Agenda

Biological and Artificial Neurons

Neural Network

Multi-Layer Perceptron (Fully-connected layers)
Backpropagation

v v.v Yy

Biological and Artificial Neurons

Neuron

impulses carried

toward cell body
branches

dendrites of axon

-~y terminals
B _

impulses carried
away from cell body

nucleus X0l

cell body

An Artificial Neural Network (Multi-Layer Perceptron)

|dea:

» Use a simplified (mathematical) model of a neuron as building
blocks
» Connect the neurons together in the following way:

.
Q”

\" tput layer
input layer . .

hidden layer 1 hidden layer 2

{

(S
)

(X
S0
20

N
XK
’4»‘\\

)

> An input layer: feed in input features (e.g. like retinal cells in
your eyes)

» A number of hidden layers: don’'t have specific meaning

» An output layer: interpret output like a “grandmother cell”

Modeling Individual Neurons

L wo

*@® synapse
axon from a neuron
~WoLo

cell body f (Z iRy 4 b)
w1 Zwimi +b f i .
- output axon
activation
Wo Xs function
X1, X2, ... = inputs to the neuron
wi, Wo, ... = the neuron’s weights

b = the neuron’s bias
f = an activation function
f(>_; xiw; + b) = the neuron’s activation (output)

vV v v v Yy

Activation Functions: common choices

Common Choices:

» Sigmoid activation
» Tanh activation
» RelLU activation

Rule of thumb: Start with RelLU activation. If necessary, try tanh.

Activation Function: Sigmoid

I--FF.-I. L i L L L L I 1 L L L I
5 10

—10 e

» somewhat problematic due to gradient signal
» all activations are positive

Activation Function: Tanh

I.[]r S
DE i
L |

» scaled version of the sigmoid activation
» also somewhat problematic due to gradient signal

» activations can be positive or negative

Activation Function: RelLU

10 F

[i; /

g%] =

most often used nowadays

all activations are positive

easy to compute gradients

can be problematic if the bias is too large and negative, so the
activations are always 0

v v.v Yy

Linear Regression as a Single Neuron

L wo

*@® synapse
axon from a neuron
. Wod

cell body

I (Z w;T; + b)
Zwimi +b :

o
output axon

activation
function

w1

f

Wa L2

X1, X2, Inputs

wi, Wa, ... - components of the weight vector w
b : the bias

f : identity function

y=>ixiwi+b=w'x+b

vV v v v Yy

Binary Classification (Logistic Regression) as a Single
Neuron

L Wy

*@® synapse
axon from a neuron ™
L WoTo

f (Z w;z; + b)

cell body
Z w;x; + b -
z. output axon
activation

Wy Lo function

w1y

f

X1, X2, Inputs

wi, Wa, ... - components of the weight vector w
b : the bias

f=o0

y =03 xiwi + b) = o(w'x + b)

vV v v v Yy

MNIST Digit Recognition

0 . 1 . .
0 25 0 25 0 25 0 25 0 25 0 25
0 . .)
-
20 s
0 25 0 25 0 25 25 0 25

0 25 0
0 ! ! : ;
0 25 0 25 0 25 0 25 0 25 0 25

» |Input: An 28x28 pixel image
» x is a vector of length 784

» Target: The digit represented in the image
» t is a one-hot vector of length 10

» Model (from tutorial 4)
» y = softmax(Wx + b)

Adding a Hidden Layer

Two layer neural network

output layer
input layer

hidden layer

> Input size: 784 (number of features)
» Hidden size: 50 (we choose this number)
» Output size: 10 (number of classes)

Side note about machine learning models

When discussing machine learning models, we usually

» first talk about how to make predictions assume the weights
are trained
» then talk about how to traing the weights

Often the second step requires gradient descent or some other
optimization method

Making Predictions: computing the hidden layer

input layer
hidden layer

4)
hy = f(z Wl(’,-)x,- + b§))
i=1

Making Predictions: computing the output (pre-activation)

output layer
input layer
hidden layer

50
7] = Z Wl(,zj) hj + b§2)
j=1

50
Zy = Z Wz(?j) hj + b§2)
j=1

Making Predictions: applying the output activation

output layer

input layer
hidden layer
2]
Y49,
Z —

y = softmax(z)

Making Predictions: Vectorized

input layer
hidden layer

h=f(W®x + b))
z=f(W®h +b?)

y = softmax(z)

Expressive Power: Linear Layers (No Activation Function)

» We've seen that there are some functions that linear classifiers
can't represent. Are deep networks any better?

» Any sequence of linear layers (with no activation function) can
be equivalently represented with a single linear layer.

y = WO ww)
= W'x

Deep linear networks are no more expressive than linear regression!

Expressive Power: MLP (nonlinear activation)

» Multilayer feed-forward neural nets with nonlinear activation
functions are universal approximators: they can approximate
any function arbitrarily well.

» This has been shown for various activation functions

(thresholds, logistic, RelLU, etc.)

» Even though RelLU is "almost” linear, it's nonlinear enough!

Universality for binary inputs and targets

» Hard threshold hidden units, linear output
» Strategy: 2P hidden units, each of which responds to one

particular input configuration
» Only requires one hidden layer, though it needs to be extremely
wide!

Limits of universality

» You may need to represent an exponentially large network.
» |f you can learn any function, you'll just overfit.
» Really, we desire a compact representation!

Backpropagation

Training Neural Networks

» How do we find good weights for the neural network?

» We can continue to use the loss functions:
» cross-entropy loss for classification
» square loss for regression

» The neural network operations we used (weights, etc) are
continuous

We can use gradient descent!

Gradient Descent Recap

» Start with a set of parameters (initialize to some value)

» Compute the gradient 85 for each parameter (also g‘g
» This computation can often vectorized

» Update the parameters towards the negative direction of the
gradient

Gradient Descent for Neural Networks

» Conceptually, the exact same idea!

» However, we have more parameters than before
» Higher dimensional
» Harder to visualize

» More “steps”
Since g—vgv, is the average of g—fv across training examples, we'll focus

on computing g—vﬁv

Univariate Chain Rule

Recall: if f(x) and x(t) are univariate functions, then

d df dx
af(x(t)) = Ix dt

Univariate Chain Rule for Logistic Least Square

Recall: Univariate logistic least squares model

Z=wx+ b
y =o(z)

1 2
ﬁ—g(y—t)

Let's compute the loss derivative

Univariate Chain Rule Computation (1)

How you would have done it in calculus class

L= l(U(WX + b) — t)?

oL (9

5 B (O’(WX + b) — t)?
10 5
=5 aW(O'(WX + b) — t)

= (o(wx + b) — t)aiw(a(wx + b) — t)

= (o(wx + b) — t)o’(wx + b)ﬁiw(wx + b)
= (o(wx + b) — t)o’(wx + b)x

Univariate Chain Rule Computation (2)

Similarly for 5

1
L= i(U(WX + b) — t)?

oL 9 [1)
ab ~ ob [27 B 0
_16 2

= (o(wx + b) — t)%(a(wx + b) — t)

= (o(wx + b) — t)o’(wx + b)%(wx + b)
= (o(wx + b) — t)o’(wx + b)

Univariate Chain Rule Computation (2)

oL
Similarly for 5

L= 1((I(Wx + b) — t)?

oL 59
T (a(wx—l—b)—t)
10
= 55po(wx+b) —t)°
= (o(wx + b) — t) (‘fb (o(wx + b) — t)

= (o(wx + b) — t)o’(wx + b) (WX + b)
= (o(wx + b) — t)o’(wx + b)

Q: What are the disadvantages of this approach?

A More Structured Way to Compute the Derivatives

a“_,
dy_y
z=wx+b dC dLC ,
— = —0(2)
y:g(z) dz dy
1 , oL dL
L=30-1) ow ™ dz
oL _dr
Ob dz

Less repeated work; easier to write a program to efficiently compute
derivatives

Computation Graph

We can diagram out the computations using a computation graph.

Compute Loss
>

t
w > > >/
b/

Compute Derivatives
-

The nodes represent all the inputs and computed quantities

The edges represent which nodes are computed directly as a
function of which other nodes.

Chain Rule (Error Signal) Notation

» Use y to denote the derivative %

» sometimes called the error signal
» This notation emphasizes that the error signals are just values
our program is computing (rather than a mathematical

operation).
z=wx+b y=y—1t
=~
y:a'(z) Z—yU(Z)
, 1 5 w=2zX
— (v —t _

Multiclass Logistic Regression Computation Graph

In general, the computation graph fans out:

w
b
1&& t zZ = Z WiiX; + by
Iq <1—>Y1 {. j
DD)
$2—>Z2—>y2 / Yk = Zl eZ
b/T 2 L=—) tclogy
2 W1 k
w22

There are multiple paths for which a weight like wy1 affects the loss
L.

Multivariate Chain Rule

Suppose we have a function f(x,y) and functions x(t) and y(t).
(All the variables here are scalar-valued.) Then

of dx Of dy
—f(X(t) y(t)) = xde T Dy dt

/\
\/

Multivariate Chain Rule Example

If f(x,y) =y + e, x(t) =cost and y(t) = t2...

d _ Ofdx Of dy
Ef(x(t),y(t)) = &EJF@E

= (ye¥) - (—sint) + (1 + xe™)

- 2t

Multivariate Chain Rule Notation

Mathematical expressions
to be evaluated

/ "\

df ofde Ofdy

dt ~ Oz dt = Oy dt

N/

Values already computed
by our program

In our notation

The Backpropagation Algorithm

» Backpropagation is an algorithm to compute gradients
efficiency
» Forward Pass: Compute predictions (and save intermediate
values)
» Backwards Pass: Compute gradients
» The idea behind backpropagation is very similar to dynamic
programming
» Use chain rule, and be careful about the order in which we
compute the derivatives

Backpropagation Example

1
1 w%) (5 wg)
bgl)\\, . \\ t

$1\>21—>h1 »1/1
>
To—2o—ho 19 f
<1>// T <2>// T C
b b
T el T4 wy

Backpropagation for a MLP

ey w? (@)

1 w(l) Wig
b(l) 12 b(2
1 \\ \\' t Backward pass:
I—21—>h 14’?/1\{‘[, L=1
x2—>z2—>h2—>y2/f W — Z(yk - tk)
1)// b(2>//uT 2 W() — Vi hi
wid w) wir < |
Wa2 2) _ —
Forward pass: b = Vi
(2
= > wj %+ b hi = ZWV()
J
hi = o(z;) zj = hiU (zi)
Vi = Z W/E,?)hi n b/(<2) 151) = Zix;

L=3 > vk — t)? |

Backpropagation for a MLP (Vectorized)

(1) w§1) (2)

b(l)‘&:\lj) bf)%\ ti Backwardzpisi:
y—T

1—Z 1—>h 1—>y 1

><I>f£

Lo—»2o—>ho— Y2

t W) — ohT
(1)//"<1> béz)//ut 2 MQ = yh
(1) Waq %) wél) b(2) — y
Forward pass: oS
z = Wl + b(1) h |_/V 4
Z=hoo'(2)
h=o0(z)
W) =zx"

y = W®h + b

1
L="|ly—t|
Sy =t

