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Supervised Learning ldea

» We have some data (x(1), t(1)) (x(), +(2)) . (x(N) (V)
» We want to be able to make prediction y (of an unseen t) for a
new value of x

» For example, predict the exam grade of a person who missed
their exam

» How can we build a model to solve the prediction problem?



Supervised Learning Task: Exam Grade Prediction

(Definitely not real data from last term)

Task: Predict Exam Grade given Assignment Grade

Assignment Grade

» Data: (x(1), (D)), (x(2) (2
» The x()) are called inputs
» The t) are called targets
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Linear Regression Model

A model is a set of assumptions about the underlying nature of the

data we wish to learn about. The model, or architecture defines
the set of allowable hypotheses.

In linear regression, our model will look like this
y = _ wpxj+b
J

Where y is a prediction for t, and the w; and b are parameters of
the model, to be determined based on the data.



Linear Regression for Exam Grade Prediction

For the exam prediction problem, we only have a single feature, so
we can simplify our model to:

y =wx+b

Our hypothesis space includes all functions of the form
y = wx + b. Here are some examples:

y = 0.4x + 0.2
y = 0.9x + 0.2
y =0.1x + 0.7
y=—x—1

yvyvyyvyy

The variables w and b are called weights or parameters of our
model. (Sometimes w and b are referred to as coefficients and
intercept, respectively.)



Which hypothesis is better suited to the data?
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Hypothesis Space

We can visualize the hypothesis space or weight space:

Data space Weight space
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Each point in the weight space represents a hypothesis.



Quantifying the “badness” of a hypothesis

ldea:

» A good hypothesis should make good predictions about our

labeled data (x(1), t(1)) (x(2), £(2)), . (x(N) (V)
» Thatis, y() = wx() 4+ b should be “close to” t{/)
» But how do we define the notion of “close to"?

We'll choose square vertical distance:

Ly t) =y — 1)

This choice has some nice mathematical and statistical properties.



Cost Function (Loss Function)

The “"badness” of an entire hypothesis is the average badness across
our labeled data.

1 I I
E(w. b) = Z:ﬁ(y( ), (1)
1 E : ] ]

This is called the loss of a particular hypothesis.

Since the loss depends on the choice of w and b, we call £(w, b)
the loss function.



Summary so far

Hypothesis y =wx+b
Parameters w, b
Loss Function E(w, b) = 55 i ((wx) + b) — (D)2

Goal Find w, b that minimize L(w, b)




Minimizing the Loss Function

Task: Find w and b that minimize the loss function:

E(w, b) Z((WX )+ b) — t(1))2



Potential Strategy: Direct Solution

Find a critical point by setting
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Possible for our hypothesis space, and are covered in the notes
...and the pre-requisite quiz! See what we did there?

However, let's use a technique that can also be applied to more
general models.



Strategy: Gradient Descent



Minimizing a scalar function f(x)

J
t

Gradient Descent is an iterative method used to find the minima of

a function.

We'll start by thinking about a scalar function (1D)

To minimize a function f(x), we start with a random point xp and
iterate an update rule that we will derive.



Deriving Gradient Descent Update
Consdier this function f(x)
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Q: If we want to move the red point closer to the minima, do we
move left or right?

Q: At the red point x, is the derivative f/(x) positive or negative?

We want to move x towards the negative direction of the
gradient!



How much do we move?
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Q: Should we make a larger jump at the red point or green?

The larger |f’(x)|, the more we should move. We slow down close
to a minima.

x 4 x — af'(x)

The term « is the learning rate



Gradient Descent for Linear Regression (2D)

The same idea holds in higher dimensions:
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Gradient Descent for Linear Regression (high dimensional)

Or, in general:
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It turns out that the gradient is the direction of the steepest
descent.



Gradient Descent: when to stop?

In theory:
» Stop when w and b stop changing (convergence)
In practice:

» Stop when £ almost stops changing (another notion of
convergence)
» Stop until we're tired of waiting



What are neural networks?

@ While neural nets originally drew inspiration from the brain, nowadays
we mostly think about math, statistics, etc.

nonlinearity I'th input

@ Neural networks are collections of thousands (or millions) of these
simple processing units that together perform useful computations.



