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170 ELECTRON-NUCLEUS INTERACTIONS Ch. VI

disregarding the polarization. Positive as well as negative values of
R may occur. In contrast with y, | R| is less than unity even for heavy
atoms.f Unfortunately there is no way at present in which these
calculated values of R can be checked. As a consequence there is a
significant uncertainty over the values of most nuclear quaarupole
moments.

II. MAGNETIC INTERACTIONS

A. The coupling Hamiltonian

A logical procedure would be to develop the theory of the magnetic
interactions between the electron and the nucleus along the same lines
as for the electrostatic interactions; that is, to assign to the electrons
and to the nucleus electric-current densities (rather than charge
densities as in the previous section) and to calculate their interactions
according to the laws of classical electromagnetism. One would thus
define for the nucleus magnetic multipole operators which like the
electric ones would be tensor operators of integer order /.

If one recalls the opposite parity properties of the electric field (a
polar vector) and of the magnetic field (an axial vector) it is under-
standable that even, rather than odd, values of [ are forbidden for
permanent magnetic multipoles, by the assumption of a well-defined
parity of nuclear-energy states. The first non-vanishing nuclear multi-
pole is thus a magnetic dipole, the next a magnetic octopole, etc.

Although the existence of magnetic octopoles has been established
by atomic beam methods (7, 8), they have never been observed by
means of magnetic resonance in bulk matter. Furthermore, the descrip-
tion of the magnetic properties of a nucleus as those of a system of
currents is more complicated and at the same time, in our present
state of knowledge, much less satisfying than the description of its
electrostatic properties as those of a system of charges. We shall there-
fore be content to describe the magnetic properties of the nucleus as
those of a magnetic dipole wy = yy#I. The reason why the magnetic
dipoleis collinear with the spin vector I is again that, within the manifold
of the substates of a given nuclear state of spin I, all tensor operators
of given ! (vectors in the present case) have the same matrix elements.
Magnetic fields of impossibly high values, of the order of 10!¢ gauss or
more, would have to be applied to the nucleus before its magnetic
energy —wy H became comparable to the interval between two different
nuclear energy states, invalidating the approximation gy = vy 1.

T See a table of values of R in reference (3), p. 362.
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The interaction of the nuclear dipole ., with the electronic shell is
small even compared with atomic-energy splittings (let alone the nuclear
ones) and will be computed by a perturbation method.

The behaviour of an electron in a magnetic field H is obtained by
replacing the momentum p by p-+(e/c)A in its Hamiltonian, where A
is the magnetic vector potential defined by

divA = 0, curl A = H.
According to classical electromagnetic theory a magnetic dipole

" produces at a point removed from it by a vector r, a magnetic field
deriving from a vector potential

A=_BAT curl(g). (27)
r

3

Near the dipole the vector potential A has a singularity of order »—% and
H = curl A a singularity of order —3, so some care must be exercised
in the calculation of its interaction with an electron. In the non-
relativistic Pauli description of the electron the Hamiltonian in the
presence of A is

1 e . \2
%(p+EA) +2Bs.curl A, (28)

where 8 is a Bohr magneton and s the electron spin. In a first-order
perturbation calculation the only terms of (28) to be retained are those

linear in A:
H = —( .A4+A .p)+2Bs.curl A.

2m
(27) a
H = 2,81?'0—5'4— QBs.curlcuﬂ(:—L), (29)

This can be written by

where il = r A p is the orbital momentum of the electron.
The spin-dependent part of (29) gives

Hs = 2Bs. [V/\(V/\ ‘f)}
= 2B[(5.V)(1 V) (s.1)V], (30)
which for reasons to appear presently we rewrite as
#1= 206 Ve V- d W[ |- Tewv(]) @)

The magnetic interaction of the nuclear moment with the electron spin
W3, = (.| H514,) is obtained by multiplying (31) by the electronic
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density p = ¥y, and integrating over the electron coordinates. For
r % 0 %, as given by (31), is a regular function where the first term
is equal to 2B[3(s.r)(w.r)/r>—s.w/r3], which is the usual dipole-dipole
interaction, and the second term vanishes because of Laplace’s equation.
When 7 tends toward zero we may remark that the first term #7% of
(31) behaves under a rotation of the coordinate system as a spherical
harmonic of order 2. Hence if i/, is expanded in a sum of spherical
harmonics, ¥, = Y a;y®, the only non vanishing contributions to
7

(b, | 5 |h,) will come from terms (Y@ | H#5 |¥)) such that I4+1" > 2
It is well known that a wave function @ is of order 7' near the origin
so that in the matrix element

(BO1H7 [90) = [ Yoy drdQ

the integrand varies as »¢+/+2-3 and the corresponding integral always
remains finite since [4+1" > 2. According to the theory of the Coulomb
potential the second term of (31) is equal to ¥nB(s.w)é(r) and by
integration gives 1rB(s . 12) | ,(0) |2

which is finite for s electrons and zero for the others. The Hamiltonian
for the magnetic interaction of the electron with the nucleus can then
be written without ambiguity as

oy = L[ 35 g sair) | (32)

If several electrons surround the nucleus, the interaction Hamiltonian
is the sum of the contributions of the individual electrons. Although
the expression (32) has been derived for the purpose of calculating its
expectation value (y, | ] | ,), it is clear that it also gives unambiguous
results for off-diagonal matrix elements (4, | #; | $,), between, say, the
ground state and an excited state of the electronic system. Use will
be made of this to calculate some effects of #, using second-order
perturbation theory.

The vector operator
3r(s.r)

= —28 5+ g o) (33)

,,-5
can be called the field produced by the electron at the nucleus.
For an atomic electron of orbital momentum ! and total angular
momentum j = [4+1 it is possible inside the manifold j to replace
in the Hamiltonian (32), 5 = —v,%#H,.1I, the vector —y%H,, by
a vector a,j proportional to j. The value of a; is obtained by writing
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that the expectation values {(a,j.j> and (—(yH,.j))> are equal. Using
(33) and remembering that j = 14s, that r.1 = (1/A)r.(r Ap) =

and that for a spin s = } relations such as s2 =, s,5, = —s, sx,
8.8, = %ts, are valid, it is easily found that
i = % Byfiif(0)[> for an s-electron (34)
N+
and < if I £ 0. 35
= 2By )y I # (35)

For a free atom or a paramagnetic molecule with many electrons in
a state of total angular momentum J it is also possible to write
#, = a;1.J for the magnetic coupling of the electrons with the
nucleus, where the value of a,, to be determined by the same method
as for a single electron, will depend on the electronic structure of the
atom or the molecule.

In bulk matter the manifestations of the interaction (32) are manifold
and greatly dependent on the nature of the substance. They can
change the phenomenon of nuclear magnetic resonance in two ways,
by introducing changes in the energy levels of the nuclear spin system
and also by providing powerful relaxation mechanisms for the coupling
of this system to the lattice. Only the first aspect of the electron-nucleus
magnetic coupling will be considered in this chapter, the relaxation
phenomenon being deferred till Chapters VIII and IX.

B. The effect of electron-nucleus coupling in diamagnetic sub-
stances
(@) General

The overwhelming majority of nuclear-resonance experiments are
performed on diamagnetic samples, that is on substances without either
spin or orbital electron paramagnetism. The lack of electron para-
magnetism in, for instance, a molecule embedded in a molecular solid,
or in an ion belonging to a crystal or a solution, corresponds to vanish-
ing expectation values of (| L, | ,) and (¢, | S, | ) for all components
of the total orbital and spin angular momentum of the molecule or the
ion, of which i, a function of both orbital and spin coordinates,
describes the ground state.

In spite of an apparent symmetry there is an important difference
between the behaviour of the orbital and spin momentum in dia-
magnetic substances and consequently between the ways in which they
affect the resonance of nuclear spins. The forces between electrons,
atoms, and molecules are essentially electrostatic forces, and the mag-
netic spin-dependent forces are negligible compared to them. It follows



