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and it is apparent that |4,/4,_;| = [|#,|22]t, which is very small if
the correlation time is very short.

To conclude, the equation (33) is valid if [|5#[>r2]t is a very small
number.

For the validity of tl.e master equation (35) with constant coefficients
a further assumption is required: all differences «—f or even combined
differences (a—a')—(8—pB’) between the energies (on the frequency
scale) of the unperturbed Hamiltonian %%, unless identically zero,
must be large compared with the constant 1/T ~ |, |?>r, which gives the
relative rate of change of o*.

D. Quantum mechanical formulation of the problem

The semi-classical treatment where the coupling with the lattice is
represented by random functions suffers from several defects, the main
one being that, for the spin system, it always leads to a steady state
described by an infinite temperature.

It will be shown that a quantum mechanical description of the lattice
can be cast in a form very similar to that of the semi-classical descrip-
tion, but will lead for a spin system to a finite temperature equal to
that of the lattice.

We start with a time-independent Hamiltonian

ht = WA +F +4), (47)
where %, and #i.# are the unperturbed Hamiltonians of the spin
system S and the lattice, respectively, with eigenstates |«) and |f),
and 7%, describes the perturbing coupling between them and contains
parameters of both the spin system and the lattice.

S, can be expanded as
H = z F9A@ (48)
7

where the F@ and the 4@ are respectively lattice and spin operators.
To pursue the parallel with the previous semi-classical formalism we

define H(t) = eFIH, e 1Tt = FO(1) A, (49)
qa

with FQ(t) = ¢iFtF@e-iFt

and

HK(t) = ol (t)e~ 1 = 3 FO)AQ(t) = 3 FO(t)ADeiw™,

q a.p ’

(49)

The similarity in form with the notation of the previous sections is
complete.

To understand how the description of the spin-lattice coupling leads

to a finite temperature for the spin system, consider for simplicity the
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case where the expansion (48) contains a single term 5#; = FA which
induces in the spin system § a probability per unit time W,g of passing
from a state |B) to a state |«), which differ in energy by w,g = a—f.
We consider first the more detailed transition |B,f)— |«,f’) of the
combined system spins plus lattice:

t
Worpr = f B,f | 5, | o, f ), f' | 5, | B, f e =B+ =FIt=) 4y’ 4 c.c., (50)
0

which can be made very similar in appearance to formula (2) by using
%(t) — ei.?“'t% e—tFt — AQetFtFe—tFt — AF( )

t
Wargr = f (B.f | @) |, f' ) [/ | 1 (E—7) | B, f )e~@=bT dr+c.c.
t
= 11418 f [ I F(t—7) |f)e~t"dr+c.c. (51)

The total probability W,z = Z P(f )W,z g7, where P(f) = ae-*/kT s the
probability of finding a lattlce at a temperature 7', in any initial state
|f), is given by

Wyp = (x| 4 [B)? f e“i“’“ﬁ’fo, P(AYSIEQ NI E(E—7)f)dr.  (52)

The discrete summation over the index f should actually, because of the
continuous spectrum of the lattice, be replaced by an appropriate

integration fn( f)df, where n(f) is the density of lattice states. We
will continue to write symbolically 2 for simplicity. The expression

foP(f)( If (f'[ Ft—=7)[f)

which from the definition of F(¢) is clearly independent of ¢, can be
written

g(r) = tr; {F()P(F)F (t+71)}, (53)
where Z(&) is the statistical operator
—hF —hF
F\ — qo-hFkT — — |l
P(F) = ae exp( T )/tlf{exp( T )} (54)

g(7) is the quantum mechanical analogue of the classical correlation
function ¢g(r) of a classical random function F(t), defined previously
as g(t) = F(t). F(¢-+7), where the bar represented an ensemble average
over the probability distribution of the random function. Defining

J(w) = [ g(r)e-ier dr, (55)

— ®©




Ch. VIII LIQUIDS AND GASES 285

we obtain Weg = (| A | B) 2 (wyp), (56)

which is formally identical with formula (24"). There is, however, an
important difference because now

J(—w) = exp(iw/kT)J (w),

and according to (56) a lattice induced transition where the lattice
gains the energy fiw is more probable than the opposite one by a factor
exp(fiw/kT). This is seen from the definitions (53) and (55) of J(w):

Ooff
— 277“2 I(f| F | f—w)|2e~PIkT, (57)
v

I

J(—w) = 2ma ; I(f | F | f4w)|2eBIkT

or, since the summation over f is actually a continuous integration
from —oo to 400, replacing f+w by f we get

J(—w) = 2ma S |(f—w | F|f)2e-oKT — ghwkTJ(y).  (58)
f

We now pass on to the more general problem of deriving a master
equation describing the motion of the spin system S, analogous to the
equations (34), (35), or (42) of this chapter. A density matrix p now
describes the behaviour of the combined quantum mechanical system:
spins+-lattice. Its transform in the interaction representation
p¥ = gl o+ Plpo—ilHorF)
i dp*
dt
where #°3(t) is defined by equation (49’). A forward integration of

(59) leads to an equation similar in form to equation (32):

dp* ‘ -
g = 0P O] [ dr [0, [ (), p*0)]]
0

obeys the equation = —[H¥(t), p*], (59)

dt
+ higher-order terms. (60)
Since all the observations are performed on the spin system, all the
relevant information is contained in the reduced density matrix

= tr {p*}
with matrix elements (a |o* [a') = D (fo|p* [fa'). We make the f 1da-
f
mental assumption that the lattice, because of its very large heat

capacity, remains in thermal equilibrium so that p*(t) = Z(%)o*(?),
where 2(#) is the statistical operator (54).
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In order to obtain an equation for the rate of change of the spin
density matrix o*, we perform on both sides of (60) the operation trace
with respect to the lattice parameters f.

Assume first that the temperature of the lattice is infinite so that
the statistical operator (%) is proportional to the unit operator and

p*(0) = ac*(0). a = [tr{exp(—#F [kT)}]™

becomes in that case 1/L, where L is the number (astronomically large)

of degrees of freedom of the lattice. We shall represent by a bar the

operation atr,{ }. In that case we get
do*

t
—r = —i#T0), ¥ 0)]— f dr [AF(), [AT(E—7),0%(0)]].  (61)

This equation is formally identical to the equation (32), and using the
expansion (49) for S (f) a master equation of exactly the same form
as equations (40) and (42) can be obtained for o*.

The only change is that correlation functions of classical random
functions F@(t) are replaced by correlation functions of operators F@,
defined by

Gog(7) = FORFD (11 7) =

23 (FIFO | B0 e, (62)

Lr

a special case of the definition (53) given for a finite temperature of
the lattice. The conditions of validity of the master equation, relative
to the shortness of the correlation time, are formulated in the same way
as in Section II C (g).

The semi-classical treatment of relaxation is thus formally equivalent
to the quantum mechanical one for the limiting case of infinite lattice
temperatures.

The case of a finite lattice temperature is more complex, for then the
lattice operators F@ and £(%) do not commute and it is necessary to
expand the double commutator on the right-hand side of (60) into four
different terms and consider each of them separately. This situation
has been studied in great detail (2, 3), and has been shown to lead
again to a linear master equation for ¢* which is, however, more complex
than (33) or (42). Furthermore, generalized correlation functions of the
forms (53) occur in it, with spectral densities J(w) having the property

J(—w) = exp(fiw/kT)J (w), (63)
with, as a consequence, a steady state solution of the form
of = oy = exp(—hHo/kT) tr{exp(—Hite /kT)}.
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For simplicity we shall first demonstrate this on the assumption (actually
seldom realized in practice) that the lattice temperature is sufficiently
high to allow a linear expansion of exp(—#% /kT) into 1— (A% [kT) and
that the state of the spin system described by the density matrix o*(¢)
is never very remote from one of equal populations of all spin energy
levels. Then

pH(l) = oHOP(F) a{o*(t)—;}%}, (64)
where 4 is the number of degrees of freedom of the spin system.

As a consequence, on the right-hand side of the master equation for
o* there appears an extra term

[}

f [%’T(t), [%;‘(t—ﬂ,@f l]] dr (65)
0

kT A

or, neglecting small imaginary terms,

[c o]

5 | [in"(t), [%i‘(t— Syl Z]] ar.

— 0

It is easily verified that
f[gzo* 7, Hop - Fdr — i f LI —r)]dr = 0,

a consequence of the conservation of total energy % +J#. It is per-
missible to replace # in (65) by —J%; and, since a unit operator com-
mutes with everything, to rewrite it as

I ez [z, (128 1),

thus obtaining tor the master equation

A A G E (66)
The empirical rule whereby in the relaxation equation obtained by the
semi-classical method o* should be replaced by o*—o, is thus justified.

This proof is clearly inadequate in most situations since the very
broad and unnecessary requirement exp(—#% [kT) ~ 1— (A% [kT)leads
through (62) to expressions for the correlation function, and thus to
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values for the relaxation times, that are temperature-independent.
Actually the much less stringent assumption

ht, « 1
— 1
0 e
need only be made. Starting from
do* ‘
= = _trf{ [ [#5), ), p¥]] df;
0
=~ —tnf} [0 T, AFN ], (60)

— @

where 2(#) = ae~B¥ and B = #/kT, (66') can be rewritten as
—trf{% f [AK(L), [HE(H), o*]] dt' . P(F)—

—1 [ (10, 2E Nt O+ 00* [ [H10), 2] dr |

(66")
Consider the matrix element

z[%w), P(F))dt ' a'f')

[
= [ etras ¥ Qi af | 3, | o Nl e B1)

= 27ad(f-a—f'—o')of | H |alf e Bl —ePT).  (66”)
Since BU—f) = Blo'—a) < 1,

(66") can be rewritten as

[ etrsaet=t ai (of | o | o Yoo B (1 —e~Rr—)

m~

gl o= Gt (of | A, | ofYae B Bo —a)

(of [[ATW), BAIP(F) | o) dt

HZ

e

(of | P(FNHTWE), BH) | 'f ") d
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We can thus replace f [H5(t F)]dt’ in (66") by means of

[e o]

[ [r3w), AP F)dt' = —A f [, 0,)P(F)dt,

—

where 0 O ——{1 By} o e~P¥o[tr{e~PX0),

(66”) can thus be rewritten as

[e¢]

—trf{% [ 1300, [5(0), 0*]) de 27+

— O

+3 [ [H1), ool do* H L) P(F) dt —
—3 f HEA)*A[HE('), 0] dE ,@(37)}.

In the last two terms we replace Ao* by unity within the approxima-
tion |[o*—1/4| < 1, whence (66”) becomes

—trf{% Ofo (A3, [HH), 0% — 00 |P(F) dt'}.

The definition (62) of the correlation function should be replaced by
the following:

Goq(7) = FOH) F-O(i+7)

= tr,{¢iFt F@e—iFlgiF (+7) F-Q)p=iF P F )}

1 ’ ’ ’ ) Yrp—
= ang:zzﬁzf}}; (fIF@|f)(f'| PO | f)e— U~ e RIKT,

where the dependence on the lattice temperature is apparent.

E. Relaxation by dipolar coupling
The dipole-dipole interaction between two spins I and S can be

written hoH, = 3 FOAW, (67)
q

where the F@ are random functions of the relative positions of two

spins and the A@ are operators acting on the spin variables with the
convention F@ = F-9°; 4@ — 401,

PO sinBC(;SOe—i“’, Fo _ sin2i§—2i¢, 70 1_3;;0829, (68)
AO® = of —21S,4+3(L.S_+1_8,)},
AV = ofLS,+1,8}, (69)

A® = gal. 8., o« = —3yrysh.



