AQA GCSE Maths - higher

1. Circle the fraction that is equivalent to 4.75 :
$\frac{15}{4} \quad \frac{19}{4} \quad \frac{21}{4} \quad \frac{23}{4}$
2. Which one of these is a square number and a cube number?
$100100010000 \quad 1000000$
3. Use trigonometry to work out the size of angle x.

4. As a decimal $\frac{11}{40} \doteq 0.275$. Work out $\frac{33}{400}$ as a decimal.
5. s and t are positive integers. $(x+s)(x-t)$ is expanded and simplified. The answer is $x^{2}+k x-40$ where k is a positive integer. Work out the smallest possible value of k.
6. Work out $\sqrt[3]{\frac{2^{7} \times 11^{3}}{2}}$. Give your answer as an integer.
7. Work out $2 \sqrt{10} \times \sqrt{80} \times \sqrt{18}$. Give your answer as an integer.
8. Work out $32^{-\frac{3}{5}}$. Give your answer as a decimal.
9. Factorise fully $144-4 x^{2}$.

AQA GCSE Maths - higher

1. Circle the fraction that is equivalent to 4.75 :
$\frac{15}{4} \quad \frac{19}{4} \quad \frac{21}{4} \quad \frac{23}{4}$
2. Which one of these is a square number and a cube number?
$100100010000 \quad 1000000$
3. Use trigonometry to work out the size of angle x.

4. As a decimal $\frac{11}{40} \doteq 0.275$. Work out $\frac{33}{400}$ as a decimal.
5. s and t are positive integers. $(x+s)(x-t)$ is expanded and simplified. The answer is $x^{2}+k x-40$ where k is a positive integer. Work out the smallest possible value of k.
6. Work out $\sqrt[3]{\frac{2^{7} \times 11^{3}}{2}}$. Give your answer as an integer.
7. Work out $2 \sqrt{10} \times \sqrt{80} \times \sqrt{18}$. Give your answer as an integer.
8. Work out $32^{-\frac{3}{5}}$. Give your answer as a decimal.
9. Factorise fully $144-4 x^{2}$.

Solutions

1. Circle the fraction that is equivalent to 4.75 :
$\frac{19}{4}$
2. Which one of these is a square number and a cube number?

1000000
3. Use trigonometry to work out the size of angle x.
$x=60^{\circ}$

4. As a decimal $\frac{11}{40} \doteq 0.275$. Work out $\frac{33}{400}$ as a decimal. $\frac{33}{400} \doteq 0.0825$
5. s and t are positive integers. $(x+s)(x-t)$ is expanded and simplified. The answer is $x^{2}+k x-40$ where k is a positive integer. Work out the smallest possible value of k.
$k=3$
6. Work out $\sqrt[3]{\frac{2^{7} \times 11^{3}}{2}}$. Give your answer as an integer. 44
7. Work out $2 \sqrt{10} \times \sqrt{80} \times \sqrt{18}$. Give your answer as an integer. 240
8. Work out $32^{-\frac{3}{5}}$. Give your answer as a decimal.
0.125
9. Factorise fully $144-4 x^{2}$.
$4(6-x)(6+x)$

