Organic synthesis

Kamil Paruch

Masaryk University, Brno

Enolates: preparation, structure, reactivity

• C electrophiles: C-alkylations usually predominate

• O alkylations: very reactive (hard) electrophile (e.g. ROTf); K⁺ a Na⁺ enolates

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS

KYSELINA	рК _а	pK _{DMSO}	BÁZE	pK _a (KONJUG.KYSELINY)	pK _{DMSO}
O ₂ NCH ₂ NO ₂	3,6		MeCO ₂ -	4,2	11,6
MeCOCH ₂ NO ₂	5,1				
PhCH ₂ NO ₂		12,2			
MeCH ₂ NO ₂	8,6				
MeCOCH ₂ COMe	9,0				
PhCOCH ₂ COMe	9,6		PhO ⁻	9,9	16,4
CH ₃ NO ₂	10,2	17,2			
MeCOCH ₂ CO ₂ Et	10,7		Et ₃ N	10,7	
MeCOCH(Me)COMe	11,0		Et ₂ NH	11,0	
NCCH ₂ CN	11,2	11,1			
$CH_2(SO_2Et)_2$	12,2	14,4			
CH ₂ (CO ₂ Et) ₂	12,7				
Cyklopentadien	15,0				
PhSCH ₂ COMe		18,7			
PhCH ₂ COMe		19,8	MeO-	15,5	29,0

3

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS

KYSELINA	pK _a	pK _{DMSO}	BÁZE	pK _a (KONJUG.KYSELINY)	pK _{DMSO}
EtCH(CO ₂ Et) ₂	15,0		HO-	15,7	31,4
PhSCH ₂ CN		20,8			
PhCH ₂ CN		21,9			
(PhCH ₂) ₂ SO ₂		23,9	EtO-	15,9	29,8
PhCOCH ₃	15,8	24,7	Me ₃ CO-	19,0	32,2
CH ₃ COCH ₃	20,0	26,5			
MeCH ₂ COCH ₂ Me		27,1			
Fluoren	20,5	22,6			
PhSO ₂ CH ₃		29,0			
CH ₃ CN	25	31,3			
Ph ₃ CH	33,0	30,6	NH ₂ -	35,0	41
PhCH ₃		42	MeSOCH ₂ -	35,0	35,1
CH ₄		55	Et ₂ N⁻	36,0	

malonic ester synthesis

selenation of carbonyl compounds

• preparation of α , β -unsaturated carbonyl compounds

oxidation of enolates

J. Am. Chem. Soc. 1974, 96, 5944.

MoOPh : MoO₅+pyr.+HMPA

J. Am. Chem. Soc. 1990, 112, 6679.

(+)-1 (camphorsulfonyl)oxaziridine

J. Am. Chem. Soc. 1988, 110, 649.

formal oxidation of α -position of carbonyl compounds

(J. Org. Chem. 1971, 36, 1137.)

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS KINETIC VS. THERMODYNAMIC ENOLATE

Formation of *kinetic* product $(k_1 > k_2; k_1 >> k_{-1})$ is typically observed under these conditions:

- aprotic solvent;
- strong non-nucleophilic base;
- low temperature;
- short reaction time (equilibrium not established).

Formation of *thermodynamic* product $(k_1 \sim k_{-1})$ is typically observed under these conditions:

- protic solvent (deprotonation-reprotonation);
- weaker bases;
- higher temperature;
- longer reaction time (sufficient for establishing equilibrium).

ACIDOBASIC PROPERTIES OF CARBONYL COMPOUNDS KINETIC VERSUS THERMODYNAMIC PRODUCT

Báze (teplota ve °C)	Podmínky	Poměr A/B
$LiN(i-C_{3}H_{7})_{2}$ (0)	Kinetické	99:1
KN(SiMe ₃) ₂ (-78)	Kinetické	95 : 5
Ph ₃ CLi (-78)	Kinetické	90:10
Ph ₃ CK	Kinetické	67:33
Ph ₃ CLi	Termodynamické	10:90
NaH	Termodynamické	26:74
Ph ₃ CK	Termodynamické	38:62

enamines

• "nitrogenous enolates"; some can be isolated

R

planar geometry

- formation of kinetic isomer
- enamines react well with C-electrophiles

Tetrahedron 1958, 3, 314.

silyl enol ethers

- formation of Si-O bond; irreversible
- silyl enol ethers are relatively stable

J. Org. Chem. 2000, 65, 7602.

Mukaiyama (aldol) reaction

Sakurai allylation

• quite universal, mild conditions (cf. addition of organometalic reagents)

Org. Lett. 2000, 2, 945.

recent review: Organic Reactions 98.

Aldol reaction: 2 new stereogenic centers can be created

• sterochemistry of products depends on the configuration of the starting enolates

GEOMETRY OF ENOLATES - IRELAND MODEL

GEOMETRY OF ENOLATES - EFFECT OF BASE

BÁZE	$\mathbf{R}_1 = \mathbf{Et} \left(Z : E \right)$	R_1 =cyklohexyl (Z : E)
LiN(<i>i</i> -Pr) ₂	30:70	61 : 39
LiN(SiMe ₃) ₂	70:30	85 : 15
LiN(SiEt ₃) ₂	99:1	96 : 4
LiN(SiMe ₂ Ph) ₂	100:0	100:0

GEOMETRY OF ENOLATES - EFFECT OF SUBSTITUENT

BÁZE (rozpouštědlo)	\mathbf{R}^{1}	Z/E poměr
LDA (THF)	OMe, Ot-Bu	5 : 95
LDA (THF)	St-Bu	5 : 95
LDA (THF)	Et	23:77
LDA (THF)	<i>i</i> -Pr	100:0
LDA (THF)	<i>t</i> -Bu	60 : 40
LDA (THF)	Ph	100:0
LDA (THF)	NEt ₂	100:0
s-BuLi (THF)	NEt ₂	75:25

• enolates often form clusters

J. Am. Chem. Soc. **1986**, 108, 462. Helv. Chim. Acta **1981**, 64, 2617. SELECTIVE FORMATION OF E OR Z ENOL BORINATES

 R_2BCI with large alkyls (e.g. cyclohexyl) + small base (Et₃N) -> *E* enolates R_2BOTf with small alkyls (e.g. n-butyl) + large base (DIPEA) -> Z enolates

20