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Biological and Artificial Neurons
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An Artificial Neural Network (Multi-Layer Perceptron)

|dea:

» Use a simplified (mathematical) model of a neuron as building
blocks
» Connect the neurons together in the following way:
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> An input layer: feed in input features (e.g. like retinal cells in
your eyes)

» A number of hidden layers: don’'t have specific meaning

» An output layer: interpret output like a “grandmother cell”



Modeling Individual Neurons
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- output axon
activation
Wo Xs function
X1, X2, ... = inputs to the neuron
wi, Wo, ... = the neuron’s weights

b = the neuron’s bias
f = an activation function
f(>_; xiw; + b) = the neuron’s activation (output)
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Activation Functions: common choices

Common Choices:

» Sigmoid activation
» Tanh activation
» RelLU activation

Rule of thumb: Start with RelLU activation. If necessary, try tanh.



Activation Function: Sigmoid
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» somewhat problematic due to gradient signal
» all activations are positive



Activation Function: Tanh
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» scaled version of the sigmoid activation
» also somewhat problematic due to gradient signal

» activations can be positive or negative



Activation Function: RelLU
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most often used nowadays

all activations are positive

easy to compute gradients

can be problematic if the bias is too large and negative, so the
activations are always 0

v v.v Yy



Linear Regression as a Single Neuron
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X1, X2, ... . Inputs

wi, Wa, ... - components of the weight vector w
b : the bias

f : identity function

y=>ixiwi+b=w'x+b
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Binary Classification (Logistic Regression) as a Single
Neuron
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MNIST Digit Recognition
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» |Input: An 28x28 pixel image
» x is a vector of length 784

» Target: The digit represented in the image
» t is a one-hot vector of length 10

» Model (from tutorial 4)
» y = softmax(Wx + b)




Adding a Hidden Layer

Two layer neural network

output layer
input layer

hidden layer

> Input size: 784 (number of features)
» Hidden size: 50 (we choose this number)
» Output size: 10 (number of classes)



Side note about machine learning models

When discussing machine learning models, we usually

» first talk about how to make predictions assume the weights
are trained
» then talk about how to traing the weights

Often the second step requires gradient descent or some other
optimization method



Making Predictions: computing the hidden layer

input layer
hidden layer
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Making Predictions: computing the output (pre-activation)

output layer
input layer
hidden layer

50
7] = Z Wl(,zj) hj + b§2)
j=1

50
Zy = Z Wz(?j) hj + b§2)
j=1



Making Predictions: applying the output activation

output layer

input layer
hidden layer
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y = softmax(z)



Making Predictions: Vectorized

input layer
hidden layer

h=f(W®x + b))
z=f(W®h +b?)

y = softmax(z)



Expressive Power: Linear Layers (No Activation Function)

» We've seen that there are some functions that linear classifiers
can't represent. Are deep networks any better?

» Any sequence of linear layers (with no activation function) can
be equivalently represented with a single linear layer.

y = WO ww)
= W'x

Deep linear networks are no more expressive than linear regression!



Expressive Power: MLP (nonlinear activation)

» Multilayer feed-forward neural nets with nonlinear activation
functions are universal approximators: they can approximate
any function arbitrarily well.

» This has been shown for various activation functions

(thresholds, logistic, RelLU, etc.)

» Even though RelLU is "almost” linear, it's nonlinear enough!



Universality for binary inputs and targets

» Hard threshold hidden units, linear output
» Strategy: 2P hidden units, each of which responds to one

particular input configuration
» Only requires one hidden layer, though it needs to be extremely
wide!

Limits of universality

» You may need to represent an exponentially large network.
» |f you can learn any function, you'll just overfit.
» Really, we desire a compact representation!



Backpropagation



Training Neural Networks

» How do we find good weights for the neural network?

» We can continue to use the loss functions:
» cross-entropy loss for classification
» square loss for regression

» The neural network operations we used (weights, etc) are
continuous

We can use gradient descent!



Gradient Descent Recap

» Start with a set of parameters (initialize to some value)

» Compute the gradient 85 for each parameter (also g‘g
» This computation can often vectorized

» Update the parameters towards the negative direction of the
gradient



Gradient Descent for Neural Networks

» Conceptually, the exact same idea!

» However, we have more parameters than before
» Higher dimensional
» Harder to visualize

» More “steps”
Since g—vgv, is the average of g—fv across training examples, we'll focus

on computing g—vﬁv



Univariate Chain Rule

Recall: if f(x) and x(t) are univariate functions, then

d df dx
af(x(t)) = Ix dt



Univariate Chain Rule for Logistic Least Square

Recall: Univariate logistic least squares model

Z=wx+ b
y =o(z)

1 2
ﬁ—g(y—t)

Let's compute the loss derivative



Univariate Chain Rule Computation (1)

How you would have done it in calculus class

L= l(U(WX + b) — t)?

oL (9

5 B (O’(WX + b) — t)?
10 5
=5 aW(O'(WX + b) — t)

= (o(wx + b) — t)aiw(a(wx + b) — t)

= (o(wx + b) — t)o’(wx + b)ﬁiw(wx + b)
= (o(wx + b) — t)o’(wx + b)x



Univariate Chain Rule Computation (2)

Similarly for 5

1
L= i(U(WX + b) — t)?
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= (o(wx + b) — t)%(a(wx + b) — t)

= (o(wx + b) — t)o’(wx + b)%(wx + b)
= (o(wx + b) — t)o’(wx + b)



Univariate Chain Rule Computation (2)

oL
Similarly for 5

L= 1((I(Wx + b) — t)?

oL 59
T (a(wx—l—b)—t)
10
= 55po(wx+b) —t)°
= (o(wx + b) — t) (‘fb (o(wx + b) — t)

= (o(wx + b) — t)o’(wx + b) (WX + b)
= (o(wx + b) — t)o’(wx + b)

Q: What are the disadvantages of this approach?



A More Structured Way to Compute the Derivatives
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Less repeated work; easier to write a program to efficiently compute
derivatives



Computation Graph

We can diagram out the computations using a computation graph.

Compute Loss
>

t
w > > >/
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Compute Derivatives
-

The nodes represent all the inputs and computed quantities

The edges represent which nodes are computed directly as a
function of which other nodes.



Chain Rule (Error Signal) Notation

» Use y to denote the derivative %

» sometimes called the error signal
» This notation emphasizes that the error signals are just values
our program is computing (rather than a mathematical

operation).
z=wx+b y=y—1t
=~
y:a'(z) Z—yU(Z)
, 1 5 w=2zX
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Multiclass Logistic Regression Computation Graph

In general, the computation graph fans out:
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There are multiple paths for which a weight like wy1 affects the loss
L.



Multivariate Chain Rule

Suppose we have a function f(x,y) and functions x(t) and y(t).
(All the variables here are scalar-valued.) Then

of dx  Of dy
—f(X(t) y(t)) = xde T Dy dt
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Multivariate Chain Rule Example

If f(x,y) =y + e, x(t) =cost and y(t) = t2...

d _ Ofdx  Of dy
Ef(x(t),y(t)) = &EJF@E

= (ye¥) - (—sint) + (1 + xe™)

- 2t



Multivariate Chain Rule Notation

Mathematical expressions
to be evaluated

/ "\

df ofde  Ofdy

dt ~ Oz dt = Oy dt

N/

Values already computed
by our program

In our notation



The Backpropagation Algorithm

» Backpropagation is an algorithm to compute gradients
efficiency
» Forward Pass: Compute predictions (and save intermediate
values)
» Backwards Pass: Compute gradients
» The idea behind backpropagation is very similar to dynamic
programming
» Use chain rule, and be careful about the order in which we
compute the derivatives



Backpropagation Example
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Backpropagation for a MLP
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Backpropagation for a MLP (Vectorized)
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