Study of Interactions and Protein Structure Determination by NMR

For Application to Protein Characterization

by
Radovan Fiala, Karel Kubicek, and Pavel Kaderavek
CEITEC, Masaryk University

NMR as a tool for study structure, dynamics and interactions of biomolecules

0) $A A / N A$ sequence, resonance assignment, standard chemical shifts
1) Structure determination of proteins/NAs
2) NMR can provide detailed information about the structure at the atomic level resolution relying on the spatial proximity of two interacting protons - nuclear Overhauser enhancement (NOE)
3) Additional structural information can be obtained (residual dipolar couplings - ROCs, J-couplings, backbone chemical shifts - CSI)

NOE:

$$
\mathbf{r}_{1,2 ;} \mathbf{r}_{1,3 ;} \mathbf{r}_{2,3} \leq 6 \AA
$$

$$
1 \AA=1.10^{-10} \mathrm{~m}
$$

Nuclear Overhauser Effect (SpectroscopY) $=$ NOE(SY)

i) caused by dipolar coupling between nuclei.
ii) the local field at one nucleus is affected by the presence of another nucleus.
iii) the result is a mutual modulation of resonance frequencies.
iv) the NOE operates through space.
v) the intensity of the interaction is a function of the distance between the nuclei according to the following equation: $I=A\left(1 / r^{6}\right)$, I is the intensity, A is a scaling constant, and r is the distance between the nuclei
vi) the NOE provides a link between an experimentally measurable quantity, I, and internuclear distance
vii) NOE is only observed up to $\sim 6 \AA$

Iterative procedure of structure determination by NMR

http://www.fbreagents.com/basics nmr/9proteins.htm

Interligand NOEs between CID and CTD - 900MHz, 150ms, 293K
CID resonances

Interligand NOEs between CID and CTD - 900MHz, 150ms, 293K
CID resonances

Studying interactions by NMR titration

1) Slow exch. regime (on the NMR timescale)
2) Intermediate exchange regime
3) Fast exchange regime

- individual peaks for each of the studied states (e.g. free / complexed forms of a protein), peak intensity representing population of a given state
- single peak whose chemical shift position is given by the molar ratio of the states present in solution

Not all molecules relax (decay) with the same rate

Bigger molecules (higher molecular weight) relax faster \Rightarrow broad peaks
Small molecules relax slower \Rightarrow narow peaks

Size

2019

Relaxation
slow (i.e. long \mathbf{t}_{2} time)

NMR line(width) after FT

NMR line(width) after FT

Protein - metal ion interaction

slow exchange case

DR1885 from deinococcus radiodurans

Banci et al. PNA৩ <uvo

Protein - peptide interaction

fast exchange case

Interaction of Nrd1-CID with CTD

RRM: RNA recognition motif; CID: CTD interaction domain; CTD: C-terminal domain

Interaction of ${ }^{15} \mathrm{~N}$ enriched CID with unlabeled CTD-Ser5P in n-steps, $n=6$ in our case - peaks corresponding to the interacting residues of CID change their chemical shift (position in the spectrum) =>interaction surface, binding constant, stoichiometry

Interaction of Nrd1-CID with CTD

NMR Titration:
$\sim 0.6 \mathrm{mM}{ }^{15} \mathrm{~N}$ enriched CID $+\sim 0.8 \mathrm{mM}(\text { YSPTpSPS })_{2}$
$\sim 0.6 \mathrm{mM}{ }^{15} \mathrm{~N}$ enriched CID $+\sim 0.8 \mathrm{mM}(\text { YSPTSPS })_{2}$
$-\mu \mathrm{M}-\mathrm{mM}$ range of interaction ->
-> fast exchange regime on NMR time-scale

- NMR-derived $K_{d}=0.080 \mathrm{mM}$ and 35 mM

Experimental Points and Fitted Lines

Nrd1 CID interaction surface - CID residues experiencing the largest chemical shift variations upon the interaction with 5 -phospho-Ser CTD shown in blue with side-chains in stick representation

Protein - peptide interaction

drug-receptor case

Tubulin - successful target for anticancer therapy

Transferred-NOE

$\mathrm{NOE}=\mathrm{p}_{\text {bound }} \cdot \mathrm{NOE}_{\text {bound }}+\mathrm{p}_{\text {free }} \cdot \mathrm{NOE}_{\text {free }}$

$$
\begin{gathered}
\left.\tau_{\mathrm{c}, \text { bound }} \gg \tau_{\mathrm{c}, \text { free }} \text { (and } \mathbf{p}_{\mathrm{L}, \text { free }} \gg \mathbf{p}_{\mathrm{L}, \text { bound }}\right) \\
\text { NOE }_{\text {bound }}>\mathrm{NOE}_{\text {free }}
\end{gathered}
$$

tr-NOESY $\sim 500 \mu \mathrm{M}$ tubulysin (TBS) without and with $\sim 10 \mu \mathrm{M}$ tubulin

Conformation of the tubulin-bound $-\operatorname{NMR}(\mathbf{A})$ and free -X -Ray T~~in)

Kubíček et al. Angew Chem Int ¿и «七•১

Large biomolecules and their interactions

TROSY-based NMR experiments to study complexes up to 900kDa

Fernandez Curr Op Struct Biol 2003

Summary

NMR is a robust tool for studying structural properties and interaction properties of biomolecules of variable molecular size at various levels of resolution.

Thank you for your attention

For Application to Protein Characterization

by
Radovan Fiala, Karel Kubicek, and Pavel Kaderavelk CEITEC, Masaryk University

