaham et al. [122].
An interesting paper is Zaslavsky [144] which proves that q1 hyperplanes can partition
the space Rq0 in at most

min{q0,q1}∑
j=0

(
q1
j

)
disjoint sets. (5.17)

This is an upper complexity bound for shallow neural networks with step function ac-
tivation. This bound has an exponential growth for q1 ≤ q0, and it slows down to a
polynomial growth for q1 > q0. Thus, with formula (5.17) we can directly bound the
complexity of shallow neural networks having step function activation. A lower bound
is given in Montúfar et al. [96] for deep neural networks (having ReLU activation func-
tion). Shortly said, growing shallow neural networks in width is (much) less efficient
in terms of the complexity of the resulting regression functions than growing networks
simultaneously in depth and width.

Gradient descent method and back-propagation

Calibration becomes more involved when fitting deep neural networks with many hidden
layers, i.e. we cannot simply calculate the gradients as in (5.9)-(5.10). However, there is
a nice re-parametrization also known as the back-propagation method. This gives us a
recursive algorithm for calculating the gradients. Define for 1 ≤ m ≤ d+ 1 the matrices

Wm =
(
w

(m)
jm,jm−1

)
jm=1,...,qm;jm−1=1,...,qm−1

∈ Rqm×qm−1 ,

where we set qd+1 = 1 and w(d+1)
1,jd = βjd for jd = 0, . . . , qd.

Corollary 5.5 (back-propagation algorithm). Choose a neural network of depth d ≥ 1
and with hyperbolic tangent activation function. Denote by D∗(N,λ) the Poisson deviance
loss of the single case (N,x, v) with expected frequency λ = λ(x) = λθ(x) for network
parameter θ = (β,W (d), . . . ,W (1)).

• Define recursively (back-propagation)

– initialize
δ(d+1)(x) = 2 [λ(x)v −N] ∈ R;

– iterate for 1 ≤ m ≤ d

δ(m)(x) = diag
(
1− (z(m:1)

jm
(x))2

)
jm=1,...,qm

W ′m+1 δ
(m+1)(x) ∈ Rqm .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

118 Chapter 5. Neural Networks

• We obtain for 0 ≤ m ≤ d∂D∗(N,λ)
∂w

(m+1)
jm+1,jm

jm+1=1,...,qm+1;jm=0,...,qm

= δ(m+1)(x) (z(m:1)(x))′ ∈ Rqm+1×(qm+1),

where z(0:1)(x) = x (including the intercept component).

For a proof we refer to Proposition 7.4 in [141].

Remarks.

• Corollary 5.5 gives an efficient way of calculating the gradient of the deviance loss
function w.r.t. the network parameter. We have provided the specific form of the
Poisson deviance loss and the hyperbolic tangent activation function. However,
these two items can easily be exchanged by other choices.

• In Listing 5.4 we provide the steepest gradient descent algorithm for a neural net-
work of depth d = 2 and using the back-propagation method of Corollary 5.5. This
looks similar to Listing 5.1 where we have already been using the back-propagation
notation. Our practical applications will again be based on the R interface to Keras
library. I.e. we do not need to bother about the explicit implementation, and at
the same time we benefit from momentum-based accelerations.

Listing 5.4: Back-propagation for a deep neural network with d = 2
1 n <- nrow(X) # number of observations in design matrix X
2 z1 <- array (1, c(q1+1, n)) # dimension of the 1st hidden layer
3 z2 <- array (1, c(q2+1, n)) # dimension of the 2nd hidden layer
4 z1[-1,] <- tanh(W1 %*% t(X)) # initialize neurons z1 for W1
5 z2[-1,] <- tanh(W2 %*% z1) # initialize neurons z2 for W2
6 lambda <- exp(t(beta) %*% z2) # initialize frequency for beta
7 for (t1 in 1: epochs){
8 delta .3 <- 2*(lambda * dat$expo - dat$claims)
9 grad.beta <- z2 %*% t(delta .3)

10 delta .2 <- (beta [-1,] %*% delta .3) * (1 - z2 [-1 ,]^2)
11 grad.W2 <- delta .2 %*% t(z1)
12 delta .1 <- (t(W2 [, -1]) %*% delta .2) * (1 - z1 [-1 ,]^2)
13 grad.W1 <- delta .1 %*% as. matrix (X)
14 beta <- beta - rho [3] * grad.beta/sqrt(sum(grad.beta ^2))
15 W2 <- W2 - rho [2] * grad.W2/sqrt(sum(grad.W2 ^2))
16 W1 <- W1 - rho [1] * grad.W1/sqrt(sum(grad.W1 ^2))
17 z1[-1,] <- tanh(W1 %*% t(X))
18 z2[-1,] <- tanh(W2 %*% z1)
19 lambda <- exp(t(beta) %*% z2)
20 }

Example 5.6 (example DNN1). In this example we consider a claims frequency modeling
attempt that is based on all feature components. We therefore implement a deep feed-
forward neural network architecture. The results will be comparable to the ones of models
GLM4 and GAM3, and they follow up Table 3.2. We use a modeling approach similar
to Conclusion 2.8, namely, we consider the 5 continuous feature components age, ac,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 119

power, area and log(dens), these are transformed with the MinMaxScaler (5.14) to the
interval [−1, 1]; the binary component gas is set to ±1/2; and the 2 categorical feature
components brand and ct are treated by dummy coding. This provides a feature space

X = [−1, 1]5 × {−1/2, 1/2} × X brand ×X ct ⊂ Rq0 , (5.18)

of dimension q0 = 5 + 1 + 10 + 25 = 41.

Listing 5.5: Deep neural network in Keras
1 library (keras)
2
3 Design <- layer_input (shape = c(q0), dtype = ’float32 ’, name = ’Design ’)
4 LogVol <- layer_input (shape = c(1) , dtype = ’float32 ’, name = ’LogVol ’)
5
6 Network = Design %>%
7 layer_dense (units =q1 , activation =’tanh ’, name=’Layer1 ’) %>%
8 layer_dense (units =q2 , activation =’tanh ’, name=’Layer2 ’) %>%
9 layer_dense (units =q3 , activation =’tanh ’, name=’Layer3 ’) %>%

10 layer_dense (units =1, activation =’linear ’, name=’Network ’,
11 weights =list(array (0, dim=c(q3 ,1)) , array (log(lambda0), dim=c (1))))
12
13 Response = list(Network , LogVol) %>% layer_add (name=’Add ’) %>%
14 layer_dense (units =1, activation =k_exp , name = ’Response ’, trainable =FALSE ,
15 weights =list(array (1, dim=c(1 ,1)) , array (0, dim=c (1))))
16
17 model <- keras_model (inputs = c(Design , LogVol), outputs = c(Response))
18 model %>% compile (optimizer = optimizer_nadam (), loss = ’poisson ’)
19
20 summary (model)

Listing 5.6: Deep neural network with (q1, q2, q3) = (20, 15, 10): model summary
1 Layer (type) Output Shape Param # Connected to
2 ===
3 Design (InputLayer) (None , 41) 0
4 ___
5 Layer1 (Dense) (None , 20) 840 Design [0][0]
6 ___
7 Layer2 (Dense) (None , 15) 315 Layer1 [0][0]
8 ___
9 Layer3 (Dense) (None , 10) 160 Layer2 [0][0]

10 ___
11 Network (Dense) (None , 1) 11 Layer3 [0][0]
12 ___
13 LogVol (InputLayer) (None , 1) 0
14 ___
15 Add (Add) (None , 1) 0 Network [0][0]
16 LogVol [0][0]
17 ___
18 Response (Dense) (None , 1) 2 Add [0][0]
19 ===
20 Total params : 1 ,328
21 Trainable params : 1 ,326
22 Non - trainable params : 2

We use a feed-forward neural network of depth d = 3 having q1 = 20, q2 = 15 and
q3 = 10 hidden neurons, respectively. The corresponding R code is given in Listing 5.5;

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

120 Chapter 5. Neural Networks

we mention that this code is almost identical to the one in Listing 5.2 except that it has
more hidden layers on lines 7-9. This network is illustrated in Figure 5.9 (lhs), below,
and the different colors in the input layer exactly correspond to the ones in (5.18).
In Listing 5.6 we present the summary of this network model having depth d = 3 with
hidden neurons (q1, q2, q3) = (20, 15, 10). This model has a network parameter θ of di-
mension r = 1′326. The first hidden layer receives 840 parameters; this high number
of parameters is strongly influenced by categorical feature components having many dif-
ferent labels. In our case feature component ct has 26 different labels which provides
25 · 20 = 500 parameters for the first hidden layer (dummy coding). In (5.19) on embed-
ding layers we are going to present a different treatment of categorical feature components
which (often) uses less parameters (and is related to representation learning).

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●●

●

●
●

●●

●
●●●

●

●
●●

●
●

●
●●

●●●

●●●
●●●

●●
●●●

●●
●

●●

●●●

●●
●●

●
●

●●●●
●

●

●●
●●●

●

●

●
●

●
●●

●
●●●

●●
●●●

●
●●

●

●
●●

●
●●●

●●
●

●

●●
●

●●
●

●

●
●

●

●

●

●
●●

●●●
●●●●

●●●●
●●●●●

●
●

●●
●

●

●●●
●

●●●●●
●

●
●

●●●●●●●●
●

●
●

●●●
●

●
●●●

●●●
●

●
●

●●●●●●●
●

●●●●●
●●

●●
●

●
●

0 50 100 150 200

deep net: different batch sizes

epochs

de
vi

an
ce

 lo
ss

es

in−sample: 1'000, 2'000, 5'000, 10'000
out−of−sample: 1'000, 2'000, 5'000, 10'000

●

●

●

●

●

●
●

●

●

●

2 4 6 8 10

27
.5

28
.0

28
.5

29
.0

10−fold CV losses (non−stratified)

CV iteration

de
vi

an
ce

 lo
ss

es

●

●

●

●

●

●

●

●

●
●

●

●

GLM4
DNN1

●

●

●

● ●
●

●

●

●

●

2 4 6 8 10

27
.5

28
.0

28
.5

29
.0

10−fold CV losses (stratified)

CV iteration

de
vi

an
ce

 lo
ss

es

●

●
●

●

●

● ●
●

●

●

●

●

GLM4
DNN1

Figure 5.8: (lhs) SGD method on different batch sizes (the more light the color the
smaller the batch size) with blue being the training data and red the validation data;
(middle, rhs) 10-fold cross-validation losses of models GLM4 and DNN1 on the K = 10
individual partitions (non-stratified and stratified) on the identical scale.

We calibrate this deep neural network architecture using the momentum-based gradient
descent optimizer nadam, see line 18 of Listing 5.5. In the application of this optimizer
we still have the freedom of choosing the number of epochs and the batch size (of the
stochastic gradient descent (SGD) method). The batch size should be related to the
resulting confidence bounds (2.20) which quantify the amount of experience needed to
detect structural differences in frequencies. We therefore consider a validation set (out-
of-sample analysis) of 10% of the total data D, and we learn the neural network on 90%
of the data (training set) using the different batch sizes of 1’000, 2’000, 5’000 and 10’000
policies, and we evaluate the resulting model out-of-sample on the validation data, exactly
as described in formula (1.8) on out-of-sample cross-validation. In Figure 5.8 (lhs) we
illustrate the resulting decreases in in-sample losses (blue) and out-of-sample losses (red),
the more light the color the smaller the batch size.
We observe that for smaller batch sizes of 1’000 to 2’000 cases, the model starts to over-
fit after roughly 50 epochs. For bigger batch sizes of 5’000 or 10’000 cases the SGD
algorithm seems to over-fit after roughly 100 epochs and it provides overall better results
than for smaller batch sizes. For this reason we run the SGD method for 100 epochs
on a batch size of 10’000 cases. We call the resulting model DNN1, and we provide the
results in Table 5.3, line (Ch5.1). We observe that model DNN1 has a clearly better

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 121

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.1) DNN1 56s 1’326 28.1163 28.1216 0.3596 27.9280 10.0348%

Table 5.3: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 3.2.

performance than models GLM4 and GAM3 in terms of the resulting estimation loss
Ê(λ̂, λ?) of 0.3596 versus 0.4137 and 0.3967, respectively. This illustrates that model
DNN1 can capture (non-multiplicative) interactions which have not been considered in
models GLM4 and GAM3. This picture is negatively affected by the fact that we receive
a (bigger) bias in model DNN1, i.e. the average frequency turns out to be too low. This
bias is problematic in insurance because is says that the balance property of Proposition
2.4 is not fulfilled.
From Table 5.3 we see that typically the cross-validation losses between the non-stratified
version and the stratified version are very similar (28.1163 vs. 28.1216 for DNN1). In
particular, there does not seem to be any value added by considering the stratified version.
In Figure 5.8 (middle, rhs) we revise this opinion. Figure 5.8 (middle, rhs) illustrates
the 10-fold cross-validation losses on every of the K = 10 partitions individually for the
non-stratified version (middle) and the stratified version (rhs). The crucial observation
is that the stratified version (rhs) fluctuates much less compared to the non-stratified
one (middle). Moreover, from the stratified version we see that there is a systematic
improvement from model GLM4 to model DNN1, whereas in the non-stratified version
this improvement could also be allocated to (pure) random fluctuations (coming from
process uncertainty). This finishes this deep neural network example. �

In the previous example we have seen that the deep neural network architecture outper-
forms the GLM and the GAM approaches. This indicates that the latter two models
are missing important (non-multiplicative) interactions. In a next step we could explore
these interactions to improve the GLM and GAM approaches. Another direction we could
pursue is to explore other neural network architectures compared to the one considered
in Example 5.6. Our next goal is slightly different, namely, we are going to discuss an
other treatment of categorical feature components than the one used in (5.18).

Embedding layers for categorical feature components

In view of Example 5.6 it seems to be inefficient to use dummy coding (or one-hot
encoding) for categorical feature component. In fact, this treatment of nominal labels
almost seems to be a waste of network parameters. In natural language processing
(NLP) one embeds words (or categorical features) into low dimensional Euclidean spaces

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

122 Chapter 5. Neural Networks

Rb. This approach is also called representation learning and it has been proposed in the
actuarial literature by Richman [108, 109]. We review it in this section.
We use the feature component brand as illustration to discuss so-called embedding layers.
We have 11 different car brands, and one-hot encoding provides the 11 unit vectors
x(1h) ∈ R11 as numerical representation, see Table 2.1. Thus, every car brand has its
own unit vector and the resulting distances between all different car brands are the same
(using the Euclidean norm in R11). The idea of an embedding layer and representation
learning is that we embed categorical labels into low dimensional Euclidean spaces and
proximity in these spaces should mean similarity for regression modeling. Choose b ∈ N
and consider an embedding mapping (representation)

e : {B1, . . . , B6} → Rb, brand 7→ e(brand) def.= ebrand. (5.19)

If two car brands are very similar, say B1 and B3 are very similar (w.r.t. the regression
task), then naturally their embedding vectors eB1 and eB3 should be close together in Rb;
we illustrate this in Figure 5.11 (lhs), below, for an embedding dimension of b = 2.
Embedding (5.19) can be viewed as an additional (initial) network layer, where each
categorical label sends a signal to b embedding neurons ebrand = (ebrand

1 , . . . , ebrand
b)′, see

Figure 5.9 (rhs) for a two-dimensional embedding b = 2 of brand. The corresponding
optimal embedding weights (embedding vectors) will then be learned during model cali-
bration adding an additional layer to the gradient descent and back-propagation method.
In the subsequent analysis we choose separate embedding neurons (representations) for
each categorical feature component (brand and ct), that is, we embed the two categorical
feature components into two (parallel) embedding layers Rbbrand and Rbct of dimensions
bbrand and bct, respectively. These are then concatenated with the remaining feature
components, resulting in a feature space after embedding given by

X e = [−1, 1]5 × {−1/2, 1/2} × Rbbrand × Rbct ⊂ Rq0 , (5.20)

of dimension q0 = 5 + 1 + bbrand + bct, see Figure 5.9.
We briefly discuss the resulting dimensions of the network parameter θ for the different
modeling approaches. Choose a shallow neural network with q1 = 20 hidden neurons.
If we use dummy coding for brand and ct, the input layer has dimension q0 = 41, see
(5.18). This results in a network parameter θ of dimension r = q1 + 1 + q1(q0 + 1) =
20 + 1 + 20 · (41 + 1) = 861 for the dummy coding treatment of our categorical variables.
Choose embedding dimensions bbrand = bct = 2 for the two embedding layers; this results
in 11 · 2 + 26 · 2 = 74 embedding weights. Feature space X e has dimension q0 = 10.
Including the embedding weights this results in a network parameter θ of dimension
r = 20+1+20 ·(10+1)+74 = 315, thus, we obtain much less parameters to be calibrated
in this embedding layer treatment of our categorical variables. In the remainder of this
section we revisit Example 5.6, but we use embedding layers for brand and ct of different
dimensions. This example also shows how embedding layers can be modeled in the R
interface to Keras.

Example 5.7 (example DNN2/3 using embedding layers). We revisit Example 5.6 using
a feed-forward neural network of depth d = 3 having (q1, q2, q3) = (20, 15, 10) hidden

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 123

Listing 5.7: Deep neural network with embedding layers in Keras
1 Design <- layer_input (shape = c(q00), dtype = ’float32 ’, name = ’Design ’)
2 Brand <- layer_input (shape = c(1) , dtype = ’int32 ’, name = ’Brand ’)
3 Canton <- layer_input (shape = c(1) , dtype = ’int32 ’, name = ’Canton ’)
4 LogVol <- layer_input (shape = c(1) , dtype = ’float32 ’, name = ’LogVol ’)
5
6 BrandEmb = Brand %>%
7 layer_embedding (input_dim =11 , output_dim =1, input_length =1, name=’BrandEmb ’) %>%
8 layer_flatten (name=’ Brand_flat ’)
9

10 CantonEmb = Canton %>%
11 layer_embedding (input_dim =26 , output_dim =1, input_length =1, name=’CantonEmb ’) %>%
12 layer_flatten (name=’ Canton_flat ’)
13
14 Network = list(Design , BrandEmb , CantonEmb) %>% layer_concatenate (name=’Conc ’) %>%
15 layer_dense (units =20 , activation =’tanh ’, name=’Layer1 ’) %>%
16 layer_dense (units =15 , activation =’tanh ’, name=’Layer2 ’) %>%
17 layer_dense (units =10 , activation =’tanh ’, name=’Layer3 ’) %>%
18 layer_dense (units =1, activation =’linear ’, name=’Network ’,
19 weights =list(array (0, dim=c(10 ,1)) , array (log(lambda0), dim=c (1))))
20
21 Response = list(Network , LogVol) %>% layer_add (name=’Add ’) %>%
22 layer_dense (units =1, activation =k_exp , name = ’Response ’, trainable =FALSE ,
23 weights =list(array (1, dim=c(1 ,1)) , array (0, dim=c (1))))
24
25 model <- keras_model (inputs = c(Design ,Brand ,Canton , LogVol), outputs = c(Response))
26 model %>% compile (optimizer = optimizer_nadam (), loss = ’poisson ’)

ZG ●
VS ●
VD ●
UR ●
TI ●
TG ●
SZ ●
SO ●
SH ●
SG ●
OW ●
NW ●
NE ●
LU ●
JU ●
GR ●
GL ●
GE ●
FR ●
BS ●
BL ●
BE ●
AR ●
AI ●
AG ●
dens ●
area ●
B6 ●
B5 ●
B4 ●
B3 ●
B2 ●
B14 ●
B13 ●
B12 ●
B11 ●
B10 ●
gas ●
power ●
ac ●
age ●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

claims●

CantonEmb

dens

area

BrandEmb

gas

power

ac

age

claims

CantonEmb

dens

area

BrandEmb

gas

power

ac

age

claims

Figure 5.9: Dummy coding with q0 = 41 (lhs), embedding layers for brand and ct with
bbrand = bct = 1 (middle) and bbrand = bct = 2 (rhs) resulting in q0 = 8 and q0 = 10,
respectively.

neurons. The categorical feature components brand and ct are considered in embedding
layers which provides us with feature space X e given in (5.20).
We consider two different variants of embedding layers: model DNN2 considers embed-
ding layers of dimension bbrand = bct = 1 (Figure 5.9, middle) and model DNN3 of dimen-
sion bbrand = bct = 2 (Figure 5.9, rhs). In Listing 5.7 we provide the R code for a deep
neural network with embedding layers for brand and ct of dimension bbrand = bct = 1,
see output_dim=1 on lines 7 and 11 of Listing 5.7. In Listing 5.8 we present the summary
of this model. It has r = 703 trainable network parameters which is roughly half as much

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

124 Chapter 5. Neural Networks

Listing 5.8: Deep network with embeddings bbrand = bct = 1 and (q1, q2, q3) = (20, 15, 10)
1 Layer (type) Output Shape Param # Connected to
2 ===
3 Brand (InputLayer) (None , 1) 0
4 ___
5 Canton (InputLayer) (None , 1) 0
6 ___
7 BrandEmb (Embedding) (None , 1, 1) 11 Brand [0][0]
8 ___
9 CantonEmb (Embedding) (None , 1, 1) 26 Canton [0][0]

10 ___
11 Design (InputLayer) (None , 6) 0
12 ___
13 Brand_flat (Flatten) (None , 1) 0 BrandEmb [0][0]
14 ___
15 Canton_flat (Flatten) (None , 1) 0 CantonEmb [0][0]
16 ___
17 Conc (Concatenate) (None , 8) 0 Design [0][0]
18 Brand_flat [0][0]
19 Canton_flat [0][0]
20 ___
21 Layer1 (Dense) (None , 20) 180 Conc [0][0]
22 ___
23 Layer2 (Dense) (None , 15) 315 Layer1 [0][0]
24 ___
25 Layer3 (Dense) (None , 10) 160 Layer2 [0][0]
26 ___
27 Network (Dense) (None , 1) 11 Layer3 [0][0]
28 ___
29 LogVol (InputLayer) (None , 1) 0
30 ___
31 Add (Add) (None , 1) 0 Network [0][0]
32 LogVol [0][0]
33 ___
34 Response (Dense) (None , 1) 2 Add [0][0]
35 ===
36 Total params : 705
37 Trainable params : 703
38 Non - trainable params : 2

compared to the dummy coding approach of Listing 5.6.
In a first step, we again determine the optimal batch size for the SGD method. We there-
fore repeat the out-of-sample analysis on validation data of Example 5.6. We partition
the data D into a training sample of size 90% of the data, and the remaining 10% of
the data are used for validation, exactly as described in formula (1.8) on out-of-sample
cross-validation. In Figure 5.10 we illustrate the resulting decreases in in-sample losses
(blue) and out-of-sample losses (red), the more light the color the smaller the batch size
for the two different choices of embedding dimensions bbrand = bct ∈ {1, 2}. In general, we
observe a slower convergence compared to Figure 5.8 (lhs), and also we prefer a smaller
batch size of roughly 5’000 cases.
In Table 5.4 we present the results which are based on 200 epochs with a batch size of 5’000
cases. We observe that the embedding layers substantially increase the quality of the
model, compare the estimation losses Ê(λ̂, λ?) of 0.1600 and 0.2094 to the corresponding
ones of the other models. From this we conclude that we clearly favor deep neural

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 125

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●
●

●●●

●●
●●●

●●

●

●●

●
●

●
●●

●
●

●●
●●●●●●●

●
●

●●
●

●
●●●

●

●
●

●
●●●●●

●●
●

●●
●

●
●●

●
●

●
●

●●

●
●●

●
●●●

●
●●

●●●
●

●

●●●
●

●
●

●
●

●●●
●

●
●●

●●
●

●
●●●●

●

●
●●

●
●●

●●●
●

●●●
●●

●
●

●●●
●●●●●●

●

●
●●

●●●●●

●
●

●

●

●

●

●
●●●●

●

●

●●
●●●

●
●●●

●●●●●●●

●
●

●
●

●
●●●

●

●
●●●

●
●●

●

0 50 100 150 200

deep net: different batch sizes

epochs

de
vi

an
ce

 lo
ss

es

in−sample: 1'000, 2'000, 5'000, 10'000
out−of−sample: 1'000, 2'000, 5'000, 10'000

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●

●●

●
●

●●●

●●
●

●

●
●

●

●
●

●●

●●

●●
●●●

●●●●
●●

●

●

●●

●
●

●
●●●●

●●●●
●

●
●●●●●●

●
●

●●●●●●●
●●

●
●

●●●
●

●

●●
●●●

●
●

●
●●●●

●●●
●

●●●
●

●●
●

●●●●
●●●

●
●

●
●●●

●
●

●

●

●
●●

●●
●●

●●●
●●

●●
●

●
●

●

●
●

●

●
●

●●●●
●●●

●●●
●

●
●

●
●

●
●

●●●

●

●●
●

●
●

●
●●

●
●●●

●
●●●

●
●

●
●

●
●

●
●

●●

0 50 100 150 200

deep net: different batch sizes

epochs

de
vi

an
ce

 lo
ss

es

in−sample: 1'000, 2'000, 5'000, 10'000
out−of−sample: 1'000, 2'000, 5'000, 10'000

Figure 5.10: SGD method on different batch sizes with embedding layer dimensions (lhs)
bbrand = bct = 1 and (rhs) bbrand = bct = 2; in blue the training losses (in-sample) and in
red the validation losses (out-of-sample).

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.1) DNN1 56s 1’326 28.1163 28.1216 0.3596 27.9280 10.0348%
(Ch5.2) DNN2 123s 703 27.9235 27.9545 0.1600 27.7736 10.4361%
(Ch5.3) DNN3 125s 780 27.9404 27.9232 0.2094 27.7693 9.6908%

Table 5.4: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 5.3.

networks with embedding layers for categorical feature components. However, this again
comes at the price of a bigger bias in the average frequency, also compare to Proposition
2.4 on the balance property. Of course, this is problematic in insurance.
K-fold cross-validation is a bit time-consuming in this case. However, the results of
Table 5.4 show that we clearly favor the deep neural network with embedding layers,
though we cannot decide between the two models DNN2 and DNN3 having different
embedding dimensions. Note that optimal embedding dimensions may also differ between
the different categorical variables which has not been considered here.
Another nice consequence of low dimensional embedding layers is that they allow us for
graphical illustration of the representations learned. In Figure 5.11 we plot the resulting
embedding weights ebrand ∈ R2 and ect ∈ R2 of the categorical variables brand and ct
for embedding dimension bbrand = bct = 2. Such a representation may provide clustering
among categorical variables, for instance, from Figure 5.11 (lhs) we conclude that car

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

126 Chapter 5. Neural Networks

●

●

●

●

●

●

●

●

●

●

●

−0.2 0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4
0.

6

2−dimensional embedding of brand

dimension 1

di
m

en
si

on
 2

B1

B10

B11

B12

B13

B14

B2

B3

B4

B5

B6
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

2−dimensional embedding of ct

dimension 1

di
m

en
si

on
 2 ZH

AG

AI

AR

BE

BL

BS

FR
GE

GL

GR

JU
LU NE

NW

OWSG

SH

SO

SZ

TG TI

UR

VD
VS

ZG

Figure 5.11: Embedding weights ebrand ∈ R2 and ect ∈ R2 of the categorical variables
brand and ct for embedding dimension bbrand = bct = 2.

brand B12 is very different from all other car brands.

Figure 5.12: Resulting estimated frequencies (on log scale) of models DNN2 vs. GAM3
(lhs), DNN2 vs. DNN3 (middle), and true vs. DNN3 (rhs).

In Figure 5.12 we illustrate the resulting frequency estimates (on log scale) on an indi-
vidual policy level. The graphs compare models DNN2 vs. GAM3 (lhs), models DNN2
vs. DNN3 (middle), as well as the true log frequency log λ? to model DNN2 (rhs). Com-
paring the graphs on the right-hand side of Figures 3.7 and 5.12, we see a clear improve-
ment in frequency estimation from model GAM3 to model DNN2. Especially, policies
with small frequencies are captured much better in the latter model. What might be a
bit worrying is that the differences between models DNN2 and DNN3 are comparably
large. Indeed, this is a major issue in applications of network predictions that we may
receive substantial differences on an individual policy level, which cannot be detected on
a portfolio level. These differences may even be induced by choosing different seeds in
the SGD calibration method. For a broader discussion we refer to Richman–Wüthrich
[111]. This finishes the example. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 127

Special purpose layers

Besides the classical hidden feed-forward layers and the embedding layers, there are many
other layers in neural network modeling that may serve a certain purpose. We mention
some of them.

Drop-out layers
A method to prevent from over-training individual neurons to a certain purpose is to
introduce so-called drop-out layers. A drop-out layer, say, after ’Layer2’ on line 17 of
Listing 5.7 would remove during a gradient descent step at random any of the 15 neurons
in that layer with a given drop-out probability φ ∈ (0, 1), and independently from the
other neurons. This random removal will imply that the remaining neurons needs to
sufficiently well cover the dropped-out neurons. This implies that a single neuron is not
over-trained to a certain purpose because it may need to take over several different roles
at the same time; we refer to Srivastava et al. [124] and Wager et al. [130].

Normalization layers
We pre-process all feature components of x so that they are living on a comparable
scale, see (5.14) for the MinMaxScaler of continuous components. This is important for
the gradient descent algorithm to work properly. If we have very deep neural network
architectures with, for instance, ReLU activations, it may happen that the activations of
the neurons in z(m) again live on different scales. To prevent from this scale-imbalance
one may insert normalization layers between different hidden layers.

Skip connections
In the next section we are going to meet skip connections which are feed-forward con-
nections that skip certain hidden layers. That is, we may decide that a given feature
component xl activates neurons z(1) and that it is at the same time directly linked to,
say, neurons z(3), skipping the second hidden layer. Skip connections are often used
in very deep feed-forward neural network architectures because they may lead to faster
convergence in calibration. In our examples above, we have used a skip connection to
model the offset. Note that the volume directly impacts the output layer, skipping all
hidden layers, see for instance Listing 5.7, line 21.

Depending on the problem there are many other special layers like convolutional layers
and pooling layers in pattern recognition, recurrent layers in time series problems, noise
layers, etc.

5.1.4 Combined actuarial neural network approach

The CANN regression model

In this section we revisit the modeling approach proposed in the editorial “Yes, we
CANN!” of ASTIN Bulletin [140].6 The main idea is to Combine a classical Actuarial

6In my presentation on “Yes, we CANN!” at the Waterloo Conference in Statistics, Actuarial Science,
and Finance on April 25-26, 2019, I have been kindly introduced by Prof. Sheldon Lin (University of

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

128 Chapter 5. Neural Networks

regression model with a Neural Network (CANN) approach. This will allow us to si-
multaneously benefit from both worlds. The basis of the CANN approach is that the
classical actuarial regression model can be brought into a neural network structure. This
is the case for many/most parametric regression models.
We illustrate the CANN approach on the GLM example of Chapter 2 and the deep
feed-forward neural network of this chapter. Assume that the two models have common
feature space X ⊂ Rq0 . The GLM has regression function, see (2.2),

x 7→ λGLM(x) = exp
〈
βGLM,x

〉
,

with GLM parameter βGLM ∈ Rq0+1, and the deep feed-forward neural network of depth
d has regression function, see (5.6),

x 7→ λDNN(x) = exp
〈
βDNN, z(d:1)(x)

〉
,

with network parameter θDNN = (βDNN,W (d), . . . ,W (1)) ∈ Rqd+1+
∑d

m=1 qm(qm−1+1).

For the CANN approach we combine these two models, namely, we define the CANN
regression function

x 7→ λ(x) = exp
{〈
βGLM,x

〉
+
〈
βDNN, z(d:1)(x)

〉}
, (5.21)

with joint network parameter θ = (βGLM, θDNN) ∈ Rr having dimension r = q0 + 1 +
qd + 1 +

∑d
m=1 qm(qm−1 + 1). This is illustrated in Figure 5.13.

RegionEmb

Density

VehGas

VehBrEmb

BonusMalus

DrivAge

VehAge

VehPower

Area

GLM skip connection

ClaimNb

Figure 5.13: Illustration of the CANN approach.

The second ingredient in the CANN approach [140] is a clever fitting strategy: initialize
the network parameter θ(0) ∈ Rr for gradient descent so that we exactly start in the
classical MLE of the GLM. Denote by β̂GLM the MLE of βGLM given in Proposition 2.2.

Toronto). In his introduction Prof. Lin suggested that I may also rename my title to “Let’s make
Actuarial Science great again!”.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 129

Start the gradient descent algorithm (5.11) for network calibration of the CANN regres-
sion model (5.21) in

θ(0) =
(
β̂

GLM
,βDNN ≡ 0,W (d), . . . ,W (1)

)
∈ Rr. (5.22)

Remarks 5.8.

• For initialization (5.22), the gradient descent algorithm then tries to improve the
GLM using network features. If the resulting loss substantially decreases during the
gradient descent algorithm, then the GLM can be improved, otherwise the GLM is
already good. In Chapter 7 we come back to this idea called boosting, which tries
to improve models in a stage-wise adaptive way.

• The MLE β̂
GLM can either be declared to be trainable or non-trainable. In the

latter case we build the network around the GLM compensating for weaknesses of
the GLM.

The CANN regression approach in the Poisson case

The CANN regression model (5.21) can easily be implemented similar to Listing 5.7.
Though, in some cases this might be a bit cumbersome. The Poisson regression model
even admits for a much simpler implementation if we keep the (initial) value β̂GLM as
non-trainable for the GLM parameter βGLM in (5.21).

In that case we have for all cases (Ni,xi, vi), i = 1, . . . , n,

Ni
ind.∼ Poi

(
exp

{〈
β̂

GLM
,xi

〉
+
〈
βDNN, z(d:1)(xi)

〉}
vi

)
(d)= Poi

(
exp

〈
βDNN, z(d:1)(xi)

〉
v̂i
) (d)= Poi

(
λDNN(xi)v̂i

)
, (5.23)

where we have defined the working weights

v̂i = exp
〈
β̂

GLM
,xi

〉
vi. (5.24)

Thus, in this case the CANN regression model calibration is identical to the classical
feed-forward neural network calibration, only replacing the original volumes (years at
risk) vi by the working weights v̂i. In more statistical terms log(v̂i) acts as an offset in
the regression model.

Remarks 5.9.

• Observe that in (5.24) we use the GLM estimate for the modification of the years
at risk vi. Of course, we can replace the GLM by any other regression model, for
instance, we may use the GAM instead. Thus, (5.23)-(5.24) provides a very general
way of back-testing (boosting) any regression model adding neural network features
to the original regression model. Boosting ideas are going to be discussed in detail
in Chapter 7.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

130 Chapter 5. Neural Networks

• In approach (5.23)-(5.24), the GLM is fully non-trainable. This could be modified
by a credibility weight where we declare the credibility weight to be trainable. In
practical implementations this means that the offset on lines 21-23 of Listing 5.7
may be declared to be (partially) trainable, too.

Example 5.10 (example CANN1/2). In this example we boost model GAM3 of Example
3.5 with a neural network (in a CANN approach). We have seen that model GAM3 is
optimal if we only allow for multiplicative interactions. We aim at exploring other forms
of interactions in this example. We use the frequency estimates λ̂GAM3(xi) of model
GAM3 to receive the working weights v̂i = λ̂GAM3(xi)vi, similarly to (5.24), and we
declare this part to be non-trainable (offset). We then calibrate a deep feed-forward
neural network as in (5.23). We choose the network of Example 5.7 having depth d = 3
with (q1, q2, q3) = (20, 15, 10) hidden neurons. The categorical feature components brand
and ct are considered in embedding layers which provides feature space (5.20). This
CANN approach is illustrated in Figure 5.13, if we replace the GLM skip connection (in
orange color) by a GAM skip connection. This regression model can be calibrated with
the R code given in Listing 5.7 replacing the years at risk vi by the working weights v̂i.
For model calibration we run the SGD method over 50 epochs on batch sizes of 10’000
cases for embedding layer dimensions bbrand = bct = 1 (called model CANN1) and
bbrand = bct = 2 (called model CANN2). Note that after roughly 50 epochs the model
starts to over-fit to the training data. This is much faster than in Example 5.7 where
we have been running the gradient descent algorithm for 200 epochs. The reason for
this smaller number of necessary epochs is that the initial value θ(0) received from model
GAM3 is already reasonable, therefore less gradient descent steps are needed. On the
other hand, we also see that the GAM3 calibration is rather good because it takes the
gradient descent algorithm roughly 10 epochs to leave the GAM3 solution, i.e. in the first
10 SGD epochs the objective function only decreases very little.

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.4) CANN1 28s 703† 27.9292 27.9362 0.2284 27.8940 10.1577%
(Ch5.5) CANN2 27s 780† 27.9306 27.9456 0.2092 27.8684 10.2283%
(Ch5.2) DNN2 123s 703 27.9235 27.9545 0.1600 27.7736 10.4361%
(Ch5.3) DNN3 125s 780 27.9404 27.9232 0.2094 27.7693 9.6908%

Table 5.5: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters († only considers the network parameters and not
the non-trainable GAM parameters), this table follows up from Table 5.4.

The results are presented in Table 5.5. We observe that the CANN approach leads
to a substantial improvement of model GAM3, the estimation loss Ê(λ̂, λ?) is roughly
halved. This indicates that we are missing important (non-multiplicative) interactions

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 131

in the GAM regression function. Moreover, the results of the CANN and the DNN
approaches are comparably good, however, the CANN models need much less run time
for calibration. This finishes this example. �

In the previous example we have boosted model GAM3 by neural network features. We
could also think of a more modular approach for detecting explicit weaknesses in a chosen
model. This is exactly what we are going to describe in the next example.

Example 5.11 (exploring missing interactions). In this example we use the frame-
work (5.23)-(5.24) to explore which pairwise (non-multiplicative) interactions are miss-
ing in model GAM3. Denote the estimated regression function of model GAM3 by
x 7→ λ̂GAM3(x). The working weights are then given by v̂i = λ̂GAM3(xi)vi. For testing
missing pairwise interactions between, say, components xl and xk of x, we modify the
CANN regression function x 7→ λDNN(x) in (5.23) as follows

(xl, xk) 7→ λII(xl, xk) = exp
〈
βII, z(d:1)(xl, xk)

〉
. (5.25)

Thus, we restrict the input space to the two variables xl and xk under consideration. For
this neural network module we use the same architecture of depth d = 3 as in the previous
examples with embedding layers of dimension 2 for the categorical feature components,
and we run the SGD algorithm over 50 epochs on batch sizes of 10’000 cases.

age ac power gas brand area dens ct
age 28.1055 28.1055 28.1055 28.0783 28.1055 28.1055 28.1056
ac 0.3966 28.0796 28.0976 28.0071 28.1039 28.1028 28.1055

power 0.3968 0.3718 28.1029 28.1055 28.1130 28.1044 28.1057
gas 0.3966 0.3935 0.3965 28.1059 28.1056 28.1059 28.1055

brand 0.3904 0.3203 0.3968 0.3976 28.1058 28.1055 28.1057
area 0.3966 0.3950 0.4091 0.3965 0.3977 28.1053 28.1055
dens 0.3966 0.3939 0.3962 0.3993 0.3969 0.3964 28.1055
ct 0.3971 0.3967 0.3964 0.3965 0.3973 0.3966 0.3965

Table 5.6: In-sample Poisson deviance losses (top-right) and estimation losses (bottom-
left) of pairwise interaction improvements of model GAM3.

The results are presented in Table 5.6. The upper-right part shows the resulting in-
sample losses after considering pairwise interactions, the base value of model GAM3 is
28.1055, see line (Ch3.3) of Table 5.5. The lower-left part shows the resulting estimation
losses Ê(λ̂, λ?) after considering pairwise interactions, the base value of model GAM3 is
0.3967. The numbers in red color show pairwise interactions that lead to a substantial
decrease in the corresponding loss functions. This indicates that model GAM3 should be
enhanced by such non-multiplicative interactions, in particular, an additional interaction
between the feature components ac and brand can substantially improve the regression
model. The advantage of this neural network boosting (5.25) is that we do not need to
assume any functional form for the missing interactions, but the neural network module
is capable to find an appropriate functional form (if necessary).
We could now explore other interactions, for instance, between three feature components,
etc. We refrain from exploring more missing properties, but we refer to Section 3.5 of
Schelldorfer–Wüthrich [119] for another illustrative example. This finish our example. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

132 Chapter 5. Neural Networks

5.1.5 The balance property in neural networks

We briefly recall the balance property studied in Proposition 2.4. In the GLM framework
of Chapter 2 we consider a design matrix X ∈ Rn×(q+1) of full rank q + 1 ≤ n. The first
column of this design matrix is identically equal to 1 modeling the intercept β0 of the
GLM regression function

x 7→ λ(x) = exp〈β,x〉,

with regression parameter β ∈ Rq+1, see (2.2) and (2.7). Using the Poisson deviance loss
D∗(N , λ) as objective function we receive a convex optimization problem in a minimal
representation, which implies that we have a unique MLE β̂ for β in this GLM context.
For the intercept component this results in requirement

∂

∂β0
D∗(N , λ) =

n∑
i=1

2 [vi exp〈β,xi〉 −Ni]
!= 0. (5.26)

Thus, a critical point of the intercept component β0 implies that the balance property
is fulfilled. Remark that for exactly this reason one should exclude the intercept from
any regularization, see Remarks 4.10. In neural network calibration we do not pay
any attention to this point, in fact, we apply early stopping to the gradient descent
algorithm. As a consequence we do not stop the algorithm in a critical point of the
intercept component and an identity similar to (5.26) typically fails to hold, see for
instance the last column of Table 5.5.
Of course, it is not difficult to correct for this deficiency. We are going to discuss this
along the lines of Wüthrich [139]. We come back to the deep feed-forward neural network
(5.6) given by

x ∈ X 7→ λ(x) = exp

β0 +
qd∑
j=1

βjz
(d:1)
j (x)

 = exp
〈
β, z(d:1)(x)

〉
.

By considering this expression we see that we have a classical GLM in the output layer
based on modified features (pre-processed features)

x ∈ X 7→ z(d:1)(x) =
(
z(d) ◦ · · · ◦ z(1)

)
(x) ∈ Rqm .

Thus, the neural network x 7→ z(d:1)(x) does a feature engineering which is then used in
a GLM step.
Assume that θ̂GDM = (β̂GDM

, Ŵ (d), . . . , Ŵ (1)) is an early stopped gradient descent cali-
bration which provides neural network pre-processing x 7→ ẑ(d:1)(x). This motivates to
define the pre-processed design matrix

X̂ =
(
ẑ

(d:1)
l (xi)

)
1≤i≤n;0≤l≤qd

∈ Rn×(qd+1),

where we set (again) ẑ(d:1)
0 (xi) = 1, for all 1 ≤ i ≤ n, modeling the intercept component

β0 of β ∈ Rqd+1. Based on this design matrix X̂ we can run a classical GLM receiving a
unique MLE β̂MLE from the following requirement, see also Proposition 2.2,

X̂′V exp{X̂β} != X̂′N , (5.27)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 133

whenever X̂ has full rank qd + 1 ≤ n. In neural network terminology this means that
for the final calibration step we freeze all network weights (Ŵ (d), . . . , Ŵ (1)) and we only
optimize over β which is a classical convex/concave optimization problem (depending
on the sign), and it can be solved by Fisher’s scoring method or the IRLS algorithm.
This provides improved network parameter θ̂GDM+ = (β̂GLM

, Ŵ (d), . . . , Ŵ (1)), where the
improvement has to be understood in-sample because it could lead to over-fitting. Over-
fitting can be controlled by either a more early stopping rule and/or a low dimensional
last hidden layer z(d).

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.1) DNN1 56s 1’326 28.1163 28.1216 0.3596 27.9280 10.0348%
(Ch5.2) DNN2 123s 703 27.9235 27.9545 0.1600 27.7736 10.4361%
(Ch5.3) DNN3 125s 780 27.9404 27.9232 0.2094 27.7693 9.6908%
(Ch5.6) DNN3 (balance) 135s 780 – – 0.2006 27.7509 10.2691%

Table 5.7: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 5.4.

Example 5.12 (bias regularization in neural networks). We revisit model DNN3 pro-
vided in Table 5.4. This model considers a deep neural network of depth d = 3 with
hidden neurons (q1, q2, q3) = (20, 15, 10). For the two categorical features brand and ct
it uses 2-dimensional embedding layers, see Figure 5.9 (rhs). We take the DNN3 cal-
ibration provided on line (Ch5.3) of Table 5.4 and we apply the additional GLM step
(5.27) for bias regularization (the balance property). Observe that the model DNN3 pro-
vides an average frequency of 9.6908% which is (much) smaller than the balance property
10.2691%.
The results are presented on line (Ch5.6) of Table 5.7. We observe the mentioned in-
sample improvement, the balance property, and in this case also an estimation loss im-
provement which says that in the present situation the additional GLM step (5.27) pro-
vides a real model improvement. In fact, these results are rather promising and they
suggest that we should always explore this additional GLM step. �

5.1.6 Network ensemble

In the previous example we have seen that the issue of the failure of the balance property
in neural network calibrations can easily be solved by an additional GLM step (5.27). In
the next example we further explore this issue. The key idea is to build several neural
network calibrations for the same architecture. Averaging over these calibrations should

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

134 Chapter 5. Neural Networks

provide better predictive models. This intuition is inspired by the ensemble learning
methods presented in Section 7.2, below.

Example 5.13 (network blending/nagging predictor). In Example 5.12 we have provided
a solution to be compliant with the balance property in neural network calibrations. The
purpose of this example is two fold. First we would like to study how severe the failure
of the balance property may be. Therefore, we choose the neural network architecture
of model DNN3 and we fit this model to the data M = 50 times with 50 different
seeds. Early stopping will provide 50 different neural network calibrations for the same
architecture which are comparably good in terms of in-sample losses. The first purpose
of this example is to analyze the volatility received in the balance property. The second
purpose of this example is to see what happens if we blend these models by averaging
over the resulting predictors resulting in the nagging predictor.
We run the gradient descent algorithm M = 50 times on the same network architecture.
We choose all hyperparameters identical, this includes the network architecture, the
gradient descent algorithm, its parameters (number of epochs = 200, batch size =
5′000, nadam optimizer, etc.) and the split in training and validation data. The only
difference between the 50 different runs is the choice of the initial seed θ(0) of the network
parameter, see also (5.11).

0.
09

6
0.

09
8

0.
10

0
0.

10
2

0.
10

4
0.

10
6

0.
10

8

balance property over 50 SGD calibrations

average frequencies

●

●

27
.7

0
27

.7
5

27
.8

0
27

.8
5

27
.9

0

in−sample losses over 50 SGD calibrations

in−sample losses

●

●

0.
15

0.
20

0.
25

0.
30

estimation losses over 50 SGD calibrations

estimation losses

Figure 5.14: Gradient descent calibrations of the same network architecture usingM = 50
different seeds: (lhs) average frequencies, (middle) in-sample losses on training data,
(rhs) estimation losses; orange line corresponds to model DNN3 of Table 5.7, magenta
line corresponds to the blended model.

In Figure 5.14 (lhs) we show the box plot of the resulting average frequencies over these 50
calibrations. We observe considerable differences between the different estimated models.
The average frequency over all 50 runs is 10.2404% (magenta line), thus, slightly smaller
than the balance property of 10.2691% (cyan line). However, the standard deviation in
these observations is 0.3539% which is unacceptably high. If we allow for this uncertainty
then we can easily charge a premium (on portfolio level) that is 5% too high or too low!
Thus, we may receive very accurate prices on a policy level but we may misspecify the
price on the portfolio level if we do not pay attention to the balance property.
Figure 5.14 (middle, rhs) show the box plots of the in-sample losses Lis

D on the training
data and the estimation losses Ê(λ̂, λ?), respectively, over the 50 different seeds; the

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 135

orange lines show the figures of model DNN3 in Table 5.7. From these plots we conclude
that model DNN3 has a rather typical behavior because the loss figures over the 50
calibrations spread around the ones of model DNN3.
Now comes the interesting fun part. TheM = 50 different runs have provided 50 network
calibrations λ̂(m)(·), m = 1, . . . ,M , always on the same network architecture. A natural
idea is to consider the ensemble of these models by averaging them. This motivates the
(blended) regression function called nagging predictor in Richman–Wüthrich [111]

x 7→ λ̂blend(x) = 1
M

M∑
m=1

λ̂(m)(x). (5.28)

The magenta lines in Figure 5.14 (middle, rhs) show the in-sample loss Lis
D and the

estimation loss Ê(λ̂blend, λ?) of this blended model. We observe that this blending blasts
all other approaches in terms of model accuracy!

●

●

●
●
●

27
.7

0
27

.7
5

27
.8

0
27

.8
5

27
.9

0

in−sample losses over 50 SGD calibrations

neural net bias corrected

●

●

●

●

●

●

0.
15

0.
20

0.
25

0.
30

estimation losses over 50 SGD calibrations

neural net bias corrected

Figure 5.15: Gradient descent calibrations of the same network architecture usingM = 50
different seeds (balance property regularized versions in red color): (lhs) in-sample losses,
(rhs) estimation losses; orange line corresponds to model DNN3 of Table 5.7, magenta
and green lines correspond to the blended models.

We can even go one step further. Before blending the models λ̂(m)(·), m = 1, . . . ,M , we
can apply the regularization step, i.e. the additional GLM step (5.27) to each calibration.
This will generally decrease the in-sample losses and it may also act positively on the
estimation losses (if we do not over-fit). This is exactly illustrated in Figure 5.15 and
reflects the step from the blue box plots to the red ones. Indeed, we generally receive
better models by balance property adjustments.
In the final step we can blend these regularized models to the nagging predictor analo-
gously to (5.28). This corresponds to the green lines in Figure 5.15. We observe that for
the blended models, the balance property adjustment is not necessary because the green
and the magenta lines almost coincide.
We summarize our findings in Table 5.8. We observe that the blended method on
line (Ch5.7) by far outperforms any other predictive model in terms of estimation loss,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

136 Chapter 5. Neural Networks

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.4) CANN1 28s 703 27.9292 27.9362 0.2284 27.8940 10.1577%
(Ch5.5) CANN2 27s 780 27.9306 27.9456 0.2092 27.8684 10.2283%
(Ch5.1) DNN1 56s 1’326 28.1163 28.1216 0.3596 27.9280 10.0348%
(Ch5.2) DNN2 123s 703 27.9235 27.9545 0.1600 27.7736 10.4361%
(Ch5.3) DNN3 125s 780 27.9404 27.9232 0.2094 27.7693 9.6908%
(Ch5.6) DNN3 (balance) 135s 780 – – 0.2006 27.7509 10.2691%
(Ch5.7) blended DNN – – – – 0.1336 27.6939 10.2691%

Table 5.8: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Tables 5.5 and 5.7.

i.e. compared to the true model. The in-sample loss of 27.6939 seems slightly too low,
because it is lower than loss 27.7278 of the true model. This indicates (slight) over-fitting
of the blended model.
In Richman–Wüthrich [111] we study convergence properties of the nagging predictor
in an explicit motor third-party liability insurance example. The findings are that the
nagging predictor converges in roughly 20 steps (20 blended neural network predictors)
and the corresponding uncertainty becomes sufficiently small in 40 steps on portfolio
level. On an individual policy level there still remains quite some uncertainty on a few
policies after blending 40 models, and uncertainties only become small after blending
over 400 neural network predictors. �

Remarks 5.14.

• At latest now, we are in the two modeling cultures dilemma described by Breiman
[15]. In the GLM chapter we have started off from the data modeling culture speci-
fying explicit parametric models that can be analyzed and interpreted, for instance,
in terms of goodness of fit. In the previous Example 5.13 we have fully arrived at
the algorithmic modeling culture where it’s all about predictive performance. That
is, how can we twist and blend the models to tease a slightly better predictive
accuracy.

• Our analysis has always been based on a training/learning set for fitting the models
(and providing in-sample losses) and a validation set for tracking early stopping
(and providing out-of-sample losses). We have been able to do our analysis based
on two sets because we know the true model λ? which allowed for model evaluation
(in green color). If the true model is not known, one typically chooses a third data
set called test data set which empirically plays the role of the true model. Thus, in
that case the entire data is partitioned into three parts.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 137

• In the GLM Chapter 2 we have also discussed AIC for model selection. AIC cannot
be used within neural networks. Note that AIC is based on a bias correction that
is justified by asymptotic behaviors of MLEs. In neural networks we apply early
stopping, thus, we do not work with MLEs and such asymptotic results do not
apply, see Section 4.2.3 in [141].

5.2 Gaussian random fields

In view of the universality theorems of Cybenko [29], Hornik et al. [69] or Leshno et
al. [88], it is tempting to study the space of infinite (shallow) neural networks. These
neural networks are dense in the set of compactly supported continuous functions (for
non-polynomial activation functions), and hence can approximate any continuous regres-
sion function µ : X → R on a compact feature space X arbitrarily well. We do not
consider a model in full generality here, but we restrict to a Gaussian Bayesian model
because in that case everything can be calculated explicitly. We follow Neal [97].

5.2.1 Gaussian Bayesian neural network

We start with a shallow neural network having q1 ∈ N hidden neurons and we assume
that the activation function φ is (non-polynomial and) uniformly bounded

‖φ‖∞ = sup
x∈R
|φ(x)| <∞. (5.29)

This shallow neural network provides regression function µ : X → R on the q0-dimensional
feature space X taking the form

x 7→ µ(x) = 〈β, z(x)〉,

where we set β = (β0, . . . , βq1)′ ∈ Rq1+1, z0(x) ≡ 1, and with hidden neurons

z(x) = φ〈W,x〉 ∈ Rq1 .

Note that we use the letter µ for the regression function here because we use the linear
activation for the output layer.
Next we embed this regression function into a Bayesian context by choosing a prior
distribution πq1(β,w1, . . . ,wq1) on the parameter space Θq1 = {(β,w1, . . . ,wq1)}. This
choice implies that we have (prior) expected regression function

x 7→ E [µ(x)] = E [〈β, z(x)〉] =
∫

Θq1

〈β, z(x)〉 dπq1(β,w1, . . . ,wq1).

The goal is to analyze this (Bayesian) regression function for an increasing number q1 →
∞ of hidden neurons.

Model Assumptions 5.15. Assume uniform boundedness (5.29) of the activation func-
tion φ. For the prior distribution πq1 we make the following assumptions (for given q1):

(1) (βj)j≥0 and (wj)j≥1 are independent.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

138 Chapter 5. Neural Networks

(2) The weights wj are i.i.d. Gaussian distributed with mean mw ∈ Rq0+1 and positive
definite covariance matrix Tw ∈ R(q0+1)×(q0+1) for j ≥ 1.

(3) The regression parameters βj, j ≥ 0, are independent and N (mj , τ
2
j)-distributed,

with means mj ≡ 0 and variances τ2
j ≡ τ2

1 for j ≥ 1.

Under the above assumptions we do not assume a uniquely identifiable parametrization,
in fact, when we will let q1 →∞, the identifiability issue will not be relevant (as we will
see below). Under the above assumptions we have the following lemma.

Lemma 5.16. Under Model Assumptions 5.15 we receive for given features x1, . . . ,xn ∈
X moment generating function in r = (r1, . . . , rn)′ ∈ Rn

Mµ(X1:n)(r) = exp

m0

n∑
i=1

ri + τ2
0
2

(
n∑
i=1

ri

)2
E

exp

τ2
1
2

(
n∑
i=1

riφ〈w1,xi〉
)2

q1

,

where we define the n-dimensional random vector µ(X1:n) = (µ(xi))′i=1,...,n.

Proof of Lemma 5.16. We calculate the moment generating function of the random vector µ(X1:n) in
r ∈ Rn. It is given by

Mµ(X1:n)(r) = E
[
exp
{
r′µ(X1:n)

}]
= E

[
exp

{
n∑
i=1

ri

(
β0 +

q1∑
j=1

βjφ〈wj ,xi〉

)}]
.

The above assumptions (1)-(3) imply that the latter decouples in j, and we obtain using normality in βj

Mµ(X1:n)(r) = E

[
exp

{
n∑
i=1

riβ0

}]
q1∏
j=1

E

[
exp

{
n∑
i=1

riβjφ〈wj ,xi〉

}]

= E

[
exp

{
n∑
i=1

riβ0

}]
q1∏
j=1

E

[
E

[
exp

{
n∑
i=1

riβjφ〈wj ,xi〉

}∣∣∣∣∣wj
]]

= exp

{
m0

n∑
i=1

ri + τ2
0
2

(
n∑
i=1

ri

)2} q1∏
j=1

E

[
exp

{
τ2

1
2

(
n∑
i=1

riφ〈wj ,xi〉

)2}]
.

The i.i.d. property of wj provides the claim. 2

5.2.2 Infinite Gaussian Bayesian neural network

We would like to consider the limit q1 →∞ in Lemma 5.16. Note that we have assumed
‖φ‖∞ <∞. This implies

logE
[
exp

{
r2τ2

1
2 (φ〈w1,x〉)2

}]
≤ r2τ2

1
2 ‖φ‖

2
∞,

and we may have a similar lower bound. This suggests that we need to scale the variance
τ2

1 = τ2
1 (q1) as a function of the number of hidden neurons q1 so that the system does not

explode for q1 →∞. This proposes the following extension of our model assumptions.

Model Assumptions 5.17. In addition to Model Assumptions 5.15 we make the fol-
lowing assumption under prior distribution πq1:

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 139

(4) The variance τ2
1 of the regression parameters βj, j ≥ 1, is a function of the number

of hidden neurons q1 with scaling τ2
1 = τ2

1 (q1) = τ2/q1 for some τ2 > 0.

Using Lemma 5.16 we can prove the following statement.

Proposition 5.18. Under Model Assumptions 5.17 we receive for features x1, . . . ,xn ∈
X and r = (r1, . . . , rn)′ ∈ Rn

lim
q1→∞

Mµ(X1:n)(r) = exp
{
m0r

′en + 1
2r
′C(X1:n)r

}
,

with en = (1, . . . , 1)′ ∈ Rn and covariance matrix

C(X1:n) =
(
τ2

0 + τ2E [φ〈w1,xi〉φ〈w1,xj〉]
)
i,j=1,...,n

∈ Rn×n.

Sketch of proof of Proposition 5.18. The statement can be seen as follows: the assumption ‖φ‖∞ <∞
implies that the moment generating function of the random variable

(∑n

i=1 riφ〈w1,xi〉
)2 has a positive

radius of convergence. This implies that the corresponding power series expansion exists around zero.
This in turn implies that the limit q1 → ∞ can be evaluate element-wise in the power series expansion,
and this provides the above result. 2

The previous proposition tells us that the regression function µ converges in distribution
to a Gaussian random field on X for q1 → ∞. The goal now is to perform Bayesian
inference under the given data D, assuming that the prior regression function is given by
a Gaussian random field on the feature space X .
For the further analysis it is going to be crucial to understand the covariance structure

(x1,x2)′ ∈ X 2 7→ C(x1,x2) = τ2
0 + τ2E [φ〈w1,x1〉φ〈w1,x2〉] . (5.30)

In Section 2.1.3, Neal [97] analyses these covariance functions for smooth activation func-
tions φ and for the step function activation φ. The step function activation is particularly
nice because it allows for a simple closed form solution in (5.30). Therefore, we will re-
strict to the step function activation below.

5.2.3 Bayesian inference for Gaussian random field priors

Assume that the regression function µ : X → R is modeled by the Gaussian random
field on X obtained in Proposition 5.18. For a (Gaussian) Bayesian model we make the
following assumption: given realization µ, we assume that the case (Y,x) is described by

Y |µ ∼ N (µ(x), σ2). (5.31)

Assume that for given µ, we have n independent cases (Yi,xi)i=1,...,n obeying (5.31). The
joint density of the Gaussian random field µ(X1:n) in these features X1:n = (xi)i=1,...,n
and the corresponding observations Y 1:n = (Y1, . . . , Yn)′ is given by

f (Y 1:n, µ(X1:n)) ∝ exp
{
− 1

2σ2 (Y 1:n − µ(X1:n))′ (Y 1:n − µ(X1:n))
}

× exp
{
−1

2 (µ(X1:n)−m0en)′C(X1:n)−1 (µ(X1:n)−m0en)
}
.

This provides the following corollary.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

140 Chapter 5. Neural Networks

Corollary 5.19. Under the above assumptions we have posterior distribution of µ in
the features X1:n = (xi)i=1,...,n (assuming that the covariance matrix C(X1:n) is positive
definite) for given observations Y 1:n = (Y1, . . . , Yn)′

µ(X1:n)|Y 1:n ∼ N
(
µ̂1:n, Ĉ1:n

)
,

with first two moments

µ̂1:n = Ĉ1:n
(
σ−2Y 1:n +m0C(X1:n)−1en

)
and Ĉ1:n =

(
C(X1:n)−1 + σ−21n

)−1
.

Note that we need for the above corollary that xi are mutually different for all i =
1, . . . , n, otherwise the covariance matrix C(X1:n) will not be invertible. However, if we
have more than one case with the same feature value, say x1 = x2, then we may consider
(the sufficient statistics)

Y1 + Y2|µ ∼ N (2µ(x1), 2σ2),

and obtain a similar result. Concluding, Corollary 5.19 provides an explicit form of the
posterior distribution of µ in the features X1:n. This corresponds to Bayesian inference
in the cases X1:n = (xi)i=1,...,n.

5.2.4 Predictive distribution for Gaussian random field priors

In exactly the same fashion as above we consider the predictive distribution of random
vectors Y n+1:n+k = (Yn+1, . . . , Yn+k), for k ≥ 1, and the corresponding mean vectors
µ(Xn+1:n+k) = (µ(xi))′i=n+1,...,n+k ∈ Rk, given observations Y 1:n.

Corollary 5.20. Assume that the cases (Y1,x1), . . . , (Yn+k,xn+k) are conditionally in-
dependent, given µ, having conditional distribution (5.31), and µ is the Gaussian random
field from above. The predictive distribution of the random vector Y n+1:n+k, given Y 1:n,
is multivariate Gaussian with the first two moments given by

µ̂n+1:n+k|1:n = E [µ(Xn+1:n+k)|Y 1:n] ,
Ĉn+1:n+k|1:n = Cov (µ(Xn+1:n+k)|Y 1:n) + σ21k.

These first two moments are obtained from the last k components of

µ̂1:n+k|1:n = E [µ(X1:n+k)|Y 1:n]

= Ĉ1:n+k|1:n
(
σ−2(Y ′1:n, 0, . . . , 0)′ +m0C(X1:n+k)−1en+k

)
,

Ĉ1:n+k|1:n = Cov (µ(X1:n+k)|Y 1:n) =
(
C(X1:n+k)−1 + σ−21n+k|n

)−1
,

with (Y ′1:n, 0, . . . , 0)′ ∈ Rn+k and 1n+k|n = diag(1, . . . , 1, 0, . . . , 0) ∈ R(n+k)×(n+k) with n
entries being 1 and k entries being 0.

Remark. We again assume that C(X1:n+k) is invertible for the above result to hold.

Proof of Corollary 5.20. We start by calculating the moment generating function for r ∈ Rk

MY n+1:n+k|Y 1:n(r) = E
[

exp
{
r′Y n+1:n+k

}∣∣Y 1:n
]

= E
[
E
[

exp
{
r′Y n+1:n+k

}∣∣Y 1:n, µ
]∣∣Y 1:n

]
= E

[
exp
{
r′µ(Xn+1:n+k)

}∣∣Y 1:n
]

exp
{1

2r
′rσ2

}
.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 141

Thus, the claim will follow, once we have proved that µ(Xn+1:n+k) is multivariate Gaussian with the cor-
responding moments, conditionally given Y 1:n. The latter claim follows completely similarly to Corollary
5.19. This finishes the proof. 2

Remarks 5.21.

• Under the above Gaussian Bayesian assumptions the only remaining difficulties are
the calculation of Gi,j = E [φ〈w1,xi〉φ〈w1,xj〉] and the inversion of (potentially)
high-dimensional matrices.

• In view of the previous item we define the Gram matrix

G(X1:n+k) = (Gi,j)i,j=1,...,n+k

= (E [φ〈w1,xi〉φ〈w1,xj〉])i,j=1,...,n+k ∈ R(n+k)×(n+k).

In view of Corollary 5.20 this Gram matrix has three parts: (1) G(X1:n) ∈ Rn×n

is the in-sample Gram matrix, (2) G(Xn+1:n+k) ∈ Rk×k is the out-of-sample Gram
matrix, and (3) (Gi,j)i=1,...,n; j=n+1,...,n+k ∈ Rn×k is the cross Gram matrix.

• More general forms may be obtained under non-Gaussian assumptions: (i) the
observations Yi may have different distributional assumptions than (5.31), and also
(ii) the Gaussian random field may be replaced by other random fields. The latter
is discussed in Neal [97], in particular, from the point of view that different neurons
in neural networks may represent different information. This interpretation has
got lost in our asymptotic consideration (and therefore also identifiability can be
neglected here).

5.2.5 Step function activation

We consider the step function activation φ(x) = 1{x≥0}. We have

Gi,j = E [φ〈w1,xi〉φ〈w1,xj〉] = E
[
1{〈w1,xi〉≥0}1{〈w1,xj〉≥0}

]
.

The crucial size is the angle between xi ∈ Rq0+1 and xj ∈ Rq0+1 (we include the intercepts
xi,0 = xj,0 = 1 in xi and xj , respectively, here). This angle is given by

γ = arccos
(
〈xi,xj〉
‖xi‖‖xj‖

)
∈ [0, π].

Model Assumptions 5.22. In addition to Model Assumptions 5.17 we assume that the
distribution of w1 is rotationally invariant.

Under this additional assumption we obtain

Gi,j = E [φ〈w1,xi〉φ〈w1,xj〉] = 1
2 −

1
2π arccos

(
〈xi,xj〉
‖xi‖‖xj‖

)
∈ [0, 1/2] .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

142 Chapter 5. Neural Networks

In fact, the upper bound is obtained if and only if xi and xj point in the same direction
(in the Rq0+1 space). Thus, under the step function activation φ(x) = 1{x≥0} and under
rotational invariance of w1 we obtain covariance function

X1:n 7→ C(X1:n) =
(
τ2

0 + τ2

2 −
τ2

2π arccos
(
〈xi,xj〉
‖xi‖‖xj‖

))
i,j=1,...,n

∈ Rn×n.

We study the sensitivity of this covariance function for small perturbations of the feature
values. Therefore, we consider features x = xi and xj = x + ε(0, z′)′ for ε ∈ R and
z ∈ Rq0 with ‖z‖ = 1. In view of the previous identity we have for this perturbation

ε 7→ gx(ε) def.= E [φ〈w1,xi〉φ〈w1,xj〉] = E
[
φ〈w1,x〉φ〈w1,x+ ε(0, z′)′〉

]
= 1

2 −
1

2π arccos
(

‖x‖2 + ε〈x, z〉
‖x‖

√
‖x‖2 + 2ε〈x, z〉+ ε2

)
. (5.32)

Note that we have g(0) = 1/2. We abbreviate z = 〈x, z〉. The Cauchy-Schwarz inequality
implies, we use ‖z‖ = 1,

z2 = 〈x, z〉2 =
(q0∑
l=1

xlzl

)2

≤
q0∑
l=1

x2
l < 1 +

q0∑
l=1

x2
l = ‖x‖2,

where the latter square norm involves the intercept x0 = 1. This implies that ‖x‖2−z2 >

0. We define
x(ε) = ‖x‖2 + εz

‖x‖
√
‖x‖2 + 2εz + ε2 .

We first calculate the derivative of ε 7→ x(ε). It is given by

∂

∂ε
x(ε) = z

(
‖x‖2 + 2εz + ε2)− (‖x‖2 + εz

)
(z + ε)

‖x‖ (‖x‖2 + 2εz + ε2)3/2 = − ε
(
‖x‖2 − z2)

‖x‖ (‖x‖2 + 2εz + ε2)3/2 .

We conclude that

lim
ε→0

∂

∂ε
x(ε) = lim

ε→0
− ε

(
‖x‖2 − z2)

‖x‖ (‖x‖2 + 2εz + ε2)3/2 = 0.

We now come back to function (5.32) given by

ε 7→ gx(ε) = 1
2 −

1
2π arccos (x(ε)) .

Its derivative for ε 6= 0 is given by

∂

∂ε
gx(ε) = 1

2π
x′(ε)√

1− x(ε)2 .

Observe that both enumerator and denominator of the last ratio converge to zero as
ε→ 0. Therefore, we can apply l’Hôpital’s rule to obtain, we also use ‖x‖2 − z2 > 0,

lim
ε→0

∂

∂ε
gx(ε) = 1

2π lim
ε→0

x′(ε)√
1− x(ε)2 = − 1

2π

(
lim
ε→0

(x′(ε))2

1− x(ε)2

)1/2

= − 1
2π

(
lim
ε→0

x′′(ε)
−x(ε)

)1/2
= − 1

2π‖x‖
−2
√
‖x‖2 − z2 < 0.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 5. Neural Networks 143

From this we conclude that the function (5.32) is approximately linear for small ε > 0
with negative slope −(2π)−1‖x‖−2√‖x‖2 − z2. Thus, locally the Gaussian random field
behaves as a Brownian motion.

Remarks. The case for the step function activation φ(x) = 1{x≥0} and rotationally
invariant weights w1 (according to Model Assumptions 5.22) is completely solved. Note
that through definition (5.30) of the covariance function C(X1:n) we still keep track of
the original shallow neural network model with q1 → ∞ hidden neurons. In general,
however, this is not necessary and we could directly start with a Bayesian random field
prior model by assuming that

• the regression function µ is a random field on the feature space X ; and

• the cases (Y,x) are independent having conditional distribution

Y |µ ∼ Fµ(x),

with µ(x) characterizing the conditional mean of Y with feature x ∈ X , given µ.

If we start from such a random field prior model we should ensure that µ is comparably
smooth. Otherwise interpretation of insurance prices is not meaningful in the sense that
neighboring features receive similar prices.
There are many more examples of analytically tractable Gram matrices. For instance, if
the activation function φ is a cumulative distribution function, then the Gram matrix is
analytically tractable. This has been explored in Section 2.2 of Xiang [142].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

144 Chapter 5. Neural Networks

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 6

Classification and Regression
Trees

In this chapter we present the classification and regression tree (CART) technique in-
troduced and studied in Breiman et al. [16]. We closely follow this reference, but we
use a modified notation. For our examples we use the R package rpart; as mentioned
in Therneau–Atkinson [125], CART is a trademarked software package, therefore the
routine in R is called rpart which comes from recursive partitioning.

6.1 Binary Poisson regression trees

Assume that the cases (Ni,xi, vi) are independent and Ni are Poisson distributed for
i = 1, . . . , n with expected claims counts E[Ni] = λ(xi)vi for a given regression function
λ : X → R+. In Chapter 2 on GLMs we have made log-linear assumption for the
modeling of the expected frequency x 7→ λ(x), see (2.2). This GLM approach assumes
a fixed structural form of the expected frequency λ(·). Similarly to neural networks,
regression trees are more general in the sense that they try to learn an optimal structural
form from the data D. The idea is to design an algorithm that partitions the feature
space X into disjoint (homogeneous)1 subsets (Xt)t∈T , where T is a finite set of indexes.
On each subset Xt we choose a frequency parameter λ̄t that describes the expected
frequency on that (homogeneous) part Xt of the feature space X . Finally, we estimate
the (unknown) expected frequency on the total feature space X by

x 7→ λ̂(x) =
∑
t∈T

λ̄t 1{x∈Xt}. (6.1)

There are two things we need to explain: (i) the choice of a ’good’ partition (Xt)t∈T of
the feature space X and (ii) the choices of the frequency parameters λ̄t for each t ∈ T .

Remark that this partitioning into homogeneous subsets is rather similar to categorical
coding of continuous variables in GLMs when they do not meet the required functional
form, for instance, the monotonicity assumption.

1The meaning of homogeneity will become clear below.

145

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

146 Chapter 6. Classification and Regression Trees

6.1.1 Binary trees and binary indexes

For the partitioning we use a binary tree growing algorithm. This binary tree growing
algorithm starts by partitioning the feature space X into two disjoint subsets X0 and X1;
these subsets may then further be partitioned into two disjoint subsets, and so forth. To
describe this partitioning process we introduce a binary tree notation.

The binary tree growing algorithm can be described recursively as follows.

• We initialize (root) generation k = 0. We define the initial binary index t = 0 and
we set X0 = X . This is the root or root node of the binary tree.

• Assume Xt is a node of generation k with binary index t. This node can be par-
titioned into two nodes of generation k + 1 denoted by Xt0 and Xt1. Node Xt0 is
called the left child and node Xt1 the right child of the mother node Xt. These
children have binary indexes in {0} × {0, 1}k+1. Note that indexes t0 and t1 are
always understood in the concatenation sense.

Choose, say, the node Xt in generation k = 3 with binary index t = 0101. This node
is the right child of the mother node with index 010 (belonging to generation 2) and
the potential children have binary indexes 01010 and 01011 (in generation 4). Thus,
binary indexes (chosen in a consistent way) describe a tree and the length of the
binary index always indicates to which generation this particular node is belonging
to. Moreover, it allows us to identify the relationship between generations.

We denote a binary split of node Xt by ςt = (Xt0,Xt1). A binary split ςt = (Xt0,Xt1)
is always assumed to be a partition of Xt, that is, Xt0∪Xt1 = Xt and Xt0∩Xt1 = ∅.

• After applying a stopping rule to the binary tree growing algorithm we obtain a set
of binary indexes T that label the resulting nodes (Xt)t∈T. This set T describes the
structure of a binary tree which allows us to identify generations and relationships.

All nodes that do not have children are called leaves of the binary tree and are
indexed by T ⊂ T. The leaves (Xt)t∈T provide a partition of X .

Binary Tree Growing Algorithm.

(0) Initialize X0 = X and T = T = {0}.

(1) Repeat until a stopping rule is exercised: select t ∈ T and the corresponding Xt,

(a) apply a binary split ςt = (Xt0,Xt1) to Xt;
(b) return the new binary tree (Xt)t∈T with indexes

T ← T ∪ {t0, t1},
T ← (T \ {t}) ∪ {t0, t1}.

(2) Return the binary tree (Xt)t∈T with binary indexes T, leaf indexes T and partition
(Xt)t∈T of X .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 147

A ’good’ partition (Xt)t∈T of the feature space X for our prediction problem will describe
good choices of binary splits ςt = (Xt0,Xt1) of nodes Xt, and also a stopping rule when no
further binary split should be applied to a particular node and binary tree, respectively.

6.1.2 Pre-processing features: standardized binary splits

In step (1a) of the Binary Tree Growing Algorithm we may consider any possible (non-
trivial) binary split ςt = (Xt0,Xt1) of Xt. Typically, this leads to too much complexity and
computational burden. Therefore, we only consider so-called (non-trivial) standardized
binary splits (SBS). Remark that these non-trivial SBS do not need pre-processing of
features, i.e. this is different from the GLMs and neural networks considered above.
The general set-up is that we have a q-dimensional feature space X and we want to
estimate a regression function λ(·) : X → R+ with function (6.1). For this goal, we only
consider SBS of nodes Xt in step (1a) of the Binary Tree Growing Algorithm; these SBS
lead to ’rectangles’ on X and are described as follows.

Standardized Binary Split.

A standardized binary split (SBS) ςt = (Xt0,Xt1) of Xt is done as follows:

1. consider only a single component xl of the feature x = (x1, . . . , xq) ∈ Xt at a time;

2. for ordered components xl we ask split questions: xl ≤ c, for given values c;

3. for nominal components xl we ask split questions: xl ∈ C, for non-empty subsets
C of the possible labels of the feature component xl.

Since we only have finitely many cases (Ni,xi, vi) in the data D, there exist at most
finitely many non-trivial SBS questions until the observed (different) features x1, . . . ,xn
are fully atomized by the Binary Tree Growing Algorithm (if we assume that the sepa-
ration lines always lie at half distance between continuous feature components). In the
sequel we always exclude trivial SBS, where trivial SBS in this context means that either
Xt0 or Xt1 does not contain at least one observed feature xi of the data D. This is a
standard assumption that we will not mention each time below, but tacitly assume.

6.1.3 Goodness of split

To apply the Binary Tree Growing Algorithm with SBS we still need to explain how we
select t ∈ T in step (1) and which SBS ςt = (Xt0,Xt1) we apply to Xt in step (1a). This
selection is done by a goodness of split criterion. Similarly to above we use the Poisson
deviance loss as our objective function (under the assumption of having independent
Poisson distributed samples).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

148 Chapter 6. Classification and Regression Trees

Optimal splits for continuous feature components

Assume for the moment that all feature components of x = (x1, . . . , xq) ∈ X are con-
tinuous and we are searching for the optimal SBS ςt = (Xt0,Xt1) of Xt for given data D
and given t ∈ T . Thus, we are looking for an optimal feature component xl of x and an
optimal constant c ∈ R such that the resulting Poisson deviance loss is minimized:

min
1≤l≤q, c∈R

min
λ0≥0

∑
i: xi∈Xt, xi,l≤c

D∗ (Ni, λ0) + min
λ1≥0

∑
i: xi∈Xt, xi,l>c

D∗ (Ni, λ1)

 , (6.2)

where D∗ (Ni, λ) is the Poisson deviance loss of (single) case (Ni,xi, vi) for expected
frequency λ ≥ 0, see (1.5). As mentioned above, we only consider non-trivial SBS, which
implies that we only consider SBS ςt = (Xt0,Xt1) on non-empty sets {xi ∈ Xt : xi,l ≤ c}
for the left child Xt0 and {xi ∈ Xt : xi,l > c} for the right child Xt1 of Xt. Moreover, for
continuous feature components xl the constant c is chosen at half distance between the
feature components xi,l of “neighboring observations”. The inner optimizations in (6.2)
can then be solved explicitly and provide the MLEs for the SBS ςt = (Xt0,Xt1) of Xt, set
τ = 0, 1,

λ̄tτ = argmin
λτ≥0

∑
i: xi∈Xtτ

D∗ (Ni, λτ) =
∑
i: xi∈Xtτ Ni∑
i: xi∈Xtτ vi

. (6.3)

This allows us to rewrite the SBS optimization problem (6.2) as follows:

Determine the optimal (non-trivial) SBS ςt = (Xt0,Xt1) of Xt solving

min
SBS ςt=(Xt0,Xt1)

D∗Xt0

(
N , λ̄t0

)
+D∗Xt1

(
N , λ̄t1

)
, (6.4)

where λ̄tτ is the MLE on Xtτ given by (6.3) and the Poisson deviance loss on Xtτ , τ = 0, 1,
is given by

D∗Xtτ

(
N , λ̄tτ

)
=

∑
i: xi∈Xtτ

2Ni

[
λ̄tτvi
Ni
− 1− log

(
λ̄tτvi
Ni

)]
,

where the right-hand side is set equal to 2λ̄tτvi if Ni = 0.

Optimization problem (6.4) describes an in-sample Poisson deviance loss minimization.

Processing features: categorical feature components

In the above optimization (6.2) we have assumed that all feature components xl are
continuous (or at least ordered) which motivates the choice of the splitting values c. For
a nominal categorical feature component xl, the split criterion c may be replaced by non-
empty subsets C that describe the possible labels of the categorical feature component
xl, see Section 6.1.2. In particular, features do not need pre-processing to apply this
SBS tree growing algorithm. However, this evaluation of categorical feature labels may
be computationally too expensive. For instance, if we aim at partitioning the criterion
Swiss canton (there are 26 cantons in Switzerland) we obtain 226−1 − 1 = 33′554′431
possible SBS. For this reason, a categorical feature component xl is often replaced by an
ordered version thereof for the SBS. In the Poisson case this is done as follows: calculate

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 149

for each categorical label of xl on Xt the empirical frequency λ̄t(xl) (on Xt) and use these
empirical frequencies x̄l = λ̄t(xl) as replacements for the categorical feature component
xl for an ordered SBS of Xt w.r.t. x̄l.
This latter approach only works well as long as Xt contains sufficiently many cases
(Ni,xi, vi). If the number of cases in Xt is too small, then it is likely that we do not
observe sufficiently many claims for certain categorical feature labels, in particular, in the
low frequency case, and thus the empirical frequencies do not provide a useful ordering.

Bayesian approach

For given data D and a given node Xt ⊂ X we can find the best SBS ςt = (Xt0,Xt1)
w.r.t. (6.4). A general issue that often occurs in insurance claims frequency modeling is
that on certain nodes Xtτ we may get a MLE λ̄tτ that is equal to zero, see (6.3). This
happens in particular when the expected frequency and the overall volume on Xtτ are
small. The overall volume on Xtτ is defined by (we always assume that there is at least
one case (Ni,xi, vi) in the considered part of the feature space)

wtτ =
∑

i: xi∈Xtτ
vi > 0, (6.5)

and the expected frequency for data D on Xtτ is given by

λtτ = 1
wtτ

∑
i: xi∈Xtτ

vi λ(xi) > 0, (6.6)

if we assume that the true model has expected frequency function x 7→ λ(x). Thus, if
the MLE λ̄tτ = 0 for λtτ > 0, we obtain a degenerate (calibrated) Poisson distribution
on Xtτ which, of course, is nonsense from a practical point of view. For this reason, the
MLE λ̄tτ on Xtτ is replaced by a Bayesian estimator λ̄post

tτ .

Model Assumptions 6.1. Assume we are given a portfolio (xi, vi)i=1,...,n and a regres-
sion function λ(·) : X → R+. Choose Θ ∼ Γ(γ, γ) and assume that conditionally, given
Θ, the random variables N1, . . . , Nn are independent with conditional distribution

Ni|Θ ∼ Poi (λ(xi)Θvi) ,

for i = 1, . . . , n.

The above assumptions introduce uncertainty in the expected frequency using a multi-
plicative perturbation Θ of λ. The coefficient of variation of the (expected) frequency
λ(xi)Θ is

Vco (λ(xi)Θ) = Vco (Θ) = γ−1/2,

that is, we have a coefficient of variation that does not depend on the features.

Lemma 6.2. Set Model Assumptions 6.1 and choose Xtτ ⊂ X such that xi ∈ Xtτ for at
least one i = 1, . . . , n. Conditionally, given Θ, we have

Ntτ =
∑

i: xi∈Xtτ
Ni |Θ ∼ Poi (λtτΘwtτ) ,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

150 Chapter 6. Classification and Regression Trees

with λtτ given by (6.6) and wtτ given by (6.5). The posterior expected frequency on Xtτ ,
given observation Ntτ , is given by

E [λtτΘ|Ntτ] = λtτE [Θ|Ntτ] = αtτ λ̄tτ + (1− αtτ) λtτ ,

with MLE λ̄tτ given by (6.3) and with credibility weight

αtτ = wtτλtτ
γ + wtτλtτ

∈ (0, 1).

Proof of Lemma 6.2. The first statement immediately follows from Lemma 1.3, see also Remarks 4.3.
For the second statement we define Λtτ = λtτΘ; Λtτ has a gamma distribution with shape parameter γ
and scale parameter γ/λtτ , see formula (3.5) in Wüthrich [135]. Therefore, the assumptions of Corollary
4.4 are fulfilled and we obtain the claim. 2

Remarks 6.3.

• For given prior mean λtτ > 0 and given shape parameter γ > 0 we can calculate
the posterior mean E [λtτΘ|Ntτ] as an estimator for the expected frequency on Xtτ .
This posterior mean is always strictly positive and therefore does not have the same
deficiency as the MLE λ̄tτ given by (6.3).

• The difficulty in practice is that the prior mean λtτ is not known and needs to be
replaced by another estimator. The natural choices are the MLE λ̄t on Xt or the
Bayesian estimator E [λtΘ|Nt] on Xt. The former has the disadvantage that it does
not solve the problem of positivity and the latter needs to be calculated recursively.
Thus, for the latter we may define recursively

λ̄post
tτ = Ê [λtτΘ|Ntτ] = α̂tτ λ̄tτ + (1− α̂tτ) λ̄post

t , (6.7)

with estimated credibility weight

α̂tτ = wtτ λ̄
post
t

γ + wtτ λ̄
post
t

∈ (0, 1),

and initialization λ̄post
0 = λ̄0 =

∑n
i=1Ni/

∑n
i=1 vi which is the (homogeneous) overall

MLE for λ0 =
∑n
i=1 vi λ(xi)/

∑n
i=1 vi.

– The credibility weights αtτ and α̂tτ are increasing in λtτ and λ̄post
t , respectively.

Therefore, good risks λtτ < λ̄post
t obtain a higher credibility weight under (6.7)

and bad risks a lower credibility weight for the observations on Xtτ .
– Replacing λtτ by λ̄post

t shrinks the prior mean of the credibility estimator
towards the overall estimate λ̄post

t on Xt and diminishes structural differences.
– Of course, this is non-optimal, but an improved version would require more

knowledge about the tree structure. Such tree structure knowledge would
also allow us to replace Model Assumptions 6.1 by individual assumptions on
each leaf of the tree, for instance, each leaf t ∈ T may have its own (inde-
pendent) Θt. Note that Model Assumptions 6.1 also introduce (undesirable)
dependencies between the leaves through Θ.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 151

– The remaining parameter is the coefficient of variation γ−1/2. This coefficient
of variation is an input parameter in the R package rpart, see Therneau–
Atkinson [125], and needs to be chosen externally. It should not be chosen
too small so that it allows us to model a good range of possible expected
frequencies λ(xi) which may be of magnitude 4 between good and bad risks.

– A more thorough treatment would embed (6.7) into a hierarchical credibility
model, see Bühlmann–Gisler [18].

The R command rpart (used for the examples below) uses a less sophisticated approach
than (6.7), namely, it replaces λ̄post

tτ by

λ̄B
tτ = α̂B

tτ λ̄tτ + (1− α̂B
tτ) λ̄0, (6.8)

with (homogeneous) overall MLE λ̄0 as prior mean and with estimated credibility weights

α̂B
tτ = wtτ λ̄0

γ + wtτ λ̄0
∈ (0, 1), (6.9)

and γ is chosen exogenously. In our examples we will use this approach (6.8)-(6.9).

6.1.4 Standardized binary split tree growing algorithm

We come back to the Binary Tree Growing Algorithm introduced on page 146. In the
previous two sections we have discussed how to choose an optimal SBS ςt = (Xt0,Xt1)
of Xt for a given binary index t ∈ T using the goodness of split criterion (6.4). In this
section we discuss the choice of an optimal binary index t ∈ T to perform the SBS.

The algorithm and Poisson deviance losses

We apply SBS ςt = (Xt0,Xt1) to grow a binary tree. The aim at each iteration step is to
choose the partition in (6.4) that maximizes the increase in goodness of split, measured
by the decrease of the Poisson deviance loss. We define the decrease in Poisson deviance
loss of a binary split ςt = (Xt0,Xt1) of Xt by

∆D∗Xt(ςt) = D∗Xt

(
N , λ̄t

)
−
[
D∗Xt0

(
N , λ̄t0

)
+D∗Xt1

(
N , λ̄t1

)]
. (6.10)

Lemma 6.4. For any binary split ςt = (Xt0,Xt1) of Xt we have ∆D∗Xt(ςt) ≥ 0.
Proof of Lemma 6.4. Observe that we have the following inequality

D∗Xt
(
N , λ̄t

)
=

∑
i: xi∈Xt

2Ni
[
λ̄tvi
Ni
− 1− log

(
λ̄tvi
Ni

)]
=

∑
i: xi∈Xt0

2Ni
[
λ̄tvi
Ni
− 1− log

(
λ̄tvi
Ni

)]
+

∑
i: xi∈Xt1

2Ni
[
λ̄tvi
Ni
− 1− log

(
λ̄tvi
Ni

)]
≥ D∗Xt0

(
N , λ̄t0

)
+D∗Xt1

(
N , λ̄t1

)
.

The latter follows because the MLEs minimize the corresponding Poisson deviance losses. 2

The above motivates the following binary tree growing algorithm.

SBS Tree Growing Algorithm.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

152 Chapter 6. Classification and Regression Trees

(0) Initialize X0 = X and T = T = {0}.

(1) Repeat until a stopping rule is exercised:

(a) calculate the optimal SBS on the leaves indexed by T

(t, ςt) = argmax
s∈T , ςs=(Xs0,Xs1)

∆D∗Xs(ςs) ≥ 0, (6.11)

with a deterministic rule if there is more than one optimal SBS;

(b) if ∆D∗Xt(ςt) > 0, return the new binary tree (Xt)t∈T with indexes

T ← T ∪ {t0, t1},
T ← (T \ {t}) ∪ {t0, t1};

(c) decide whether the algorithm should be stopped and go to step (2), or other-
wise return to step (1a).

(2) Return the binary tree (Xt)t∈T with binary indexes T, leaf indexes T and partition
(Xt)t∈T of X .

Remarks.

• The above algorithm always chooses the leaf index t ∈ T which leads to the (locally)
biggest improvement in the corresponding Poisson deviance loss. In view of step
(1b) we only consider SBS that lead to a real improvement ∆D∗Xt(ςt) > 0, otherwise
the algorithm should be terminated.

• Often the maximization in (6.11) is more restricted, for instance, we may restrict
to SBS ςs = (Xs0,Xs1) of Xs which lead to new leaves Xs0 and Xs1 that contain at
least a minimal number of cases; this is an input parameter in rpart.

• The only open point is the choice of a sensible stopping rule, for instance, the
improvement in Poisson deviance loss in (6.11) should exceed a certain (relative)
threshold, otherwise the algorithm is terminated; this is an input parameter in
rpart.

• Note that the above algorithm could also be considered for other objective functions
to which a lemma similar to Lemma 6.4 applies.

Stopping rule

The Poisson deviance loss on the partition (Xt)t∈T of X is given by

D∗(N , (λ̄t)t∈T) =
∑
t∈T

D∗Xt

(
N , λ̄t

)
. (6.12)

Completely analogously to Lemma 6.4 we have the following statement.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 153

Corollary 6.5. Consider for a partition (Xt)t∈T of X , and an additional SBS ςt =
(Xt0,Xt1) of Xt for a given t ∈ T . This gives the new leaf indexes T ′ = (T \{t})∪{t0, t1}.
We have D∗(N , (λ̄s)s∈T) ≥ D∗(N , (λ̄s)s∈T ′).

Proof. The proof is a straightforward consequence of Lemma 6.4. 2

Corollary 6.5 says that every extra SBS decreases the objective function D∗(N , (λ̄s)s∈T)
and a sensible stopping rule would explore the amount of decrease of the Poisson deviance
loss in relation to the number of splits (and parameters λ̄s, s ∈ T) involved. This is quite
similar to the likelihood ratio test (2.15). However, in many situations this is not a
feasible way and the problem is rather solved by growing a very large tree in a first step,
and in a second step this large tree is pruned by splits that do not contribute sufficiently
to a modeling improvement. Details are presented in Section 6.2 on pruning.

Assignment rule and regression function

The SBS Tree Growing Algorithm on page 151 establishes us with a partition (Xt)t∈T
of X having leaf indexes T . This provides the regression tree estimator for the expected
frequency λ(·) : X → R+ defined by

λ̂(x) =
∑
t∈T

λ̄t 1{x∈Xt},

we also refer to (6.1) and (6.3). Note that this is not necessarily a strictly positive
function. In a non strictly positive situation one may replace the MLE λ̄t by the empirical
credibility estimator λ̄post

t given in (6.7) or by λ̄B
t given in (6.8). We will discuss this just

next.

Bayesian set-up

We have seen that there may be an issue with degenerate Poisson distributions on some
of the leaves t ∈ T . In applications one therefore replaces (6.11) by

(t, ςt) = argmax
s∈T , ςs=(Xs0,Xs1)

∆D̃∗Xs(ςs), (6.13)

where
∆D̃∗Xt(ςt) = D∗Xt

(
N , λ̄B

t

)
−
[
D∗Xt0

(
N , λ̄B

t0

)
+D∗Xt1

(
N , λ̄B

t1

)]
.

That is, we replace the MLEs λ̄t by the empirical credibility estimators λ̄B
t given in

(6.8). This has the advantage that the resulting frequency estimators are always strictly
positive, the disadvantage is that Lemma 6.4 does not hold true and errors may well be
increasing by adding more splits. This is because only the MLE minimizes the corre-
sponding Poisson deviance loss and maximizes the log-likelihood function, respectively.
The SBS Tree Growing Algorithm with (6.11) replaced by (6.13) will, however, only
consider SBS that lead to a real improvement (thanks to step (1b)) but it may miss the
optimal one.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

154 Chapter 6. Classification and Regression Trees

6.1.5 Example in motor insurance pricing, revisited

We revisit the synthetic MTPL data given in Appendix A and apply the SBS Tree
Growing Algorithm of page 151 to estimate the expected frequency by (6.1).

Listing 6.1: R command rpart
1 tree <- rpart (claims ~ age + ac + power + gas + brand + area + dens + ct
2 + offset (log(expo)),
3 data=dat , method =" poisson ", parms =list(shrink =1) ,
4 control = rpart . control (xval =10 , minbucket =10000 , cp =0.001))
5
6 rpart .plot(tree)
7 tree

We provide the R code in Listing 6.1. The variable dat contains the years at risk (expo =
vi), the claims countsNi as well as all feature components. The method applied considers
the Poisson deviance loss, and lines 3-4 of Listing 6.1 give the control variables, these
are going to be described below. Due to the issue that we may receive MLE λ̄tτ = 0 on
some of the leaves, the algorithm rpart always uses the Bayesian approach. Note that
shrink = γ−1/2 is the shrinkage parameter used in the rpart command, see (6.9). The
standard shrinkage parameter used is shrink = 1, which corresponds to γ = 1 in (6.9).

ac >= 1

ac >= 3

age >= 24

dens < 600

brand = B1,B10,B11,B13,B14,B2,B3,B4,B5,B6

0.1
26e+3 / 500e+3

100%

0.094
22e+3 / 453e+3

91%

0.086
16e+3 / 346e+3

69%

0.083
15e+3 / 333e+3

67%

0.074
7737 / 183e+3

37%

0.094
7469 / 150e+3

30%

0.19
1038 / 13e+3

3%

0.12
6240 / 107e+3

21%

0.25
3499 / 47e+3

9%

0.13
661 / 14e+3

3%

0.32
2838 / 33e+3

7%

yes no

ac >= 1

ac >= 3

age >= 24

dens < 600

ct = AI,BE,BS,GE,GR,JU,LU,NE,NW,SG,SH,SO,TG,TI,VD,ZG

brand = B10,B11,B12,B2,B4

ct = BS,JU,NE,NW,SH,TI

age >= 56

power < 3

ct = AI,GR,JU,LU,NW,SH,TG,TI

dens < 213

brand = B10,B11,B12,B14,B2

ct = AI,BS,GL,JU,LU,NW,SH,TG

brand = B12,B14

power < 2

ct = AG,FR,SG,TI,VD,VS,ZG

ac >= 7

ac >= 7

brand = B1,B13,B3,B4,B6

ct = AG,AI,BE,BS,FR,GR,JU,LU,NE,OW,SG,SH,TG,TI,UR,VD,VS

age >= 57

brand = B1,B10,B11,B2,B4

ac >= 2

brand = B1,B10,B2,B3,B4,B6

brand = B1,B10,B11,B13,B14,B2,B3,B4,B5,B6

gas = Diesel

0.1
26e+3 / 500e+3

100%

0.094
22e+3 / 453e+3

91%

0.086
16e+3 / 346e+3

69%

0.083
15e+3 / 333e+3

67%

0.074
7737 / 183e+3

37%

0.068
3849 / 101e+3

20%

0.062
1816 / 54e+3

11%

0.053
350 / 12e+3

2%

0.065
1466 / 41e+3

8%

0.056
349 / 10e+3

2%

0.069
1117 / 31e+3

6%

0.074
2033 / 47e+3

9%

0.065
592 / 15e+3

3%

0.079
1441 / 32e+3

6%

0.071
523 / 12e+3

2%

0.085
918 / 19e+3

4%

0.082
3888 / 83e+3

17%

0.077
2431 / 54e+3

11%

0.069
1012 / 26e+3

5%

0.084
1419 / 28e+3

6%

0.091
1457 / 28e+3

6%

0.094
7469 / 150e+3

30%

0.069
636 / 17e+3

3%

0.097
6833 / 133e+3

27%

0.075
696 / 21e+3

4%

0.1
6137 / 112e+3

22%

0.079
813 / 18e+3

4%

0.1
5324 / 94e+3

19%

0.095
2050 / 40e+3

8%

0.089
1319 / 28e+3

6%

0.11
731 / 12e+3

2%

0.11
3274 / 54e+3

11%

0.11
2126 / 37e+3

7%

0.098
1116 / 21e+3

4%

0.12
1010 / 16e+3

3%

0.12
1148 / 16e+3

3%

0.19
1038 / 13e+3

3%

0.12
6240 / 107e+3

21%

0.11
3669 / 70e+3

14%

0.091
840 / 18e+3

4%

0.12
2829 / 52e+3

10%

0.1
804 / 16e+3

3%

0.13
2025 / 35e+3

7%

0.11
770 / 15e+3

3%

0.15
1255 / 20e+3

4%

0.15
2571 / 38e+3

8%

0.13
810 / 12e+3

2%

0.16
1761 / 26e+3

5%

0.25
3499 / 47e+3

9%

0.13
661 / 14e+3

3%

0.32
2838 / 33e+3

7%

0.27
1212 / 17e+3

3%

0.38
1626 / 16e+3

3%

yes no

Figure 6.1: Regression trees for different stopping rules.

In Figure 6.1 we present the resulting regression trees of the SBS Tree Growing Algorithm
using split criterion (6.13). The two trees (only) differ in their sizes because we have
applied different stopping rules. We analyze the tree in Figure 6.1 (lhs), this tree is given
in more detail in Listing 6.2.
We have used n=500000 cases for its construction. Variable node) denotes the nodes of
the tree, these indexes differ from our binary index in the sense that t = 0 corresponds
to 1), t = 00, 01 correspond to 2) and 3), etc. split denotes the split criterion applied; n
denotes the number of cases in that node; deviance is the resulting Poisson deviance loss

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 155

Listing 6.2: SBS Tree Growing Algorithm result
1 n= 500000
2
3 node), split , n, deviance , yval
4 * denotes terminal node
5
6 1) root 500000 145532.300 0.10269060
7 2) ac >=0.5 452749 126855.500 0.09407058
8 4) ac >=2.5 345628 93113.030 0.08592400
9 8) age >=23.5 332748 87712.610 0.08277720

10 16) dens < 599.5 183105 45721.540 0.07437700 *
11 17) dens >=599.5 149643 41788.160 0.09374741 *
12 9) age < 23.5 12880 4845.229 0.19376530 *
13 5) ac < 2.5 107121 33147.840 0.12489500 *
14 3) ac < 0.5 47251 16399.780 0.24966230
15 6) brand =B1 ,B10 ,B11 ,B13 ,B14 ,B2 ,B3 ,B4 ,B5 ,B6 14444 3790.369 0.12806680 *
16 7) brand =B12 32807 12073.280 0.32044710 *

of that node; yval gives the frequency estimate of that node; and * indicates whether
the node is a leaf or not. For instance, line 9 in Listing 6.2 provides:

> 8) age >=23.5 332748 87712.610 0.08277720

This means that we consider node 8) that corresponds to t = 0000. This node was
obtained from node t = 000 (equal to node 4)) using the split question age>=23.5. The
node contains 332’748 cases, the Bayesian estimator is given by λ̄B

t = 0.08277720 and
the resulting Poisson deviance loss on that node Xt is D∗Xt

(
N , λ̄B

t

)
= 87′712.610. The

graph in Figure 6.1 (lhs) gives the additional information that on node t = 0000 we have
Nt =15e+3 claims observed and that 67% of the cases fall into that node. Note that
this information is not sufficient to calculate the full statistics because the volume wt on
node t is not displayed, see (6.5). The question that remains open for the moment is the
stopping rule, i.e. should we rather use the small or the big tree in Figure 6.1? We treat
this question in Section 6.2, below, together with an analysis of the predictive power of
the regression tree estimator. This finishes the example for the moment.

6.1.6 Choice of categorical classes

In Section 2.4 the categorical classes for driver’s age age and for the age of car ac
were chosen based on pure expert opinion, see Figure 2.2 (lhs). We could also use a
regression tree to determine these classes. We consider regression trees on the marginal
observations.2 This marginal consideration neglects possible interaction between the
feature components but gives a data based answer on optimal (marginal) choices of
(univariate) categorical classes for continuous feature components.
We choose for the two feature components exactly as many classes as in Figure 2.2 (lhs).
The results are provided in Figure 6.2 and they give the classes shown in Table 6.1 (under
the assumption that we would like to have 8 age classes and 4 ac distance classes). We

2Note that we use the same data for the construction of the categorical classes and the GLM analysis,
of course, this might be questioned.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

156 Chapter 6. Classification and Regression Trees

age >= 24

age >= 59

age >= 62

age < 75

age >= 29

age < 41

age >= 26

0.1
26e+3 / 500e+3

100%

0.1
25e+3 / 484e+3

97%

0.086
4386 / 87e+3

17%

0.084
3351 / 66e+3

13%

0.083
2501 / 52e+3

10%

0.09
850 / 14e+3

3%

0.092
1035 / 21e+3

4%

0.1
20e+3 / 398e+3

80%

0.1
18e+3 / 359e+3

72%

0.1
7091 / 152e+3

30%

0.1
11e+3 / 207e+3

41%

0.12
1993 / 39e+3

8%

0.12
1323 / 27e+3

5%

0.13
670 / 12e+3

2%

0.21
1323 / 16e+3

3%

yes no

ac >= 1

ac >= 3

ac >= 2

0.1
26e+3 / 500e+3

100%

0.094
22e+3 / 453e+3

91%

0.086
16e+3 / 346e+3

69%

0.12
6240 / 107e+3

21%

0.11
2607 / 48e+3

10%

0.14
3633 / 59e+3

12%

0.25
3499 / 47e+3

9%

yes no

Figure 6.2: Choice of categorical classes using regression trees.

age class 1: 18-23
age class 2: 24-25
age class 3: 26-28
age class 4: 29-40
age class 5: 41-58
age class 6: 59-61
age class 7: 62-74
age class 8: 75-90

ac class 1: 0
ac class 2: 1
ac class 3: 2
ac class 4: 3+

Table 6.1: Optimal (lhs) age classes and (rhs) ac classes based on marginal regression
tree estimators.

observe that the chosen ac classes are optimal, but for the age classes the regression tree
algorithm proposes a slightly different choice of classes (which provides more marginal
homogeneity in terms of Poisson deviance losses).

In Table 6.2 we consider the GLM analyses based on the two choices for the categorical
age classes given in Figure 2.2 (lhs) and Table 6.1 (lhs), respectively. We observe a slight
decrease in in-sample loss but at the same time an increase in the estimation loss. From
this we conclude that in the present example we cannot gain much by a different/better
choice of age classes.

Remark. This marginal choice of categorical classes can in particular be useful, if one
starts from a huge set of categorical labels (e.g. grouping of industry sector codes) from
which one would like to build bigger categorical classes. Doing this by expert opinion is
often not feasible, but leaving the original categorical classes on a very granular level can
be very time consuming in computational algorithms.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 157

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.3) GLM3 12.0s 50 28.2125 28.2133 0.4794 28.1937 10.2691%
(Ch6.0) GLM3.Tree 11.9s 50 – – 0.4895 28.1905 10.2691%

Table 6.2: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 2.5.

6.2 Tree pruning

6.2.1 Binary trees and pruning

The resulting Poisson deviance loss of the partition (Xt)t∈T of X is given by, see (6.12),

D∗(N , (λ̄t)t∈T) =
∑
t∈T

D∗Xt

(
N , λ̄t

)
.

This describes an in-sample loss of the given tree estimate.3 Corollary 6.5 states that
any further SBS ςt = (Xt0,Xt1) of Xt reduces the Poisson deviance loss by ∆D∗Xt(ςt) ≥ 0.
Since often a good stopping rule in the SBS Tree Growing Algorithm is not feasible, we
present a different strategy of a tree selection here. The idea is to first grow a very large
binary tree using the SBS Tree Growing Algorithm. In a second step this large binary
tree is reduced by pruning the nodes of the large tree for which the reduction in Poisson
deviance loss is not sufficient to justify that split.

Recall that T denotes the binary indexes of a binary tree with nodes (Xt)t∈T. In order
to not overload the language, we synonymously use T for the binary tree and/or its
corresponding binary indexes here.

Choose a node with binary index t ∈ T being, say, t = 0101. This node belongs to
generation k = 3, its ancestors (previous generations k = 0, 1, 2) are given by the binary
indexes in

{0, 01, 010} ⊂ T,

and its descendants (later generations k ≥ 4) are given by the binary indexes ins ∈ T; s = 0101τ for some τ ∈
⋃
`∈N
{0, 1}`

 .
If we add to the latter set the binary index t = 0101 we obtain a new binary tree with t
being its new root node (to be consistent in notation we could relabel the binary indexes,
but we refrain from doing so, because we think that this is sufficiently clear from the

3To get in-sample loss Lis
D given in (1.10) we still need to scale with the number of observations n.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

158 Chapter 6. Classification and Regression Trees

context). This motivates the following definition: choose t ∈ T and define the new
binary tree indexes

T(t+) = {t} ∪

s ∈ T; s = tτ for some τ ∈
⋃
`∈N
{0, 1}`

 . (6.14)

These binary tree indexes T(t+) define a new binary tree (Xs)s∈T(t+) with root node t and
with leaves indexed by T(t+). The leaves provide a partition (Xs)s∈T(t+) of the subset Xt
of the total feature space X .

Definition 6.6. Pruning a binary tree at a node with binary index t ∈ T means that we
delete all descendants of Xt from the tree and the pruned binary tree is obtained by the
binary indexes

T(−t) =
(
T \ T(t+)

)
∪ {t} ⊂ T.

The tree T(−t) is the subtree of T that stops growing at binary index t, the tree T(t+) is
the subtree of T that has as root node the binary index t, and T(−t) ∩ T(t+) = {t}. The
general idea now is to start with a very large binary tree T. We then prune this large
binary tree step by step by deleting all binary splits that do not substantially reduce the
Poisson deviance loss (in relation to their complexity).

6.2.2 Minimal cost-complexity pruning

Theoretical results on smallest cost-optimal trees

An efficient way to obtain a pruning algorithm is to do minimal cost-complexity pruning
which was invented by Breiman–Stone [17] and Breiman et al. [16].

Definition 6.7. Choose a binary tree (Xt)t∈T with binary indexes T and resulting parti-
tion (Xt)t∈T of X indexed by T . For η ≥ 0, we define the cost-complexity measure of T
by

Rη(T) = D∗(N , (λ̄t)t∈T) + η|T |.

Remarks 6.8.

• We aim at minimizing the Poisson deviance loss D∗(N , (λ̄t)t∈T) by choosing a
sufficiently large tree T, and in order to not choose an overly large tree we punish
(regularize) the choices of large trees by a factor η|T | accounting for the number
of leaves in that tree T. We call η the regularization parameter. Observe that
this idea has already been used in GAMs, see (3.8), and we have been discussing
ridge and LASSO regularization in Section 4.3.2. Here we replace the ridge (L2)
or the LASSO (L1) regularization by the number of parameters (cardinality (L0)
regularization).

• In the above definition we use the Poisson deviance loss for the definition of the
cost-complexity measure Rη(T) of the tree T. In all what follows we could also use
any other sensible objective function.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 159

Every finite binary tree T has at most finitely many binary subtrees T′ ⊂ T. Therefore,
starting from a (very large) finite binary tree T, we can always find a binary subtree
T′(η) ⊂ T that minimizes the cost-complexity measure Rη(·) for a given regularization
parameter η ≥ 0. That is, there exists at least one minimizer T′(η) to the problem

argmin
T′⊂T

Rη(T′), (6.15)

where the minimization T′ ⊂ T runs over all binary subtrees T′ of the original tree T
having identical root node t = 0. Optimization (6.15) can have more than one minimizer
T′(η) for a given η. We will just prove that for every regularization parameter η there
is a (unique) smallest cost-optimal binary subtree of T that solves (6.15). This smallest
cost-optimal binary subtree of T will be denoted by T(η). The next theorem is proved
in Section 6.4, below.

Theorem 6.9. Choose a finite binary tree T and assume there is more than one mini-
mizer T′(η) of (6.15) for a given η ≥ 0. Then there exists a unique subtree T(η) of T that
minimizes (6.15) and which satisfies T(η) ⊂ T′(η) for all minimizers T′(η) of (6.15).

We call this subtree T(η) the (unique) smallest cost-optimal binary subtree of T for the
given regularization parameter η ≥ 0.

Summarizing this result provides the following corollary.

Corollary 6.10. The smallest (cost-optimal) minimizer T(η) of (6.15) is well-defined
(and unique). We have for any minimizer T′(η) of (6.15) the relationships T(η) ⊂
T′(η) ⊂ T and

Rη(T(η)) = Rη(T′(η)) = min
T′⊂T

Rη(T′).

Thus, we have for every regularization parameter η ≥ 0 a smallest cost-optimal binary
subtree T(η) of the original (large) binary tree T. The remaining question is: how can we
determine these smallest cost-optimal subtrees efficiently? Searching the whole binary
tree T for every η is too expensive.

Construction of the smallest cost-optimal subtree

Choose any binary subtree T′ ⊂ T with leaves T ′ and consider the function rT′ : R+ → R+
given by

η 7→ rT′(η) = Rη(T′) = D∗(N , (λ̄t)t∈T ′) + η|T ′|. (6.16)

Note that we introduce this new notation to indicate that η 7→ rT′(η) is a function of the
regularization parameter η (for a given subtree T′), whereas T 7→ Rη(T′) is a function of
the subtrees T′ (for a given regularization parameter η). The function rT′(η) is linear in
η with intercept D∗(N , (λ̄t)t∈T ′) ≥ 0 and slope |T ′| > 0. We define the function

η 7→ r(η) = min
T′⊂T

rT′(η) = min
T′⊂T

Rη(T′), (6.17)

which is well-defined because every finite binary tree T has at most finitely many binary
subtrees T′.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

160 Chapter 6. Classification and Regression Trees

Theorem 6.11. Choose a finite binary tree T. The function r : R+ → R+ defined in
(6.17) is positive, strictly increasing, piece-wise linear and concave with finitely many
values 0 = η0 < η1 < . . . < ηκ < ηκ+1 = ∞ in which r(·) is not differentiable. Define
T(`) = T(η`) for ` = 0, . . . , κ. We have

T ⊃ T(0) ⊃ . . . ⊃ T(κ) = {0}, (6.18)

and for all ` = 0, . . . , κ

r(η) = rT(`)(η) = Rη(T(`)) for all η ∈ [η`, η`+1).

This theorem is proved in Section 6.4, below, and illustrated in Figure 6.4 (lhs).

Theorem 6.11 gives the instructions for an efficient algorithm to find the smallest cost-
optimal binary subtree T(η) of the original binary tree T for all regularization parameters
η ≥ 0. We just need to determine the tree sequence (6.18) for the selected η`’s.

We start from a (large) binary tree T that has been generated by the SBS Tree Growing
Algorithm on page 151. This algorithm has the property that it only uses SBS which
lead to a real improvement in the Poisson deviance loss in (6.11), i.e. for the chosen SBS
ςt = (Xt0,Xt1) we have ∆D∗Xt(ςt) > 0. For this reason we (may) initialize T(0) = T,
see also Remark 6.13 below. Assume that T(`) 6= {0} has been constructed for the
regularization parameter η`; if T(`) is the root tree we have found the final ` = κ and stop
the algorithm. To construct T(`+1) ⊂ T(`) and determine the corresponding η`+1 > η` we
consider for any t ∈ T(`) \ T (`) the (root) tree {t} and the (non-trivial) binary subtree
T(`)

(t+) ⊂ T(`). Since every SBS considered is assumed to lead to a real improvement in
the Poisson deviance loss we have

D∗Xt(N , (λ̄s)s∈{t})−D∗Xt(N , (λ̄s)s∈T (`)
(t+)

) > 0.

As long as4

r{t}(η) = Rη({t}) > Rη(T(`)
(t+)) = rT(`)

(t+)
(η), (6.19)

the root tree {t} has a higher cost-complexity than T(`)
(t+). Therefore we do not stop

growing the tree in node t. But as soon as the last inequality becomes an equality
(by increasing the regularization parameter η) we should prune the tree T(`)

(t+) to the
simpler root tree {t} for that increased η. The idea now is to find the weakest node
t∗`+1 ∈ T(`) \ T (`) defined by

t∗`+1 = argmin
t∈T(`)\T (`)

D∗Xt(N , (λ̄s)s∈{t})−D∗Xt(N , (λ̄s)s∈T (`)
(t+)

)

|T (`)
(t+)| − 1

. (6.20)

This weakest node determines the minimal regularization parameter over all nodes in
T(`) \ T (`) to turn inequality (6.19) into an equality for exactly this node and this regu-
larization parameter. We prune the tree T(`) at this weakest node t∗`+1. The next lemma
is proved in Section 6.4, below.

4Note that we use an abuse of notation in (6.19) because we interpret the functions on trees with
root node {t}; for more clarification we also refer to (6.37), below.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 161

Lemma 6.12. Choose ` ≥ 0 with T(`) 6= {0}. The weakest node t∗`+1 defined by (6.20)
provides T(`+1) = T(`)

(−t∗
`+1) and

η`+1 =
D∗Xt∗

`+1
(N , (λ̄s)s∈{t∗

`+1})−D
∗
Xt∗
`+1

(N , (λ̄s)s∈T (`)
(t∗
`+1+)

)

|T (`)
(t∗
`+1+)| − 1

=
D∗(N , (λ̄s)s∈T (`)

(−t∗
`+1)

)−D∗(N , (λ̄s)s∈T (`))

|T (`)| − |T (`)
(−t∗

`+1)|

=
D∗(N , (λ̄s)s∈T (`+1))−D∗(N , (λ̄s)s∈T (`))

|T (`)| − |T (`+1)|
.

If T(`+1) = {0} we set κ = `+ 1.

Remark. In fact, Lemma 6.12 uses an induction in its proof, which shows that the
algorithm is well initialized for ` = 0 and it also determines the maximal constant κ.

Minimal Cost-Complexity Pruning Algorithm.

(0) Initialization: Set T(0) = T.

(1) Repeat until T(`) is the root tree {0}:

(a) find the weakest node t∗`+1 ∈ T(`) \T (`) and define T(`+1) ⊂ T(`) and η`+1 > η`
as in Lemma 6.12;

(b) if T(`+1) = {0} set κ = `+ 1.

(2) Return (η`)`=0,...,κ and (T(`))`=0,...,κ.

Remark 6.13. The initialization step (0) sets T(0) = T. Since we grow the tree T by
the SBS Tree Growing Algorithm, only SBS are considered that strictly improve the
Poisson deviance loss. From this it immediately follows that the smallest cost-optimal
tree for η = η0 = 0 is given by the original tree T. In a situation where this is not the
case, i.e. where another tree growing algorithm has been used that does not have this
property, one needs to already prune the starting tree, see Breiman et al. [16].

Regularization and cost-complexity parameters

The parameter η ≥ 0 regularizes the complexity of the resulting smallest cost-optimal
binary subtree T(η), see Definition 6.7. For an arbitrary binary tree T the cost-complexity
measure in η is given by

Rη(T) = D∗(N , (λ̄t)t∈T) + η|T |.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

162 Chapter 6. Classification and Regression Trees

From this we see that the regularization parameter η has the same unit as the Poisson
deviance loss. Since this cost-complexity consideration can be applied to any loss func-
tion, one often normalizes the regularization by the corresponding loss of the root tree,
i.e. one considers

Rη(T) = D∗(N , (λ̄t)t∈T) + η|T |
= D∗(N , (λ̄t)t∈T) + cp D∗(N , (λ̄t)t∈{0}) |T |,

where D∗(N , (λ̄t)t∈{0}) is the Poisson deviance loss of the root tree with (homogeneous)
MLE λ̄0 =

∑n
i=1Ni/

∑n
i=1 vi, and we define the cost-complexity parameter

cp = η

D∗(N , (λ̄t)t∈{0})
.

The sequence η`+1 , ` = 0, . . . , κ− 1, given by

η`+1 =
D∗(N , (λ̄s)s∈T (`+1))−D∗(N , (λ̄s)s∈T (`))

|T (`)| − |T (`+1)|
,

then provides cost-complexity parameters

cp`+1 = η`+1

D∗(N , (λ̄t)t∈{0})
(6.21)

= 1
D∗(N , (λ̄t)t∈{0})

D∗(N , (λ̄s)s∈T (`+1))−D∗(N , (λ̄s)s∈T (`))
|T (`)| − |T (`+1)|

.

Remark. Note that we call η regularization parameter and its normalized counterpart
cp cost-complexity parameter.

Example in motor insurance pricing, revisited

We revisit the example of Section 6.1.5, but for illustrative purposes we start with a small
tree. This small tree T is given in Figure 6.3 and Listing 6.3, note that this small tree is
a subtree of the trees in Figure 6.1.

ac >= 1

ac >= 3

0.1
26e+3 / 500e+3

100%

0.094
22e+3 / 453e+3

91%

0.086
16e+3 / 346e+3

69%

0.12
6240 / 107e+3

21%

0.25
3499 / 47e+3

9%

yes no

Figure 6.3: Regression tree T for an early stopping rule.

This tree T has leaf indexes {000, 001, 01}, and it has two subtrees with root 0 and with
leaf indexes {00, 01} and {0}, the latter is the root tree. We denote these trees for the
moment by T3,T2,T1 (the first one denoting the full tree T and the last one denoting

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 163

Listing 6.3: Regression tree T for an early stopping rule
1 n= 500000
2
3 node), split , n, deviance , yval
4 * denotes terminal node
5
6 1) root 500000 145532.30 0.10269060
7 2) ac >=0.5 452749 126855.50 0.09407058
8 4) ac >=2.5 345628 93113.03 0.08592400 *
9 5) ac < 2.5 107121 33147.84 0.12489500 *

10 3) ac < 0.5 47251 16399.78 0.24966230 *

the root tree). For these three trees Ti, i = 1, 2, 3, we can study the cost-complexity
measures

η 7→ rTi(η) = Rη(Ti) = D∗(N , (λ̄t)t∈Ti) + η|Ti|, (6.22)

where Ti are the leaves of Ti with |Ti| = i for i = 1, 2, 3.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

0 1000 2000 3000 4000

14
40

00
14

60
00

14
80

00
15

00
00

15
20

00
15

40
00

cost−complexity measure

regularization parameter eta

co
st

−
co

m
pl

ex
ity

 m
ea

su
re

full tree T_3
tree T_2
root tree T_1

cp nsplit rel error xerror xstd
0.0156463 0 1.00000 1.00001 0.0044701
0.0040858 1 0.98435 0.98437 0.0043582
0.0039000 2 0.98027 0.98139 0.0043392

Figure 6.4: (lhs) Cost-complexity measures (6.22) for the three trees T3,T2,T1 and (rhs)
resulting cost-complexity results.

In Figure 6.4 (lhs) we plot the cost-complexity measures (6.22) for our example given
in Figure 6.3. We see the increasing, piece-wise linear and concave property of r(·), see
Theorem 6.11, and that

η1 = 595, η2 = ηκ = 2′277, cp1 = 0.0040858, cp2 = cpκ = 0.0156463.

These values are obtained from the R command printcp(tree) where tree is obtained
as in Listing 6.1. Note that on line 4 of Listing 6.1 we specify the parameter cp which
determines to which cost-complexity parameter we grow the tree. If we set cp=0.0039
we exactly receive Figure 6.4 (rhs). The first column specifies the critical cost-complexity
parameters cp1 and cp2, (6.21) then provides the corresponding regularization parameters
η1 and η2. Decreasing cp in Listing 6.1 will provide a larger tree.
Moreover, we only consider splits so that each leaf contains at least minbucket=10000
cases, see line 4 of Listing 6.1. We choose this value comparably large because if

v =
10′000∑
i=1

vi = 5000 and λ̂ = 10%,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

164 Chapter 6. Classification and Regression Trees

then we have estimated confidence bounds of two standard deviations given by, see also
(2.20), [

λ̂− 2
√
λ̂/v, λ̂+ 2

√
λ̂/v

]
= [9.1%, 10.9%] .

That is, we obtain a precision of roughly 0.9% in the expected frequency estimate λ̂
(which is not very precise). The column rel error gives a scaled version of the χ2-test
statistics, see (2.15), given by

rel errori = D∗(N , (λ̄t)t∈Ti)
D∗(N , (λ̄t)t∈{0})

,

for i = 1, 2, 3. Note that this relative error is an in-sample loss. We observe that the
in-sample loss decays by roughly 2% by the first two splits.

The remaining question is the best choice of the regularization parameter η ≥ 0. This
will be done in Section 6.2.4, below.

6.2.3 Choice of the best pruned tree

The remaining difficulty is to find the optimal regularization parameter η`, ` = 0, . . . , κ,
for pruning, i.e. which one of the optimally pruned (smallest cost-optimal) trees T =
T(0) ⊃ T(1) ⊃ . . . ⊃ T(κ−1) ⊃ T(κ) = {0} should be selected. The choice of the best
pruned tree is often done by K-fold cross-validation. Assume that we use (stratified)
K-fold cross-validation for the Poisson deviance loss, see (1.11),

LCV
D (η) = 1

K

K∑
k=1

1
|Bk|

∑
i∈Bk

2 Ni

[
λ̂(−Bk)(xi)vi

Ni
− 1− log

(
λ̂(−Bk)(xi)vi

Ni

)]
, (6.23)

where λ̂(−Bk)(·) = λ̂(−Bk)(· ; η) is the regression tree estimator

λ̂(−Bk)(x) = λ̂(−Bk)(x; η) =
∑

t∈T (−Bk)(η)

λ̄t 1{x∈Xt},

on the optimally pruned tree T(−Bk)(η) ⊂ T(−Bk) for regularization parameter η, where
for the construction of the (big) tree T(−Bk) we have only used the (stratified) training
data D(−Bk) = D \ DBk , and data D(Bk) is used for validation. This optimally pruned
tree provides an η- and D(−Bk)-dependent partition (Xt)t∈T (−Bk)(η) of the feature space
X and the corresponding estimators (λ̄t)t∈T (−Bk)(η) on that partition.

This (stratified) K-fold cross-validation error LCV
D (η) can be considered as an out-of-

sample prediction error estimate (using the Poisson deviance loss as objective function)
on a portfolio consisting of the characteristics given by data D and using an optimally
pruned binary tree for the regularization parameter η. That is, we estimate the out-of-
sample loss of the optimally pruned tree T(η) at regularization parameter η by

L̂oos
D (η) = LCV

D (η). (6.24)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 165

Note that we deliberately use the hat-notation on the left-hand side: the smallest cost-
optimal tree T(η) and the original tree T were constructed on the entire D. In order to
estimate the resulting out-of-sample loss we use (stratified) K-fold cross-validation. This
cross-validation separates the data into training samples D(−Bk) and validation samples
DBk , k = 1, . . . ,K, from which the cross-validation error of the corresponding smallest
cost-optimal trees T(−Bk)(η) is calculated. That is, the right-hand and the left-hand sides
of (6.24) do not use the data D in exactly the same manner because cross-validation
requires a training and a validation sample for back-testing (estimating to out-of-sample
loss on a test data set). Therefore, we consider the right-hand side as an estimate of the
left-hand side.

Choice of the Best Pruned Tree.

(0) Grow a large tree T on the entire data D using the SBS Tree Growing Algorithm.

(1) Determine the regularization parameters η0, . . . , ηκ+1, see Lemma 6.12, and define
their geometric means for ` = 0, . . . , κ by

η̌` = √η`η`+1, with η̌κ =∞.

(2) Partition the data D into (stratified) subsets DBk , k = 1, . . . ,K, for (stratified)
K-fold cross-validation:

(a) grow for every k a large tree T(−Bk) based on the (stratified) training sample
D \ DBk ;

(b) determine for every k the optimally pruned subtrees T(−Bk)(η̌`), ` = 0, . . . , κ;
(c) calculate the cross-validation error estimate LCV

D (η̌`) for every ` = 0, . . . , κ
based on the optimally pruned subtrees T(−Bk)(η̌`) and the corresponding
validation samples DBk , k = 1, . . . ,K.

(3) Determine `∗ ∈ {0, . . . , κ} by one of the following criteria:

– minimum cross-validation error: choose `∗ such that η̌`∗ minimizes (6.24) for
` = 0, . . . , κ; we denote this minimizing index by `min = `∗;

– 1-SD rule: the 1 standard deviation rule acknowledges that there is some
uncertainty involved in the estimate (6.23)-(6.24); we therefore provide an
estimate for the standard deviation V̂ar(LCV

D (η̌`))1/2 (which is done empirically
over the K cross-validation samples); the 1-SD rule proposes to choose `∗

minimal such that

LCV
D (η̌`∗) ≤ min

`
LCV
D (η̌`) + V̂ar(LCV

D (η̌`))1/2;

– elbow criterion: when looking at the sequence LCV
D (η̌`), ` = κ, . . . , 0, one often

observes that it steeply drops in `, then has a kink at a certain index `E and
after that kink it is rather flat; the elbow criteria suggests to choose `∗ = `E .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

166 Chapter 6. Classification and Regression Trees

(4) Return the best pruned tree T(η`∗) (for one of the previous criteria).

Remark.

• The geometric means η̌` = √η`η`+1 are considered to be typical values on the
intervals [η`, η`+1). Note that the optimal regularization parameters of Lemma
6.12 will vary over the choices T(−Bk), k = 1, . . . ,K. Therefore, ’typical’ choices η̌`,
` = 0, . . . , κ, based on all data D are considered for cross-validation, i.e. around η̌`
we expect the critical tree size of the optimal tree to be more stable because these
values are sufficiently different from η` and η`+1 where the tree sizes change.

• There is still the flexibility of the choice of the selection criteria in step (3). This
is further discussed in the examples.

• There is still the freedom of growing the (large) trees T and T(−Bk), k = 1, . . . ,K.
If we use the SBS Tree Growing Algorithm we typically use the same criterion for
the determination of the algorithm for all these trees.

6.2.4 Example in motor insurance pricing, revisited

We consider two examples. The first one will be based on the small tree T of Figure 6.3.
For the second example we will grow a large tree that we are going to prune.

Small tree of Figure 6.3

We continue the example of Figure 6.3: for illustrative purposes it is based on the small
tree T = T3, only. For this small tree we have, see also Figure 6.4,

η̌0 = 0, η̌1 = 1′164 and η̌2 =∞.

The column rel error in Figure 6.4 (rhs) gives an in-sample loss that is generally too
small because of potential over-fitting to the learning data. The column xerror in Figure
6.4 (rhs) then provides the relative 10-fold cross-validation errors (note that we choose
xval = K = 10 in Listing 6.1) for these regularization parameters η̌`, that is,

xerror` = nLCV
D (η̌`)

D∗(N , (λ̄t)t∈{0})
,

for ` = 1, 2, 3. According to the minimum cross-validation error rule we would choose
the maximal tree T3 in this example. The final column xstd in Figure 6.4 (rhs) denotes
the relative estimated standard error of the cross-validation, i.e.

xstd` = nV̂ar(LCV
D (η̌`))1/2

D∗(N , (λ̄t)t∈{0})
,

for ` = 1, 2, 3. Note that these numbers are displayed in gray color in Figure 6.4 (rhs)
because they are not calculated by version 4.1.10 of rpart as we require.5 Therefore,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 167

cp nsplit rel error xerror xstd xstd strat. CV
not stratified stratified Lis

D

0.0156463 0 1.00000 1.00001 0.01076 0.00218 29.1065
0.0040858 1 0.98435 0.98437 0.01120 0.00397 28.6516
0.0039000 2 0.98027 0.98139 0.00992 0.00402 28.5649

Table 6.3: Cost-complexity and 10-fold cross-validation outputs for the trees T3,T2,T1,
see Figure 6.3, the last column is in 10−2.

we have implemented our own cross-validation procedure. The results are given in Table
6.3. We observe a substantial decrease in xstd when applying stratified cross-validation
compared to non-stratified one, thus, uncertainty in cross-validation errors substantially
decreases when applying the stratified version. This observation is fully in line with
Figure 5.8 (middle, rhs). The final column in Table 6.3 displays the (absolute) 10-fold
cross-validation errors (in 10−2). These should be compared to Table 5.4 which provides
the values for the models GLM4, GAM3 and DNN1-3. We observe that the tree T3
cannot compete with the models of Table 5.4, nevertheless the first two splits lead to
a remarkable decrease in Poisson deviance loss. That this small tree is not competitive
is not surprising because we did not grow a sufficiently large tree (and applied optimal
pruning). This we are going to do next.

Optimally pruned large tree

Now we grow a large tree. We therefore use the R command given in Listing 6.1, but we
control the size of the tree by setting cp=0.000001 and minbucket=1000, i.e. we grow a
large three T = T(0) having in each leaf at least 1’000 cases.
The stratified 10-fold cross-validation results are given in Figure 6.5. We see a decrease
in cross-validation losses for the first 70 SBS (green vertical line in Figure 6.5). From
the 71st split on the cross-validation losses start to increase which indicates over-fitting
to the data. The error bars correspond to 1 standard deviation obtained by stratified
10-fold cross-validation. Using the 1-SD rule we obtain a comparably small tree with 13
leaves (blue line in Figure 6.5), using the minimum cross-validation error we choose a
tree with 71 leaves (green line in Figure 6.5). These trees are shown in Figure 6.6. We
call these binary trees T1-SD and Tmin for further reference.
For model comparison we then compare the resulting prediction errors, these are pro-
vided in Table 6.4. We observe that the 1-SD rule regression tree results provide higher
estimation errors than the models GLM4 and GAM3 which shows that this regression
tree T1-SD is not competitive. In fact, this is often observed that the 1-SD rule tends to
go for a tree that is too small.
The minimum cross-validation error tree Tmin performs much better. It has a better
performance than model GAM3 in terms of estimation loss Ê(λ̂, λ?). This illustrates
(once more) that the GAM is missing important (non-multiplicative) interactions in the
regression function. On the other hand, this regression tree has a worse performance than
the neural network approaches. This is also a common observation. The neural network

5In our implementation we would like to use the empirical frequencies for choosing stratified samples.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

168 Chapter 6. Classification and Regression Trees

●

●

●

●

●

●
●

●●●●●● ●●●●● ● ●●●
●●●●●●●●●●●●●●●

●●●●
●

−4 −5 −6 −7 −8 −9 −10

28
.0

28
.2

28
.4

28
.6

28
.8

29
.0

29
.2

log(cp)

10
−

fo
ld

 c
ro

ss
−

va
lid

at
io

n
lo

ss
 in

 1
0^

(−
2)

1−SD rule
minimum CV error

Figure 6.5: Cross-validation results from growing a large binary tree, error bars corre-
spond to 1 standard deviation obtained by stratified 10-fold cross-validation.

ac >= 1

ac >= 3

age >= 24

dens < 600

ct = AI,BE,BS,GE,GR,JU,LU,NE,NW,SG,SH,SO,TG,TI,VD,ZG ct = AI,JU,NW,SH,TG

brand = B12,B14

ac >= 6

ct = AG,AI,BE,BS,FR,GR,JU,LU,NE,OW,SG,SH,TG,TI,UR,VD,VS

age >= 57

brand = B1,B10,B11,B13,B14,B2,B3,B4,B5,B6

gas = Diesel

0.1
26e+3 / 500e+3

100%

0.094
22e+3 / 453e+3

91%

0.086
16e+3 / 346e+3

69%

0.083
15e+3 / 333e+3

67%

0.074
7737 / 183e+3

37%

0.068
3849 / 101e+3

20%

0.082
3888 / 83e+3

17%

0.094
7469 / 150e+3

30%

0.064
390 / 9246

2%

0.096
7079 / 140e+3

28%

0.075
762 / 23e+3

5%

0.044
162 / 7821

2%

0.092
600 / 15e+3

3%

0.1
6317 / 117e+3

23%

0.19
1038 / 13e+3

3%

0.12
6240 / 107e+3

21%

0.11
3669 / 70e+3

14%

0.091
840 / 18e+3

4%

0.12
2829 / 52e+3

10%

0.15
2571 / 38e+3

8%

0.25
3499 / 47e+3

9%

0.13
661 / 14e+3

3%

0.32
2838 / 33e+3

7%

0.27
1212 / 17e+3

3%

0.38
1626 / 16e+3

3%

yes no

ac >= 1

ac >= 3

age >= 24

dens < 600

ct = AI,BE,BS,GE,GR,JU,LU,NE,NW,SG,SH,SO,TG,TI,VD,ZG

brand = B10,B11,B12,B2,B4

ct = BS,JU,NE,NW,SH,TI

age >= 56

power < 3

ac >= 13

ct = AI,JU,LU,NW,SH,TG,TI

dens < 213

brand = B10,B11,B12,B14,B2

ac >= 5

age >= 53

ac >= 9

age >= 59

brand = B1,B12,B14,B2,B4

ct = AI,JU,NW,SH,TG

brand = B12,B14

ac >= 6

age >= 57

power < 2

brand = B1,B11,B2,B3,B4,B6

ct = AR,BS,FR,GE,TI,VD

ct = AG,BS,GL,LU,SG,TI,VD,VS,ZG

ac >= 6

power < 3

ac >= 7

dens < 1290

brand = B1,B13,B2,B3,B4,B5,B6

age >= 20

ct = AI,BE,FR,GE,GR,JU,NE,NW,SG,SH,SO,TG,TI,UR,VD,VS

brand = B12,B4,B6

area = A,C,D

age >= 23

ct = AG,AI,BE,BS,FR,GR,JU,LU,NE,OW,SG,SH,TG,TI,UR,VD,VS

age >= 57

ct = AI,BS,JU,OW,SH,TG,UR,VS

brand = B1,B10,B11,B2,B4

dens < 610

age >= 29

brand = B10,B11,B2

ct = AI,GR,LU,NE,SG,TG,TI,VS

ct = AI,BS,JU,SG,SH,TG

ac >= 2

power >= 4

power < 2

ct = AG,AI,BS,FR,GR,JU,LU,SG,SH,TG

age >= 26

brand = B1,B10,B2,B3,B4,B6

dens < 1746

power >= 4

power < 2

power >= 4

power < 6

power >= 5

power >= 8

brand = B1,B10,B11,B13,B14,B2,B3,B4,B5,B6

age >= 61

ct = BL,GE,GL,GR,JU,LU,NE,NW,SH,TG,TI,VS

gas = Diesel

power >= 5

ct = AI,AR,BE,GL,JU,NE,SH,TG,TI,VD,VS,ZG

power < 2

ct = BL,BS,GL,JU,LU,NE,NW,SH,SO,SZ,TG,VD,VS,ZG

power >= 4

power < 6

age >= 55

ct = AG,AI,BE,BS,GE,GR,JU,LU,SG,TI,VD,VS,ZG

0.1
26e+3 / 500e+3

100%

0.094
22e+3 / 453e+3

91%

0.086
16e+3 / 346e+3

69%

0.083
15e+3 / 333e+3

67%

0.074
7737 / 183e+3

37%

0.068
3849 / 101e+3

20%

0.062
1816 / 54e+3

11%

0.053
350 / 12e+3

2%

0.065
1466 / 41e+3

8%

0.056
349 / 10e+3

2%

0.069
1117 / 31e+3

6%

0.074
2033 / 47e+3

9%

0.065
592 / 15e+3

3%

0.051
137 / 4489

1%

0.071
455 / 11e+3

2%

0.079
1441 / 32e+3

6%

0.067
358 / 9377

2%

0.084
1083 / 22e+3

4%

0.082
3888 / 83e+3

17%

0.077
2431 / 54e+3

11%

0.069
1012 / 26e+3

5%

0.065
734 / 19e+3

4%

0.083
278 / 6809

1%

0.061
79 / 2485

0%

0.098
199 / 4324

1%

0.084
1419 / 28e+3

6%

0.076
704 / 16e+3

3%

0.095
715 / 13e+3

3%

0.091
1457 / 28e+3

6%

0.074
252 / 5031

1%

0.096
1205 / 23e+3

5%

0.09
807 / 17e+3

3%

0.11
398 / 6511

1%

0.094
7469 / 150e+3

30%

0.064
390 / 9246

2%

0.096
7079 / 140e+3

28%

0.075
762 / 23e+3

5%

0.044
162 / 7821

2%

0.092
600 / 15e+3

3%

0.07
127 / 4019

1%

0.1
473 / 11e+3

2%

0.1
6317 / 117e+3

23%

0.08
845 / 19e+3

4%

0.077
756 / 18e+3

4%

0.061
173 / 5121

1%

0.084
583 / 12e+3

2%

0.11
89 / 1405

0%

0.1
5472 / 98e+3

20%

0.093
1958 / 41e+3

8%

0.087
1406 / 31e+3

6%

0.069
258 / 7210

1%

0.093
1148 / 24e+3

5%

0.11
552 / 9640

2%

0.11
3514 / 57e+3

11%

0.11
2270 / 40e+3

8%

0.09
476 / 8931

2%

0.11
1794 / 31e+3

6%

0.11
1600 / 28e+3

6%

0.14
194 / 2762

1%

0.12
1244 / 18e+3

4%

0.19
1038 / 13e+3

3%

0.18
821 / 11e+3

2%

0.15
458 / 7081

1%

0.087
45 / 1216

0%

0.16
413 / 5865

1%

0.14
251 / 4024

1%

0.091
50 / 1120

0%

0.17
201 / 2904

1%

0.2
162 / 1841

0%

0.23
363 / 3887

1%

0.31
217 / 1912

0%

0.12
6240 / 107e+3

21%

0.11
3669 / 70e+3

14%

0.091
840 / 18e+3

4%

0.063
113 / 3074

1%

0.098
727 / 15e+3

3%

0.12
2829 / 52e+3

10%

0.1
804 / 16e+3

3%

0.088
424 / 9499

2%

0.082
358 / 8392

2%

0.068
155 / 4292

1%

0.096
203 / 4100

1%

0.069
67 / 1838

0%

0.12
136 / 2262

0%

0.14
66 / 1107

0%

0.13
380 / 6737

1%

0.085
65 / 1736

0%

0.14
315 / 5001

1%

0.13
2025 / 35e+3

7%

0.11
770 / 15e+3

3%

0.15
1255 / 20e+3

4%

0.13
517 / 9395

2%

0.16
738 / 11e+3

2%

0.13
302 / 5513

1%

0.11
146 / 3256

1%

0.16
156 / 2257

0%

0.19
436 / 5254

1%

0.15
2571 / 38e+3

8%

0.14
2423 / 36e+3

7%

0.12
755 / 11e+3

2%

0.11
445 / 7163

1%

0.085
123 / 2636

1%

0.12
322 / 4527

1%

0.15
310 / 3806

1%

0.15
1668 / 25e+3

5%

0.13
306 / 5859

1%

0.16
1362 / 19e+3

4%

0.14
818 / 13e+3

3%

0.13
475 / 8459

2%

0.1
125 / 2874

1%

0.15
350 / 5585

1%

0.16
343 / 4695

1%

0.13
144 / 2540

1%

0.2
199 / 2155

0%

0.2
544 / 6004

1%

0.24
148 / 1530

0%

0.25
3499 / 47e+3

9%

0.13
661 / 14e+3

3%

0.092
87 / 2385

0%

0.14
574 / 12e+3

2%

0.11
141 / 3763

1%

0.15
433 / 8296

2%

0.32
2838 / 33e+3

7%

0.27
1212 / 17e+3

3%

0.2
360 / 6708

1%

0.31
852 / 10e+3

2%

0.25
239 / 3613

1%

0.34
613 / 6755

1%

0.38
1626 / 16e+3

3%

0.29
444 / 5863

1%

0.22
131 / 2246

0%

0.33
313 / 3617

1%

0.43
1182 / 9868

2%

0.35
514 / 5361

1%

0.26
185 / 2625

1%

0.43
329 / 2736

1%

0.52
668 / 4507

1%

0.37
150 / 1440

0%

0.58
518 / 3067

1%

0.5
295 / 1936

0%

0.71
223 / 1131

0%

yes no

Figure 6.6: Optimally pruned trees according to the 1-SD rule T1-SD and the minimum
cross-validation error rule Tmin, see also Figure 6.5.

architecture with differentiable activation function can continuously inter- and extrapo-
late for continuous feature values. This makes it more powerful than the regression tree
approach because the neural network is less sensitive in small (homogeneous) subport-
folios as long as it can benefit from an ordinal relationship within feature components,
i.e. can “continuously learn over neighboring leaves”.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 169

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.4) CANN1 28s 703† 27.9292 27.9362 0.2284 27.8940 10.1577%
(Ch5.5) CANN2 27s 780† 27.9306 27.9456 0.2092 27.8684 10.2283%
(Ch5.2) DNN2 123s 703 27.9235 27.9545 0.1600 27.7736 10.4361%
(Ch5.3) DNN3 125s 780 27.9404 27.9232 0.2094 27.7693 9.6908%
(Ch5.7) blended DNN – – – – 0.1336 27.6939 10.2691%
(Ch6.1) Tree1 T1-SD 65s‡ 13 – 28.2280 0.4814 28.1698 10.2674%
(Ch6.2) Tree2 Tmin 65s‡ 71 – 28.1388 0.3748 27.9156 10.2570%

Table 6.4: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported
in 10−2; run time gives the time needed for model calibration (‡ includes 10-fold cross-
validation to select the optimal tree), and ’# param.’ gives the number of estimated
model parameters († only considers the network parameters and not the non-trainable
GAM parameters), this table follows up from Table 5.8.

6.3 Binary tree classification

Above we have introduced the SBS tree construction for the Poisson regression problem
which provided us regression tree estimator (6.1). We now turn to the classification
problem. Assume that the cases (Y,x) have a categorical distribution satisfying

πy(x) = P [Y = y] ≥ 0 for y ∈ Y = {0, . . . , J − 1},

with normalization
∑
y∈Y πy(x) = 1 for all x ∈ X . The classifier C : X → Y provides for

cases (Y,x) the labels
C(x) = argmax

y∈Y
πy(x), (6.25)

with a deterministic rule if the maximum is not unique. This is similar to the logistic
regression classification in Section 2.5.2. However, in this section we do not assume any
structural form for the probabilities πy(x) in terms of the features x, but we aim at
estimating and approximating this structure with a SBS tree construction.

6.3.1 Empirical probabilities

Assume we have data D of the form (2.22). Choose a subset X ′ ⊂ X of the feature space.
Denote by n(y,X ′;D) the number of cases (Yi,xi) in D that have feature xi ∈ X ′ and
response Yi = y. The (empirical) probability that a randomly chosen case (Y,x) of D
belongs to feature set X ′ and has response Y = y is given by

p̂(y,X ′) = p̂(y,X ′;D) = n(y,X ′;D)∑
y′∈Y n(y′,X ;D) = n(y,X ′;D)

n
. (6.26)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

170 Chapter 6. Classification and Regression Trees

We use the hat-notation for the empirical probabilities p̂ to indicate that these depend
on the data D. The (empirical) probability that a randomly chosen case (Y,x) belongs
to X ′ is given by

p̂(X ′) =
∑
y∈Y

p̂(y,X ′) =
∑
y∈Y n(y,X ′;D)∑
y∈Y n(y,X ;D) =

∑
y∈Y n(y,X ′;D)

n
,

and the (empirical) probability that a randomly chosen case (Y,x) in X ′ has response y
is given by

p̂(y|X ′) = p̂(y,X ′)
p̂(X ′) = n(y,X ′;D)∑

y′∈Y n(y′,X ′;D) , (6.27)

supposed that p̂(X ′) > 0, i.e. there are cases in X ′.

Remark. These empirical probabilities p̂ purely depend on the data D. The theory also
works in the setting where one has prior knowledge about the classification probabilities
and, therefore, uses a modified version for the definition of p̂. We will meet the modified
framework in Chapter 7 for the AdaBoost algorithm, for more details we also refer to
Breiman et al. [16].

6.3.2 Standardized binary split tree growing algorithm for classification

Similar to Section 6.1.3 we need a goodness of split criterion which evaluates possible
SBS of the feature space. The criterion that we consider first relates to misclassification.

Class assignment rule

We start by defining the class assignment rule. Assume we have a partition (Xt)t∈T of
the feature space X (with every Xt containing at least one case of the data D). We define
the class assignment rule

y∗t = argmax
y∗∈Y

p̂(y∗|Xt) = argmax
y∗∈Y

n(y∗,Xt;D). (6.28)

That is, we choose the label y∗t on Xt that has the biggest likelihood (with a deterministic
rule if there is more than one). This provides us classifier estimator Ĉ : X → Y

Ĉ(x) =
∑
t∈T

y∗t 1{x∈Xt}. (6.29)

This assigns a class Ĉ(x) ∈ Y to every feature x ∈ X .

Misclassification rate

Next we introduce the misclassification rate of class assignment rule (6.29) by

Lis
1{6=}

(D, (y∗t)t∈T) = 1
n

n∑
i=1

1{Yi 6=Ĉ(xi)}
. (6.30)

Note that this is in line with (2.31) and determines the in-sample misclassification rate.
We can represent this misclassification rate as given in the following lemma.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 171

Lemma 6.14. The misclassification rate satisfies

Lis
1{6=}

(D, (y∗t)t∈T) =
∑
t∈T

p̂(Xt) (1− p̂(y∗t |Xt)) .

Proof. We can exchange the summation in the definition of the misclassification rate which provides

Lis
1{6=}(D, (y

∗
t)t∈T) = 1

n

n∑
i=1

1
{Yi 6=Ĉ(xi)}

= 1
n

n∑
i=1

∑
t∈T

1{xi∈Xt}1{Yi 6=y∗t }

= 1
n

∑
t∈T

n∑
i=1

1{xi∈Xt}1{Yi 6=y∗t } = 1
n

∑
t∈T

∑
y 6=y∗

t

n(y,Xt;D)

=
∑
t∈T

p̂(Xt)
∑
y 6=y∗

t

n(y,Xt;D)∑
y′∈Y n(y′,Xt;D)

=
∑
t∈T

p̂(Xt)
∑
y 6=y∗

t

p̂(y|Xt).

From this the claim follows. 2

This misclassification rate plays the role of the deviance loss D∗(N , (λ̄t)t∈T) given in
(6.12). It estimates the probability that a randomly chosen case (Y,x) ∈ D is misclassi-
fied.

The above construction implicitly assumes that misclassification is equally weighted for
all labels in Y. If preference should be given to a certain misclassification, we may
introduce another loss function with L(y, y∗) ≥ 0 for y∗ 6= y ∈ Y, and L(y, y) = 0 for all
y ∈ Y. We interpret L(y, y∗) to be the loss of classifying a response as y∗ instead of the
“true” label y. In this case we replace class assignment rule (6.28) by

y∗t = argmin
y∗∈Y

∑
y∈Y

L(y, y∗)p̂(y|Xt), (6.31)

and the above misclassification rate is modified to

Lis
L(D, (y∗t)t∈T) =

∑
t∈T

p̂(Xt)
∑
y∈Y

L(y, y∗t)p̂(y|Xt). (6.32)

This latter loss Lis
L(D, (·)t∈T) is motivated by the fact that (y∗t)t∈T defined in (6.31)

minimizes (6.32) on partition (Xt)t∈T . Note that the misclassification rate (6.30) is the
special case given by the loss function L(y, y∗) = 1{y 6=y∗}, we also refer to (2.32).
Similar to Corollary 6.5 we have the following corollary.

Corollary 6.15. Consider for a partition (Xt)t∈T of X an additional SBS for a given
t ∈ T . This gives the new leaves T ′ = (T \ {t}) ∪ {t0, t1}. We have Lis

L(D, (y∗t)t∈T) ≥
Lis
L(D, (y∗t)t∈T ′).

Proof. Note that we always assume a non-trivial SBS, i.e. we require existence of t ∈ T such that Xt
contains at least two elements with different features. Then, we have for this binary index t

p̂(Xt)
∑
y∈Y

L(y, y∗t)p̂(y|Xt) =
∑
y∈Y

L(y, y∗t)p̂(y,Xt)

=
∑
y∈Y

L(y, y∗t)p̂(y,Xt0) +
∑
y∈Y

L(y, y∗t)p̂(y,Xt1)

≥ p̂(Xt0)
∑
y∈Y

L(y, y∗t0)p̂(y|Xt0) + p̂(Xt1)
∑
y∈Y

L(y, y∗t1)p̂(y|Xt1).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

172 Chapter 6. Classification and Regression Trees

This completes the proof. 2

This implies that in the SBS Tree Growing Algorithm on page 151 we may replace (6.11)
by a similar condition measuring the decrease in misclassification rate

∆D∗Xt(ςt) = Lis
L(D, (y∗t)t∈T)− Lis

L(D, (y∗t)t∈T ′) ≥ 0, (6.33)

using the notation of Corollary 6.15.

Conclusion. We conclude for the tree classification case that all the results of the tree
regression case remain true if we replace in (6.11) the deviance loss improvement (6.10)
by the misclassification rate improvement (6.33).

Impurity measures

In definition (6.30) we have naturally assumed that we would like to measure the mis-
classification rate. This misclassification rate has the disadvantage that the considered
impurity function

φR (p̂(0|Xt), . . . , p̂(J − 1|Xt)) =
∑
y∈Y

1{y 6=y∗t }p̂(y|Xt) = 1− p̂(y∗t |Xt),

with y∗t given by (6.28), is not differentiable in its arguments which might cause problems
in optimization. In particular, φR contains y∗t which is obtained by an optimization in
the empirical probabilities p̂. For instance, for J = 2 we have on the 1-unit simplex
(choose p ∈ [0, 1] and set q = 1− p ∈ [0, 1])

φR (p, q) = φR (p, 1− p) = 1−max {p, 1− p} ,

which is not differentiable in p = 1/2. Therefore, this impurity function φR is often
replaced by other impurity functions. The two most popular ones are the Gini index
function

φG (p̂(0|Xt), . . . , p̂(J − 1|Xt)) =
∑
y∈Y

(1− p̂(y|Xt)) p̂(y|Xt),

and the entropy function

φE (p̂(0|Xt), . . . , p̂(J − 1|Xt)) =
∑
y∈Y
− log (p̂(y|Xt)) p̂(y|Xt).

These two impurity functions have the advantage that they are differentiable. For in-
stance for J = 2 we have on the 1-unit simplex (for q = 1− p ∈ [0, 1])

φG (p, q) = φG (p, 1− p) = 2p (1− p) ,

and
φE (p, q) = − p log p− (1− p) log (1− p) ,

see also Figure 6.7. These considerations motivate to replace misclassification rate (6.30),

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 6. Classification and Regression Trees 173

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

impurity functions

misclass rate
Gini index
entropy

Figure 6.7: Impurity functions: misclassification error rate φR, Gini index function φG,
entropy function φE for J = 2 as a function of p ∈ [0, 1].

see also Lemma 6.14, by the impurity measures

Lis
� (D, (Xt)t∈T) =

∑
t∈T

p̂(Xt) φ� (p̂(0|Xt), . . . , p̂(J − 1|Xt)) , (6.34)

for � ∈ {G,E}. We can use this impurity measure as objective function.

Choose a binary index t ∈ T and consider a SBS ςt = (Xt0,Xt1) of Xt. This SBS leads
to a change in impurity given by

∆D∗Xt(ςt) = Lis
� (D, (Xt)t∈T)− Lis

� (D, (Xt)t∈T ′), (6.35)

where T ′ denotes the resulting leaves also considering the additional binary split ςt (sim-
ilar to Corollary 6.15).

Remarks.

• Note that these two impurity functions φG and φE no longer depend on the class
assignments (y∗t)t∈T . Therefore, the class assignment (6.28) is done after the SBS
Tree Growing Algorithm has been performed.

• φG and φE are called impurity functions because they measure the impurity on the
(J − 1)-unit simplex. They take the maximum in the center (1/J, . . . , 1/J), the
minimum in the corners (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) and are Schur concave.

• By applying the SBS Tree Growing Algorithm with criterion (6.35) in (6.11) we
improve the purity on the resulting leaves in each step of the algorithm, however, in
terms of the misclassification rate there might be better SBS. On the other hand,
misclassification rates are not always sufficiently sensitive in SBS and the Gini index
or the entropy function may have a better behavior on the final result.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

174 Chapter 6. Classification and Regression Trees

• Pruning and cross-validation can then be done considering misclassification rates.

• The entropy impurity measure is closely related to the deviance loss function of a
categorical distribution.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sAppendix to Chapter 6

6.4 Proofs of pruning results

In this section we prove the results on cost-complexity pruning.

Proof of Theorem 6.9. This theorem is proved in Theorem 10.7 of [16]. Choose η ≥ 0 fixed and
assume that T′ ⊂ T describes a non-trivial binary (sub-)tree of T having identical root node t = 0. We
decouple this binary tree T′ into its root tree T′(−0) = {0} and the binary subtrees T′(00+) and T′(01+)
having new root nodes with binary indexes 00 and 01, respectively, see also (6.14). Observe that this
provides a natural partition of the leaves of T′ with leaf indexes T ′ = T ′(00+) ∪ T ′(01+). This implies for
the cost-complexity measure of the tree T′

Rη(T′) = D∗(N , (λ̄t)t∈T ′) + η|T ′| =
∑
t∈T ′

(
D∗Xt

(
N , λ̄t

)
+ η
)

=
∑

t∈T ′(00+)

(
D∗Xt

(
N , λ̄t

)
+ η
)

+
∑

t∈T ′(01+)

(
D∗Xt

(
N , λ̄t

)
+ η
)

(6.36)

= Rη(T′(00+)) +Rη(T′(01+)),

where the last identity denotes for τ = 0, 1

Rη(T′(0τ+)) =
∑

t∈T ′(0τ+)

D∗Xt
(
N , λ̄t

)
+ η|T ′(0τ+)|.

Note that we use a slight abuse of notation here because the trees T′(0τ+) provide a partition of X0τ =
(Xt)t∈T ′(0τ+)

, and not of the total feature space X . But observe that (X0τ)τ=0,1 is a partition of the total
feature space X .
Identity (6.36) shows that finding minimizers T′(η) of (6.15) can be done inductively by finding minimizers
(independently) on the sub-trees T(00+) and T(01+) of T. Thus, (6.36) reduces the number of generations
by one digit and iterating this provides the proof. The formal completion of the proof is obtained by an
explicit construction of the smallest cost-optimal binary subtree using that (6.36) can be applied to any
split in any generation and using the fact that there are only finitely many binary subtrees. 2

Proof of Theorem 6.11. Choose a finite binary tree T. This finite binary tree has at most finitely
many subtrees T′ that have the same root node t = 0. Therefore, the minimum in (6.17) is well-defined
for all η ≥ 0. For any subtree T′ of T the function (6.16) is positive, strictly increasing and linear.
Therefore, the minimum in (6.17) over finitely many such positive and strictly increasing linear functions
needs to be positive, strictly increasing, piece-wise linear and concave with at most finitely many values
0 < η1 < . . . < ηκ < ∞ where it is not differentiable, i.e. where the linear functions (6.16) intersect
for different subtrees T′. We additionally set η0 = 0 and ηκ+1 = ∞. The smallest cost-optimal binary
subtree of (6.15) in η` is given by T(`) = T(η`), for ` = 0, . . . , κ, see Corollary 6.10. This implies that

r(η`) = min
T′⊂T

rT′(η`) = min
T′⊂T

Rη`(T
′) = Rη`(T(η`)) = Rη`(T

(`)).

Since on the open interval (η`, η`+1) no other linear function rT′(·) intersects the straight line rT(`) (·) it
follows that r(η) = rT(`) (η) on [η`, η`+1).

175

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

176 Chapter 6. Classification and Regression Trees

Finally, we need to show that the sequence of the smallest cost-optimal binary subtrees (T(`))`=0,...,κ is
decreasing for increasing η`. Pursuing the last argument to the point η`+1, we see from the continuity
of the functions rT′(·) that Rη`+1 (T(η`)) = Rη`+1 (T(η`+1)). Since T(η`+1) is the smallest cost-optimal
binary subtree in η`+1 we have that T(η`) ⊃ T(η`+1) and T(η`) can be considered as a minimizing tree
T′(η`+1) in η`+1 that is not smallest in the sense of as described by Theorem 6.9. Finally, the root tree
{0} is the unique binary subtree with the smallest slope |T ′| = 1, therefore for η → ∞ the root tree is
cost-complexity optimal and T(κ) = {0}. This finishes the proof. 2

Proof of Lemma 6.12. To initialize we distinguish ` = 0 and ` > 0. We start with ` = 0. Choose
t ∈ T \ T . For every SBS considered in the SBS Tree Growing Algorithm we have a real improvement in
the Poisson deviance loss which implies that

D∗(N , (λ̄s)s∈T) < D∗(N , (λ̄s)s∈T(−t)).

This implies that R0(T) < R0(T(−t)) and therefore provides the initialization T(0) = T for regularization
parameter η = η0 = 0, i.e.

Rη0 (T(0)) < Rη0 (T(0)
(−t)) for any t ∈ T(0) \ T (0).

For ` > 0 we know by construction that

Rη`(T
(`)) < Rη`(T

(`)
(−t)) for any t ∈ T(`) \ T (`),

because T(`) = T (η`) 6= {0} is the smallest cost-optimal subtree that minimizes the cost-complexity
measure for regularization constant η`.
For any t ∈ T(`) \ T (`) we have |T (`)| > |T (`)

(−t)|. This implies that for any t ∈ T(`) \ T (`) there exists an
η(t) > η` with

Rη(t)(T(`)) = rT(`) (η(t)) = rT(`)
(−t)

(η(t)) = Rη(t)(T(`)
(−t)),

because the linear function rT(`) (·) has a bigger slope than the linear function rT(`)
(−t)

(·). This η(t) > η` is

given by the solution of

0 = rT(`) (η(t))− rT(`)
(−t)

(η(t))

= D∗(N , (λ̄s)s∈T (`))−D∗(N , (λ̄s)s∈T (`)
(−t)

) + η(t)|T (`)| − η(t)|T (`)
(−t)|

= D∗Xt(N , (λ̄s)s∈T (`)
(t+)

)−D∗Xt(N , (λ̄s)s∈{t}) + η(t)
(
|T (`)

(t+)| − 1
)
, (6.37)

and thus

η(t) =
D∗Xt(N , (λ̄s)s∈{t})−D∗Xt(N , (λ̄s)s∈T (`)

(t+)
)

|T (`)
(t+)| − 1

.

The weakest node t∗`+1 is then given by the minimal η(t) where the minimum is considered for all nodes
t ∈ T(`) \ T (`). This determines the first intersection after η` of rT(`) (·) with any other function rT(`)

(−t)
(·),

and therefore determines η`+1 and T(`+1) = T(`)
(−t∗

`+1). 2

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 7

Ensemble Learning Methods

In this chapter we present estimation methods that are based on combining several es-
timators in different ways, for instance, by averaging or stage-wise adaptive learning.
Combining multiple learning methods to one estimator is often called ensemble learning.

7.1 Bootstrap simulation

The bootstrap simulation method goes back to Efron [35] and Efron–Tibshirani [38].
The main idea behind bootstrap is to simulate from an estimated model in order to gain
more insight. This can either be done in a parametric or in a non-parametric way. The
presentation in this section is taken from the lecture notes of Bühlmann–Mächler [20],
Chapter 5, and it is similar to Section 4.3 in Wüthrich–Merz [141].

7.1.1 Non-parametric bootstrap

We start from i.i.d. observations Y1, . . . , Yn coming from an unknown distribution function
F . Based on these observations we may construct an estimator

θ̂n = g(Y1, . . . , Yn), (7.1)

of a (real-valued, unknown but well-defined) quantity θ of interest. The function g(·) is
known and we would like to understand its properties as a function of random variables
Y1, . . . , Yn. For instance, we may want to analyze the distributional properties of θ̂n,
i.e. for measurable sets A we would like to study

P
[
θ̂n ∈ A

]
= P [g(Y1, . . . , Yn) ∈ A] =

∫
1{g(y1,...,yn)∈A}dFY (y1, . . . , yn), (7.2)

where FY is the joint (product) distribution function of the i.i.d. observations Yi ∼ F .
Since F is not known, the distributional properties of θ̂n cannot be determined. Bootstrap
replaced the unknown distribution F by the empirical distribution of the data

F̂n(x) = 1
n

n∑
i=1

1{Yi≤x},

and to simulate from this empirical distribution. This provides the following non-
parametric bootstrap algorithm.

177

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

178 Chapter 7. Ensemble Learning Methods

(Non-Parametric) Bootstrap Algorithm.

(1) Repeat for m = 1, . . . ,M

(a) simulate i.i.d. observations Y ∗1 , . . . , Y ∗n from F̂n;
(b) calculate the estimator

θ̂(m∗)
n = g(Y ∗1 , . . . , Y ∗n).

(2) Return θ̂(1∗)
n , . . . , θ̂

(M∗)
n and the corresponding bootstrap distribution

F ∗
θ̂n

(ϑ) = 1
M

M∑
m=1

1{θ̂(m∗)
n ≤ϑ}.

We may now use the bootstrap distribution F ∗
θ̂n

as an estimate of the distribution of θ̂n,
that is, in view of (7.2) we estimate

P̂
[
θ̂n ∈ A

]
= P∗

[
θ̂n ∈ A

]
= 1

M

M∑
m=1

1{θ̂(m∗)
n ∈A}. (7.3)

Remarks.

• Strictly speaking there is an intermediate step in (7.3) that is highlighted in Section
4.3.1 of [141], namely, the quality of approximation (7.3) for (7.2) depends on two
things. Firstly, on the richness of the observations Y1, . . . , Yn, because

P∗
[
θ̂n ∈ A

]
= P∗{Y1,...,Yn}

[
θ̂n ∈ A

]
.

Thus, the bootstrap probability P∗ = P∗{Y1,...,Yn} is a conditional probability, given
the data Y1, . . . , Yn. Secondly, it depends on M and the random drawings from F̂n,
however, this source of uncertainty can be controlled by the law of large numbers.

• The bootstrap distribution can be used to estimate, for instance, the mean of the
estimator θ̂n given in (7.1) which is set as

Ê
[
θ̂n
]

= E∗
[
θ̂n
]

= 1
M

M∑
m=1

θ̂(m∗)
n ,

and similarly for its variance

V̂ar
(
θ̂n
)

= Var∗
(
θ̂n
)

= 1
M

M∑
m=1

(
θ̂(m∗)
n − E∗

[
θ̂n
])2

.

• We can then ask various questions about consistency, quality of bootstrap approx-
imation, etc. We refer to Bühlmann–Mächler [20] for more details.

• Basically, the bootstrap algorithm is based on the Glivenko–Cantelli [54, 22] theo-
rem which says that for i.i.d. observations the empirical distribution F̂n converges
uniformly to the true distribution function F , see Theorem 20.6 in Billingsley [11].

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 179

7.1.2 Parametric bootstrap

The parametric bootstrap differs from its non-parametric counterpart in the sense that
we assume a given parametric distribution function F = Fθ with unknown parameter θ
for the i.i.d. observations Y1, . . . , Yn. We then use estimator

θ̂n = g(Y1, . . . , Yn), (7.4)

for the unknown (say, real-valued) parameter θ of interest.

(Parametric) Bootstrap Algorithm.

(1) Repeat for m = 1, . . . ,M

(a) simulate i.i.d. observations Y ∗1 , . . . , Y ∗n from F
θ̂n
;

(b) calculate the estimator

θ̂(m∗)
n = g(Y ∗1 , . . . , Y ∗n).

(2) Return θ̂(1∗)
n , . . . , θ̂

(M∗)
n and the corresponding bootstrap distribution

F ∗
θ̂n

(ϑ) = 1
M

M∑
m=1

1{θ̂(m∗)
n ≤ϑ},

for the estimated distribution of θ̂n.

The remainder is equivalent to the non-parametric bootstrap and the same remarks apply.

Remark. The parametric bootstrap needs some care because the chosen distribution can
be misspecified. For instance, if we assume that Y1, . . . , Yn follow a Poisson distribution
with estimated claim frequency λ̂, then one should additionally check whether the data is
not over-dispersed. If the data is over-dispersed and we work with a Poisson distribution,
we will underestimate uncertainty. This is not the case in the non-parametric bootstrap
as long as the data is a typical observation.

7.2 Bagging

Bagging goes back to Breiman [13]. It combines bootstrap and aggregating. We apply
bagging to the classification and regression trees (CART) constructed in Chapter 6. Two
main disadvantages of standardized binary splits (SBS) in the CART construction are
that they only lead to piece-wise constant estimates (because we apply rectangular splits)
and that they can be rather unstable under slight changes in the observations, i.e. a small
change in an observation may lead to a different split (possibly close to the root of the
tree). This different split may result in a completely different tree. For these reasons one
aims at constructing a whole family (ensemble) of tree estimators which should become
more stable under averaging (and aggregating). In this section we generate this family
of tree estimators by the bootstrap algorithm.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

180 Chapter 7. Ensemble Learning Methods

7.2.1 Aggregating

Before we describe bagging we would like to discuss aggregating (and averaging) of esti-
mators. We do this with the explicit Poisson model at hand. For a given estimator λ̂ of
the true frequency λ? we have the following Poisson deviance loss

D∗(N , λ̂) = 2
n∑
i=1
−Ni +Ni logNi + λ̂(xi)vi −Ni log

(
λ̂(xi)vi

)
≥ 0,

where Ni logNi = 0 for Ni = 0. For the true expected frequency λ? we obtain expected
average Poisson deviance loss over our portfolio (xi, vi)i=1,...,n

1
n

E [D∗(N , λ?)] = 2
n

n∑
i=1

E [Ni logNi]− λ?(xi)vi log (λ?(xi)vi) ≥ 0,

where the last inequality follows because y 7→ y log y is a convex function on R+. The
single terms (expected values) of this sum are illustrated in Figure 1.1. This average
Poisson deviance loss can be compared to the one obtained from the estimated frequency
λ̂. Assume that the assumptions of Proposition 1.8 are fulfilled for λ̂, and N describes
an independent copy of the data D (which has been used to estimate λ). Then we have,
see (1.12),

1
n
E
[
D∗(N , λ̂)

]
= 1
n
E [D∗(N , λ?)] + E

[
Ê(λ̂, λ?)

]
, (7.5)

with estimation loss estimate, see (1.13),

Ê(λ̂, λ?) = 1
n

n∑
i=1

2vi

[
λ̂(xi)− λ?(xi)− λ?(xi) log

(
λ̂(xi)
λ?(xi)

)]
≥ 0,

the inequality follows similar to the one in Proposition 1.8. This provides the following
corollary.

Corollary 7.1. Under the above assumptions we have

1
n

E
[
D∗(N , λ̂)

]
≥ 1

n
E [D∗(N , λ?)] .

Next we construct an aggregated estimator. We therefore assume that we can construct
i.i.d. estimators λ̂(m) (d)= λ̂, m ≥ 1, also being independent of N and fulfilling the
assumptions of Proposition 1.8. We define the aggregated estimator by

λ̄Magg(·) = 1
M

M∑
m=1

λ̂(m)(·). (7.6)

We have already met this idea in (5.28).

Proposition 7.2. Under the above assumptions we have

1
n

E
[
D∗(N , λ̂)

]
≥ 1

n
E
[
D∗(N , λ̄Magg)

]
≥ 1

n
E [D∗(N , λ?)] .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 181

Proof. The second inequality follows similarly to Corollary 7.1. For the first inequality we have (using
that λ̂(m) are i.i.d. estimators having the same distribution as λ̂)

1
n

E
[
D∗(N , λ̄Magg)

]
= 1
n

E
[
D∗(N , λ̂)

]
− 2
n

n∑
i=1

λ?(xi)vi E
[

log
(
λ̄Magg(xi)
λ̂(xi)

)]
.

Jensen’s inequality implies

E
[

log
(
λ̄Magg(xi)
λ̂(xi)

)]
≥ E

[
1
M

M∑
m=1

log λ̂(m)(xi)

]
− E

[
log λ̂(xi)

]
= 0.

This proves the claim. 2

Remarks to Proposition 7.2.

• A crucial remark is that the average bias remains unchanged by aggregation (7.6),
but the estimation variance is reduced as can be seen from Proposition 7.2 (this
is basically explained by the law of large numbers and the central limit theorem).
Thus, aggregation (and averaging) has the nice effect of reducing the estimation
uncertainty. The only open question is how to construct i.i.d. estimators λ̂(m). This
is discussed next.

• If additionally we know that λ̂ is unbiased for λ?, then the law of large numbers
will imply that the aggregated estimator converges a.s. to the true λ? as M →∞,
and a central limit type theorem provides that the rate of convergence is of order√
M . Additionally, a convergence result can be proved for the expected deviance

losses. For more details we refer to Richman–Wüthrich [111].

7.2.2 Bagging for Poisson regression trees

Assume that we have Poisson observations D, see (2.3), and that we have determined the
regression tree estimator λ̂(x) according to Sections 6.1 and 6.2. We can then use this
estimated expected frequency to apply the parametric bootstrap algorithm of Section
7.1.2 to receive estimators for aggregating, i.e. we combine bootstrap and aggregating in
the following algorithm.1

Bagging for Poisson Regression Trees.

(1) Repeat for m = 1, . . . ,M

(a) simulate independent observations for i = 1, . . . , n

N∗i ∼ Poi(λ̂(xi)vi); (7.7)

(b) calculate the regression tree estimator x 7→ λ̂(m∗)(x) from these bootstrap
observations D∗ = {(N∗1 ,x1, v1), . . . , (N∗n,xn, vn)}.

1Note that for the regression tree estimators λ̂ we use the credibility estimators (6.8). These are
strictly positive if λ̄0 > 0.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

182 Chapter 7. Ensemble Learning Methods

(2) Return the bagging estimator

x 7→ λ̂MBag(x) = 1
M

M∑
m=1

λ̂(m∗)(x).

Remarks.

• In the bagging algorithm above we assume that we always choose the same portfolio
(xi, vi)i=1,...,n. Of course, we could also resample the corresponding portfolio from
its empirical distribution (drawing with replacements).

• The bagging estimator λ̂MBag(·) is a sample estimator approximation to λ̂(·), using
the bootstrap samples λ̂(m∗)(·), m = 1, . . . ,M . In particular, we have

λ̂MBag(·) = λ̂(·) +
(
λ̂MBag(·)− λ̂(·)

)
,

where the second term is the bootstrap bias. It (usually) turns out that the bagging
estimator has a smaller variance (compared to the original tree estimator) at the
cost of an additional bias λ̂MBag(x) − λ̂(x). This is in the spirit of Proposition
7.2, however, we cannot do an exact statement here because we only simulate
(bootstrap) from an estimated model.

• The Bagging for Poisson Regression Trees algorithm uses a parametric bootstrap
in (7.7). A non-parametric version would use sampling with replacements directly
from the data D. The latter may be advantageous if the bias in λ̂ is too large (due
to a tree that was chosen too small) or if the resulting regression structure shows
too much over-dispersion in the data, i.e., if the regression structure cannot explain
the data up to a noise term of unit variance.

• We conclude that bagging is mainly a variance reduction technique and, for the
moment, it is not clear whether it also improves the Poisson deviance loss.

Example 7.3 (Aggregating and bagging). We revisit the regression tree example con-
sidered in Table 6.4.

E [D∗(N , λ2)] /n E[Ê(λ2, λ?)]
(1) true frequency λ2 = λ? 27.7013 0.0000
(2) estimated frequency λ2 = λ̂ from Tmin 28.0774 0.3762
(3) estimated frequency λ2 = λ̄5

agg 27.9101 0.2088
(4) estimated frequency λ2 = λ̂5

Bag 28.0645 0.3632
(5) estimated frequency λ2 = λ̂10

Bag 28.0512 0.3499

Table 7.1: Bagging results for the synthetic example given in Appendix A; in 10−2.

Line (1) of Table 7.1 gives the expected average Poisson deviance loss E [D∗(N , λ?)] /n
w.r.t. the true frequency λ? as chosen in Appendix A. This value is obtained numerically

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 183

by Monte Carlo simulation of N from the true model on our given portfolio, see Figure
A.3 (rhs). We note that this expected value of 27.7013 · 10−2 is slightly smaller than the
one of the selected observation given by 27.7278 · 10−2, see Table 6.4.
On line (2) of Table 7.1 we calculate the i.i.d. regression tree estimators λ̂(m) from
i.i.d. samplesN (m), m ≥ 1, using the true model of Appendix A. To construct the regres-
sion tree estimators we use exactly the same cost-complexity parameter cp = 8.217 ·10−5

as has been used to receive the minimum cross-validation error tree Tmin on line (Ch6.2)
of Table 6.4. This allows us to empirically calculate the estimation error E[Ê(λ̂, λ?)] of
this regression tree estimator. The expected average Poisson deviance loss is then esti-
mated from (7.5) and using line (1) of Table 7.1. The estimation error of 0.3762 · 10−2 is
very similar to the one of the selected sample given on line (Ch6.2) in Table 6.4. Thus,
our tree Tmin seems to be a typical one. Moreover, the stratified 10-fold cross-validation
error of 28.1388 · 10−2 matches well 28.0774 · 10−2 which expresses that cross-validation
works properly here.
On line (3) of Table 7.1 we perform the same analysis as on line (2) except that we
replace the i.i.d. regression tree estimators λ̂(m) by i.i.d. aggregated estimators λ̄5,k

agg =
1
5
∑5
m=1 λ̂

((k−1)5+m), k ≥ 1, to estimate the aggregated figures w.r.t. λ̄5
agg (for M =

5) empirically. As suggested by Proposition 7.2, we receive (clearly) better results by
aggregation, in fact, the results are competitive with the neural network results, see
Table 6.4. Unfortunately, this positive result is not of practical use, not knowing the true
regression function λ? we cannot sample i.i.d. estimators λ̄5,k

agg. Therefore, this method
remains intractable.
Finally, lines (4)-(5) of Table 7.1 show the bagging estimators for M = 5, 10. To receive
them, we replace the i.i.d. samples N (m), m ≥ 1, from the true regression function λ? by
i.i.d. boostrap samples N (m∗), m ≥ 1, from the estimated regression function λ̂ (using
the minimum cross-validation error tree Tmin of line (Ch6.2) of Table 6.4), see also (7.7)
for bootstrapping. The remaining steps are done completely analogously to the steps on
lines (3) and (2) of Table 7.1. Bagging leads to a small improvement in Poisson deviance
loss compared to the tree estimator on line (2). However, the reduction is comparably
small which suggests that the estimation error term is dominated by the estimation bias
in the tree estimator λ̂ used for bootstrapping. �

From the previous example we see that bagging leads in our example only to a small
improvement (if at all). This may come from the fact that bootstrapping from the tree
estimator λ̂ is too static, i.e. for every bootstrap sample we use the same origin and the
same information (and hence the same (expected) bias). We conclude that bagging is
not very helpful in our problem.

7.3 Random forests

Random forests are motivated by the fact that the bagging algorithm presented in the
previous section is too static and it does not really lead to (much) improvement and
bias reduction. This deficiency may be eliminated by growing a very large tree (which
typically leads to a smaller bias) and then applying a more noisy bootstrap on this large
tree. If we average over sufficiently many noisy bootstrap samples (similarly to bagging)

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

184 Chapter 7. Ensemble Learning Methods

we should still get a small estimation variance. This is the basic idea behind random
forests which goes back to Breiman [14].
We construct a very large tree T and a tree estimator λ̂, respectively, based on the original
data D. From this very large tree estimator we simulate (parametric) bootstrap samples
according to (7.7). These bootstrap samples then serve as observations to construct
binary regression trees. However, for each standardized binary split (SBS) decision we
choose at random a fixed number q? of feature components on which we base the split
decisions. Typically, 1 ≤ q? < q, and as a consequence we may miss the optimal split
because we do not consider all feature components.

Poisson Random Forest with 1 ≤ q? ≤ q.

(0) Choose 1 ≤ q? ≤ q fixed.

(1) Repeat for m = 1, . . . ,M

(a) simulate independent observations for i = 1, . . . , n

N∗i ∼ Poi(λ̂(xi)vi); (7.8)

(b) calculate a SBS regression tree estimator x 7→ λ̂(m,q?)(x) from these bootstrap
observations D∗ = {(N∗1 ,x1, v1), . . . , (N∗n,xn, vn)}, where for each SBS deci-
sion in (6.11) and (6.13), respectively, we first choose at random q? feature
components of x on which the SBS split decision is based on.

(2) Return the random forest estimator

x 7→ λ̂MRF(x) = 1
M

M∑
m=1

λ̂(m,q?)(x). (7.9)

Remarks.

• Observe that the Poisson Random Forest algorithm differs from the Bagging for
Poisson Regression Tree algorithm as soon as q? < q, because in this case we may
miss the optimal split if it is not among the q? feature components selected. This
leads to more noisy trees and averaging smooths out this noise.

• Often, one chooses q? ≤ √q or q? = q/3.

• In (7.8) we use a parametric bootstrap, a non-parametric bootstrap would be
achieved by using sampling with replacements directly from the observations.

• If the bias is still (too) large, one may choose a bigger tree. However, this question
can typically not be answered in a satisfactory manner because usually the best
tree model is not known.

• Choosing features at random may also help to break colinearity between feature
components (decorrelate trees).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 185

• Another interesting analysis is to study which feature component has been chosen
how often in the random forest algorithm, and how much these splits decrease
the deviance loss. This provides a measure of variable importance which may be
illustrated in plots like Figure 17.5 in Efron–Hastie [37].

Example 7.4 (Random forests). We continue our MTPL example considered in Table
6.4. The Poisson deviance loss version of the random forest algorithm is implemented in
the R package rfCountData. The corresponding R code is given in Listing 7.1.

Listing 7.1: R command rfPoisson
1 library (rfCountData)
2
3 rf <- rfPoisson (x=dat[,c(" age ","ac"," power "," gas "," brand "," area "," dens ","ct ")] ,
4 offset =log(dat$expo), y= dat$claims ,
5 ntree =10 , mtry =3, replace =TRUE , nodesize =1000)
6
7 print (rf)
8 plot(rf)
9 dat$predRF <- predict (rf , offset =log(dat$expo), newdata =dat)

Lines 3-4 specify the features x, the years at risk v as log-offsets, and the responses
N . ntree denotes the number M of bootstrapped trees, mtry gives the number q? of
feature components considered, and replace determines whether the drawing of cases
should be done with our without replacements. Note that rfPoisson is based on a
non-parametric bootstrap as it has been introduced by Breiman [14]. That is, (7.8) is
replaced by drawings with or without replacements; on the non-selected samples the
algorithm calculates an out-of-bag generalization loss, which is reported in Figure 7.1.
Finally, nodesize determines the minimal number of cases in each leaf the tree estimators
λ̂(m,q?) should contain.
In Table 7.2 we consider three different parametrizations of random forests: RF1 has
M = 10 and nodesize = 10′000, RF2 has M = 10 and nodesize = 1′000, and RF3
has M = 100 and nodesize = 1′000. Thus, random forest RF1 is based on M = 10
comparably small tree estimators λ̂(m,q?) having in each leaf at least 10’000 cases. For
random forest RF2 we decrease this number to 1’000 cases per leaf. From Figure 6.5
we know that these large trees tend to over-fit to the data. Averaging (7.9) should take
care of this over-fitting, for RF2 we average over M = 10 tree estimators and for RF3
we average over M = 100 tree estimators.
From random forest estimate RF1 in Table 7.2 we observe that too small trees, i.e. too
big values for nodesize, do not provide competitive models. However, increasing the
size of the trees provides remarkably good predictive results. The two random forest
estimates RF2 and RF3 are on a similar level as the neural network approaches in terms
of estimation losses Ê(λ̂, λ?).
The difficulty with the large trees in RF2 and RF3 are the computational times. The
construction of one such big tree takes roughly 60 seconds in the implementation of
rfPoisson, thus, if averaging over M = 100 tree estimators takes roughly 1.5 hours.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

186 Chapter 7. Ensemble Learning Methods

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.4) CANN1 28s 703 27.9292 27.9362 0.2284 27.8940 10.1577%
(Ch5.5) CANN2 27s 780 27.9306 27.9456 0.2092 27.8684 10.2283%
(Ch5.2) DNN2 123s 703 27.9235 27.9545 0.1600 27.7736 10.4361%
(Ch5.3) DNN3 125s 780 27.9404 27.9232 0.2094 27.7693 9.6908%
(Ch5.7) blended DNN – – – – 0.1336 27.6939 10.2691%
(Ch6.2) Tree2 Tmin 65s 71 – 28.1388 0.3748 27.9156 10.2570%
(Ch7.1) RF1 60s – 28.1375† – 0.3642 28.0153 10.1901%
(Ch7.2) RF2 594s – 28.2135† – 0.2944 27.3573 10.0628%
(Ch7.3) RF3 5’931s – 27.9808† – 0.2256 27.2942 10.0863%

Table 7.2: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; † correspond to out-
of-bag losses; losses are reported in 10−2; run time gives the time needed for model
calibration, and ’# param.’ gives the number of estimated model parameters, this table
follows up from Table 6.4.

0.280

0.282

0.284

0 25 50 75 100

trees

M
ea

n
P

oi
ss

on
 D

ev
ia

nc
e

Out−of−bag

Figure 7.1: Decrease of out-of-bag losses in the random forest algorithm for trees of
minimal leaf size of nodesize = 1′000.

In Figure 7.1 we plot the out-of-bag generalization losses on the not-selected samples in
the bootstrap iterations. This plot suggests that the predictive model can further be
improved by using more iterations M in the random forest algorithm. We conclude that
random forests give powerful predictors, however, at rather high computational costs (in
the current implementation). This finishes the example. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 187

7.4 Boosting machines

Boosting is an iterative method that aims at combining many weak predictions into
one powerful one. The underlying mechanism is completely different from bagging and
random forests, namely, boosting aims at minimizing the in-sample loss by a stage-
wise adaptive learning algorithm. Its roots go back to Valiant [128] and Kearns–Valiant
[79, 80]. Schapire [118], Freund [44] and Freund–Schapire [45] popularized the method
by presenting the AdaBoost algorithm and by providing rigorous results. This chapter
is based on Chapter 10 of Hastie et al. [62].

7.4.1 Generic gradient boosting machine

Assume we are given an objective function L(·) and we aim at minimizing the in-sample
loss over the (learning) sample D. That is, we try to solve

f̂ = argmin
f

1
n

n∑
i=1

L (Yi, f(xi), vi) , (7.10)

where we restrict this optimization over a well-specified family of functions f . Observe
that optimization (7.10) only specifies the function f : X → R in the feature values
x1, . . . ,xn ∈ X . This implies that the above optimization problem can be replaced by
trying to find optimal parameters f = (f1, . . . , fn)′ = (f(x1), . . . , f(xn))′ ∈ Rn that
minimize the in-sample loss

Lis
L(f) = 1

n

n∑
i=1

L (Yi, fi, vi) = 1
n

n∑
i=1

L (Yi, f(xi), vi) . (7.11)

The saturated model would provide a minimal in-sample loss, but the saturated model
leads to over-fitting. This is exactly the reason for introducing smoothness and regularity
conditions on f in Chapter 3 on GAMs, see (3.7)-(3.8), where we restrict to natural cubic
splines with multiplicative interactions (by using the log-link) for f .
In general, a non-trivial global solution to (7.10) is not feasible. Here, we solve the
problem by restricting to another specific class of predictors (and functions), namely, we
will consider regression tree functions with a given small number of leaves. Therefore, we
design an algorithm that locally improves the situation in each iteration. This is exactly
what the gradient boosting machine (GBM) is designed for. The GBM was developed in
Friedman [46, 47], we also refer to Ridgeway [112] that serves the purpose of describing
the corresponding implementation in R of the package gbm.
In a nutshell, assume that we have found a minimizer f̂m−1(·) w.r.t. (7.10), where the
minimization has been performed over a (small) family of admissible functions. In a next
step, we may try to adaptively improve this estimator by considering the optimization
problem

ĝm = argmin
g∈Gm

1
n

n∑
i=1

L
(
Yi, f̂m−1(xi) + g(xi), vi

)
, (7.12)

where we restrict this optimization to sufficiently simple functions Gm ⊃ {g ≡ 0}. This
then provides an improved estimator f̂m = f̂m−1 + ĝm. Iteration of these optimizations
(7.12) for m ≥ 1 will stage-wise adaptively improve an initial (weak) learner f̂0. This

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

188 Chapter 7. Ensemble Learning Methods

idea has already been presented in Section 5.1.4 on the CANN approach where we have
started from a GLM estimator. This GLM estimator f̂0 has been boosted in the sense of
(7.12) by allowing for neural network features in ĝ1.

Recall that optimization (7.10) is only specified in the observed features xi, see (7.11).
Assume that in the (m − 1)-st step of the optimization algorithm we have found values
in xi given by fm−1 = (fm−1,1, . . . , fm−1,n)′ ∈ Rn that provide in-sample loss

Lis
L(fm−1) = 1

n

n∑
i=1

L (Yi, fm−1,i, vi) .

In the next step, we perturb fm−1 locally so that it leads to a maximal local decrease
in in-sample loss. This provides the next value fm of the algorithm. Assume that the
loss function L(·) is sufficiently smooth. The gradient ∇Lis

L(fm−1) indicates the locally
biggest decrease in in-sample loss. This gradient is given by

∇Lis
L(fm−1) = 1

n

(
∂L(Y1, f, v1)

∂f

∣∣∣∣
f=fm−1,1

, . . . ,
∂L(Yn, f, vn)

∂f

∣∣∣∣
f=fm−1,n

)′
∈ Rn.

The first order Taylor expansion around fm−1 provides

Lis
L (f) = Lis

L

(
fm−1

)
+∇Lis

L(fm−1)′
(
f − fm−1

)
+ o(‖f − fm−1‖),

as ‖f − fm−1‖ → 0. If we choose a (small) step of size % > 0 we have locally optimal
first order update

fm−1 → fm−1 − %∇Lis
L(fm−1). (7.13)

This provides first order approximation to the in-sample loss in the updated estimate

Lis
L

(
fm−1 − %∇Lis

L(fm−1)
)

= Lis
L(fm−1)− %

∥∥∥∇Lis
L(fm−1)

∥∥∥2
+ o(%), (7.14)

as % → 0. Thus, we see that update (7.13) provides locally the biggest improvement in
in-sample loss. This is completely analogous to the steepest gradient descent step given
in (5.11). The optimal step size %m > 0 is then found by

%m = argmin
%>0

Lis
L

(
fm−1 − %∇Lis

L(fm−1)
)
.

This provides locally optimal first order update

fm−1 → fm = fm−1 − %m∇Lis
L(fm−1),

and we iterate this algorithm. This update is exactly in the spirit of (7.12) and motivates
the following generic GBM.

(Generic) Gradient Boosting Machine (GBM).

(0) Initialize the constant function f̂0(x) = %0 = argmin
%

∑n
i=1 L (Yi, %, vi).

(1) Repeat for m = 1, . . . ,M

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 189

(a) calculate the working responses Rm,i, i = 1, . . . , n,

Rm,i = − ∂L(Yi, f, vi)
∂f

∣∣∣∣
f=f̂m−1(xi)

;

(b) fit a regression model ĝm : X → R to the working responses (Rm,i)i=1,...,n
having corresponding features and volumes (xi, vi)i=1,...,n;

(c) compute the optimal step size

%m = argmin
%>0

1
n

n∑
i=1

L
(
Yi, f̂m−1(xi) + %ĝm(xi), vi

)
;

(d) update
f̂m−1(x) → f̂m(x) = f̂m−1(x) + %mĝm(x). (7.15)

(2) Return estimator x 7→ f̂(x) = f̂M (x).

Remarks to the generic GBM.

• Step (1a): Observe that the scaled working responses (Rm,i/n)i=1,...,n exactly corre-
spond to the components of the negative gradient −∇Lis

L(f̂m−1(x1), . . . , f̂m−1(xn)).
Thus, these working responses provide the locally optimal direction for the update.

• Step (1b): In the update (7.13) we optimize over all observed values (fm−1,i)i. This
is changed in step (1b) of the generic GBM for the following two reasons: (i) we
would like to fit a function ĝm : X → R that is defined on the entire feature space
X (and not only in the observed feature values x1, . . . ,xn); and (ii) we do not want
over-fitting. Therefore, we rather fit a “lower-dimensional” regression model ĝm to
these working responses (and we do not choose the saturated improvement). More
illustration to this step is provided in the Poisson case below.

• Step (1d): We receive potential over-fitting if the number of iterations M in the
generic GBM is chosen too large. To prevent from this kind of over-fitting, often a
smaller step size is executed in (7.15): choose fixed shrinkage constant α ∈ (0, 1)
and define the shrinkage updates

f̂m−1(x) → f̂m(x) = f̂m−1(x) + α%mĝm(x). (7.16)

Regression step (1b) in the gradient boosting machine

Step (1b) of the GBM requires fitting a regression model ĝm : X → R to the working
responses (Rm,i,xi, vi), i = 1, . . . , n. Observe that the optimal first order direction is,
see (7.14),

−n∇Lis
L(fm−1) = (Rm,1, . . . , Rm,n)′ .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

190 Chapter 7. Ensemble Learning Methods

We try to optimally approximate this direction by selecting the optimal regression func-
tion ĝm : X → R within the family Gm of admissible regression functions on X . The
optimal L2-distance approximation in step (1b) is given by

ĝm = argmin
gm∈Gm

1
n

n∑
i=1

(Rm,i − gm(xi))2 . (7.17)

Thus, if we approximate direction −n∇Lis
L(fm−1) by ĝm = (ĝm(x1), . . . , ĝm(xn))′ ∈ Rn

we obtain for (7.14) approximation, as %→ 0,

Lis
L

(
fm−1 + %ĝm

)
= Lis

L(fm−1) + %∇Lis
L(fm−1)′ĝm + o(%)

≈ Lis
L(fm−1)− % ‖ĝm‖

2 /n.

From this we see that the regression step (1b) results in finding the L2-optimal regression
function ĝm : X → R in (7.17) that is close to the working responses. In particular, we use
the square loss function (residual sum of squares) for this step of the generic GBM. For
an other (more consistent) approach we refer to the next section on Poisson regression.

Remarks. The family Gm of admissible functions in (7.17) is often chosen to be the
family of regression tree functions with a given small number of leaves. Having only a
small number of leaves improves the regression function (7.15) in each stage-wise adaptive
step weakly, and combining many weak learners typically leads to a powerful regression
function f̂ = f̂M .

7.4.2 Poisson regression tree boosting machine

The generic GBM is a bit artificial in the Poisson case with the Poisson deviance loss as
objective function. Steps (1a)-(1d) aim at locally improving the in-sample loss by stage-
wise adaptive adding a new basis function ĝm to f̂m−1. This is done via the gradient of
the objective function so that the optimal first order Taylor expansion can be studied. In
the following Poisson case we can consider these steps directly. Assume that the functions
f play the role of the logged frequency log λ. Suppose f̂m−1 has been constructed and
we consider the (stage-wise adaptive) in-sample loss optimization (set step size % = 1)

ĝm = argmin
gm∈Gm

1
n

n∑
i=1

L

(
Yi, e

f̂m−1(xi)+gm(xi), vi

)
, (7.18)

for a given family Gm of admissible regression functions on X . This in-sample loss is for
the Poisson deviance loss function given by

D∗
(
N , ef̂m−1+gm

)
=

n∑
i=1

2Ni

vief̂m−1(xi)+gm(xi)

Ni
− 1− log

vief̂m−1(xi)+gm(xi)

Ni

=

n∑
i=1

2Ni

[
w

(m)
i egm(xi)

Ni
− 1− log

(
w

(m)
i egm(xi)

Ni

)]

=
n∑
i=1

L
(
Yi, e

gm(xi), w
(m)
i

)
,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 191

with working weights for i = 1, . . . , n given by

w
(m)
i = vie

f̂m−1(xi). (7.19)

From this we conclude that optimization problem (7.18) is in our Poisson case with
deviance loss equivalent to solving

ĝm = argmin
gm∈Gm

1
n

n∑
i=1

L
(
Yi, e

gm(xi), w
(m)
i

)
, (7.20)

for a given family Gm of admissible regression functions on X . Thus, in every step of the
Poisson boosting machine we receive updated working weights (w(m)

i)i=1,...,n, playing the
role of the volumes in the Poisson model, and replacing the role of the working responses
in the boosting machine. This is not surprising because it is exactly what we have been
using in (5.23)-(5.24) for boosting a GLM with neural network features in the Poisson
case, that is, the logarithm of the working responses play the role of fixed offsets that are
enhanced by a next regression model/boosting step.

This motivates iterative solutions of regression problems. For binary tree regressions this
results in the following stage-wise adaptive learning algorithm. We set for the stage-wise
adaptive improvements log µ̂m = ĝm.

Poisson Regression Tree Boosting Machine.

(0) Initialization:

(a) choose J ≥ 2 and α ∈ (0, 1] fixed;
(b) set homogeneous overall MLE f̂0(x) = log λ̂0(x) = log (

∑n
i=1Ni/

∑n
i=1 vi).

(1) Repeat for m = 1, . . . ,M

(a) set working weights w(m)
i according to (7.19) and consider the working data

D(m) =
{(
N1,x1, w

(m)
1

)
, . . . ,

(
Nn,xn, w

(m)
n

)}
;

(b) construct a SBS Poisson regression tree estimator

x 7→ µ̂m(x) =
∑

t∈T (m)

µ̄
(m)
t 1{x∈X (m)

t }, (7.21)

with |T (m)| = J leaves for the working data D(m), see Section 6.1 and (6.1);
(c) update the estimator

f̂m−1(x) → f̂m(x) = f̂m−1(x) + αĝm(x) (7.22)
= f̂m−1(x) + α

∑
t∈T (m)

log(µ̄(m)
t) 1{x∈X (m)

t }.

(2) Return the expected frequency estimator

x 7→ λ̂(x) = exp
{
f̂M (x)

}
.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

192 Chapter 7. Ensemble Learning Methods

Remarks on the Poisson Regression Tree Boosting Machine.

• In steps (1a)-(1c) we directly study the optimal local improvement (without con-
sidering an approximation to the first order Taylor expansion). Local is meant here
in the sense that we disturb the previous solution f̂m−1(·), which is included in the
working weights (w(m)

i)i=1,...,n.

• In step (1b) we choose a SBS regression tree estimator for updating the fit. Of
course, we could choose any other regression method here. Importantly, we fix the
number of leaves J ≥ 2 in advance, i.e. we do not aim for the optimal tree here.
This J should not be chosen too large for several reasons:

– speed of calculations (in each iteration m = 1, . . . ,M),
– over-fitting, i.e. in general we are only looking for small or moderate improve-

ments in each step, otherwise we obtain over-fitting and too wildly looking
functions. Over-fitting can also be tuned by choosing an appropriate shrink-
age constant α < 1.

• The boosting machine is of particular interest for model back-testing. If we have
an existing model λ̂m(·) = exp{f̂m(·)}, then the boosting step analyzes whether
we should additionally scale this model with a function µ̂m+1(·) different from 1.
This idea is illustrated in more detail in a mortality modeling example in Deprez
et al. [32].

• The Poisson regression tree boosting machine can be generalized to other distribu-
tions such the exponential dispersion family, see Lee–Lin [86].

• The SBS Poisson regression tree estimator in step (1b) is called exact greedy algo-
rithm because it looks for the best possible split among all SBSs. It has been noticed
that this can be very time consuming, in particular, if we have many categorical
feature components (we also refer to the run times of the random forests in Table
7.2). Meanwhile there are other algorithms that, in particular, can handle cate-
gorical variables and sparse data (from one-hot encoding) more efficiently. A very
powerful algorithm is XGBoost developed by Chen–Guestrin [26] that overcomes
several issues, we refer to Ferrario–Hämmerli [42].

Example 7.5 (trees of depth 1). We consider the Poisson regression tree boosting ma-
chine with J = 2 leaves. That is, every stage-wise adaptive learner in (7.21) has exactly
one SBS ς0 = (X (m)

00 ,X (m)
01) of the entire feature space X0 = X . Thus, in view of (6.4) we

consider for each iteration m = 1, . . . ,M the optimizations

min
ς0=(X (m)

00 ,X (m)
01)

D∗
X (m)

00

(
N , µ̄

(m)
00

)
+D∗

X (m)
01

(
N , µ̄

(m)
01

)
,

where for τ = 0, 1 we have MLEs

µ̄
(m)
0τ =

∑
i: xi∈X (m)

0τ
Ni∑

i: xi∈X (m)
0τ

w
(m)
i

=

∑
i: xi∈X (m)

0τ
Ni∑

i: xi∈X (m)
0τ

vief̂m−1(xi)
,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 193

and the corresponding Poisson deviance losses are given by

D∗
X (m)

0τ

(
N , µ̄

(m)
0τ

)
=

∑
i: xi∈X (m)

0τ

2Ni

 µ̄(m)
0τ vie

f̂m−1(xi)

Ni
− 1− log

 µ̄(m)
0τ vie

f̂m−1(xi)

Ni

 .
The optimal SBS ς0 = (X (m)

00 ,X (m)
01) selects one feature component xl of x for this split

and, thus, adds one “rectangular” split to X . In Figure 7.2 we illustrate these rectangular
splits for M = 3 iterations on a feature space X ⊂ [−1, 1]2 of dimension q = 2.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

boosting machine with M=3 and J=2

feature component x_1

fe
at

ur
e

co
m

po
ne

nt
 x

_2

iteration 1
iteration 2
iteration 3

Figure 7.2: Poisson regression tree boosting with J = 2 illustrating M = 3 iterations.

Let us assume that the optimal SBS in iteration m is w.r.t. the (continuous) feature
component xl∗m . Moreover, assume that it corresponds to the split question xl∗m ≤ c∗m,
see Section 6.1.2. This then implies that we obtain multiplicative structure

λ̂m(x) = ef̂m(x) = λ̂m−1(x)
(
µ̄

(m)
00 1{xl∗m≤c

∗
m} + µ̄

(m)
01 1{xl∗m>c

∗
m}
)
.

From this we see that in the special case J = 2 we obtain multiplicative correction factors
which depend on one single feature component only. Thus, we have

λ̂M (x) = λ̂0(x)
M∏
m=1

(
µ̄

(m)
00 1{xl∗m≤c

∗
m} + µ̄

(m)
01 1{xl∗m>c

∗
m}
)

= λ̂0(x)
M∏
m=1

q∏
l=1

exp
{(

log(µ̄(m)
00)1{xl≤c∗m} + log(µ̄(m)

01)1{xl>c∗m}
)
1{l∗m=l}

}

= λ̂0(x)
q∏
l=1

exp
{

M∑
m=1

(
log(µ̄(m)

00)1{xl≤c∗m} + log(µ̄(m)
01)1{xl>c∗m}

)
1{l∗m=l}

}
.

This identity illustrates that we receive a multiplicative structure in the case J = 2.
This is also nicely illustrated in Figure 7.2. We conclude that for trees of depth 1 we
expect the Poisson regression tree boosting machine to have a similar performance as
GLMs and GAMs because it (only) allows for multiplicative interactions. For more
complex interactions we have to consider more deep SBS regression trees. This finishes
this example. �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

194 Chapter 7. Ensemble Learning Methods

Example 7.6 (regression trees, boosting machines and neural networks). In this example
we consider regression trees, boosting machines and neural networks on a feature space
X = [−1, 1]2 of dimension q = q0 = 2. For the neural networks we choose the step
function activation which makes them directly comparable to regression trees.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

regression tree with 3 standardized binary splits

feature component x_1

fe
at

ur
e

co
m

po
ne

nt
 x

_2

split 1
split 2
split 3

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

boosting machine with M=3 and J=2

feature component x_1

fe
at

ur
e

co
m

po
ne

nt
 x

_2

iteration 1
iteration 2
iteration 3

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

shallow neural network with q=3

feature component x_1

fe
at

ur
e

co
m

po
ne

nt
 x

_2

neuron 1
neuron 2
neuron 3

Figure 7.3: (lhs) SBS split regression tree with 3 splits, (middle) Poisson boosting ma-
chine with M = 3 and J = 2, (rhs) shallow neural network with q1 = 3 hidden neurons
and step function activation.

We start by comparing the Poisson regression tree boosting machine with one split (J =
2) and M iterations to a shallow neural network (of depth d = 1) having q1 = M hidden
neurons. These two regression models are illustrated in Figure 7.3 (middle and rhs) for
q1 = M = 3. In Example 7.5 we have seen that regression tree boosting machines with
J = 2 leaves remain in the family of multiplicative models. Shallow neural networks are
more general because they allow for splits in any direction, compare Figure 7.3 (middle
and rhs). This additional flexibility allows for non-multiplicative interactions and, in
fact, the universality theorems on page 105 tell us that these shallow neural networks
can approximate a large class of functions if we increase the number of hidden neurons
q1 sufficiently.

Increasing the number of hidden neurons q1 in a shallow neural network means growing
this network in width. On page 116 we have demonstrated that this growing in width may
not be very efficient for capturing certain types of interactions, therefore, neural networks
should be grown simultaneously in width and depth d to efficiently approximate any type
of regression function.

The same can be said for the Poisson regression tree boosting machine. In Figure 7.3 (lhs)
we illustrate a SBS regression tree with 3 splits, i.e. having J = 4 leaves. Observe that this
provides us with a rather complex non-multiplicative interaction in the regression function
for the components x1 and x2 because the second and third splits do not split across
the entire feature space axes, i.e. are non-multiplicative. This complexity is similar to
growing a neural network in depth, see (5.16) for an example. The Poisson regression tree
boosting machine with J = 4 leaves multiplies (for m ≥ 1) such non-trivial partitions of
the type in Figure 7.3 (lhs) which indicates that we may construct very flexible regression
functions by iterating the boosting machine for m ≥ 1 (and for J > 2). �

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 195

7.4.3 Example in motor insurance pricing, revisited

The GBM is implemented in the R package gmb. In Listing 7.2 we provide a short
regression tree boosting algorithm that is based on the R package rpart.

Listing 7.2: Poisson regression tree boosting machine
1 d <- 2 # depth of tree
2 M <- 100 # iterations
3 alpha <- 1 # shrinkage constant
4
5 dat$fit <- dat$expo * sum(dat$claims)/ sum(dat$expo)
6
7 for (m in 1:M){
8 tree <- rpart (claims ~ age + ac + power + gas + brand + area + dens + ct
9 + offset (log(fit)),

10 data=dat , method =" poisson ", parms =list(shrink =1) ,
11 control = rpart . control (xval =1, minbucket =1000 , cp =0.000001 ,
12 maxdepth =d, maxsurrogate =0))
13 dat$fit <- predict (tree)^ alpha * dat$fit
14 }

Note that the R command rpart uses the variable maxdepth=d (depth of tree) to deter-
mine the size of the tree instead of the number of leaves J . If we use d = 1 the tree
will have exactly 2 leaves, trees of depth d = 2 can have either 3 or 4 leaves, the explicit
number will depend on the cost-complexity parameter cp on line 11 in Listing 7.2 (and
also on the choice of minbucket). The variables xval and maxsurrogate are chosen such
that run time is minimized.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=1, alpha=1)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=2, alpha=1)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=3, alpha=1)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

Figure 7.4: Decrease in estimation loss Ê(λ̂, λ?) of the Poisson regression tree boosting
machine estimators over M = 100 iterations of trees of depths d ∈ {1, 2, 3} (lhs, middle,
rhs) and shrinkage constant α = 1.

We run the Poisson regression tree boosting machine of Listing 7.2 on our MTPL data
considered in the previous examples. We chooseM = 100 iterations, we set the shrinkage
constant α = 1 and we choose trees of depths d ∈ {1, 2, 3}. The resulting estimation losses
Ê(λ̂, λ?) are presented in Figure 7.4. The plot on the lhs shows the results for trees of
depth d = 1. As discussed in Example 7.5, this Poisson regression tree boosting machine
can only model multiplicative interactions and, indeed, the corresponding estimation
loss converges to the one of the GAM (blue horizontal line) as we increase the number

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

196 Chapter 7. Ensemble Learning Methods

of iterations M . Thus, this Poisson regression tree boosting machine is not competitive
because it does not allow for non-multiplicative interactions.
In Figure 7.4 (middle, rhs) we show the results of the Poisson regression tree boosting
machine for trees of depths d = 2, 3. We note that these configurations start to be
competitive with the neural network and random forest approaches (magenta and green
horizontal lines). We also see that the model with trees of depth d = 3 starts to over-fit
after M = 20 iterations.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=3, alpha=0.75)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=3, alpha=0.5)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=3, alpha=0.25)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

Figure 7.5: Decrease in estimation loss Ê(λ̂, λ?) of the Poisson regression tree boosting
machine estimators over M = 100 iterations of trees of depth d = 3 and shrinkage
constants α ∈ {0.75, 0.5, 0.25} (lhs, middle, rhs).

In Figure 7.5 we plot the same graphs of the estimation losses Ê(λ̂, λ?) of the Poisson
regression tree boosting machine for trees of depth d = 3 and for different shrinkage
constants α ∈ {0.75, 0.5, 0.25} (lhs, middle, rhs). For a shrinkage constant of α = 0.25,
i.e. only a moderate change of the previous estimator in (7.22), we do not receive over-
fitting over the first M = 100 iterations. Moreover, the resulting boosted regression tree
estimator outperforms all regression tree estimators we have met so far. We call this
model PBM1, and the corresponding results are reported in Table 7.3.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=4, alpha=0.25)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Poisson boosting (d=4, alpha=0.1)

iterations

es
tim

at
io

n
lo

ss

Poisson boosting
model GAM3
model DNN2
model RF3

Figure 7.6: Decrease in estimation loss Ê(λ̂, λ?) of the Poisson regression tree boosting
machine estimators over M = 100 iterations of trees of depth d = 4 and shrinkage
constants α ∈ {0.25, 0.1} (lhs, rhs).

Figure 7.6 shows the analogous results of the Poisson regression tree boosting machine

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 197

for trees of depth d = 4 and α ∈ {0.25, 0.1} (lhs, rhs). This configuration provides an
even better performance for shrinkage constant α = 0.1, however, at a higher run time.
We call this latter model PBM2, and the corresponding results are reported in Table 7.3.

run # CV loss strat. CV est. loss in-sample average
time param. LCV

D LCV
D Ê(λ̂, λ?) Lis

D frequency
(ChA.1) true model λ? 27.7278 10.1991%
(Ch1.1) homogeneous 0.1s 1 29.1066 29.1065 1.3439 29.1065 10.2691%
(Ch2.4) GLM4 14s 57 28.1502 28.1510 0.4137 28.1282 10.2691%
(Ch3.3) GAM3 50s 79 28.1378 28.1380 0.3967 28.1055 10.2691%
(Ch5.4) CANN1 28s 703 27.9292 27.9362 0.2284 27.8940 10.1577%
(Ch5.5) CANN2 27s 780 27.9306 27.9456 0.2092 27.8684 10.2283%
(Ch5.2) DNN2 123s 703 27.9235 27.9545 0.1600 27.7736 10.4361%
(Ch5.3) DNN3 125s 780 27.9404 27.9232 0.2094 27.7693 9.6908%
(Ch5.7) blended DNN – – – – 0.1336 27.6939 10.2691%
(Ch6.2) Tree2 Tmin 65s 71 – 28.1388 0.3748 27.9156 10.2570%
(Ch7.3) RF3 5’931s – 27.9808 – 0.2256 27.2942 10.0863%
(Ch7.4) PBM1 99s 725 27.8794 27.8783 0.1301 27.6149 10.2655%
(Ch7.5) PBM2 115s 1314 27.8686 27.8763 0.1254 27.5921 10.2588%

Table 7.3: Poisson deviance losses of K-fold cross-validation (1.11) with K = 10, corre-
sponding estimation loss (1.13), and in-sample losses (1.10); green color indicates values
which can only be calculated because we know the true model λ?; losses are reported in
10−2; run time gives the time needed for model calibration, and ’# param.’ gives the
number of estimated model parameters, this table follows up from Table 7.2.

Figure 7.7: Resulting estimated frequencies (on log scale) of true vs. model DNN2 (lhs),
true vs. model PBM2 (middle), and model PBM2 vs. DNN2 (rhs).

From these results we conclude that the boosting machine provides excellent results, on
the same level as neural network ensembles, see Table 7.3, but at a reasonable run time.
Another advantage of the Poisson regression tree boosting machine is that it provides
rather stable average frequency estimates (last column of Table 7.3). In fact, the balance
property only fails to hold here because we use the Bayesian version of the parameter
estimates. Neural networks are also competitive in terms of estimation loss and run time,
but the average frequency estimates need balance property regularization as shown in
Section 5.1.5. Neural networks have the advantage that they allow for continuous inter-

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

198 Chapter 7. Ensemble Learning Methods

and extrapolation if the activation functions have been chosen to be continuous.
In Figure 7.7 we compare the log-frequencies of the neural network model DNN2, the
Poisson regression tree boosting machine PBM2 and the true model λ?. We see that the
Poisson regression tree boosting machine is more concentrated around the true model
than the neural network model, compare Figure 7.7 (lhs) and (middle). The only concern
that we see with the Poisson regression tree boosting machine is that the low frequencies
in the left-lower corner of Figure 7.7 (middle) are biased. This may be caused by the fact
that we set a minimal leaf size of 1’000 cases, see line 11 of Listing 7.2. This leaf size
may imply that we cannot distinguish the quality of good insurance policies. We could
decrease this value. However, this comes at the price of more run time and with a higher
potential of over-fitting. This closes our example.

7.4.4 AdaBoost algorithm

Usually, boosting is explained with the AdaBoost algorithm at hand which goes back to
Freund–Schapire [45]. In analogy to the Poisson regression tree boosting machine, we
can design a boosting algorithm for binary classification, see Section 2.5.1. We assume
to have a binary classification problem

C : X → Y = {0, 1}, x 7→ y = C(x),

which needs to be estimated from the data

D = {(Y1,x1) , . . . , (Yn,xn)} , (7.23)

with features xi ∈ X and binary responses Yi ∈ {0, 1}. For a given classifier C we can
study the misclassification rate on the data D given by, we also refer to (2.31)-(2.32) and
(6.30),

L1{6=} = 1
n

n∑
i=1

1{Yi 6=C(xi)}.

A weak classifier C is one that is (only slightly) better than random guessing, a more
precise definition is given in (7.28), below. Boosting constructs a sequence (Ĉm)m=1,...,M
of weak classifiers together with a sequence of weights (αm)m=1,...,M from which a more
powerful classifier is constructed. The Ada(ptive)Boost algorithm works as follows.

AdaBoost Algorithm.

(0) Initialize working weights w(1)
i = 1 for i = 1, . . . , n.

(1) Repeat for m = 1, . . . ,M

(a) fit a weak classifier Ĉm to the working data

D(m) =
{(
Y1,x1, w

(m)
1

)
, . . . ,

(
Yn,xn, w

(m)
n

)}
, (7.24)

where we attach the working weights (w(m)
i)i=1,...,n to the original data (7.23);

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 7. Ensemble Learning Methods 199

(b) calculate the weighted (in-sample) misclassification rate of Ĉm on D(m) given
by

L(m)
w1{6=}

= 1∑n
i=1w

(m)
i

n∑
i=1

w
(m)
i 1{Yi 6=Ĉm(xi)}

;

the algorithm is terminated if L(m)
w1{6=}

= 0, otherwise
(c) compute

αm = log

1− L(m)
w1{6=}

L(m)
w1{6=}

 ;

(d) update the working weights i = 1, . . . , n

w
(m+1)
i = w

(m)
i exp

{
αm1{Yi 6=Ĉm(xi)}

}
. (7.25)

(2) Return the classifier (weighted majority vote)

x 7→ Ĉ(x) = sgn
(

M∑
m=1

αm
(
Ĉm(x)− 0.5

))
. (7.26)

Comments on the AdaBoost algorithm.

• In (7.24) the observations D are extended by the working weights (w(m)
i)i=1,...,n.

These working weights may be interpreted to give more attention to particular
misclassification than to others, i.e. we pay more attention to cases (Yi,xi) with a
higher working weight w(m)

i . Such weights have not been used in classification, yet,
for instance, in the binary tree classification algorithm of Section 6.3, but they could
be implemented by modifying the empirical probabilities in (6.26) accordingly to

p̂(y,X ′;D(m)) =
∑n
i=1w

(m)
i 1{Yi=y, xi∈X ′}∑n
i=1w

(m)
i

. (7.27)

Observe that we initialize the above algorithm by setting w(1) ≡ 1 which provides

p̂(y,X ′;D(1)) =
∑n
i=1 1{Yi=y, xi∈X ′}

n
= n(y,X ′;D)∑

y∈Y n(y,X ;D) .

Thus, a first classifier Ĉ1 for m = 1 in the AdaBoost algorithm can be constructed
by the (classical) classification tree algorithm presented in Section 6.3.

• Since Ĉm is a weak classifier for the working weights (w(m)
i)i=1,...,n, it is slightly bet-

ter than random guessing for these weights, which is defined by the corresponding
weighted (in-sample) misclassification rate satisfying requirement

L(m)
w1{6=}

< 1/2. (7.28)

This implies that αm > 0 and henceforth update (7.25) increases the working
weights w(m+1)

i of the cases (Yi,xi) that are misclassified by Ĉm, thus, more atten-
tion is paid to these misclassified cases in the next (weak) classifier Ĉm+1.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

200 Chapter 7. Ensemble Learning Methods

• In this sense, classifier (7.26) can be viewed as a GAMwith basis functions Ĉ1(·), . . . , ĈM (·),
see (3.10). The main differences are that these basis functions are constructed on
site (adaptive) and the optimization is stage-wise because only the latest parameter
αm is optimized (and the previous ones α1, . . . , αm−1 are kept fixed).

• It can be shown that the AdaBoost algorithm arises similarly to the Poisson regres-
sion tree boosting algorithm as a stage-wise adaptive optimization algorithm from
an in-sample loss optimization problem. In this case we consider a classification
problem with either having the exponential function or the binomial deviance loss
as objective function, this also explains the choices of αm, for details we refer to
Hastie et al. [62], Sections 10.4-10.5.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sChapter 8

Telematics Car Driving Data

In the previous chapters we have been analyzing claims frequency modeling of a het-
erogeneous car insurance portfolio. The risk drivers of this heterogeneous portfolio have
been described by classical car insurance feature information. This classical car insurance
feature information can be divided into several different groups:

• driver specific features: age of driver, gender of driver, marital status, date and
place of driving test, occupation, medical conditions, size of household, type of flat,
garage, credit record, leasing, etc.

• car specific features: type of car, car brand, size of car, weight of car, age of
car, horse power, type of engine, cubic capacity, price of car, equipment, number
of seats, etc.

• insurance contract specific features: type of contract, duration of contract,
issue date of contract, sales channel, deductible, other insurance covers, etc.

• geographic features: province of living, zip code, city-rural area, etc.

• driving related features: annual distance, vehicle use, bonus-malus level, claims
experience, etc.

Typical car insurance tariffs are based on more than 30 feature components. From the
previous list, however, we see that many of these components are not directly related to
the driving habits, driving styles and driving skills of the drivers.
Nowadays, many vehicles are equipped with technology that transmits car driving in-
formation via telecommunication systems to central data warehouses. These data trans-
missions (called telematics data) comprise detailed car driving information, and in the
foreseeable future this information will be used for car insurance pricing because it dis-
plays driving habits and driving styles rather transparently. In fact, it is likely that this
information will complement the classical feature information from above.
These car driving transmissions may comprise rather different information (depending on
the installed devices). This information may include high-frequency data about location
(typically GPS location sec by sec), speed, acceleration and deceleration, left- and right-
turns, engine revolutions (all sec by sec). Moreover, it may include number of trips, total
distance of trips, total duration of trips, time stamp of trips, road conditions, road types,

201

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

202 Chapter 8. Telematics Car Driving Data

weather information, as well as driver related information. The main difficulty from a
statistical point of view is to convert this high-dimensional and high-frequency data into
useful feature information for car insurance pricing.
If we assume that in average a car driver produces 100 KB of telematics data per day,
this amounts to 40 MB of telematics data per year. For a comparably small portfolio
of 100’000 car drivers this results in 4 TB of telematics data each year. This is a large
amount of data, and proper data warehousing is crucial to handle this data. For instance,
it may already be difficult to identify a given driver each day in that data, thus, even
calculating the total annual distance of a given driver may result in a non-trivial exercise.
From this it is obvious that we have to compress telematics data in an appropriate way
to make it useful for statistical analysis.
In the actuarial literature there is an increasing number of contributions that study
telematics data from a statistical point of view. Verbelen et al. [129] use GAMs to analyze
the effect of telematics data in conjunction with classical feature information. Their
study considers information like number of trips, total distance driven, road type, and
daytime and weekday of driving. It does not study speed, acceleration and deceleration,
intensity of left- and right-turns. Another interesting stream of literature explores pay-as-
you-drive (PAYD) and usage-based (UB) car insurance products, see Ayuso et al. [5, 6]
and Boucher et al. [12]. These works elaborate on the exposure measures and design
pricing frameworks that are directly related to the effectively driven distances. The
latter work is complemented by Denuit et al. [30] which adds to the above features
additional information about distances traveled at night, distances driven in urban zones,
and distances driven above speed limits. This information is still rather driving habits
based, except the last one on ’excesses of speed limits’ which indicates information about
driving styles.
Probably, the first contribution in the actuarial literature that considers driving styles
from telematics car driving data is Weidner et al. [132]. These authors use Fourier anal-
ysis for pattern recognition to study driving behavior and driving styles. In particular,
they analyze the frequency spectrum obtained by single driving maneuvers and trips.
Though, the main question of how to use these maneuvers and trip information as fea-
ture information for car insurance pricing is not finally answered in Weidner et al. [132],
yet. In this chapter, we start by considering Wüthrich [136] who classifies telematics
information of different car drivers into different groups of drivers according to a chosen
similarity measure. This classification does not use claims frequency information and
belongs to the field of unsupervised learning methods, dealing with cluster analysis and
pattern recognition. Based on this starting point we will discuss other unsupervised
learning methods for clustering different drivers.

8.1 Description of telematics car driving data

8.1.1 Simple empirical statistics

For the analysis in these notes we consider telematics car driving data which comprises
GPS location data sec by sec. In Figure 8.1 we choose three different car drivers (call
them drivers A, B and C, respectively) and we illustrate 200 individual trips of these

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 203

three car drivers. For confidentiality reasons and illustrative purposes all individual trips
are initialized to start at location (0, 0), and they are randomly rotated (at this origin)
and potentially reflected at the coordinate axes. These transformations do not change
the crucial driving characteristics like speed, acceleration and deceleration, and intensity
of turns.

Figure 8.1: 200 individual trips of the three different car drivers A (left), B (middle) and
C (right); in orange color are the shorter 100 trips and in gray color the longer 100 trips;
the square shows the area [−20 km, 20 km]2.

Figure 8.1 shows for each of these three drivers the square [−20 km, 20 km]2, in orange
color we plot the shorter 100 trips and in gray color the longer 100 trips. We see that
driver A usually travels short distances (within a radius of less than 5 km) but he also
drives a few longer trips; driver B is a long-distance traveler (with many trips longer than
10 km); and driver C only does shorter drives.
From this GPS location data we can calculate many other quantities. Following [51],
we calculate the average speed vt, the average acceleration and deceleration at, and the
average change in direction (angle) ∆t every second t of each individual trip. Let (xt, yt)
denote the GPS location in meters every second t of a single trip of a given driver. From
this GPS location data we calculate the average speed (velocity) at time t (in m/s)

vt =
√

(xt − xt−1)2 + (yt − yt−1)2,

and the average acceleration and deceleration at time t (in m/s2)

at = vt − vt−1.

For a positive average speed vt > 0 at time t, we define the direction of the heading by

ϕt = atan2 (yt − yt−1, xt − xt−1) ∈ (−π, π],

where atan2 is a common modification of the arctan function that transforms Cartesian
coordinates to polar coordinates such that the resulting polar angle is in (−π, π]. For
positive speeds vs > 0 at times s = t− 1, t we can then consider the change in direction
(angle) from t−1 to t given by ϕt−ϕt−1 ∈ (−2π, 2π). For the change in direction (angle)
at time t we define

∆t = |sin (ϕt − ϕt−1)| .

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

204 Chapter 8. Telematics Car Driving Data

We choose absolute values of changes in angles because our telematics data analysis
should not be influenced by the signs of the angles, but rather by the intensity of turns
(no matter whether these are left- or right-turns). Moreover, we choose the sine of
the change in angle: the reason for this choice is that GPS location data has some
imprecision1 which manifests stronger at very low speeds, say, when the car is almost
standing still. Taking the sine of the change in angle slightly dampens this effect, but
requires ϕt − ϕt−1 ∈ (−2π,−3π/2] ∪ [−π/2, π/2] ∪ [3π/2, 2π) for identifiability reasons.
Note that the latter is usually fulfilled because changes of directions within one second
cannot exceed π/2.

0 50 100 150

0
25

50

driver A, trip number 1

time in seconds

sp
ee

d
/ a

ng
le

 /
ac

ce
le

ra
tio

n

−
3

0
3

0
0.

25
0.

5

0 50 100 150

0
25

50

driver B, trip number 1

time in seconds

sp
ee

d
/ a

ng
le

 /
ac

ce
le

ra
tio

n

−
3

0
3

0
0.

25
0.

5

0 50 100 150

0
25

50

driver C, trip number 1

time in seconds

sp
ee

d
/ a

ng
le

 /
ac

ce
le

ra
tio

n

−
3

0
3

0
0.

25
0.

5

Figure 8.2: Individual trips of the three drivers A (left), B (middle) and C (right): the
lower line in blue color shows the speeds (vt)t (in km/h), the upper line in red color
shows that acceleration and deceleration (at)t (in m/s2), and the middle line in black
color shows the changes in angle (∆t)t over 180 sec, i.e. t ∈ {0, . . . , 180}.

In Figure 8.2 we illustrate individual trips of lengths 180 sec of the three drivers A (left), B
(middle) and C (right). The lower lines in blue color show the speed (velocity) patterns
(vt)t (in km/h), the upper lines in red color show that acceleration and deceleration
patterns (at)t (in m/s2), and the middle lines in black color show the changes in angle
patterns (∆t)t. We note that changes in angle are bigger at lower speeds. From Figure
8.2 (rhs) we can very well see that these changes in angle often go along with deceleration
first and then accelerating after changing the direction of the heading.
We remark that the maximal acceleration and deceleration at has been capped at ±3m/s2

for the plots in Figure 8.2. [133] state that normal acceleration goes up to 2.5m/s2, and
extreme acceleration can go up to 6m/s2 for vehicles driving straight ahead. Braking

1GPS location data is typically subject to quite some imprecision. First of all, often GPS location
data is rounded. This provides a first source of imprecision which has a stronger influence on acceleration
and changes in angle at speeds close to zero. A second source of imprecision may be that the GPS
signal itself is not fully precise w.r.t. position and timing. Finally, it may happen that the GPS signal is
not received at all, for instance, while driving through a tunnel. The latter can be identified more easily
because it leads to missing values or accelerations beyond physical laws (if missing values are not marked).
In many cases, one also directly receives speed and acceleration (in all directions) from installed devices.
However, also this data is subject to imprecision. In particular, often one faces the issue that the devices
are not correctly calibrated, for instance, there may be a transmission of a constant positive speed of a car
standing still according to GPS location data. Moreover, depending on the type of device installed the
speed may be rounded to km/h which may be too rough, etc., and other devices may calculate statistics
on a coarser time scale due to data volume constraints.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 205

may be stronger and may vary up to −8m/s2. In our data acceleration and deceleration
beyond ±3m/s2 is rather sparse and may also be caused by data quality reasons of an
imprecise GPS signal, therefore we typically cap extreme acceleration and deceleration.

driver A driver B driver C
total distance (in km) 1’235 1’808 1’001
average distance per trip (in km) 6.18 9.04 5.01
total time (in h) 40.84 51.27 39.43
average time per trip (in min) 12.15 15.38 11.83
average velocity (in km/h) 30.25 35.27 25.39
median velocity over trips (in km/h) 28.83 35.91 25.29

Table 8.1: Empirical statistics of the drivers A, B and C.

In Table 8.1 we provide some simple empirical statistics of these three selected drivers,
these include the totally driven distance of all considered trips and the total time therefore
used. We also provide the average trip lengths (in distance and time), the average velocity
over all trips, and the median speed of the single trips is provided. These statistics reflect
the graphs in Figure 8.1. Next we analyze the amount of time spent in different speed
buckets. We therefore consider the speed intervals (in km/h)

[0] car is in idling mode (zero speed),
(0, 5] acceleration or braking phase (from/to speed 0),
(5, 20] low speeds,
(20, 50] urban area speeds,
(50, 80] rural area speeds,
(80, 130] highway speeds (we truncate speeds above 130 km/h).

(8.1)

Figure 8.3: Speed bucket distribution (in driving time) of the three drivers A, B and C.

In Figure 8.3 we show the amount of time spent in each of these speed buckets for the
three selected drivers A, B and C. We observe that the distribution of the resulting speeds
varies considerably over the speed buckets; not surprisingly driver B drives almost half
of his time with speeds above 50 km/h, whereas the other two drivers mostly drive with
speeds below 50 km/h. Also remarkable is that driver A stands still 28% of his total
trip time of 40.84 hours, the corresponding figures for drivers B and C are 24% of 51.27
hours and 19% of 39.43 hours, respectively. These numbers are rather typical for big

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

206 Chapter 8. Telematics Car Driving Data

cities, for instance, the idling mode in peak hours on arterials in the city of Beijing takes
roughly 29% of the total driving time and in the city of Shanghai 38% of the total driving
time, see Table 6 in Wang et al. [131]. Of course, these numbers depend on the network
topography of a city and therefore may vary considerably.
Up to now we have only been considering driving habits, i.e. whether we have a long-
distance driver, an urban area driver, etc. We could calculate many more of these simple
empirical statistics. These statistics can be transformed into feature information which
provides important complementary information to the classical actuarial feature infor-
mation. However, the statistics considered so far do not say much about driving styles.
This analysis is our next aim.

8.1.2 The velocity-acceleration heatmap

To analyze driving styles we consider so-called velocity-acceleration (v-a) heatmaps that
display the average velocity v on the x-axis (in km/h) and the corresponding acceleration
and deceleration a on the y-axis (in m/s2). For this analysis we consider the same speed
buckets for the velocity as used in Figure 8.3. Speed buckets have the advantage that the
different driving habits do not directly influence the v-a heatmap analysis, if we consider
in each speed bucket the resulting empirical density (normalized to 1). To receive the v-a
heatmap, say in R = (5, 20]× [−2, 2] (in km/h×m/s2), we partition R into J congruent
rectangles R1, . . . , RJ with

J⋃
j=1

Rj = R and Rj ∩Rj′ = ∅ for all j 6= j′. (8.2)

Let xj ≥ 0 denote the total relative time amount spent in Rj of a given driver. Then,
x = (x1, . . . , xJ)′ ∈ PJ gives us a discrete probability distribution in the (J − 1)-unit
simplex in RJ+ satisfying

xj ≥ 0 for all j = 1, . . . , J , and
J∑
j=1

xj = 1.

The corresponding v-a heatmap is defined to be the graphical illustration of x on R. In
Figure 8.4 we provide these graphical illustrations for our three selected drivers on the
different speed buckets defined in (8.1): the column on the left-hand side shows driver
A, the middle column gives driver B and the column on the right-hand side corresponds
to driver C. The five different rows show the five non-zero speed buckets. In the first
row we have the acceleration and deceleration styles of the three drivers in speed bucket
(0, 5] km/h. We observe that these look quite differently. Driver B seems to accelerate
more intensively than driver C at speed 0, and it seems that he brakes more heavily at a
higher speed than driver C. This may indicate that driver B is a more aggressive driver
than driver C (because he needs to brake more abruptly, i.e. he approaches a red light
at a higher speed). Driver A has intermediate braking and acceleration maxima, this
indicates that he drives a manual gear car. The same consideration applies to the speed
bucket (5, 20] km/h in the second row of Figure 8.4, in particular, the v-a heatmaps
of drivers B and C look much more smooth which is probably implied by driving an
automatic gear car (compared to driver A).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 207

Figure 8.4: v-a heatmaps of the three selected car drivers A, B and C in the different
speed buckets (0, 5], (5, 20], (20, 50], (50, 80] and (80, 130] km/h, respectively.

Rows three and four of Figure 8.4 are interpreted such that driver B has the smoothest
driving style in these two speed buckets because the vertical diameter (level sets) of his
heatmaps are smaller compared to the other two drivers. This may also be caused by

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

208 Chapter 8. Telematics Car Driving Data

the possibility that driver B drives a heavier car that is less agile than the other two
drivers. Note also that the light upper and lower acceleration boundaries in these graphs
are caused by the fact that we truncate (here) acceleration and deceleration at ±2 m/s2.
Finally, the last row of Figure 8.4 shows the driving styles above speed 80 km/h. We
observe that in this speed bucket we only have limited information because our three
drivers only spend little time in this speed bucket. Similar graphs could be provided for
left- and right-turns.

Remarks.

• There is a closely related stream of literature that aims at understanding vehicular
emissions, energy consumption and impacts on traffic, see [40, 66, 70, 77, 131]. This
literature aims at constructing typical driving cycles for cities considering the re-
spective topology of the given city. For the selection of representative driving cycles
this literature uses so-called speed acceleration probability distributions (SAPD),
see Figures 5-6 in [70], and speed acceleration matrices, see [77], which are nothing
else than our v-a heatmaps.

• In Gao et al. [49] we have been studying the robustness of v-a heatmaps. Conver-
gence results show that roughly 300 minutes of driving experience are sufficient to
receive stable v-a heatmaps in the speed bucket (5, 20] km/h.

8.2 Cluster analysis

Our main goal is to classify the v-a heatmaps, i.e. we would like to identify the drivers
that have similar v-a heatmaps. These drivers are then interpreted to have similar driving
styles (according to their v-a heatmaps), and are therefore put into the same categorical
classes for car insurance pricing. Here, we do this for one single speed bucket only. We
choose R = (5, 20]×[−2, 2] (in km/h×m/s2) because this speed bucket has been identified
to be very predictive for claims frequency modeling, see Gao et al. [52]. We partition
this rectangle R as described in (8.2), and we denote the resulting discrete probability
distributions in the (J − 1)-unit simplex by PJ . Classification of individual car drivers
is then achieved by looking at a classifier function

C : PJ → K, x 7→ C(x), (8.3)

with K = {1, . . . ,K} describing the K different categorical classes considered. Thus,
classification aims at finding such a classifier C that separates different driving styles.
We will present a simple unsupervised machine learning method for this task. For more
sophisticated methods on pattern recognition we refer to the related literature.

8.2.1 Dissimilarity function

In order to construct a classifier C we start by describing the dissimilarity between two
different probability distributions xi,xl ∈ PJ . The dissimilarity between xi and xl is

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 209

defined by

d(xi,xl) = dw(xi,xl) = 1
2

J∑
j=1

wj (xi,j − xl,j)2 ,

where wj ≥ 0 are predefined weights. Remark that we choose the (weighted) square
distance because it has nice analytical properties (as we will see below), other choices
are described in Section 14.3.2 of Hastie et al. [62]. The weights w = (wj)j may allow
us to emphasize dissimilarities on certain subsets Rj more than on others. Below, for
simplicity, we only consider w ≡ 1.
Assume we have n different car drivers with v-a heatmaps xi ∈ PJ for i = 1, . . . , n. The
total dissimilarity over all drivers is defined by

D(I) = 1
n

n∑
i,l=1

d(xi,xl).

Lemma 8.1. The total dissimilarity over all drivers satisfies

D(I) =
J∑
j=1

wj

n∑
i=1

(xi,j − x̄j)2 ,

with (empirical) means x̄j = n−1∑n
i=1 xi,j, for j = 1, . . . , J .

Proof of Lemma 8.1. A straightforward calculation provides

D(I) = 1
2n

n∑
i,l=1

J∑
j=1

wj (xi,j − xl,j)2 = 1
2n

J∑
j=1

wj

n∑
i,l=1

(xi,j − x̄j + x̄j − xl,j)2

= 1
2n

J∑
j=1

wj

n∑
i,l=1

(xi,j − x̄j)2 + 2 (xi,j − x̄j) (x̄j − xl,j) + (x̄j − xl,j)2

=
J∑
j=1

wj

n∑
i=1

(xi,j − x̄j)2 + 1
n

J∑
j=1

wj

n∑
i,l=1

(xi,j − x̄j) (x̄j − xl,j) .

The second term is zero and the claim follows. 2

Lemma 8.1 has a nice interpretation: x̄j is the empirical mean of all probability weights
x1,j , . . . , xn,j of the n drivers on subset Rj and the dissimilarity in these probability
weights is measured by the (empirical) variance defined by

s2
j = 1

n

n∑
i=1

(xi,j − x̄j)2 .

Thus, the total dissimilarity over all drivers is given by

D(I) = n
J∑
j=1

wj s
2
j .

The weights wj ≥ 0 can now be chosen such that different subsets Rj are weighted
differently. For instance, if we are concerned with high acceleration, then we would give
more weight to subsets Rj that cover the high acceleration region in R. In the examples
below we will choose w ≡ 1. The following lemma is immediate.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

210 Chapter 8. Telematics Car Driving Data

Lemma 8.2. The empirical means x̄j are optimal in the sense that

x̄j = argmin
mj

n∑
i=1

(xi,j −mj)2 .

Lemma 8.2 says that the total dissimilarity D(I) is found by solving an optimization
problem on each subset Rj . Moreover, this optimal solution (x̄j)j=1,...,J is itself a prob-
ability distribution on R because it can be interpreted as a mixing distribution: all
elements satisfy x̄j ∈ [0, 1] and

J∑
j=1

x̄j = 1
n

n∑
i=1

J∑
j=1

xi,j = 1.

Thus, (x̄j)j=1,...,J ∈ PJ is the discrete probability distribution that solves the optimization
problems in Lemma 8.2 simultaneously for all j = 1, . . . , J .

8.2.2 Classifier and clustering

In the previous section we have considered the total dissimilarity over all drivers given
by

D(I) = 1
2n

n∑
i,l=1

J∑
j=1

wj (xi,j − xl,j)2 =
J∑
j=1

wj

n∑
i=1

(xi,j − x̄j)2 = n
J∑
j=1

wj s
2
j .

This corresponds to a weighted sum of squares (WSS), additionally scaled by n−1. This
WSS is an error measure if we do not assume any additional model structure, i.e. under
the assumption that we have a homogeneous portfolio of drivers. In the subsequent
analysis we introduce model structure, that aims at separating different drivers into
homogeneous sub-classes. We introduce a classification structure by partitioning the set
I = {1, . . . , n} of all drivers into K (non-empty) clusters I1, . . . , IK satisfying

K⋃
k=1
Ik = I and Ik ∩ Ik′ = ∅ for all k 6= k′.

These K clusters define a natural classifier C, restricted to the drivers i ∈ I, given by

C : I → K, i 7→ C(i) =
K∑
k=1

k 1{i∈Ik}.

Note that we use a slight abuse of notation here: at the moment the classifier C is only
defined on I, this is in contrast to (8.3). Its extension to PJ is provided in Remarks 8.4,
below.
Under this classification approach on I we can decompose the WSS into two parts, the
within-cluster sum of squares (WCSS) and the between-cluster sum of squares (BCSS),
the latter being explained by the chosen clustering structure. That is,

D(I) =
K∑
k=1

J∑
j=1

wj
∑
i∈Ik

(xi,j − x̄j)2 (8.4)

=
K∑
k=1

J∑
j=1

wj
∑
i∈Ik

(
xi,j − x̄j|k

)2
+

K∑
k=1

nk

J∑
j=1

wj
(
x̄j|k − x̄j

)2
,

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 211

where nk = |Ik| is the number of drivers in Ik and the empirical means on Ik are given
by

x̄j|k = 1
nk

∑
i∈Ik

xi,j . (8.5)

The last term on the right-hand side of (8.4) is interpreted as the between-cluster dis-
similarity of classifier C, defined by

B(C) =
K∑
k=1

nk

J∑
j=1

wj
(
x̄j|k − x̄j

)2
≥ 0.

This is term that can be explained by the classification structure induced by the partition
(Ik)k of I. The first term on the right-hand side of (8.4) is the aggregate within-cluster
dissimilarity of classifier C, defined by

W (C) =
K∑
k=1

J∑
j=1

wj
∑
i∈Ik

(
xi,j − x̄j|k

)2
. (8.6)

Thus, we immediately get the following simple corollary.

Corollary 8.3. For any partition (Ik)k∈K of I we have the relationship

D(I) = W (C) +B(C) ≥ max {W (C), B(C)} .

This indicates that, in general, we try to find the partition (Ik)k∈K of I that gives a
minimal aggregate within-cluster dissimilarity W (C), because this partition (based on K
parameters) maximally explains the observations. We consider the single terms of W (C)
and define the (individual) within-cluster dissimilarities by

D(Ik) = 1
2nk

∑
i,l∈Ik

J∑
j=1

wj (xi,j − xl,j)2 =
J∑
j=1

wj
∑
i∈Ik

(
xi,j − x̄j|k

)2
.

An easy consequence is

D(I) =
J∑
j=1

wj

I∑
i=1

(xi,j − x̄j)2 ≥ W (C) =
K∑
k=1

D(Ik).

This explains the idea that we will pursue, namely, find the K-partition of I that leads
to a minimal aggregate within-cluster dissimilarity W (C) in (8.6), i.e. and a maximal
between-cluster similarity B(C). This optimally describes the observed heterogeneity on
the portfolio considered.

This optimization problem is of very similar nature as the ones studied above, for in-
stance, the regression tree construction problem of Chapter 6. We try to solve a global
minimization problem that typically is not tractable do to computational constraints.
Therefore, we present an algorithm in the next section which (at least) converges to a
local minimum of the objective function.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

212 Chapter 8. Telematics Car Driving Data

8.2.3 K-means clustering algorithm

In this section we describe the K-means clustering algorithm, see Algorithm 10.1 in
James et al. [74], which provides a classifier C on I for a fixed number K of categorical
classes. This K-means clustering algorithm is very popular (and it is probably the most
used one for solving this kind of classification problem).
For a given classifier C : I → K we consider the aggregate within-cluster dissimilarity
given by, see (8.6),

W (C) =
K∑
k=1

J∑
j=1

wj
∑
i∈Ik

(
xi,j − x̄j|k

)2
,

with empirical means on Ik given by x̄j|k = n−1
k

∑
i∈Ik xi,j .

The optimal classifier C∗ : I → K for given K is found by solving

C∗ = argmin
C:I→K

W (C) = argmin
C:I→K

min
(mj|k)j,k

K∑
k=1

J∑
j=1

wj
∑

i:C(i)=k

(
xi,j −mj|k

)2
.

This optimal classifier is approximated by alternating the two minimization steps.

K-Means Clustering Algorithm.

(0) Choose an initial classifier C(0) : I → K with corresponding empirical means
(x̄(0)
j|k)j,k.

(1) Repeat for t ≥ 1 until no changes are observed:

(a) given the present empirical means (x̄(t−1)
j|k)j,k choose the classifier C(t) : I → K

such that for each driver i ∈ I we have

C(t)(i) = argmin
k∈K

J∑
j=1

wj
(
xi,j − x̄(t−1)

j|k

)2
;

(b) calculate the empirical means (x̄(t)
j|k)j,k on the new partition induced by clas-

sifier C(t) : I → K.

Remarks 8.4.

• The K-means clustering algorithm converges: Note that due to the minimization
in step (1a) and due to Lemma 8.2 for step (1b) each iteration in (1) reduces the
aggregate within-cluster dissimilarity, i.e., we have

W (C(0)) ≥ . . . ≥ W (C(t−1)) ≥ W (C(t)) ≥ . . . ≥ 0.

This provides convergence in finite time because we have finitely manyK-partitions.
However, we may end up in a local minimum. Therefore, one may use different
(random) initial classifiers (seeds) C(0) in step (0) of the algorithm to back-test the
solution.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 213

• Another issue is the choice of the constant K for the number of clusters considered.
We may start with running the algorithm for K = 2 which leads to a binary
partition (Ik)k=1,2 with empirical means (x̄j|k)j,k=1,2. For K = 3, we may then
use these empirical means (x̄j|k)j,k=1,2 together with (x̄j)j as initial values for the
K-means clustering algorithm with K = 3. This choice ensures that the resulting
aggregate within-cluster dissimilarity is decreasing in K. This is exactly what we
consider in Listing 8.1, below.

• For an arbitrary driver x ∈ PJ ⊃ {x1, . . . ,xn} we extend classifier C(t) of the above
algorithm to

x 7→ C(t)(x) = argmin
k∈K

J∑
j=1

wj
(
xj − x̄(t−1)

j|k

)2
,

where (x̄(t−1)
j|k)j,k are the empirical means obtained after the (t − 1)-st iteration of

the K-means clustering algorithm.

8.2.4 Example

We apply the K-means clustering algorithm to an example. We therefore choose the
synthetic data which is generated by the simulation machine available from:

https://people.math.ethz.ch/~wmario/Simulation_Machines/simulation.machine.heatmaps.V1.zip

We exactly use the set-up proposed in that simulation machine for n = 2′000 car drivers.
This generates heatmaps of grid size 20× 20, i.e. with J = 400. Moreover, we set w ≡ 1.

Listing 8.1: K-means algorithm for K = 2, . . . , 10
1 J <- 400
2 WCSS <- array (NA , c (10))
3 WCSS [1] <- nrow(X) * sum(colSds (as. matrix (X))^2)
4 Classifier <- array (1, c(10 , nrow(X)))
5
6 set.seed (100)
7 for (K in 2:10){
8 if (K ==2){(K_res <- kmeans (X,K))}
9 if (K >2){(K_res <- kmeans (X, K_centers))}

10 clusters <- K_res$cluster
11 WCSS[K] <- sum(K_res$withins)
12 Classifier [K ,] <- clusters
13 K_centers <- array (NA , c(K+1, J))
14 K_centers [K+1 ,] <- colMeans (X)
15 K_centers [1:K ,] <- K_res$centers
16 }

In Listing 8.1 we provide the R code of the K-means algorithm for K = 2, . . . , 10, where
we always use the resulting centers for given K as initial values for the algorithm with
K + 1 centers (line 14) and the new center is initialized by the overall mean (x̄j)j (line
13). In Figure 8.5 we provide the results of iterations K = 1, . . . , 4 (rows 1-4).
In Figure 8.6 we provide the resulting decrease in aggregate within-cluster dissimilarities
W (C) as a function of K = 1, . . . , 10. We observe that the first split is by far the most
efficient one, and this is supported by rows 1 and 2 in Figure 8.5, where we see that

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://people.math.ethz.ch/~wmario/Simulation_Machines/simulation.machine.heatmaps.V1.zip

Da
ta

An
aly

tic
s

214 Chapter 8. Telematics Car Driving Data

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=1

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=2

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=2

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=3

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=3

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=3

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=4

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=4

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=4

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

K−means with K=4

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

Figure 8.5: K-means clustering algorithm: resulting empirical means (x̄j|k)j,k=1,...,K for
the different constants K = 1, 2, 3, 4 corresponding to rows 1-4.

●

●

●

●

●

●

●
●

●
●

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

decrease in aggregate within−cluster dissimilarity

number of splits

ag
gr

eg
at

e
w

ith
in

−
cl

us
te

r
di

ss
im

ila
rit

y

Figure 8.6: Aggregate within-cluster dissimilarities W (C) as a function of K = 1, . . . , 10.

smooth plots are separated from plots with multiple local maxima. The second split

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 215

from K = 2 to K = 3 further splits the plots with multiple local maxima. The third
split then separates more smooth v-a heatmaps (bottom-right) from the other heatmaps.
Remark that individual policies may change clusters from K to K + 1 in Figure 8.5.
Based on a fixed K for the number of labels, and depending on the chosen dissimilarity
measure this provides us with categorical feature information that may be used in car
frequency prediction (if we believe that the resulting clusters describe common driving
styles and risk factor behaviors).

8.3 Principal component analysis

The K-means clustering approach described in the previous section has the disadvan-
tage that it leads to (nominal) categorical classes. We have seen that this may be a
disadvantage in a claims frequency regression analysis because it may induce that many
regression parameters are necessary (if we use, for instance, dummy coding). In this
section we introduce dimension reduction techniques that lead to continuous (low-) di-
mensional representations of v-a heatmaps.

We denote by X = (x′1, . . . ,x′n)′ ∈ Rn×J the n × J design matrix that contains the v-a
heatmaps xi ∈ PJ of all drivers i = 1, . . . , n (we assume n > J). Denote by X ∈ Rn×J

a normalized version of X so that all column means are zero and have unit variance.
The goal is to find a matrix Xq ∈ Rn×J of rank q < min{J, n} such that the least-
squares reconstruction error to X is minimized. This then implies that we receive a
q-dimensional representation of X. As described in Section 14.5 of Hastie et al. [62], this
means that we need to perform a principal component analysis (PCA) that provides a
best linear approximation to X of rank q.2 The corresponding solutions are obtained by
the following singular value decomposition (SVD) which says that there exists an n× J
orthogonal matrix U (U ′U = 1J), a J × J orthogonal matrix V (V ′V = 1J) and a J × J
diagonal matrix Λ = diag(λ1, . . . , λJ) with singular values λ1 ≥ . . . ≥ λJ ≥ 0 such that

X = UΛV ′,

see (14.51) in Hastie et al. [62]. Multiplying from the right with V , we receive the
principal components of X as the columns of the matrix

XV = UΛ = Udiag(λ1, . . . , λJ). (8.7)

In PCA we now analyze how many singular values λ1 ≥ . . . ≥ λq, 1 ≤ q ≤ J , and
principal components (columns of XV = UΛ) we need to find good approximations to
the true matrix X. The first q principal components are received from the first q columns
of V called right-singular vectors of X, see (8.7).
We use the R command svd to receive the SVD. In Figure 8.7 we provide the resulting
singular values λ1 ≥ . . . ≥ λJ ≥ 0 on the original scale and on the log scale. We

2In a nutshell, a PCA provides an orthogonal transformation to a system of coordinates such that
the projections onto these coordinates provide the directions of the biggest variances of the design ma-
trix X (in decreasing order and always orthogonal to the previous ones). If we only keep the first q
principal components, then we receive a rank q approximation Xq to X that has minimal least-squares
reconstruction error, i.e. we project from dimension J to dimension q at a minimal loss of information.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

216 Chapter 8. Telematics Car Driving Data

●

●

●

●

●

●

●
●
●
●●●

0 100 200 300 400

0
10

0
20

0
30

0
40

0
50

0
60

0

singular values of SVD

index (ordered)

si
ng

ul
ar

 v
al

ue
s

●
●●

●
●

●
●●
●
●
●
●●
●●
●●●
●●
●●●●●●●●

●●●●●
●●●

0 100 200 300 400

−
10

−
5

0
5

singular values of SVD

index (ordered)

si
ng

ul
ar

 v
al

ue
s

(lo
g

sc
al

e)

Figure 8.7: Singular values λ1 ≥ . . . ≥ λJ ≥ 0 with J = 400 on the original scale (lhs)
and on the log scale (rhs).

observe that the first three singular values are dominant, thus, reduce the reconstruction
error most. Denote Λq = diag(λ1, . . . , λq, 0, . . . , 0) ∈ RJ×J . The best possible rank q

approximation to X (i.e. with minimal least-squares reconstruction error) is given by

Xq = UΛqV ′,

and doing the back-transformation to the original column means and variances, respec-
tively, we obtain the rank q approximation Xq to X.

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

v−a heatmap of driver 1

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=1) approximation to driver 1

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=2) approximation to driver 1

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=3) approximation to driver 1

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

Figure 8.8: PCA approximation of the v-a heatmap of driver 1: (lhs) original heatmap
x1, (other columns) approximations for q = 1, . . . , 3.

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

v−a heatmap of driver 100

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=1) approximation to driver 100

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=2) approximation to driver 100

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=3) approximation to driver 100

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

Figure 8.9: PCA approximation of the v-a heatmap of driver 100: (lhs) original heatmap
x100, (other columns) approximations for q = 1, . . . , 3.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 217

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

v−a heatmap of driver 500

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=1) approximation to driver 500

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=2) approximation to driver 500

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

0.000

0.005

0.010

0.015

6 8 10 12 14 16 18 20

−2

−1

0

1

2

PCA(q=3) approximation to driver 500

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

Figure 8.10: PCA approximation of the v-a heatmap of driver 500: (lhs) original heatmap
x500, (other columns) approximations for q = 1, . . . , 3.

In Figures 8.8-8.10 we illustrated the three different drivers i = 1, 100, 500. The first plot
in each figure shows the original v-a heatmap xi of that driver, and columns 2-4 show the
PCA approximations for q = 1, 2, 3 (rows i = 1, 100, 500 of matrix Xq). Just by looking
at these plots we claim that we need (at least) three principal components to represent
our v-a heatmaps sufficiently accurately.

weights of principal component 1

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

2 10 20 30 40 50

−
2

−
1

0
1

2

weights of principal component 2

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

2 10 20 30 40 50

−
2

−
1

0
1

2

weights of principal component 3

speed in km/h

ac
ce

le
ra

tio
n

in
 m

/s
^2

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

2 10 20 30 40 50

−
2

−
1

0
1

2

Figure 8.11: First three right-singular vectors of X, i.e. first three columns of V .

In Figure 8.11 we illustrate the first three right-singular vectors of X, i.e. the first three
columns of V . These provide the first three principal components, see (8.7). We interpret
these figures as follows: the first right-singular vector of X measures strong acceleration
and deceleration (beyond ±1 m/s2), the second right-singular vector balances differences
between high and low velocities in R, and the third right-singular vector takes care of
local maxima.
In Figure 8.12 we provide the first three principal components, i.e. we consider the pro-
jection of X onto the first three principal components (setting q = 3). The dots in Figure
8.12 are colored blue-red-green according to the K-means classification received in Figure
8.5 for K = 3. We observe that the PCA with q = 3 and the K-means clustering with
K = 3 basically come to the same results because the colored dots from the K-means
clustering seem well separated in the PCA representation, see Figure 8.12.

Remarks.

• The PCA leads to a rank q approximation Xq to X. This approximation is a linear
approximation that minimizes the least-square reconstruction error ‖Xq−X‖2. The

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

218 Chapter 8. Telematics Car Driving Data

PC 1

P
C

 2

PC 3

SVD with q=3 of all drivers

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●
●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

Figure 8.12: First three principal components representation of all drivers, the colors
(blue-red-green) illustrate the K-means classes for K = 3 received in Figure 8.5.

PCA has the disadvantage that the resulting approximations are not necessarily v-
a heatmaps, for instance, the linearity implies that some entries of Xq may be
negative, violating the assumption of having probabilities xq ∈ PJ .

• More generally, we may consider so-called auto-encoders. An auto-encoder is a
composition π = ψ ◦ ϕ of two maps. The encoder is given by

ϕ : X → Z, z = ϕ(x),

and decoder is given by

ψ : Z → X , x = ψ(z).

A good auto-encoder considers the two maps ϕ and ψ such that π(x) = (ψ◦ϕ)(x) ≈
x, that is, the output signal π(x) cannot be distinguished from the input signal x.
In that case we can use the value z = ϕ(x) ∈ Z as representation for x, because
the decoder ψ allows us to reconstruct the input signal x from its encoded value z.
If the dimension of Z is low we receive a low-dimensional representation of x ∈ X .

• Bottleneck neural networks are popular architectures of auto-encoders, we refer to
Kramer [83] and Hinton–Salakhutdinov [65]. For a bottleneck neural network we

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Chapter 8. Telematics Car Driving Data 219

consider a feed-forward neural network encoder

ϕ : Rq0 → Rqm , ϕ(x) =
(
z(m) ◦ · · · ◦ z(1)

)
(x),

and feed-forward neural network decoder

ψ : Rqm → Rq2m , ψ(z) =
(
z(2m) ◦ · · · ◦ z(m+1)

)
(z),

with dimensions q0 = q2m � qm. This network is then trained such that we
have π(x) = (ψ ◦ ϕ)(x) ≈ x, with qm-dimensional representation z = ϕ(x) of
x. Since we typically assume qm � q0 = q2m, this neural network architecture
is called bottleneck neural network with bottleneck activations z = ϕ(x) ∈ Rqm .
Sometimes, this low-dimensional representation is also called non-linear PCA.

x20

x19

x18

x17

x16

x15

x14

x13

x12

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

pi20

pi19

pi18

pi17

pi16

pi15

pi14

pi13

pi12

pi11

pi10

pi9

pi8

pi7

pi6

pi5

pi4

pi3

pi2

pi1

Figure 8.13: Bottleneck neural network with bottleneck q2 = 2 and q0 = q4 = 20.

In Figure 8.13 we illustrate a bottleneck neural network. Input and output dimen-
sions are q0 = q4 = 20 (blue color), and the bottleneck dimension is q2 = 2. Observe
that the chosen neural network architecture in Figure 8.13 is symmetric w.r.t. the
bottleneck. This has been done on purpose because this symmetry is essential for
finding good calibrations, we refer to Hinton–Salakhutdinov [65].

• There remains to prove in a comprehensive study that these low dimensional rep-
resentations of the v-a heatmaps have explanatory power for claims frequency pre-
dictions. First attempts on rather small portfolios have been done in [49, 52].

• Another direction that we may pursue is to directly analyze individual trips, and
score these individual trips, see also Figure 8.2. This individual trip scoring is
related to time series analysis, and the methods at hand are convolutional neural
networks (for fixed length of the time series), long short-term memory (LSTM)
networks or gated recurrent unit (GRU) networks. Preliminary analysis in [51]
indicates that 180 sec of driving experience already allows us to allocate randomly
chosen trips to the right drivers.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

220 Chapter 8. Telematics Car Driving Data

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sAppendix A

Motor Insurance Data

A.1 Synthetic data generation

We consider a motor third party liability (MTPL) insurance portfolio that consists of n =
500′000 car insurance policies. This portfolio has been constructed synthetically based
on the French MTPL data freMTPL2freq.1 In particular, we have been transforming the
old French regions to Swiss cantons by meeting related population densities.

Listing A.1: Synthetic MTPL insurance portfolio
1 ’data.frame ’: 500000 obs. of 10 variables :
2 $ id : int 1 2 3 4 5 6 7 8 9 10 ...
3 $ expo : num 0.33 0.08 0.92 1 0.63 1 0.13 1 1 0.85 ...
4 $ age : int 66 31 60 66 63 53 61 41 41 39 ...
5 $ ac : int 4 1 6 4 3 5 13 11 4 6 ...
6 $ power : int 3 7 5 2 5 3 4 1 4 1 ...
7 $ gas : Factor w/ 2 levels " Diesel "," Regular ": 2 1 1 1 2 1 2 1 1 1 ...
8 $ brand : Factor w/ 11 levels "B1"," B10 "," B11 " ,..: 4 1 1 1 4 1 7 7 1 7 ...
9 $ area : Factor w/ 6 levels "A","B","C","D" ,..: 2 1 3 3 2 3 3 2 4 4 ...

10 $ dens : int 83 34 223 283 74 125 323 65 533 889 ...
11 $ ct : Factor w/ 26 levels "ZH","AG","AI " ,..: 5 6 2 8 25 26 2 24 5 10 ...

In Listing A.1 we provide a short summary of the synthetic portfolio. For each of these
car insurance policies we have feature information (on lines 4-11 of Listing A.1) and the
corresponding years at risk (expo) information vi ∈ (0, 1] (on line 3 of Listing A.1). Line
2 of Listing A.1 gives the policy number (id). Since the policy number is not considered
to be of explanatory character for claims prediction we drop this information from all
our considerations.
We start by describing the exposure. The years at risk information expo is illustrated
in Figure A.1 (lhs and middle). For the years at risk we have the following properties
mini vi = 0.02 and maxi vi = 1, that is, the minimal observed time insured in our
portfolio is 7.3 days and the maximal time insured is 1 year. The average time insured
is
∑
i vi/n = 0.506, which corresponds to 185 days, the median time insured is 172 days,

and (only) 21% of the policies are insured during the whole year.
1The data freMTPL2freq is included in the R package CASdatasets, see Charpentier [25]. It is

described on page 55 of the reference manual [23], we also refer to the CASdatasets website http:
//cas.uqam.ca.

221

Electronic copy available at: https://ssrn.com/abstract=2870308

http://cas.uqam.ca
http://cas.uqam.ca

Da
ta

An
aly

tic
s

222 Appendix A. Motor Insurance Data

histogram of exposures

years at risk

nu
m

be
r

of
 p

ol
ic

ie
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

boxplot of exposures

ye
ar

s
at

 r
is

k

histogram of true frequencies

true frequency

nu
m

be
r

of
 p

ol
ic

ie
s

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure A.1: (lhs) Histogram and (middle) boxplot of the years at risk expo of the
n = 500′000 car insurance policies, (rhs) histogram of the true frequencies λ?(xi) of
all insurance policies i = 1, . . . , n.

Next, we describe the feature information provided on lines 4-11 of Listing A.1:

age age of driver, continuous feature in {18, . . . , 90} years;
ac age of car, continuous feature in {0, . . . , 35} years;

power power of car, continuous feature in {1, . . . , 12};
gas fuel type of car (diesel/regular petrol), binary feature; (A.1)

brand brand of car, categorical feature with 11 labels;
area area code, categorical feature with 6 labels;
dens density at the living place of the driver, continuous feature in [1, 27′000];

ct Swiss canton of the car license plate, categorical feature with 26 labels.

In Figure A.2 we illustrate the 26 Swiss cantons.
Swiss cantons

AG
AR
AI

BL
BS

BE
FR

GE

GL

GR

JU

LU
NE

NW
OW

SG

SH

SZ

SO

TG

TI

UR

VS

VD

ZG

ZH

Figure A.2: Swiss cantons.

Based on this feature information we design a synthetic regression function xi 7→ λ?(xi)
from which we sample our claims observations Ni for 1 ≤ i ≤ n. In the first step
we need to define a feature space X ? containing the 8 explanatory variables given in
(A.1). Note that this requires transformation of the categorical feature components into
an appropriate form, for instance, by dummy coding. In the second step we design a
“realistic” (true) expected frequency function and denote it by

λ? : X ? → R+, x 7→ λ?(x).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Appendix A. Motor Insurance Data 223

The choice we make is “realistic” in the sense that it reflects typical characteristics of
a real car insurance portfolio. Deliberately we do not provide the specific functional
form of that regression function λ? here, but we leave it to the reader to search for the
true expected frequency function. On line 12 of Listing A.2 (denoted by truefreq) we
provide the true expected frequencies λ?(xi) of all insurance policies i = 1, . . . , n. The
histogram of these true expected frequencies is given in Figure A.1 (rhs). Note that these
true expected frequencies are right-skewed.

Listing A.2: Synthetic MTPL insurance portfolio including claims
1 ’data.frame ’: 500000 obs. of 12 variables :
2 $ id : int 1 2 3 4 5 6 7 8 9 10 ...
3 $ expo : num 0.33 0.08 0.92 1 0.63 1 0.13 1 1 0.85 ...
4 $ age : int 66 31 60 66 63 53 61 41 41 39 ...
5 $ ac : int 4 1 6 4 3 5 13 11 4 6 ...
6 $ power : int 3 7 5 2 5 3 4 1 4 1 ...
7 $ gas : Factor w/ 2 levels " Diesel "," Regular ": 2 1 1 1 2 1 2 1 1 1 ...
8 $ brand : Factor w/ 11 levels "B1"," B10 "," B11 " ,..: 4 1 1 1 4 1 7 7 1 7 ...
9 $ area : Factor w/ 6 levels "A","B","C","D" ,..: 2 1 3 3 2 3 3 2 4 4 ...

10 $ dens : int 83 34 223 283 74 125 323 65 533 889 ...
11 $ ct : Factor w/ 26 levels "ZH","AG","AI " ,..: 5 6 2 8 25 26 2 24 5 10 ...
12 $ truefreq : num 0.0599 0.1192 0.0743 0.0928 0.05 ...
13 $ claims : int 0 0 0 0 0 0 0 0 0 0 ...

Remarks.

• Knowing the true expected frequencies λ?(xi) of all insurance policies i = 1, . . . , n
has the (big) advantage that we can explicitly quantify the quality of all considered
estimated models. However, this is not the typical situation in practice, there-
fore, any number that can only be calculated because we know the true model is
highlighted in green color in these notes.

• Whenever we refer to the true model we use the ?-sign in the notation of the feature
space X ? and the regression function λ?.

• We leave it to the reader to unravel the true expected frequency function λ? : X ? →
R+. It contains non-log-linear terms and non-trivial interaction terms. The data
can be downloaded from

https://people.math.ethz.ch/~wmario/Lecture/MTPL_data.csv

Based on regression function λ? : X ? → R+ we generate the observations N1, . . . , Nn

which comprises the data

D = {(N1,x1, v1) , . . . , (Nn,xn, vn)} . (A.2)

This data D is simulated by independently generating observations Ni from

Ni
ind.∼ Poi (λ?(xi)vi) for i = 1, . . . , n. (A.3)

The simulated claims are illustrated on line 13 of Listing A.2.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

https://people.math.ethz.ch/~wmario/Lecture/MTPL_data.csv

Da
ta

An
aly

tic
s

224 Appendix A. Motor Insurance Data

We briefly analyze whether the generated claims are a typically realization of our sim-
ulation model. The true average portfolio frequency and the empirical average portfolio
frequency are given by, respectively,

λ̄? =
∑n
i=1 λ

?(xi)vi∑n
i=1 vi

= 10.1991% and λ̂ =
∑n
i=1Ni∑n
i=1 vi

= 10.2691%. (A.4)

Thus, the simulated data has a small positive bias compared to the true average portfolio
frequency λ̄?.

0.096 0.098 0.100 0.102 0.104

0
10

0
20

0
30

0
40

0
50

0
60

0

average claims frequency over different simulations

average claims frequency

fr
eq

ue
nc

y

●

27.0 27.2 27.4 27.6 27.8 28.0 28.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Poisson deviance loss over different simulations

Poisson deviance loss (in 10^(−2))

fr
eq

ue
nc

y

●

Figure A.3: (lhs) Empirical average portfolio frequencies λ̂ of 1’000 simulations with
different seeds and (rhs) true Poisson deviance losses of 1’000 simulations with different
seeds; the straight vertical lines show the empirical means, the dotted lines the 2 standard
deviations confidence bounds, the blue dots specify the chosen simulation of Listing A.2.

We repeat 1’000 times the simulation of the data D in (A.2) using the true model (A.3)
with different seeds. In Figure A.3 (lhs) we illustrate the empirical density of the esti-
mated average portfolio frequency λ̂ over the 1’000 simulations with the blue dot illus-
trating the one chosen in Listing A.2. The sample mean of these simulations is 10.2022%
with a standard deviation of 0.0657%. We note that the chosen simulation has a typical
empirical average portfolio frequency λ̂, see Figure A.3 (lhs).
Next, we calculate the Poisson deviance loss w.r.t. the true model λ?

1
n
D∗(N , λ?) = 1

n

n∑
i=1

2
[
λ?(xi)vi −Ni −Ni log

(
λ?(xi)vi
Ni

)]
= 27.7278 · 10−2. (A.5)

Also this analysis we repeat 1’000 times using different seeds for the different simula-
tions. In Figure A.3 (rhs) we illustrate the empirical density of the Poisson deviance loss
D∗(N , λ?)/n over the 1’000 simulations of observations N , the blue dot again illustrates
the realization chosen in Listing A.2. We observe that the chosen data has a slightly
bigger value than the empirical average of 27.7013 · 10−2 (straight vertical black line in
Figure A.3 (rhs)), but it is within two standard deviations of the empirical average (the
empirical standard deviation is 0.1225 · 10−2).

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Appendix A. Motor Insurance Data 225

A.2 Descriptive analysis

We provide a descriptive analysis of our synthetic MTPL claims data in this section.

Ni 0 1 2 3
policies 475’153 23’773 1’012 62

in % 95.031% 4.755% 0.202% 0.012%

Table A.1: Split of the portfolio w.r.t. the number of claims.

In Table A.1 we illustrate the distribution of the observed numbers of claims (Ni)1≤i≤n
across the entire portfolio of our synthetic data D. We note that 95% of the policies
do not suffer a claim. This is the so-called class imbalance problem that often causes
difficulties in model calibration.

18 25 32 39 46 53 60 67 74 81 88

age of driver structure

age of driver

ex
po

su
re

s

0
10

00
20

00
30

00
40

00
50

00
60

00

●

●

●

●

●

●

●

●●
●
●
●●

●●●
●●

●●●●
●
●●●●

●
●●

●●●●●●●●●
●●

●●
●

●●●●
●
●
●
●●

●
●●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●
●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per age of driver

age of driver

fr
eq

ue
nc

y

18 23 28 33 38 43 48 53 58 63 68 73 78 83 88

average age of driver

Figure A.4: Age of driver (age): (lhs) portfolio structure in terms of expo, (middle)
observed frequency, (rhs) average age of driver per Swiss canton.

We provide for all 8 feature components the marginal plots in Figures A.4 to A.11. The
graphs on the left-hand side show the exposure structures (in years at risk). The middle
graphs provide the observed marginal frequencies (the dotted lines correspond to the
estimated 2 standard deviation confidence bounds). The graphs on the right-hand side
show the average feature values per Swiss canton (green color means low value and red
color means high value).
From Figure A.4 (lhs) we observe that our car drivers are mostly aged between 35 and
55 years. In the middle plot of Figure A.4 we see that the observed frequency sharply
drops at young ages, and it stabilizes at the age of 30. Noticeable is that we have a local
maximum around the age of 50: typically, the feature age denotes the age of the main
driver on a given car, but the claims frequencies may also include multiple drivers on the
same car. The local maximum at the age of 50 is explained by the fact that at this age
young adults start to drive on their parents’ cars. We also note that the uncertainty is
large for higher ages because we only have very few older policyholders above the age of
80 in our portfolio. Finally, Figure A.4 (rhs) shows that our portfolio is considerably old
in canton TG, and rather young in cantons SG, JU and BL.
We can do a similar descriptive analysis for all other feature components. We just mention
some peculiarities of our portfolio. Figure A.5: New cars have a rather high observed

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

226 Appendix A. Motor Insurance Data

0 3 6 9 12 16 20 24 28 32

age of car structure

age of car

ex
po

su
re

s

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

●

●

●

● ● ●
● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per age of car

age of car

fr
eq

ue
nc

y

0 2 4 6 8 10 13 16 19 22 25 28 31 34

average age of car

Figure A.5: Age of car (ac): (lhs) portfolio structure in terms of expo, (middle) observed
frequency, (rhs) average age of car per Swiss canton.

1 2 3 4 5 6 7 8 9 10 12

power of car structure

power of car

ex
po

su
re

s

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

●

●
● ●

●

● ●
●

●
● ● ●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per power of car

power of car

fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9 10 11 12

average power of car

Figure A.6: Power of car (power) (lhs) portfolio structure in terms of expo, (middle)
observed frequency, (rhs) average power of car per Swiss canton.

Diesel Regular

fuel type of car structure

fuel type of car

ex
po

su
re

s

0
20

00
0

60
00

0
10

00
00

● ●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per fuel type of car

fuel type of car

fr
eq

ue
nc

y

Diesel Regular

average fuel type of car

Figure A.7: Fuel type of car (gas) (lhs) portfolio structure in terms of expo, (middle)
observed frequency, (rhs) ratio of regular fuel cars per Swiss canton.

claims frequency. Our portfolio has comparably old cars in many cantons that are not
so densely populated (mountain area). Figures A.6 and A.7 (rhs) have some similarities
because the power of a car is often related to the fuel type. From Figure A.8 we observe
that car brand B12 is rather special having a much higher observed frequency than all
other car brands.
In Figures A.9 and A.10 we provide the plots of the area codes and the densities. We
observe quite some similarities between these two feature components which indicates

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Appendix A. Motor Insurance Data 227

B1 B11 B13 B2 B4 B6

brand of car structure

brand of car

ex
po

su
re

s

0
10

00
0

30
00

0
50

00
0

● ●
●

●

●

●
●

●

●

●
●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per brand of car

brand of car

fr
eq

ue
nc

y

B1 B10 B11 B12 B13 B14 B2 B3 B4 B5 B6

Figure A.8: Brand of car (brand) (lhs) portfolio structure in terms of expo, (rhs) observed
frequency.

A B C D E F

area code structure

area code

ex
po

su
re

s

0
10

00
0

30
00

0
50

00
0

70
00

0

●
●

●
●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per area code

area code

fr
eq

ue
nc

y

A B C D E F

average area code

Figure A.9: Area code (area) (lhs) portfolio structure in terms of expo, (middle) observed
frequency, (rhs) average area code per Swiss canton, we map {A, . . . ,F} 7→ {1, . . . , 6}.

0 1 2 3 4 5 6 7 8 9 10

log density structure

log density

ex
po

su
re

s

0
10

00
0

20
00

0
30

00
0

40
00

0

●

●
● ●

● ●
●

● ●

●

●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per log density

log density

fr
eq

ue
nc

y

0 1 2 3 4 5 6 7 8 9 10

average log density

Figure A.10: Density (dens) (lhs) portfolio structure in terms of expo, (middle) observed
frequency, (rhs) average density per Swiss canton.

that they are dependent. In our data the canton GE is very densely populated and
observed frequencies are increasing in density. Finally, in Figure A.11 we show the
empirical statistics per Swiss canton. Canton GE has the highest frequency which is
likely caused by the density and the young car structure of that canton. Canton AI has
the lowest frequency which needs to be explained by several different factors.2

2Note that in real Swiss MTPL data, typically, canton AI has the highest frequency which is caused
by the fact that many rental car companies are located in that canton.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

228 Appendix A. Motor Insurance Data

ZH AR BS GL LU OW SO TI VS

Swiss cantons structure

Swiss cantons

ex
po

su
re

s

0
10

00
0

20
00

0
30

00
0

40
00

0

●
●

●

●

●

●

●

●

●

●
● ●

● ●

●

●
●

●

●

●

●

●
●

● ●

●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observed frequency per Swiss cantons

Swiss cantons

fr
eq

ue
nc

y

ZH AG AI AR BE BL BS FR GE GL GR JU LU NE NW OW SG SH SO SZ TG TI UR VD VS ZG

Figure A.11: Swiss cantons (ct) (lhs) portfolio structure in terms of expo, (rhs) observed
frequency.

Next we analyze the dependencies between the different feature components. We there-
fore distinguish between categorical and continuous ones. The area code is considered to
be continuous and we use the corresponding mapping {A, . . . ,F} 7→ {1, . . . , 6}.

B1 B10 B11 B12 B13 B14 B2 B3 B4 B5 B6

80
70
60
50
40
30
20
10

driver's age profile among vehicle brands

car brand groups

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B1 B10 B11 B12 B13 B14 B2 B3 B4 B5 B6

18
15
12
9
6
3
0

age of car profile among vehicle brands

car brand groups

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B1 B10 B11 B12 B13 B14 B2 B3 B4 B5 B6

12
11
10
9
8
7
6
5
4
3
2
1

power of car profile among vehicle brands

car brand groups

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B1 B10 B11 B12 B13 B14 B2 B3 B4 B5 B6

Regular
Diesel

fuel type of car profile among vehicle brands

car brand groups

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B1 B10 B11 B12 B13 B14 B2 B3 B4 B5 B6

F
E
D
C
B
A

area code profile among vehicle brands

car brand groups

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B1 B10 B11 B12 B13 B14 B2 B3 B4 B5 B6

10
9
8
7
6
5
4
3
2
1
0

density profile among vehicle brands

car brand groups

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure A.12: Distribution of the continuous feature components across the car brands:
from top-left to bottom-right: age, ac, power, gas, area and dens.

In Figure A.12 we illustrate the distribution of the continuous feature components across
the car brands. Top-left: we observe that older people drive more likely car brand B10
and younger drivers B3. Striking is the age of the cars of brand B12, more than 50%
of this brand is less than 3 years old (top-middle). Cars B10 and B11 seem to be very
powerful cars (top-right), where the former is more likely a diesel car (bottom-left).
In Figure A.13 we give the distribution of the continuous feature components across the
Swiss cantons. These figures reflect (in more detail) what we have already observed in

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Appendix A. Motor Insurance Data 229

ZH AI BE BS GE GR LU NW SG SO TG UR VS

80
70
60
50
40
30
20
10

driver's age profile among Swiss cantons

Swiss cantons

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZH AI BE BS GE GR LU NW SG SO TG UR VS

18
15
12
9
6
3
0

age of car profile among Swiss cantons

Swiss cantons

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZH AI BE BS GE GR LU NW SG SO TG UR VS

12
11
10
9
8
7
6
5
4
3
2
1

power of car profile among Swiss cantons

Swiss cantons

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZH AI BE BS GE GR LU NW SG SO TG UR VS

Regular
Diesel

fuel type of car profile among Swiss cantons

Swiss cantons

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZH AI BE BS GE GR LU NW SG SO TG UR VS

F
E
D
C
B
A

area code profile among Swiss cantons

Swiss cantons

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ZH AI BE BS GE GR LU NW SG SO TG UR VS

10
9
8
7
6
5
4
3
2
1
0

density profile among Swiss cantons

Swiss cantons

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure A.13: Distribution of the continuous feature components across the Swiss cantons:
from top-left to bottom-right: age, ac, power, gas, area and dens.

ZH AG AI AR BE BL BS FR GE GL GR JU LU NE NW OW SG SH SO SZ TG TI UR VD VS ZG

B6
B5
B4
B3
B2
B14
B13
B12
B11
B10
B1

car brand profile among Swiss cantons

Swiss cantons

re
la

tiv
e

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure A.14: Distribution of car brands across the Swiss cantons.

the Swiss maps in Figures A.4 - A.10. Canton GE plays a special role in terms of age
of car, area code and density, and the mountain area AI, GL, GR, NW, OW, UR has a
comparably old car portfolio (ac).
In Figure A.14 we study the distribution of the car brands across the Swiss cantons. We
note that car brand B12 is dominant in AR and SO. This car brand has mostly new cars
which typically have a higher frequency. This may explain the high observed frequencies
in these two cantons.
In Figure A.15 we provide the contour plots of the portfolio distribution of the continuous
feature components. These serve us to analyze colinearity in feature components. From

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

230 Appendix A. Motor Insurance Data

age of driver

ag
e

of
 c

ar

age of driver

po
w

er
 o

f c
ar

age of car

po
w

er
 o

f c
ar

age of driver

ar
ea

 c
od

e

age of car

ar
ea

 c
od

e

power of car

ar
ea

 c
od

e

age of driver

de
ns

ity

age of car

de
ns

ity

power of car

de
ns

ity

area code

de
ns

ity

Figure A.15: Two dimensional contour plots of the portfolio distribution of the continuous
features age, ac, power, area and dens.

these plots we cannot detect much dependence structure between the continuous feature
components, except between area and dens there seems to be a strong linear relationship
(we have mapped {A, . . . ,F} 7→ {1, . . . , 6}). It seems that the area code has been set
according to the density of the living place of the policyholder. This has already been
noticed in Figures A.9 and A.10, and it is confirmed by the corresponding correlation
analysis given in Table A.2. From this we conclude that if there is such a strong linear
relationship between area and dens, then likely one of the two variables is superfluous
in the following regression analysis, in fact, this is what we find in some of our regression
models studied. This finishes our descriptive analysis.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Appendix A. Motor Insurance Data 231

age ac power area dens
age -0.07 -0.04 -0.03 -0.01
ac -0.09 0.00 -0.02 -0.04
power 0.05 0.01 -0.03 0.02
area -0.03 -0.02 -0.03 0.59
dens -0.03 -0.02 -0.03 0.97

Table A.2: Correlations in continuous feature components: top-right shows Pearson’s
correlation; bottom-left shows Spearman’s ρ.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

232 Appendix A. Motor Insurance Data

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
sBibliography

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control 19/6, 716-723.

[2] Amari, S. (2016). Information Geometry and its Applications. Springer.

[3] Arnold, V.I. (1957). On functions of three variables. Doklady Akademii Nauk SSSR 114/4,
679-681.

[4] ASTIN Big Data/Data Analytics Working Party (2015). Phase 1 Paper - April 2015. http:
//www.actuaries.org

[5] Ayuso, M., Guillen, M., Pérez-Marín, A.M. (2016). Telematics and gender discrimination:
some usage-based evidence on whether men’s risk of accidents differs from women’s. Risks
4/2, article 10.

[6] Ayuso, M., Guillen, M., Pérez-Marín, A.M. (2016). Using GPS data to analyse the distance
traveled to the first accident at fault in pay-as-you-drive insurance. Transportation Research
Part C: Emerging Technologies 68, 160-167.

[7] Bailey, R.A. (1963). Insurance rates with minimum bias. Proceedings CAS 50, 4-11.

[8] Barndorff-Nielsen, O. (2014). Information and Exponential Families: In Statistical Theory.
John Wiley & Sons.

[9] Barndorff-Nielsen, O.E., Jensen, J.L., Kendall, W.S. (1993). Networks and Chaos - Statis-
tical and Probabilistic Aspects. Chapman & Hall.

[10] Barron, A.R. (1993). Universal approximation bounds for superpositions of sigmoidal func-
tions. IEEE Transactions of Information Theory 39/3, 930-945.

[11] Billingsley, P. (1995). Probability and Measure. 3rd edition. Wiley.

[12] Boucher, J.-P., Côté, S., Guillen, M. (2017). Exposure as duration and distance in telematics
motor insurance using generalized additive models. Risks 5/4, article 54.

[13] Breiman, L. (1996). Bagging predictors. Machine Learning 24/2, 123-140.

[14] Breiman, L. (2001). Random forests. Machine Learning 45/1, 5-32.

[15] Breiman, L. (2001). Statistical modeling: the two cultures. Statistical Science 16/3, 199-
215.

[16] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984). Classification and Regression
Trees. Wadsworth Statistics/Probability Series.

[17] Breiman, L., Stone, C.J. (1978). Parsimonious binary classification trees. Technical report.
Santa Monica, California: Technology Service Corporation.

[18] Bühlmann, H., Gisler, A. (2005). A Course in Credibility Theory and its Applications.
Springer.

233

Electronic copy available at: https://ssrn.com/abstract=2870308

http://www.actuaries.org
http://www.actuaries.org

Da
ta

An
aly

tic
s

234 Bibliography

[19] Bühlmann, H., Straub, E. (1970). Glaubwürdigkeit für Schadensätze. Bulletin of the Swiss
Association of Actuaries 1970, 111-131.

[20] Bühlmann, P., Mächler, M. (2014). Computational Statistics. Lecture Notes. Department
of Mathematics, ETH Zurich.

[21] Burges, C.J.C. (1998). A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery 2, 121-167.

[22] Cantelli, F.P. (1933). Sulla determinazione empirica delle leggi di probabilità. Giornale
Dell’Istituto Italiano Degli Attuari 4, 421-424.

[23] CASdatasets Package Vignette (2016). Reference Manual, May 28, 2016. Version 1.0-6.
Available from http://cas.uqam.ca.

[24] Casella, G., Berger, R.L. (2002). Statistical Inference. 2nd edition. Duxbury.

[25] Charpentier, A. (2015). Computational Actuarial Science with R. CRC Press.

[26] Chen, T., Guestrin, C. (2016). XGBoost: a scalable tree boosting system.
arXiv:1603.02754v3.

[27] China InsurTech Lab (2017). China InsurTech Development White Paper. Fudan University.

[28] Congdon, P. (2006). Bayesian Statistical Modelling. 2nd edition. Wiley.

[29] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems 2, 303-314.

[30] Denuit, M., Guillen, M., Trufin, J. (2018). Multivariate credibility modeling for usage-based
motor insurance pricing with behavioural data. Detralytics, 2018-2.

[31] Denuit, M., Maréchal, X., Pitrebois, S., Walhin, J.-F. (2007). Actuarial Modelling of Claims
Count. Wiley.

[32] Deprez, P., Shevchenko, P.V., Wüthrich, M.V. (2017). Machine learning techniques for
mortality modeling. European Actuarial Journal 7/2, 337-352.

[33] Döhler, S., Rüschendorf, L. (2001). An approximation result for nets in functional estima-
tion. Statistics and Probability Letters 52, 373-380.

[34] Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D. (1987). Hybrid Monte Carlo.
Physics Letters B 195/2, 216-222.

[35] Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics
7/1, 1-26.

[36] Efron, B. (2020). Prediction, estimation, and attribution. Journal of the American Statis-
tical Association 115/530, 636-655.

[37] Efron, B., Hastie, T. (2016). Computer Age Statistical Inference. Cambridge University
Press.

[38] Efron, B., Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman & Hall.

[39] Embrechts, P., Klüppelberg, C., Mikosch, T. (2003). Modelling Extremal Events for Insur-
ance and Finance. 4th printing. Springer.

[40] Esteves-Booth, A., Muneer, T., Kirby, H., Kubie, J., Hunter, J. (2001). The measurement
of vehicular driving cycle within the city of Edinburgh. Transportation Research Part D:
Transport and Environment 6/3, 209-220.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

http://cas.uqam.ca

Da
ta

An
aly

tic
s

Bibliography 235

[41] Fahrmeir, L., Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized
Linear Models. Springer.

[42] Ferrario, A., Hämmerli, R. (2019). On boosting: theory and applications. SSRN Manuscript
ID 3402687.

[43] Ferrario, A., Noll, A., Wüthrich, M.V. (2018). Insights from inside neural networks. SSRN
Manuscript ID 3226852.

[44] Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Com-
putation 121/2, 256-285.

[45] Freund, Y., Schapire, R.E. (1997). A decision-theoretic generalization of online learning
and an application to boosting. Journal of Computer and System Sciences 55/1, 119-139.

[46] Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine. An-
nals of Statistics 29/5, 1189-1232.

[47] Friedman, J.H. (2002). Stochastic gradient boosting. Computational Statistics and Data
Analysis 38/4, 367-378.

[48] Gabrielli, A., Richman, R., Wüthrich, M.V. (2020). Neural network embedding of the over-
dispersed Poisson reserving model. Scandinavian Actuarial Journal 2020/1, 1-29.

[49] Gao, G., Meng, S., Wüthrich, M.V. (2019). Claims frequency modeling using telematics car
driving data. Scandinavian Actuarial Journal 2019/2, 143-162.

[50] Gao, G., Wüthrich, M.V. (2018). Feature extraction from telematics car driving heatmap.
European Actuarial Journal 8/2, 383-406.

[51] Gao, G., Wüthrich, M.V. (2019). Convolutional neural network classification of telematics
car driving data. Risks 7/1, 6.

[52] Gao, G., Wüthrich, M.V., Yang, H. (2019). Evaluation of driving risk at different speeds.
Insurance: Mathematics & Economics 88, 108-119.

[53] Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in
Practice. Chapman & Hall.

[54] Glivenko, V. (1933). Sulla determinazione empirica delle leggi di probabilità. Giornale
Dell’Istituto Italiano Degli Attuari 4, 92-99.

[55] Gneiting, T. (2011). Making and evaluation point forecasts. Journal of the American Sta-
tistical Association 106/494, 746-762.

[56] Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press, http://www.
deeplearningbook.org

[57] Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika 82/4, 711-732.

[58] Green, P.J. (2003). Trans-dimensional Markov chain Monte Carlo. In: Highly Structured
Stochastic Systems, P.J. Green, N.L. Hjort, S. Richardson (eds.), Oxford Statistical Science
Series, 179-206. Oxford University Press.

[59] Grohs, P., Perekrestenko, D., Elbrächter, D., Bölcskei, H. (2019). Deep neural network
approximation theory. Submitted to IEEE Transactions on Information Theory (invited
paper).

[60] Hastie, T., Tibshirani, R. (1986). Generalized additive models (with discussion). Statistical
Science 1, 297–318.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Da
ta

An
aly

tic
s

236 Bibliography

[61] Hastie, T., Tibshirani, R. (1990). Generalized Linear Models. Chapman & Hall.

[62] Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Data
Mining, Inference, and Prediction. 2nd edition. Springer Series in Statistics.

[63] Hastie, T., Tibshirani, R., Wainwright, M. (2015). Statistical Learning with Sparsity: The
Lasso and Generalizations. CRC Press.

[64] Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57/1, 97-109.

[65] Hinton, G.E., Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural
networks. Science 313, 504-507.

[66] Ho, S.-H., Wong, Y.-D., Chang, V.W.-C. (2014). Developing Singapore driving cycle for
passenger cars to estimate fuel consumption and vehicular emissions. Atmospheric Envi-
ronment 97, 353-362.

[67] Hoffman, M.D., Gelman, A. (2014). The no-U-turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15, 1351-1381.

[68] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
Networks 4, 251-257.

[69] Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2, 359-366.

[70] Hung, W.T., Tong, H.Y., Lee, C.P., Ha, K., Pao, L.Y. (2007). Development of practi-
cal driving cycle construction methodology: a case study in Hong Kong. Transportation
Research Part D: Transport and Environment 12/2, 115-128.

[71] Künsch H.R. (1993). Mathematische Statistik. Lecture Notes. Department of Mathematics,
ETH Zurich.

[72] Ingenbleek, J.-F., Lemaire, J. (1988). What is a sports car? ASTIN Bulletin 18/2, 175-187.

[73] Isenbeck, M., Rüschendorf, L. (1992). Completeness in location families. Probability and
Mathematical Statistics 13, 321-343.

[74] James, G., Witten, D., Hastie, T., Tibshirani, R. (2015). An Introduction to Statistical
Learning. With Applications in R. Corrected 6th printing. Springer Texts in Statistics.

[75] Johansen, A.M., Evers, L., Whiteley, N. (2010). Monte Carlo Methods. Lecture Notes,
Department of Mathematics, University of Bristol.

[76] Jung, J. (1968). On automobile insurance ratemaking. ASTIN Bulletin 5, 41-48.

[77] Kamble, S.H., Mathew, T.V., Sharma, G.K. (2009). Development of real-world driving cy-
cle: case study of Pune, India. Transportation Research Part D: Transport and Environment
14/2, 132-140.

[78] Karush, W. (1939). Minima of Functions of Several Variables with Inequalities as Side
Constraints. M.Sc. Dissertation. Department of Mathematics, University of Chicago.

[79] Kearns, M., Valiant, L.G. (1988). Learning Boolean formulae or finite automata is hard as
factoring. Technical Report TR-14-88. Harvard University Aiken Computation Laboratory.

[80] Kearns, M., Valiant, L.G. (1994). Cryptographic limitations on learning Boolean formulae
and finite automata. Journal of the Association for Computing Machinery ACM 41/1,
67-95.

[81] Kingma, D., Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Bibliography 237

[82] Kolmogorov, A. (1957). On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition. Doklady Akademii
Nauk SSSR 114/5, 953-956.

[83] Kramer, M.A. (1991). Nonlinear principal component analysis using autoassociative neural
networks. AIChE Journal 37/2, 233-243.

[84] Kuhn, H.W., Tucker, A.W. (1951). Nonlinear programming. Proceedings of 2nd Berkeley
Symposium. Berkeley: University of California Press, 481-492.

[85] Latuszyński, K., Roberts, G.O., Rosenthal, J.S. (2013). Adaptive Gibbs samplers and re-
lated MCMC methods. Annals of Applied Probability 23/1, 66-98.

[86] Lee, S.C.K., Lin, S. (2018). Delta boosting machine with application to general insurance.
North American Actuarial Journal 22/3, 405-425.

[87] Lehmann, E.L. (1983). Theory of Point Estimation. Wiley.

[88] Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S. (1993). Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural Networks
6/6, 861-867.

[89] Lorentzen, C., Mayer, M. (2020). Peeking into the black box: an actuarial case study for
interpretable machine learning. SSRN Manuscript ID 3595944.

[90] Makavoz, Y. (1996). Random approximants and neural networks. Journal of Approximation
Theory 85, 98-109.

[91] Marra, G., Wood, S.N. (2011). Practical variable selection for generalized additive models.
Computational Statistics and Data Analysis 55/7, 2372-2387.

[92] McClure, P., Kriegeskorte, N. (2017). Representing inferential uncertainty in deep neural
networks through sampling. ICLR conference paper.

[93] McCullagh, P., Nelder, J.A. (1983). Generalized Linear Models. Chapman & Hall.

[94] Meier, D., Wüthrich, M.V. (2020). Convolutional neural network case studies: (1) anomalies
in mortality rates (2) image recognition. SSRN Manuscript ID 3656210.

[95] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. (1953). Equa-
tion of state calculations by fast computing machines. Journal of Chemical Physics 21/6,
1087-1092.

[96] Montúfar, G., Pascanu, R., Cho, K., Bengio, Y. (2014). On the number of linear regions of
deep neural networks. Neural Information Processing Systems Proceedingsβ 27, 2924-2932.

[97] Neal, R.M. (1996). Bayesian Learning for Neural Networks. Springer.

[98] Nelder, J.A., Wedderburn, R.W.M. (1972). Generalized linear models. Journal of the Royal
Statistical Society. Series A (General) 135/3, 370-384.

[99] Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. Tech-
nical Report 76, Center for Operations Research and Econometrics (CORE), Catholic Uni-
versity of Louvain.

[100] Nielsen, M. (2017). Neural Networks and Deep Learning. Online book available on http:
//neuralnetworksanddeeplearning.com

[101] Noll, A., Salzmann, R., Wüthrich, M.V. (2018). Case study: French motor third-party
liability claims. SSRN Manuscript ID 3164764.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com

Da
ta

An
aly

tic
s

238 Bibliography

[102] Ohlsson, E., Johansson, B. (2010). Non-Life Insurance Pricing with Generalized Linear
Models. Springer.

[103] Park, J., Sandberg, I. (1991). Universal approximation using radial-basis function networks.
Neural Computation 3, 246-257.

[104] Park, J., Sandberg, I. (1993). Approximation and radial-basis function networks. Neural
Computation 5, 305-316.

[105] Petrushev, P. (1999). Approximation by ridge functions and neural networks. SIAM Journal
on Mathematical Analysis 30/1, 155-189.

[106] Pruscha, H. (2006). Statistisches Methodenbuch: Verfahren, Fallstudien, Programmcodes.
Springer.

[107] Rentzmann, S., Wüthrich, M.V. (2019). Unsupervised learning: What is a sports car?
SSRN Manuscript ID 3439358. Version October 14, 2019.

[108] Richman, R. (2020). AI in actuarial science - a review of recent advances - part 1. Annals
of Actuarial Science, to appear.

[109] Richman, R. (2020). AI in actuarial science - a review of recent advances - part 2. Annals
of Actuarial Science, to appear.

[110] Richman, R., Wüthrich, M.V. (2019). Lee and Carter go machine learning: recurrent neural
networks. SSRN Manuscript ID 3441030.

[111] Richman, R., Wüthrich, M.V. (2020). Nagging predictors. Risks 8/3, 83.

[112] Ridgeway, G. (2007). Generalized boosted models: a guide to the gbm package. Version of
August 3, 2007.

[113] Robert, C.P. (2001). The Bayesian Choice. 2nd edition. Springer.

[114] Roberts, G.O., Gelman, A., Gilks, W.R. (1997). Weak convergence and optimal scaling of
random walk Metropolis algorithms. Annals of Applied Probability 7, 110-120.

[115] Roberts, G.O., Rosenthal, J.S. (1998). Optimal scaling of discrete approximations to
Langevin diffusions. Journal of the Royal Statistical Society, Series B 60/1, 255-268.

[116] Rüger, S.M., Ossen, A. (1997). The metric structure of weight space. Neural Processing
Letters 5, 63-72.

[117] Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986). Learning representations by back-
propagating errors. Nature 323/6088, 533-536.

[118] Schapire, R.E. (1990). The strength of weak learnability. Machine Learning 5/2, 197-227.

[119] Schelldorfer, J., Wüthrich, M.V. (2019). Nesting classical actuarial models into neural net-
works. SSRN Manuscript ID 3320525.

[120] Schelldorfer, J., Wüthrich, M.V. (2021). LocalGLMnet: a deep learning architecture for
actuaries. SSRN Manuscript ID 3900350. Version August 6, 2021.

[121] Schwarz, G.E. (1978). Estimating the dimension of a model. Annals of Statistics 6/2, 461-
464.

[122] Shaham, U., Cloninger, A., Coifman, R.R. (2015). Provable approximation properties for
deep neural networks. arXiv:1509.07385v3.

[123] Shmueli, G. (2010). To explain or to predict? Statistical Science 25/3, 289-310.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

Bibliography 239

[124] Srivastava, N., Hinton, G., Krizhevsky, A. Sutskever, I., Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning 15,
1929-1958.

[125] Therneau, T.M., Atkinson, E.J. (2015). An introduction to recursive partitioning using the
RPART routines. R Vignettes, version of June 29, 2015. Mayo Foundation, Rochester.

[126] Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the
Royal Statistical Society. Series B (Methodological) 58/1, 267-288.

[127] Tikhonov, A.N. (1943). On the stability of inverse problems. Doklady Akademii Nauk SSSR
39/5, 195-198.

[128] Valiant, L.G. (1984). A theory of learnable. Communications of the Association for Com-
puting Machinery ACM 27/11, 1134-1142.

[129] Verbelen, R., Antonio, K., Claeskens, G. (2018). Unraveling the predictive power of telemat-
ics data in car insurance pricing. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 67/5, 1275-1304.

[130] Wager, S., Wang, S., Liang, P.S. (2013). Dropout training as adaptive regularization. In:
Advances in Neural Information Processing Systems 26, C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, K. Weinberger (eds.), Curran Associates, Inc, 351-359.

[131] Wang, Q., Huo, H., He, K., Yao, Z., Zhang, Q. (2008). Characterization of vehicle driving
patterns and development of driving cycles in Chinese cities. Transportation Research Part
D: Transport and Environment 13/5, 289-297.

[132] Weidner, W., Transchel, F.W.G., Weidner, R. (2016). Classification of scale-sensitive telem-
atic observables for riskindividual pricing. European Actuarial Journal 6/1, 3-24.

[133] Weidner, W., Transchel, F.W.G., Weidner, R. (2017). Telematic driving profile classification
in car insurance pricing. Annals of Actuarial Science 11/2, 213-236.

[134] Wood, S.N. (2017). Generalized Additive Models: an Introduction with R. 2nd edition. CRC
Press.

[135] Wüthrich, M.V. (2013). Non-Life Insurance: Mathematics & Statistics. SSRN Manuscript
ID 2319328. Version March 20, 2019.

[136] Wüthrich, M.V. (2017). Covariate selection from telematics car driving data. European
Actuarial Journal 7/1, 89-108.

[137] Wüthrich, M.V. (2017). Price stability in regression tree calibrations. Proceedings of CI-
CIRCM 2017, Tsinghua University Press.

[138] Wüthrich, M.V. (2018). Machine learning in individual claims reserving. Scandinavian Ac-
tuarial Journal 2018/6, 465-480.

[139] Wüthrich, M.V. (2020). Bias regularization in neural network models for general insurance
pricing. European Actuarial Journal 10/1, 179-202.

[140] Wüthrich, M.V., Merz, M. (2019). Editorial: Yes, we CANN! ASTIN Bulletin 49/1, 1-3.

[141] Wüthrich, M.V., Merz, M. (2021). Statistical Foundations of Actuarial Learning and its
Applications. SSRN Manuscript ID 3822407.

[142] Xiang, Q. (2018). Bayesian Gaussian Random Fields Applied to Car Insurance Claim Size
Modeling. Semester Thesis. Department of Mathematics, ETH Zurich.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

Da
ta

An
aly

tic
s

240 Bibliography

[143] Yukich, J., Stinchcombe, M., White, H. (1995). Sup-norm approximation bounds for net-
works through probabilistic methods. IEEE Transactions on Information Theory 41/4,
1021-1027.

[144] Zaslavsky, T. (1975). Facing up to arrangements: face-count formulas for partitions of space
by hyperplanes. Memoirs of the American Mathematical Society 154.

[145] Zöchbauer, P. (2016). Data Science in Non-Life Pricing: Predicting Claims Frequencies
using Tree-Based Models. M.Sc. Thesis. Department of Mathematics, ETH Zurich.

[146] Zou, H., Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society, Series B 67/2, 301-320.

Version October 27, 2021, M.V. Wüthrich & C. Buser, ETH Zurich

Electronic copy available at: https://ssrn.com/abstract=2870308

	Introduction to Non-Life Insurance Pricing
	Introduction
	The compound Poisson model
	Model assumptions and first properties
	Maximum likelihood estimation: homogeneous case
	Poisson deviance loss

	Prediction uncertainty
	Generalization loss
	Cross-validation on test samples
	Leave-one-out cross-validation
	K-fold cross-validation
	Stratified K-fold cross-validation

	Example: homogeneous Poisson model

	Generalized Linear Models
	Heterogeneous Poisson claims frequency model
	Multiplicative regression model
	Deviance residuals and parameter reduction
	Example in car insurance pricing
	Pre-processing features: categorical feature components
	Pre-processing features: continuous feature components
	Data compression
	Issue about low frequencies
	Models GLM3+ considering all feature components
	Generalized linear models: summary

	Classification problem
	Classification of random binary outcomes
	Logistic regression classification

	Maximum likelihood estimation

	Generalized Additive Models
	Generalized additive models for Poisson regressions
	Natural cubic splines
	Example in motor insurance pricing, revisited
	Generalized additive models: summary

	Multivariate adaptive regression splines

	Credibility Theory
	The Poisson-gamma model for claims counts
	Credibility formula
	Maximum a posteriori estimator
	Example in motor insurance pricing

	The binomial-beta model for classification
	Credibility formula
	Maximum a posteriori estimator

	Regularization and Bayesian MAP estimators
	Bayesian posterior parameter estimator
	Ridge and LASSO regularization

	Markov chain Monte Carlo method
	Metropolis–Hastings algorithm
	Gibbs sampling
	Hybrid Monte Carlo algorithm
	Metropolis-adjusted Langevin algorithm
	Example in Markov chain Monte Carlo simulation
	Markov chain Monte Carlo methods: summary

	Proofs of Section 4.4

	Neural Networks
	Feed-forward neural networks
	Generic feed-forward neural network construction
	Shallow feed-forward neural networks
	Deep feed-forward neural networks
	Combined actuarial neural network approach
	The balance property in neural networks
	Network ensemble

	Gaussian random fields
	Gaussian Bayesian neural network
	Infinite Gaussian Bayesian neural network
	Bayesian inference for Gaussian random field priors
	Predictive distribution for Gaussian random field priors
	Step function activation

	Classification and Regression Trees
	Binary Poisson regression trees
	Binary trees and binary indexes
	Pre-processing features: standardized binary splits
	Goodness of split
	Standardized binary split tree growing algorithm
	Example in motor insurance pricing, revisited
	Choice of categorical classes

	Tree pruning
	Binary trees and pruning
	Minimal cost-complexity pruning
	Choice of the best pruned tree
	Example in motor insurance pricing, revisited

	Binary tree classification
	Empirical probabilities
	Standardized binary split tree growing algorithm for classification

	Proofs of pruning results

	Ensemble Learning Methods
	Bootstrap simulation
	Non-parametric bootstrap
	Parametric bootstrap

	Bagging
	Aggregating
	Bagging for Poisson regression trees

	Random forests
	Boosting machines
	Generic gradient boosting machine
	Poisson regression tree boosting machine
	Example in motor insurance pricing, revisited
	AdaBoost algorithm

	Telematics Car Driving Data
	Description of telematics car driving data
	Simple empirical statistics
	The velocity-acceleration heatmap

	Cluster analysis
	Dissimilarity function
	Classifier and clustering
	K-means clustering algorithm
	Example

	Principal component analysis

	Motor Insurance Data
	Synthetic data generation
	Descriptive analysis

