AQA GCSE Maths - higher

1. Circle the fraction that is equivalent to 4.75:

15	19	21	23
4	4	4	4

- 2. Which one of these is a square number and a cube number?100 1000 10000 10000000
- 3. Use trigonometry to work out the size of angle x.

- 4. As a decimal $\frac{11}{40} \doteq 0.275$. Work out $\frac{33}{400}$ as a decimal.
- 5. s and t are **positive** integers. (x+s)(x-t) is expanded and simplified. The answer is $x^2 + kx 40$ where k is a positive integer. Work out the **smallest** possible value of k.
- 6. Work out $\sqrt[3]{\frac{2^7 \times 11^3}{2}}$. Give your answer as an integer.
- 7. Work out $2\sqrt{10} \times \sqrt{80} \times \sqrt{18}$. Give your answer as an integer.
- 8. Work out $32^{-\frac{3}{5}}$. Give your answer as a decimal.
- 9. Factorise fully $144 4x^2$.

AQA GCSE Maths - higher

1. Circle the fraction that is equivalent to 4.75:

15	19	21	23
4	4	4	4

- 2. Which one of these is a square number and a cube number?100 1000 10000 10000000
- 3. Use trigonometry to work out the size of angle x.

- 4. As a decimal $\frac{11}{40} \doteq 0.275$. Work out $\frac{33}{400}$ as a decimal.
- 5. s and t are **positive** integers. (x+s)(x-t) is expanded and simplified. The answer is $x^2 + kx 40$ where k is a positive integer. Work out the **smallest** possible value of k.
- 6. Work out $\sqrt[3]{\frac{2^7 \times 11^3}{2}}$. Give your answer as an integer.
- 7. Work out $2\sqrt{10} \times \sqrt{80} \times \sqrt{18}$. Give your answer as an integer.
- 8. Work out $32^{-\frac{3}{5}}$. Give your answer as a decimal.
- 9. Factorise fully $144 4x^2$.

Solutions

- 1. Circle the fraction that is equivalent to 4.75:
 - $\frac{19}{4}$
- 2. Which one of these is a square number **and** a cube number? 1 000 000
- 3. Use trigonometry to work out the size of angle x.

$$x = 60^{\circ}$$

- 4. As a decimal $\frac{11}{40} \doteq 0.275$. Work out $\frac{33}{400}$ as a decimal. $\frac{33}{400} \doteq 0.0825$
- 5. s and t are **positive** integers. (x+s)(x-t) is expanded and simplified. The answer is $x^2 + kx 40$ where k is a positive integer. Work out the **smallest** possible value of k.

$$k=3$$

- 6. Work out $\sqrt[3]{\frac{2^7 \times 11^3}{2}}$. Give your answer as an integer. 44
- 7. Work out $2\sqrt{10} \times \sqrt{80} \times \sqrt{18}$. Give your answer as an integer. 240
- 8. Work out $32^{-\frac{3}{5}}$. Give your answer as a decimal. 0.125
- 9. Factorise fully $144 4x^2$. 4(6 - x)(6 + x)