

Středoevropský technologický institut BRNO | ČESKÁ REPUBLIKA

Electron microscopy

InnoCore project

Jiri Novacek

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

Sylabus

Lecture 1: Applications of electron microscopy in lifescience research

Lecture 2: Transmission electron microscope, cryo-electron microscopy, principles of image formation

Lecture 3: Fourier transform, techniques for 3D model determination in cryo-EM

Sylabus

Lecture 1: Applications of electron microscopy in lifescience research

Lecture 2: Transmission electron microscope, cryo-electron microscopy, principles of image formation

Lecture 3: Fourier transform, techniques for 3D model determination in cryo-EM

Content

Fourier transform

- Contrast transfer function
- Single particle analysis
- Cryo-electron tomography

Fourier transform

Fourier series is an expansion of a function f(x) in terms of an infinite sum of sines and cosines

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

The higher the spatial frequencies (i.e. higher resolution) are included, the more faithful the representation of the original signal will be.

Fourier transform

$$F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx$$

- *f*: function which we are transforming (1D)
- *x*: axis coordinate
- *i*: √-1
- *k*: spatial frequency
- F(k): Fourier coefficient at frequency k

Euler's Formula

$$e^{i\phi} = \cos \phi + i \sin \phi$$

$$F(k) = \int_{-\infty}^{\infty} f(x) \cos(-2\pi kx) dx + i \int_{-\infty}^{\infty} f(x) \sin(-2\pi kx) dx$$

Fourier transform

Digitization

Discrete Fourier transform

• 1D discrete Fourier transform of function f(x)

$$\Phi(\omega_x) = \sum_{x=0}^{N-1} f(x) e^{-i(\frac{2\pi}{N}\omega_x x)}$$

• 1D inverse discrete Fourier transform of function $\Phi(\omega_x)$

$$f(x) = \frac{1}{N} \sum_{\omega_x=0}^{N-1} \Phi(\omega_x) e^{i(\frac{2\pi}{N}\omega_x x)}$$

Discrete Fourier transform - sampling

Nyquist frequency

Image formation

Image formation

Contrast transfer function

Image formation

High defocus

Parameters required for 3D reconstruction

These are determined in 2D. These are determined in 3D.

Single particle analysis

Single particle analysis

Electron tomography

Normalize micrographs

Computer Tomography

 \bigcirc

Electron tomography

Electron tomography

Thank you for attention

jiri.novacek@ceitec.muni.cz

