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ABSTRACT: Magnetic resonance often relies on a semi-classical picture in which the

spin particles are submitted to quantum theory and the electromagnetic field is treated

as a classical field. Although in many applications there are very good reasons to work

within this theoretical framework, it appears worthwhile either for educational purposes,

or for studies in magnetic resonance with microscopically small samples or very weak rf

fields as well as for other applications that may seem exotic today, to ask how to gain a

unified view when comparing the concepts and methods of quantum electrodynamics

(QED) with those of classical electrodynamics commonly used in magnetic resonance.

The present article attempts to develop such a unified view for electromagnetic interac-

tions in magnetic resonance by focusing on the concept of virtual photon exchange based

on the Feynman propagator technique and by exploring the cross links between basic

aspects of ‘‘semi-classical magnetic resonance’’ and the same basic aspects of magnetic

resonance as seen through the frame of QED. � 2010 Wiley Periodicals, Inc. Concepts

Magn Reson Part A 36A: 266–339, 2010.

KEY WORDS: magnetic resonance; quantum electrodynamics; Feynman propagator; vir-

tual photon; asymptotically free photon

INTRODUCTION

Magnetic resonance is a phenomenon that originates

from the interaction between low-energy particles

with spin and low-energy electromagnetic fields. In

ordinary matter surrounding us, mainly liquids and

solids, we usually have in mind either the electron

spin or the nuclear spin, thus we speak of electron

spin resonance (ESR) or nuclear magnetic resonance

(NMR), respectively. A more exotic field in physics

is concerned with muon spin resonance (mSR) based
on the spin of the muon, a particle similar to the elec-

tron, but heavier in mass and unstable—a free muon

decays in a time on the order of microseconds. Mag-

netic resonance techniques have found widespread

applications in condensed matter physics, material

science, organic and inorganic chemistry, biochemis-

try, molecular biology, and as an imaging technique

in medical diagnostics and other fields. In these areas

of concern the spin particles of interest are situated

in atoms and molecules which are part of a bulk mac-

roscopic sample. So, normally we care about many-

spin systems with their manifold interactions: inter-

actions among spin particles themselves, couplings

with other physical degrees of freedom present in

liquids and solids, and the response of such multi-

spin systems to external homogeneous static fields,

or pulsed or continuous-wave time-harmonic fields,

or pulsed gradient fields. The various interactions
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display themselves in the characteristics of magnetic

resonance spectra and are the source of information

that spectroscopists find valuable when studying the

structures and dynamics in their samples.

The spin of the electron or of an atomic nucleus is

a quantum mechanical attribute. The need to switch

to quantum theory to characterize spin particles in

magnetic resonance appears when we talk about

interactions between spins: the direct dipole–dipole

coupling among nuclear spins and among electron

spins, as well as between nuclear and electron spins,

the coupling between electron spins and electron or-

bital momentum, and the coupling between nuclear

spins and electron orbital momentum. Again, it is of-

ten possible to employ a qualitative classical picture

as a more or less accurate approximation and as a

mnemonic device to view phenomena reflected in the

magnetic resonance spectra. As an example, the phe-

nomenon of chemical shift or magnetic shielding in

NMR—originating from the interaction of a given

nuclear spin with the orbital momenta of surrounding

electrons in a constant external field—can be under-

stood by visualizing the moving electrons in an atom

or molecule as currents that generate local magnetic

fields which weakly shield the external constant field

at the site of the nuclear spin, hence slightly chang-

ing its resonance frequency. As this local shielding is

very sensitive to the local electron distribution

around the nucleus, e.g., the chemical bonds, it pro-

vides information about the local chemical structure

of the atom or molecule—hence the name for this

shift of the resonance frequency: chemical shift. To

explore such phenomena in greater depth and arrive

at quantitative results agreeing with experimental

data we have to turn to quantum theory of atoms and

molecules, i.e., we use computational quantum chem-

istry. As it turns out for heavy elements with many

electrons, one even has to take into account relativis-

tic corrections in the quantum chemical calculations

(1, 2) to explain experimental results. Quantum

theory including effects that belong to the realm of

special relativity leads us to relativistic quantum

mechanics, which is one precursor of quantum elec-

trodynamics.

Another point of contact with the field of relativis-

tic phenomena emerges when considering the inter-

action between the nuclear spin with the surrounding

distribution of an electron being in an s state, i.e., an
electron orbital state with vanishing electron orbital

momentum (3). The probability for an s electron to

be found at the site of a nucleus at the center of this

electron orbital is different from zero. But how do

we calculate the interaction energy (for electron–nu-

cleus Coulomb interaction and electron spin-nuclear

spin dipolar coupling) in the case of vanishing dis-

tance between electron and nucleus? Here, we face

two problems: (a) classically for point particles and

vanishing distance between them the Coulomb inter-

action energy diverges and (b) the point-dipole

approximation that allows us to treat the spin–spin

coupling as direct dipole–dipole coupling breaks

down. Case (a) with energy terms diverging is a sig-

nature for relativistic effects: the interaction energy

of the particles can be on the order of or may exceed

the rest energy of the particles. So, at least we have

to take relativistic effects into account as higher

order corrections in perturbative computations. The

case of the coupling between a nuclear spin and an s
electron, both in the same atom, leads us to the Fermi

contact interaction, a phenomenon well known in

magnetic resonance.

So far we have spoken briefly about quantum fea-

tures of the spin-carrying particles. We have not yet

mentioned quantum field theory and we have not yet

addressed the subject of quantizing the electromag-

netic field. Quantum electrodynamics is the quantum

field theory for electromagnetic interactions and in

its full extension it encompasses quantization of the

electromagnetic field and the field quantization of the

particles with nonzero rest mass that interact via

quantized electromagnetic fields. The quantization of

the electromagnetic field with particular attention for

the case of magnetic resonance will be the subject of

the present article. In the past, until recently, treating

the electromagnetic field explicitly as a quantized

field has found only relatively modest attention in the

magnetic resonance literature. Instead, in the major-

ity of the published articles electromagnetic fields are

treated classically. What is the reason for treating the

electromagnetic fields as classical? In magnetic reso-

nance, we use macroscopic devices—resonators,

coils, and circuits—to generate time-harmonic mag-

netic fields external to the spins in our sample at low

frequencies, either in the radiofrequency range (me-

ter to centimeter wavelength) or in the millimeter-

wave range: As a consequence, the energy of single

photons is small and with state-of-the-art static-field-

generating cryomagnets, rf or microwave power

transmitters, and circuits or resonators it is not diffi-

cult to generate either static or time-harmonic field

amplitudes that formally correspond to an astronomi-

cally large number of photons. Hence, according to

the argument often brought forward, electromagnetic

fields can be treated classically.

As we know from experimental evidence, the

time-harmonic macroscopic fields have well defined

field amplitudes and phases. From the quantum point

of view, however, field amplitude (or equivalently,
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number of photons in a given field mode) and phase

are complementary variables (4): the uncertainty of

each cannot be made arbitrarily small without affect-

ing the other; they undergo Heisenberg’s uncertainty

relation. From that argument it becomes obvious that

low-energy electromagnetic fields generated by mac-

roscopic classical devices cannot be in a quantum

state, which is an eigenstate of the photon number

operator for a given mode or an eigenstate of the

phase operator. Rigorously speaking, if the field were

in a number eigenstate, the phase of the field would

be entirely uncertain, and vice versa, if the field were

in an eigenstate of the phase operator, the amplitude

would be entirely uncertain. However, there is a class

of superpositions of number states, referred to as

coherent states (4, 5), where both amplitude and

phase uncertainty are at a minimum simultaneously,

consistent with Heisenberg’s relation, and where the

relative uncertainty of both becomes negligibly small

for large average photon numbers, i.e., in the classi-

cal limit, the expectation values of observables (e.g.,

amplitude and phase) calculated with these coherent

states lead to the familiar classical equations such

that, for example, the electric and magnetic fields

obey Maxwell’s equations.

The electromagnetic field has certain distinct and

unique characteristics that warrant special attention.

First, electromagnetic interactions propagate with

the speed of light—hence electromagnetic fields are

subject to special relativity. Even though in the 19th

century Faraday, Ampere, Maxwell, Hertz, and

others developed the electromagnetic theory prior to

the development of the theory of special relativity by

Einstein, Schwarzschild, and Lorentz at the begin-

ning of the 20th century, and even though classical

electrodynamics is thus often presented in a technical

form with definitions and equations that are not

form-invariant under Lorentz transformations (see

Appendix A), electromagnetic fields are relativistic

entities. For theoretical studies, the relativistic point

of view has been taken into account by finding for-

mulations of classical electrodynamics that satisfy

form-invariance under Lorentz transformations (for

the sake of brevity we say: the equations can be writ-

ten in a form that is Lorentz invariant or covariant).

We will use some parts of this covariant formalism

throughout this article at places where it is either nec-

essary or convenient: the covariant notation is quite

compact and for certain formal chains of arguments

it is a very economic one to use. When quantizing

the electromagnetic field one finds photons as the ele-

mentary excitations of this field and as a consequence

of the relativistic nature of the electromagnetic field

one discovers that photons are entities with rest mass

zero carrying a spin equal to 1 (in units of �h). Hence,
photons are bosons, in contrast to spin-1/2 particles

like electrons, protons, and neutrons, which are

fermions.

Second, if one introduces electromagnetic poten-

tials (the well-known scalar potential f and the vec-

tor potential A), one finds that the (electric and mag-

netic) fields as well as Maxwell’s equations are form-

invariant under gauge transformations (see Appendix

B) of these potentials: the fields are gauge invariant.

In classical electromagnetism one can adopt the atti-

tude that the electromagnetic potentials are auxiliary

quantities and that the ‘‘real physics’’ lies in the elec-

tric and magnetic field strengths, so one might say

that gauge invariance is just a mathematical play-

ground without physical implication. This attitude

cannot be kept anymore when we turn to the quan-

tum theoretical point of view. Here, gauge invariance

in electromagnetism and invariance of the Schrö-

dinger, Pauli, or Dirac equation (see Appendix E)

under local phase transformations of the wave func-

tion of particles interacting with an electromagnetic

field are intimately linked to each other leading, e.g.,

to the Aharonov-Bohm effect (6–8), which also has

been verified experimentally (9). In other words,

electromagnetic potentials as well as gauge transfor-

mations gain physical significance as soon as we turn

to quantum theory (10). Gauge and phase invariance

can be seen as a special case of geometric phases

(11, 12), the latter have been investigated also by

NMR (13–19). Although we will not treat these

topics here, they implicitly affect our approach, for

example, when choosing the proper (i.e., covariant)

gauge condition for the electromagnetic field.

The Dirac equation for an electron in an external,

classical electromagnetic field suggests that the elec-

tron is a spin-1/2 particle (a fermion) with the gyro-

magnetic ratio ge ¼ ge=2me, with g as the Landé fac-

tor for the electron. For exactly this case, i.e., an

electron with Dirac wave function c in an external

electromagnetic field, where the latter is treated clas-

sically, it turns out that the Dirac theory yields

exactly g ¼ 2. However, as one knows beyond doubt,

for example, from high-energy electron scattering

experiments, in reality g is slightly larger than 2,

leading to the so-called anomalous magnetic moment

of the electron (20–22). For the electron, g ¼
2.00231930436 (22). Is there an explanation arising

from a deeper quantum theory that also treats the

electromagnetic field as a quantum field? The answer

is affirmative and the elucidation for the electron as a

fermion particle characterized by g . 2 is one of the

early and certainly most impressive triumphs of

quantum electrodynamics (QED) (20, 21). Because g
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determines the gyromagnetic ratio of the electron, it

becomes clear that it establishes the Larmor fre-

quency of an electron in an electromagnetic field,

where we note that this is an electron not bound in

electron orbitals of an atom or molecule, in this sense

this is the g factor for a ‘‘free electron.’’

Let us turn the focus to nuclear spins. The sim-

plest example is the proton, a spin-1/2 particle like

the electron whose gyromagnetic ratio can also be

written, analogous to the electron case, as

gp ¼ gpe=2mp. Here, mp stands for the proton rest

mass and gp denotes the proton g factor. However, it

was found out experimentally that for the proton gp
is quite different from 2. The reason is that although

the proton possesses spin 1/2, it is, strictly spoken,

not a Dirac particle, i.e., it does not obey Dirac’s

equation. The fact that gp = 2 cannot be deduced

from QED. The raison d’être for the proton’s defi-

ance lies in the fact that it is a composite particle, not

an elementary particle like the electron. The proton

as composite is facing the external world as a stable

particle and it is interacting via its electric charge

and magnetic dipolar moment with electromagnetic

fields. Internally, it has a quite complex structure that

is governed by strong nuclear forces, which are the

subject of quantum chromodynamics (QCD), not

QED. Thus, to explain the origin of gp, one needs to

step outside QED and treat more advanced quantum

field theories like QCD (23, 24). It is also interesting

to recognize that the proton, treated simply as a spin-

bearing particle in 1H NMR, is still under active

experimental study in the field of high-energy

physics nowadays, where the goal is to learn more

about the detailed origin of the proton spin from the

constituents and interactions in nuclear matter (25).
For the case of low energies (where ‘‘low’’ means

energies small compared to the binding energy of the

quarks bound together in the proton by strong, non-

electromagnetic interactions), and for energies small

compared to the rest energy mpc
2 of the proton, and

for the purpose of exploring QED phenomena in

magnetic resonance, we can treat the proton although

not as a Dirac particle, but as a Dirac-like particle for

which we simply have to measure the value of gp. It
turns out that gp ¼ 5.585692. Therefore, in the low-

energy limit, the proton becomes very similar to the

electron, in principle. Both, electron and proton are

spin-1/2 particles (fermions), and their respective

electric charges –e and þe, masses me and mp, and

gyromagnetic factors ge ¼ ge=2me and gp ¼
gpe=2mp determine the sizes of their respective mag-

netic dipole moments.

How can we treat nuclear spin particles different

from the proton? First of all, the composite nature of

the nuclei is evident. Moreover, there are nuclei like
13C, 15N, 29Si that carry spin-1/2, whereas others

may have spin 0 or 1 or spin 3/2 or 5/2, etc. All these

spin quantum numbers mentioned here refer to the

respective ground state of the nucleus—we do not

consider excited nuclear states. The half-integer spin

particles are fermions, while the particles with inte-

ger spin are bosons. In a quantum statistical ensem-

ble of indistinguishable particles, the former are gov-

erned by Fermi-Dirac statistics with wave functions

of the ensemble being antisymmetric under particle

permutation, while the latter obey Bose-Einstein sta-

tistics, which yield symmetric wave functions. The

impact of the quantum statistics on the physical

behavior of spin-1/2 particle ensembles becomes

noticeable in atomic or molecular electron systems

governed by the Pauli exclusion principle, but also in

nuclear spin systems like the dihydrogen state known

as parahydrogen. In parahydrogen molecules, the two

proton spins form a spin-singlet state (26–29) as

opposed to orthohydrogen, where the two proton

spins appear in triplet states depending on which

rotational state is occupied by the two-atom

molecule.

The spin of a nucleus as well as its associated gn
factor originate from the complex internal nuclear

structure (bound protons, neutrons, which in turn are

composites of quarks, undergoing strong interactions

mediated by gluons). Nevertheless, in the very-low

energy regime we are allowed to focus upon the elec-

tromagnetic nature of nuclei only, represented by the

nucleus’ charge, its spin, and its electric quadrupole

moment (the latter is zero for the proton). In the fol-

lowing we will not discuss nuclear-spin particles dif-

ferent from the proton, i.e., in the present article we

focus only on low-energy QED including spin-1/2

particles like electrons and, as ‘‘nuclear spin proto-

types,’’ protons. We are allowed to treat protons as

Dirac-like particles with an empirical gp factor at low
energies, and in such a way we can develop a formal-

ism that treats electron spins and proton spins alike.

For example, as we will see, the current density asso-

ciated with the Dirac equation is easily derivable for

electrons. We can take over an analogous expression

of the current density for protons. The current density

in general can be submitted to the Gordon decompo-

sition (Appendix F) to extract the spin part of the cur-

rent density, where the latter is needed to formulate

the spin interactions in quantum electrodynamics.

In the present article, we will study electromag-

netic interactions with particular attention to mag-

netic resonance. Interaction may mean interaction

between two current densities, such as a spin current

density interacting with a conduction current density
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(the latter, for example, represented by the time-har-

monic current in a macroscopic piece of wire). We

may also say that interaction occurs between a spin

particle and an external electromagnetic field, gener-

ated by a source that is not necessarily specified yet

in detail and that is different from the spin particle.

But taking this source of the external field as another

current density, then we see that we return to the case

of two interacting current densities. So, one of the

central questions will be to express the electromag-

netic current-to-current interaction in quantum elec-

trodynamics. The answer to this question will

directly lead us to the concept of virtual photons as a

general notion in quantum electrodynamics and thus

also as a vehicle for describing electromagnetic

couplings in magnetic resonance.

Why should we take the effort to quantize the

electromagnetic field in magnetic resonance while it

has been often shown that the classical description is

generally sufficient? First, compared to classical and

semi-classical theory, QED provides a different point

of view, and comparison of the ‘‘QED language’’

with the established technical language of EPR and

NMR spectroscopists could suggest alternative solu-

tions to research questions. Furthermore, there are

areas where QED might be regarded as interesting or

even important, e.g., force-detected NMR micro-

scopy and spectroscopy (30–36). For example, Butler

(36) uses the Jaynes-Cummings approximation

[which is often used to study the coupling between a

two-level system and one mode of an electromag-

netic field in quantum optics (4)] to describe a nano-

scale spin resonator for force-detected NMR. Longi-

tudinal spin relaxation induced by the resonator is

studied by quantizing the mechanical oscillator and

analyzing the appropriate master equation. Another

field of interest is NMR spectroscopy and imaging

with sub-mm or micrometer size rf coils in conjunc-

tion with samples in the volume range of picoliter to

femtoliter (37–43). In these domains and dimensions

one cannot take it for granted anymore that the aver-

age number of photons in an electromagnetic field

mode and in a given small sample volume is astro-

nomically large. So, the question: does the uncer-

tainty in amplitude and phase of rf fields play a role

here? Furthermore, does QED contribute when ana-

lyzing the quantum measurement process (44–47) in
magnetic resonance and when exploring quantum

computing and information processing using mag-

netic resonance (48–53), taking into account not only

spin quantum states but also quantum states of the

electromagnetic field? Finally, there can be a general

educational benefit. For example, the QED viewpoint

can provide a unified picture of electromagnetic phe-

nomena in magnetic resonance, including the static

Zeeman coupling, the coupling between spin and rf

or microwave field, the coupling between nuclear

spin and nearby electrons, and the dipolar coupling

between two nuclear spins, to name just a few. Simi-

larly, it is instructive to explore the limit process

from quantum to classical fields, which may help us

also to understand better the classical and quantum

aspects of interacting spins and electromagnetic

fields.

Previous work illustrates the possibilities of incor-

porating field quantization, either of electromagnetic

or other fields, in magnetic resonance. Jeener and

Henin (54) investigated a general model for the cou-

pling of an atom with an electromagnetic field in the

framework of quantum optics (4), where for the sim-

plest case of a two-level atom, expressible with pseu-

dospin operators, parallels with NMR have been dis-

cussed. In a later article (55), the same authors pro-

vide a fully quantized theory for nuclear magnetic

resonance in the framework of quasi-classical

(coherent) states of the electromagnetic field. We will

address some more details of Jeener’s and Henin’s

work in Section ‘‘A QED NMR Probe Model: Pulsed

NMR as a Scattering Process.’’ In a series of articles,

Hoult et al. (56–60) have considered NMR signal

reception as a near field phenomenon that can be

interpreted classically via Faraday induction and

quantum theoretically through virtual photon

exchange, and argued against the conception of

NMR as a radiative field phenomenon or a phenom-

enon linked to coherent spontaneous emission some-

times advocated. Boender, Vega, and de Groot (61)
propose a quantum field treatment to incorporate the

MAS rotor as a quantum rotor describing and charac-

terizing rotor-frequency driven dipolar recoupling

(RFDR) NMR experiments, whereas Blok (62) et al.
consider relaxation processes of 67Zn in ZnO taking

into account the phonon field in the ZnO lattice

including zero-point fluctuations of the phonon vac-

uum. Analogies between quantum optics or optical

spectroscopy and magnetic resonance have been

drawn (63, 64), whereas the photon picture has been

extensively used in the work exploring two-photon

and multi-photon transitions in EPR and NMR

(65–76). Although in the majority of the aforemen-

tioned articles field quantization appears more or less

as a specific tool to answer certain questions, in the

present article we propose to place quantization of

the electromagnetic field interacting with spin par-

ticles in the center and concentrate on the specific

role of photons in such interactions. So, the focus is

directed on a theoretical device that is of interest to

us, which could be used as a tool. Thus, it is the

270 ENGELKE

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



manner as we look at familiar effects like Larmor

precession, the nuclear spin Zeeman effect, the free

induction decay, and related phenomena. It is the

detailed physical background that is of interest while

we derive the familiar picture of phenomena from

the general view of QED.

There is a variety of equivalent formalisms to

choose from which can be used to represent QED,

e.g., the propagator formalism, path integrals, dia-

grammatic techniques as an auxiliary tool, and

others. In the sequel we will choose virtual photons

as the central notion to describe electromagnetic cou-

plings. The formalism or mathematical vehicle to

characterize virtual photons is represented by the

Feynman propagator or Feynman-Green function for

the electromagnetic field, for brevity also referred to

as the photon propagator. To obtain a precise idea

about virtual photons as a physical concept, either in

general, or in magnetic resonance, we must first lay a

groundwork that includes some of the mathematics

involved in generalized functions (Schwartz distribu-

tions), complex functions and functional analysis

(Appendix C) as well as field operators and their

commutators. To keep the main text readable, we

avoid the more complex mathematical definitions

and formal implications as well as the longer and te-

dious derivations of formal expressions. For the

interested reader, these are assembled in appendices.

In the section subsequent to this introduction we

will provide an informal entrance and a comparison

of the semi-classical view (spin as quantum object

and the electromagnetic field as classical) with the

view point offered by QED. In Section ‘‘The Feyn-

man Propagator’’ we will turn to a first formal feature

by deriving an expression for the photon propagator

DF in general form using a development based on

physical arguments introduced originally by Feyn-

man (77). In Section ‘‘Quantization of the Electro-

magnetic Interaction Field: Virtual Photons’’ we will

show that the photon propagator characterizes the

appearance of virtual photons, whereas in Section ‘‘A

QED NMR Probe Model: Pulsed NMR as a Scatter-

ing Process’’ we will link the concepts of virtual pho-

tons and asymptotically free photons with a model

for pulsed NMR spectroscopy. In the subsequent sec-

tions we will use the QED view to explore phenom-

ena intrinsic to magnetic resonance, such as Zeeman

effect and Larmor precession, the interaction of a

spin-1/2 particles with time-harmonic fields, a single-

spin FID, and NMR radiation damping. The scope

covered by the present article is by no means com-

prehensive, already the wealth of implications and

crosslinks between full quantum descriptions with

semi-classical and classical treatments is overwhelm-

ingly large. Even if the present article covers some of

the basic aspects in quantum electrodynamics, it can-

not replace the study of textbooks on QED—the

interested reader is referred to the literature, e.g.,

references (21, 22, 79–82, 85, 88–90, 92, 93, 95). In
the concluding section we will summarize and tenta-

tively show possible pathways to further explore

quantum electromagnetic fields in magnetic

resonance.

QUANTUM ELECTRODYNAMICS
IN MAGNETIC RESONANCE

Before turning to technical details necessary to

describe magnetic resonance phenomena by quantum

electrodynamics, let us gain some informal access

and overview first. We want to study low-energy par-

ticles with spin angular momentum that interact with

low-energy electromagnetic fields. The latter classi-

cally obey Maxwell’s equations for the electric and

magnetic vector field, or they obey d’Alembert’s

wave equation for the vector and scalar potential.

The interaction energy of a spin particle with mag-

netic dipolar momentum l situated in an electromag-

netic field given by an electric field vector E and a

magnetic induction field vector B is proportional to

the scalar product lB, hence it depends on the rela-

tive orientation of the vectors l and B. Otherwise,
the energy values lB are arbitrary and because |l|
and |B| are values from a continuous set, the classical

interaction energy lB is also from this set. Quantiza-

tion of angular momentum leads to discrete values

for the interaction energy—that means, when we

choose the direction of the classical static field vector

B to be the axis of quantization for the angular mo-

mentum, for spin-1/2 particles, only two discrete

interaction energy values are allowed, 6g�h|B|/2.
Therefore, a definite change of energy in a transition

between these two energy levels can only be 6g�h|B|.
What does it mean actually to quantize the elec-

tromagnetic field? To develop this idea, consider first

the free electromagnetic field, i.e., a field in absence

of any electric charge or current distribution. This is

also a field without sources, which, again, would be

charge or current distributions. The fact that such a

source-free field exists at all is ensured by Maxwell’s

equations or by d’Alembert’s wave equations, where

in these equations all charge and current distributions

are set to zero, and it can be straightforwardly shown

that non-zero solutions exist to these homogeneous

differential equations. We may think of free electro-

magnetic fields as theoretical entities insofar, that

when we want to measure field quantities or we look
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at the influence of fields on charged particles, spins,

etc., we always work with interacting fields. So to

say, free fields are entities to be considered when the

interactions are going towards zero. The energy of the

classical free field is proportional to the volume inte-

gral over |E|2 þ |B|2. If E and B here are classical vec-

tor quantities, i.e., if they are continuous functions of

space and time coordinates, the energy density values

are also continuous—the energy of a classical free

electromagnetic field can take arbitrary values. Quan-

tizing the electromagnetic field is synonymous with

giving up the paradigm of continuity in the range of

possible energy values. Instead, the possible energy

values form a discrete set (Planck’s hypothesis, 1900,

black-body radiation). In so far, the situation is simi-

lar or analogous (although not identical) when quan-

tizing the angular momentum of a particle—classi-

cally there exists a continuous set of values mB, quan-
tum-mechanically (for spin-1/2) only two discrete

energy values6g�h|B|/2 remain.

Which difference do we find for the quantized

electromagnetic field? When we look at a change of

field energy between two discrete values of field

energy, we cannot speak of a free electromagnetic

field anymore. Any change of energy in the field must

be compensated by some energy uptake or energy

yield of particles in the field, for example the spin

particle with its two allowed discrete energy values,

hence these particles interact with the field. In other

words, we assume energy (and momentum) conserva-

tion for the composite system field plus particle(s).

Like a classical electromagnetic field, the quan-

tized field can be submitted to Fourier decomposition

and each term in the resulting Fourier series is

referred to as a field mode characterized by some

(angular) frequency o and wave vector k. The small-

est energy change for one particular field mode is

equal to �ho, with �h denoting Planck’s constant

divided by 2p. When we consider the quantized elec-

tromagnetic field interacting with some spin particle

placed in that field, we basically understand interac-

tion as some discrete change of energy (and/or mo-

mentum) of the field balanced by the accompanying

discrete change of energy (and/or momentum) of the

spin particle: a certain number of energy quanta �ho
is being exchanged. In this way, not only the admis-

sible energy values for the field and for the particle

are discretized, also the interaction itself is consid-

ered as a discrete sequence of elementary events or

processes. We may consider this ‘‘sequencing’’ or

even ‘‘discrete network formation’’ as one unique

feature of QED, because it allows us to decompose

more complex interaction scenarios occurring, for

example, in multispin systems, even though it is a

further question how to treat the multiparticle inter-

actions or the interactions in bound states extended

in time by analytical and perturbative schemes. We

imagine the discrete sequence of interaction events

as exchange processes of quanta between the inter-

acting entities. Already early in the history of quan-

tum theory, this quantum for the electromagnetic

field has been termed photon. A photon is the small-

est entity that can be exchanged in electromagnetic

interaction processes. The total energy of an electro-

magnetic field at a given time is equal to the sum of

energies arising from all photons present in the field

at that time.

It is to be expected that the exchange of photons is

not a deterministic process. As a consequence of

quantization, the quantum probabilistic character of

the electromagnetic interaction has to be taken into

account when we turn to QED. As we know, proba-

bilistic behavior already appears when we describe

particles like nuclei and electrons as quantum objects

characterized by wave functions. Here, the classically

treated electromagnetic field plays the role of an

external background field and transitions between

particle quantum states do not change this external

field. In QED, the electromagnetic field becomes an

active partner that undergoes transitions or changes of

its quantum state as well when it is coupled to par-

ticles. Both, particular transitions between quantum

states of particles and transitions between states of the

field are related, or matched to each other. A change

of the electromagnetic field state corresponds to the

emission or absorption of photons, it is accompanied

by a corresponding transition between particle

states—in magnetic resonance these are transitions

between spin states. The probabilistic nature of pho-

ton exchange as mechanism of electromagnetic inter-

action is characterized by uncertainty relations, either

for energy, momentum, space position, or time inter-

vals involved in the interaction (Section ‘‘Quantiza-

tion of the Electromagnetic Interaction Field: Virtual

Photons’’). For example, a photon once emitted is not

reabsorbed necessarily with certainty. If, within a

given time interval, photon absorption takes place

after the photon has been emitted, we speak of a virtual

photon: it constitutes an intermediate state of the elec-

tromagnetic field. If, after emission, photon reabsorp-

tion does not occur, the photon is free in the sense that

for more and more extended time intervals the proba-

bility for reabsorption of that photon goes towards

zero—the photon appears to be asymptotically free.

Spin particles interacting with electromagnetic

fields do not require any special treatment in QED.

The tools developed in quantum field theory are

applicable, in principle. Of course, it makes sense to
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take into account the specific boundary conditions

under which we study magnetic resonance phenom-

ena, like focusing on low-energy particles and fields,

thus being allowed to apply nonrelativistic approxi-

mations (Section ‘‘Spin Current Density, Zeeman

Hamiltonian, and Larmor precession’’). On the other

side, certain tools of QED to analyze, to compare,

and to illustrate electromagnetic interactions are in

our hands. One of these tools that we will use in the

present article is the Feynman diagrammatic tech-

nique. In Fig. 1 we have listed several Feynman dia-

grams to provide a correspondence between situations

familiar from the semi-classical point of view of mag-

netic resonance and the associated QED view. Feyn-

man diagrams are symbolic representations of rig-

orous mathematical expressions. Apart from that, at

the same time they provide some kind of intuitive pic-

ture of the elementary interaction processes for which

they stand. Without going into any details now—we

will treat some of them in later sections—let us briefly

discuss the basic phenomena illustrated in Fig. 1.

The first one, [Fig. 1(A)], represents the interac-

tion of a spin-1/2 particle with an external electro-

magnetic field. The source of the field might be

unspecified or it might be explicitly given (e.g., a

current in a coil). In the corresponding Feynman dia-

gram, for example the diagram (a) in Fig. 1(A), we

draw a line with an arrow to represent the spin parti-

cle. This directed line enters a vertex, where the dis-

crete ‘‘interaction event’’ occurs, here it is the emis-

sion or absorption of a virtual photon, symbolized by

a wavy line. After the interaction event the spin parti-

cle is left in a state (drawn by an outgoing line with

arrow) different from the initial state. Virtual photon

exchange happens between the spin particle and the

(nonspecified) external source of the electromagnetic

field. We may add more details to this process by ex-

plicitly specifying the external source current [dia-

gram (b)]. In that case, the virtual photon exchange

affects both interaction partners, the current density

that corresponds to the spin particle (Section ‘‘Spin

Current Density, Zeeman Hamiltonian, and Larmor

Precession’’) and the current density that represents

the external source. The two diagrams (a and b) pro-

vide the basis to appreciate the concept of the

‘‘single-spin free induction decay’’ and the basic

mechanism of NMR radiation damping, both treated

in Section ‘‘Single-Spin FID and NMR Radiation

Damping’’ Figure 1(B) offers a glance to more details

when a spin particle interacts with an rf field, for

example, during the application of an rf pulse. Classi-

cally, the rf current in a coil or circuit generates an

electromagnetic field that interacts with the spin

inside or nearby the coil. We call this field the near

field, characterized by a distance to the source (the

current in the coil wire) small compared to one wave-

length. A free standing coil (that means a coil not

completely surrounded by a shield) also generates an

rf field at larger distances (one wavelength and more)

which is the far field. In Fig. 1(B) in the center, the

graphical plot on top shows a snapshot of the rf far

field magnitude |B| generated by an rf current in a so-

lenoidal coil (6 turns, pitch angle x, limit radius r0,
cf. Ref. 87) located in the center of the field distribu-

tion. Taking the center part of that field distribution

(field of view magnified by a factor of 5), we see the

near field close to the coil. Under the QED point of

view, we may interpret the interaction between spin

and near field as virtual photon exchange while the

far field arises from those photons that, for example,

are emitted by the rf current and that are not

absorbed within a given time interval, thus they are

asymptotically free photons. This principal situation

is shown by the Feynman diagram in Fig. 1(B), more

details will be treated in Sections ‘‘A QED NMR

Probe Model: Pulsed NMR as a Scattering Process’’

and ‘‘Interaction of a Spin-1/2 Particle with External

Time-Harmonic Fields.’’ Likewise, direct dipole–

dipole interaction, a specific example for a spin–spin

interaction illustrated in Fig. 1(C) can be understood

as virtual photon exchange. Finally, even spin-lattice

relaxation (characterized by the time constant T1) can
be cast into the QED language, Fig. 1(D). Every tran-

sition of a spin between Zeeman levels corresponds

to a virtual photon exchange between the spin parti-

cle and the lattice-degrees of freedom, where the

lattice represents a partner for the interaction with a

stochastic or statistically fluctuating current density,

resulting from the stochastic motion, e.g., of

molecules in a liquid. In a similar way, spin–spin

relaxation could be treated.

In the present article we focus on the basic inter-

actions exemplified in Fig. 1(A,B), i.e., we deal with

the interaction of a single spin (or more than one, but

then isolated spins) with the static field and with

an rf field or microwave field and we provide a QED

explanation of the electromotive force induced in a

coil or circuit by a single spin. We will call that

‘‘single-spin FID,’’ although an FID of a macroscopic

sample contains more features, for example, the

dephasing of magnetization originating from many

spins with slight resonance offsets, spin–spin relaxa-

tion, explicit spin–spin couplings, etc. These latter

phenomena are not treated in the present article. On

the other hand, NMR radiation damping—to be

understood as the back action of the rf current gener-

ated by the electromagnetic field originating from the

spin particle—also appears when only one spin is
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Figure 1 Basic interaction processes occurring in magnetic resonance. The middle column

shows in a schematic way (A) a single spin interacting with an external classical field, (B) the

near field and the far field generated by an rf coil, (C) spin dipole-dipole interaction, and (D) a

level diagram associated with spin-lattice relaxation. The diagrams in the right column represent

Feynman diagrams for the corresponding QED elementary processes.
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present. Admittedly, this effect is extremely small and

‘‘hard to measure’’ for a single spin. So, the scope of

the present article might be summarized as treating

the basic and elementary interaction processes relevant

for magnetic resonance, like virtual photon exchange

and emission of asymptotically free photons. These el-

ementary processes could be used as building blocks

to deal with more complex situations in bulk samples

including multi-spin systems characterized by interac-

tions between like spins and unlike spins, spin–lattice

relaxation, and spin–spin relaxation.

To finally achieve the proximity to magnetic reso-

nance phenomena in the form as we know it from the

NMR and ESR spectroscopy literature, we meet

approximations and assumptions: first, we start with

the simple classical expression of Coulomb interac-

tion energy and generalize this step by step to arrive

at a covariant expression for the Feynman propagator.

After analyzing it and deriving the associated con-

cepts of virtual photons and asymptotically free pho-

tons (Sections ‘‘The Feynman Propagator’’ and

‘‘Quantization of the Electromagnetic Interaction

Field: Virtual Photons’’) we introduce a photon scat-

tering model for pulsed NMR (Section ‘‘A QED

NMR Probe Model: Pulsed NMR as a Scattering Pro-

cess’’). Here, we treat the current densities as non-

operator quantities, which is allowed when we would

treat the spin particles either as classical or when we

treat them as quantum objects, in the latter case in

first quantization (with the wave function as a func-

tion). For the spin particles we perform the transition

to the nonrelativistic realm (slow velocities, low ener-

gies, and low momenta). Thus three cornerstone

assumptions are involved: (a) the electromagnetic

field is assumed to be a relativistic quantity

(expressed by the associated Feynman propagator),

(b) initially the spin current density is introduced as a

covariant quantity, however, for the spin particles we

apply the nonrelativistic approximation (i.e., small

velocities, small energies, and small momenta), see

Sections ‘‘A QED NMR Probe Model: Pulsed NMR

as a Scattering Process’’ and ‘‘Spin Current Density,

Zeeman Hamiltonian, and Larmor Precession,’’ and

finally (c) we consider the spin particles as quantum

objects (with a spatial and spin wave function) with

the result that the spin current density is also a func-

tion (no second quantization of the fermion field). We

start with (a) in deriving the Feynman propagator.

THE FEYNMAN PROPAGATOR

As indicated in the introduction, we must create

some formal basis to fully appreciate the concept of

virtual photons. For edifying reasons let us begin

with an almost tautological definition of the term

interaction. Two partners (particles, fields, etc.) are

interacting with each other when partner 1 acts upon

partner 2 and partner 2 also acts upon partner 1. So,

we may explain interaction by reducing it to the con-

cept of action. In physics, the quantity of action is

defined as the time integral over the Lagrange func-

tion L. In classical mechanics, the Lagrange function

is given by the difference of kinetic and potential

energy of particles. The potential energy term consti-

tutes the interaction of the particle with either an

external field or with an interaction partner. If for the

moment we disregard kinetic energy and turn to field

theory, the Lagrange function for the interaction

becomes (up to a sign) equal to the interaction Ham-

iltonian or interaction energy. Therefore, we will

start our discourse by discussing a stepwise general-

ization of formal expressions for the electromagnetic

interaction energy and then turn to the quantity of

action associated with it. We begin by considering

two point charges Q1 and Q2 at distance r. The elec-

trostatic interaction energy reads

EQ ¼ 1

4pe0

Q1Q2

r
[1]

where e0 denotes the dielectric permittivity of the

vacuum and r is equal to the distance between the

two charges Q1 and Q2. The Coulomb interaction

energy EQ can take positive or negative values,

depending on the signs of Q1 and Q2, where for op-

posite charges, i.e., attractive forces, we get EQ , 0.

We make a first step towards generalization by not

assuming point charges, but electric charge densities

r1(x) and r2(y) distributed in space given by the

position vectors x and y with r ¼ |x � y|. Thus,

EQ ¼ 1

4pe0

Z
d3x

Z
d3y

r1ðxÞr2ðyÞ
r

[2]

where now two integrals appear over the three-

dimensional volumes with volume elements d3x and

d3y occupied by elements of the charge densities

r1(x) and r2(y), respectively. A similar expression

can be written down for the interaction energy of two

electromagnetic currents or current densities j1(x)
and j2(x):

EC ¼ � m0
4p

Z
d3x

Z
d3y

j1ðxÞj2ðyÞ
r

[3]

with m0 being equal to the magnetic permeability of

the vacuum. We may also admit charge and current
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densities that explicitly depend on time and, for gen-

erality, we may assume that charge distributions as

well as current distributions are present simultane-

ously. The total interaction energy reads

EI¼ 1

4p

Z
d3x

Z
d3y

1
e0
r1ðx;tÞr2ðy;tÞ�m0j1ðx;tÞj2ðy;tÞ

r

¼ m0
4p

Z
d3x

Z
d3y

c2r1ðx;tÞr2ðy;tÞ�j1ðx;tÞj2ðy;tÞ
r

[4]

where c2 ¼ 1/e0m0. Let us introduce the four-position

vector xm ¼ (ct,x) including time and space coordi-

nates, where the superscript m counts the components,

with m ¼ 0 for the time coordinate (multiplied by the

speed of light c), x0 ¼ ct and m ¼ 1, 2, 3 referring to

the three spatial components of the vector x. Likewise,
let us merge the scalar charge density r(x) and the

vector current density j(x) into a single four-vector jm

¼ (rc,j) and refer to it as the four-current density. For

more details on the definition of four-vectors in Min-

kowski space-time, we refer to Appendix A. In Eq.

[4], let us drop the subscripts 1 and 2 labeling the

charge and density distributions because we recognize

that the space-time coordinates x and y distinguish

them already. So, Eq. [4] appears in the concise form

EI¼ m0
4p

Z
d3x

Z
d3y

jmðxÞjmðyÞ
r

[5]

with the scalar product, jmðxÞjmðyÞ¼ j0ðxÞj0ðyÞ
�jðxÞjðyÞ, in Minkowski space-time. Note, in expres-

sions like ambm we apply the sum convention: ambm
: a0b0 þ (a1b1 þ a2b2 þ a3b3) (see Appendix A).

We recognize that until now we have made no

explicit assumptions about how fast the interaction

may propagate between jm(x) and jm(y)—in fact, in

Eq. [5] we implicitly assumed that the interaction

propagates infinitely fast. This becomes more

obvious if we rewrite Eq. [5] as

EI ¼ m0
4p

Z
d3x

Z
d3y

Z
dy0

jmðxÞdðx0 � y0ÞjmðyÞ
r

[6]

where we have inserted Dirac’s d function with the

time difference x0 � y0 as an argument and an addi-

tional integral over the time coordinate y0. Integrat-
ing the whole expression in [6] over dy0 along the

entire time axis, we come back to Eq. [5]. Alterna-

tively, we could have performed the time integral

also over dx0 instead of dy0, with the same result. In

other words, the time coordinates appearing in jm(x)

and in jm(y) are equal, x0 ¼ y0, as dictated by the d
function—the interaction occurs instantaneously.

As stated earlier, the Lagrange function L for the

interaction equals the interaction Hamiltonian or inter-

action energy EI up to a sign, i.e., we have L ¼ �EI.

Furthermore, the time integral over L is equal to the

action functionalW1 for the interaction considered:

W1 ¼
Z

dx0

c
L ¼ � 1

c

Z
dx0EI ¼ � m0

4pc

Z
dx0
Z

d3x

�
Z

d3y

Z
dy0

jmðxÞdðx0 � y0ÞjmðyÞ
r

½7�

A few words to explain what is meant by action

functional. A functional is a mapping that assigns a

number to a function or to a vector of functions (like-

wise, a function assigns numbers to numbers or to a

vector of numbers). In the case of the action func-

tional [7], we have the function jm(x)d(x0�y0) jm(y)/r.
Integrating over the full range of all the variables

(i.e., entire time dimension and entire space) assigns

a number, W1 to the vector of two functions j(x) and
j(y). Now from Eq. [7] on we are not concerned with

interaction energy anymore, but more generally with

the action related to the interaction.

The integrals over the time intervals dx0 and the

three-dimensional volume elements d3x can be for-

mally assembled together as one integral over the

space-time element d4x. Likewise, the same can be

achieved for the time intervals dy0 and volume ele-

ments d3y to obtain d4y. Hence, the action functional

[7] can be written with two space-time integrals as:

W1 ¼ � m0
4pc

Z
d4x

Z
d4y

jmðxÞdðx0 � y0ÞjmðyÞ
r

[8]

Now we introduce, for physical reasons, the

requirement that any action from jm(x) to jm(y), or
vice versa (thus, interaction), can only be a retarded

action, i.e., it takes a certain time to propagate from

one region in ordinary space to another one at dis-

tance r. When this propagation occurs with the speed

of light, c, the time interval for propagation is equal

to r/c. We can easily modify Eq. [8] to take into

account retardation by modifying the argument of the

d function accordingly:

W1 ¼ � m0
4pc

Z
d4x

Z
d4y

jmðxÞdððx0 � y0Þ � rÞjmðyÞ
r

[9]

With Eq. [9] we have obtained a first remarkable

result. To see this, let us define the function
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Dretðx� yÞ ¼ � m0
4pc

dððx0 � y0Þ � rÞ
r

; r ¼ jx� yj
[10]

such that the action W1 can be written as

W1 ¼
Z

d4x

Z
d4yjmðxÞDretðx� yÞjmðyÞ

¼
Z

d4xjmðxÞAR
mðxÞ

and where we have implemented the retarded poten-

tial AR
m(x) generated by the current jm(y),

AR
mðxÞ ¼

Z
d4yDretðx� yÞjmðyÞ

¼ �
Z

d3y

Z
dy0

m0
4pc

dððx0 � y0Þ � rÞ
r

jmðyÞ

¼ � m0
4pc

Z
d3y

jmðx0 � r; yÞ
r

½11�

as the convolution integral of Dret( x� y) with the current
density jm(y). The kernel of the first integral in Eq. [11],

Dret(x � y), is referred to as the retarded Green function

associated with the inhomogeneous wave equation. It is

also called the retarded propagator (see Appendix B).

After having introduced retarded action, returning

to Eq. [9], let us perform the next step: we consider

the time ordering of events. In Eq. [9] we have done

so already in an implicit way by expressing retarda-

tion through the d function with the argument

(x0�y0)�r. Because r is strictly positive, the integrals

in [9] are nonzero if and only if x0�y0 . 0, which

means x0 . y0: the event at time instant y0 (for exam-

ple, a change of the current density element located in

space position y) is earlier than the event at time x0

(when the field change caused by the previous current

density change arrives at the current density element

in space position x)—the cause precedes its action. In

general, when we talk about interaction, we have to

admit that, in principle, also the inverse time order

may happen in conjunction with an exchange of the

two positions in space, i.e., an event at position x hap-
pens first at time x0, the field change travels to posi-

tion y where it arrives at a later time y0 such that, as

causality dictates again, we have x0 , y0. Since both

event orders are allowed, the total action is given as

the arithmetically weighted sum of both:

W ¼W1þW2

2
¼� m0

4pc

Z
d4x

Z
d4y

� jmðxÞ½dððx0� y0Þ � rÞ þ dð�ðx0� y0Þ � rÞ�jmðyÞ
2r

[12]

The first d function on the right-hand side of Eq.

[12] stands for the time order x0�y0 . 0, while the

second one takes the reverse order into account,

x0�y0 , 0. The fact that both time orders must

appear is almost trivial for an interaction. j(y) acts on
j(x), so x0�y0 . 0 as well as j(x) acts on j(y), hence
we have x0�y0 , 0. We may depict this diagram-

matically as shown in Fig. 2. The two interacting cur-

rent densities are drawn as lines with arrows, the

interaction between them as a wavy line. In the dia-

grams the time axis points into vertical upward direc-

tion and Figs. 2(A,B) correspond to the two time

orderings as explained above. In Fig. 2, we have

drawn second-order Feynman diagrams symbolizing

the elementary electromagnetic interaction process

occurring between two electromagnetic current den-

sities. A systematic introduction into general Feyn-

man diagrammatic techniques can be found, for

example, in references (81, 89, 90, 124).
We observe that the d function is even, i.e., it

holds

dð�ðx0 � y0Þ � rÞ ¼ dððx0 � y0Þ þ rÞ [13]

such that Eq. [12] formally appears to be the sum of

a time-retarded and a time-advanced part. As we

have discussed above, the latter just reflects the alter-

native time ordering (which always takes place

together with an exchange of spatial coordinates) that

we have to admit in interaction processes. The time-

advanced part does not indicate a violation of causal-

ity nor does it describe noncausal evolution back-

wards in time, although formally, sometimes in the

literature, it is termed anticausal. So, the action func-

tional for the electromagnetic interaction of two cur-

rent densities reads

Figure 2 Diagrammatic representation of the interaction

between two currents, (A) where j(y) acts on j(x) and (B)

vice versa, j(x) acts on j(y), representing two opposite

time orderings. The current densities are drawn as lines

with arrows, the electromagnetic interaction between them

as wavy lines. The diagrams shown represent two exam-

ples of second-order Feynman diagrams.
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W ¼ W1 þW2

2
¼ � m0

4pc

Z
d4x

Z
d4y

� jmðxÞ½dððx0 � y0Þ � rÞ þ dððx0 � y0Þ þ rÞ�jmðyÞ
2r

[14]

The difference between Eqs. [9] and [14] is that in

Eq. [9] only one fixed time order is taken into

account, while Eq. [14] is more general, because it

also allows the reverse order when simultaneously

the space coordinates are reversed. Both time orders

correspond to retarded action.

From now on, for the sake of simplicity in nota-

tion, we adopt Heaviside-Lorentz units (which are

characterized by setting e0 ¼ 1 and m0 ¼ 1) and, in

addition, we also set c ¼ 1, �h ¼ 1. In the resulting

system of physical units it then appears that energy,

mass, linear momentum, wave number, and frequency

have the same unit: 1/meter. The corresponding units

in SI are obtained by multiplying accordingly with

c and/or �h, the SI units for the field quantities by

re-introducing e0 and m0 accordingly (78).
We take a look at the formal Fourier decomposi-

tion of the d function,

dðx0Þ ¼ 1

2p

Zþ1
�1

expð�iox0Þdo; [15]

which tells us that, upon integration, it contains posi-

tive as well as negative frequencies o. As it will turn
out, for the case of the quantized electromagnetic

field these frequencies o correspond to energies �ho
for photons.

Again for physical reasons, anticipating the photon

picture that we will adopt when we turn to QED, we

require that o is strictly positive or zero, not negative.

This is equivalent to admitting only positive (or zero)

energy values carried by a single photon. To take this

requirement into account, we have to restrict the inte-

gration range in Eq. [15] to run over o values only

from 0 to 1 instead of the full range of �1 to 1
such that we arrive at the modified d function defined

by the ‘‘half-sided’’ Fourier integral (note here, by

definition, the different pre-factor 1/4p2).

dþðx0Þ ¼ 1

4p2

Zþ1
0

expð�iox0Þdo [16]

We will investigate the detailed properties of dþ
later in Section ‘‘Quantization of the Electromagnetic

Interaction Field: Virtual Photons’’ (see also Appendix

C). For the moment it may suffice to say that the

features of dþ are central to the mathematical descrip-

tion of photons appearing in interaction processes.

One remark in advance: while Dirac’s d function can

be considered as a real-valued generalized function,

i.e., its arguments are on the real line and the values

of d are, loosely speaking, either zero or infinite, but

real-valued, this ‘‘real-valuedness’’ is not the case any-

more for dþ. So, the requirement of positivity for the

photon energy with the consequence of the restricted

integration range in Eq. [16] leads to a phenomenon

called time dispersion: dþ becomes complex-valued

(with a real and an imaginary part). To understand the

consequences, let us rapidly anticipate some of the

steps that lead into QED, more thoroughly discussed

in later sections. The positivity requirement for the

energy of photons, exchanged between the current

densities, has far-reaching implications. First, the

quantity of action, W, becomes a complex-valued

quantity. Second, with the probability amplitude Z in

QED (22) defined as:

Z ¼ expðiWÞ [17]

for the photon propagation in QED, the resulting prob-

ability for a photon propagating from one current to

the other current is equal to |Z|2. Thus if W is real, we

get |Z|2¼ 1 and ifW appears to have an imaginary part,

we see that |Z|2 , 1. The latter statement means that

not every photon emission leads necessarily to photon

re-absorption—there is a finite probability that photons

‘‘break free.’’ We will discuss that in more detail in

Sections ‘‘Quantization of the Electromagnetic Interac-

tion Field: Virtual Photons’’ and ‘‘A QED NMR Probe

Model: Pulsed NMR as a Scattering Process.’’

So, if we modify Eq. [14] by replacing d by dþ,
we arrive at

W ¼ �2p 1

4p

Z
d4x

Z
d4y

� jmðxÞ½dþððx0 � y0Þ � rÞ þ dþððx0 � y0Þ þ rÞ�jmðyÞ
2r

where the additional factor 2p in front of the two space-

time integrals takes into account the different prefactor

in Eq. [16] as compared to the pre-factor in Eq. [15].

The following identities hold (see Appendix C)

dððx0 � y0Þ � rÞ þ dððx0 � y0Þ þ rÞ
2r

¼ dððx0 � y0Þ2 � r2Þ ¼ dððx� yÞ2Þ
dþððx0 � y0Þ � rÞ þ dþððx0 � y0Þ þ rÞ

2r

¼ dþððx0 � y0Þ2 � r2Þ ¼ dþððx� yÞ2Þ ½18�
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where (x�y)2 is equal to the squared four-distance

between the two space-time points of the elementary inter-

action events, i.e., ðx� yÞ2 ¼ ðx0 � y0Þ � jx� yj2 ¼
ðx0 � y0Þ � r2. When introducing [18], the expression

for the electromagnetic action functional reads

W ¼ � 1

2

Z
d4x

Z
d4yjmðxÞdþððx� yÞ2ÞjmðyÞ [19]

Let us introduce

Dmn
F ðxÞ ¼ �gmndþðx2Þ; [20]

where gmn designates the metric tensor (cf. Appendix

A) and refer to DF as Feynman propagator or Feyn-

man-Green function for the electromagnetic interac-

tion. Similar to the retarded propagator Dret defined

by Eq. [10], the Feynman propagator DF is a further

Green function associated with the wave equation

(Appendix B). With the definition [20], the action

functional [19] can be written as

W ¼ 1

2

Z
d4x

Z
d4yjnðxÞDmn

F ðx� yÞjmðyÞ: [21]

The expression [21] states that the electromag-

netic action (interaction) between two current den-

sities jn(x) and jm(y) is mediated by the Feynman

propagator DF(x�y) for the electromagnetic field.

We remark that [21] is quite general, however, it can

be specialized for the case of spin–spin interactions

as well as for interactions between spins and resona-

tor, by specifying the current densities accordingly.

There is no principal restriction for the current den-

sity: it can represent a spin current density or a cur-

rent density due to electron conductivity, micro-

scopic or macroscopic. We will turn to that subject in

more detail in Section ‘‘Spin Current Density, Zee-

man Hamiltonian, and Larmor Precession.’’ In anal-

ogy to the retarded potential, Eq. [11], the integral

over d4y is equal to the four-potential An(x) at space-
time point or region x generated by the current den-

sity jm(y) at space-time point or region y,

AnðxÞ ¼
Z

d4yDmn
F ðx� yÞjmðyÞ: [22]

Hence,

W ¼ 1

2

Z
d4xjnðxÞAnðxÞ [23]

In summary, we have started our discussion with

the classical expression for the interaction energy for

two interacting current densities and introduced (a)

time retardation, (b) time ordering of events, and (c)

positivity of the energy exchanged as a quantum

between the interaction partners. As a result we

obtain the Feynman propagator DF for the electro-

magnetic field. So far, we are still (almost) within the

scope of classical electrodynamics including special

relativity (retarded field propagation with finite

speed). We have not yet properly quantized the elec-

tromagnetic field. In doing so, in the next section, we

will find an interpretation for DF in physical terms.

The general result [21] remains valid in a quantized

field theory. Focusing on magnetic resonance, it

becomes necessary to specify the general current

densities jm for spins and/or electric currents. We will

accomplish that in Section ‘‘Spin Current Density,

Zeeman Hamiltonian, and Larmor Precession.’’

QUANTIZATION OF THE
ELECTROMAGNETIC INTERACTION
FIELD: VIRTUAL PHOTONS

Quantization of the electromagnetic field involves

two formal ingredients. First (a) the field functions

Am(x), i.e., the four-vector potential AmðxÞ ¼
ðA0ðxÞ;AðxÞÞ including the scalar potential A0(x) ¼
f/c and the vector potential A(x), become field oper-

ators. Furthermore (b), generally, these field opera-

tors are subject to certain commutation or anticom-

mutation relations that determine the basic nature of

the quantum field. This procedure related to these

two cornerstones (a) and (b) is called canonical quan-

tization and will be the basis for our attempt to dis-

cover virtual photons in magnetic resonance. From a

practical point of view it is advantageous to begin

with the classical Fourier expansion of the field func-

tions (four-potentials) in three-dimensional momen-

tum space (k space), reading

AmðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l¼0

eðlÞm ðkÞ

� aðlÞðkÞe�ikx þ aðlÞþðkÞeikx
� �

½24�

Here k ¼ km ¼ ðk0; kÞ denotes the contravariant

four-momentum vector (see Appendix A) with k0

proportional to the energy variable �hck0 of the field

mode k and k equal to the usual wave number vector

such that �hk is equal to the three-momentum. In

space-time there are generally four different polariza-

tion vectors eðlÞm ðkÞ ¼ ðeðlÞ0 ðkÞ;�eðlÞðkÞÞ, enumerated

by the superscript l ¼ 0, 1, 2, 3. The Fourier coeffi-

cient a(l)(k) and its conjugate complex a(l)þ(k) are
functions of the three-momentum k.
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The exponentials exp(6ikx) contain the four-scalar
product kx ¼ kmxm ¼ ðk0; kÞðx0;�xÞT ¼ k0x0 � k � x:

Summation over all polarization directions and

integration over k-space yields the four-vector Am(x)
as a function of space coordinate vector x and time

coordinate x0. Converting the field functions Am(x)
into operators leads us to ask which of the constitu-

ents in the integral expression [24] takes over the op-

erator role. This role is filled by the Fourier coeffi-

cients a(l)(k) and a(l)þ(k), that are required to satisfy

the following canonical commutation relationships

(CCR):

½aðlÞðkÞ;aðrÞþðk0Þ� ¼ �glrd3ðk�k0Þ; l;r¼ 0;1;2;3

[25]

with all other combinations of elements in the

commutator brackets different from those in [25]

yielding zero. Thus, with [24] being read as a Fou-

rier expansion of field operators and with the Fou-

rier coefficients required to satisfy the CCR [25],

we have performed the formal task of quantizing

the electromagnetic field. This allows us to calcu-

late commutators of field operators, [Am(x), An(y)],
or products of field operators Am(x)An(y), etc. We

may define the Lagrangian density for the free or

the interacting electromagnetic field and obtain the

associated Hamiltonian (79–82), which for the free

field turns out to be identical in form with the

Hamiltonian for a system of harmonic oscillators.

As explained in texts on quantum field theory and

quantum electrodynamics, the operators a(l)(k) and

a(l)þ(k) reveal themselves as annihilation and crea-

tion operators for photons, the quanta of the elec-

tromagnetic field.

Suppose there is a state |0i of the electromagnetic

field with no photons present in the field, also called

the ground state or the vacuum state of the field and

define

aðlÞðkÞj0i ¼ 0; aðlÞþðkÞj0i ¼ j1i [26]

where |1i denotes a state of the field with exactly one

photon present with momentum k and polarization

e(l)(k). We may generalize this for n photons,

aðlÞðkÞjni ¼ ffiffiffi
n
p jn� 1i;

aðlÞþðkÞjni ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p jnþ 1i ½27�

Applying a(l)(k) and subsequently a(l)þ(k) to the

field state |ni we obtain from [27]:

aðlÞþðkÞaðlÞðkÞjni ¼ njni [28]

which qualifies the product operator a(l)þ(k)a(l)(k)
as the photon number operator. The field states |ni
with a precisely defined number n of photons in a

given mode (l, k) are eigenstates of the photon num-

ber operator and are called Fock states. These form

an orthonormal basis set of states in a state space

called Fock space, a specific example of an infinite-

dimensional Hilbert space. We mentioned the Fock

states in the introduction when discussing the uncer-

tainty relation of field amplitude and phase and we

maintained already that Fock states cannot corre-

spond to states of the electromagnetic field in the

classical limit.

In quantum field theory it makes a difference

whether we say that the field contains zero photons,

i.e., it is in its vacuum state |0i, or we say that there

is no field. In the latter case, there is nothing to talk

about, in the former case, there is quite a bit to dis-

cuss. We may calculate expectation values of opera-

tors with field states to be compared with measure-

ments, so for example we might be interested in vac-

uum expectation values. Interestingly, we find for

instance,

h0jAmðxÞj0i ¼ 0; h0jAmðxÞAnðyÞj0i 6¼ 0; [29]

which can be easily verified when taking into account

Eqs. [24–26]. While the vacuum expectation value of

the field operators vanishes [likewise this is also true

for the vacuum expectation values of the electric

field and the magnetic induction field calculated from

Am(x)], it is not the case for the vacuum expectation

value of higher order products. Thus, the variance, or

two-point correlation, or fluctuation amplitude of

field quantities can be nonzero in the vacuum state—

a typical situation occurring in quantum field theory.

We return to the discussion we began in the previ-

ous section concerning the two current densities

interacting with each other, i.e., the current density

jn(x) generating the field An(y) at the space-time posi-

tion y of the current density jm(y) and vice versa, the

current density jm(y) producing the field Am(x) at the
space-time position x of the current density jn(x). The
interaction of the two current densities has been

expressed by Eq. [21]. But consider the following:

instead of correlating the two current densities in that

way, we can also correlate the two associated fields

by forming the product Am(x)An(y) and calculating

expectation values for given field states—the sim-

plest and most straightforward would be the vacuum

expectation value. Moreover, because we saw in the

previous section that time ordering is essential in
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describing interactions to ensure causal behavior, we

may include that in our field correlation and calculate

not just h0|Am(x)An(y) |0i, but calculate the time-or-

dered vacuum expectation value h0|T(Am(x)An(y)) |0i,
where Dyson’s time ordering operator T has been

introduced, defined as

TðAmðxÞAnðyÞÞ ¼ AmðxÞAnðyÞ; x0 > y0

AnðyÞAmðxÞ; y0 > x0

�
¼ yðx0 � y0ÞAmðxÞAnðyÞ þ yðy0 � x0ÞAnðyÞAmðxÞ

[30]

y denotes the Heaviside step function defined as

y(x0�y0) ¼ 1 for x0�y0 . 0 and zero otherwise. We

have now all the means available to calculate

h0|T(Am(x)An(y)) |0i. As shown in detail in Appendix

C, this calculation yields

h0jTðAmðxÞAnðyÞÞj0i ¼ �iDmn
F ðx� yÞ
¼ igmndþððx� yÞ2Þ ½31�

Thus, we find that for a quantized electromagnetic

interaction field the Feynman propagator equals (up

to a constant prefactor) the vacuum expectation value

of the time-ordered field operator product Am(x)An(y),
that is, the Feynman propagator corresponds to the

two-point vacuum field correlation function. Note,

the correlation here includes time and space correla-

tion—we are in space-time.

Reading the expression [31] as a space-time two-

point correlation function opens up the possibility of

an even more extended interpretation of the Feynman

propagator DF. First, we observe that when we insert

the expansion [24] for the field operators into

the expression for the vacuum expectation value

of the time-ordered field operator product,

h0jTðAmðxÞAnðyÞÞÞj0i, terms like

h0jTðaðlÞðkÞe�ikx þ aðlÞþðkÞeikxÞðaðlÞðkÞe�iky
þ aðlÞþðkÞe�ikyÞj0i ¼
¼ h0jTaðlÞðkÞe�ikðx�yÞaðlÞþðkÞj0i ½32�

appear. The last line in [32] may be read from right

to left as follows: initially there is the photon vacuum

|0i. The creation operator a(l)þ(k) creates the single-

photon state j1 >¼ aðlÞþðkÞj0i. As indicated by the

time ordering and the exponential function e�ik(x�y),
the photon propagates (assuming y0 , x0) from y to

x. At space-time point x the annihilation operator

a(l)(k) annihilates the single-photon state again,

which leaves the field in the vacuum state:

j0i ¼ aðlÞðkÞj1i.

The process of creating a photon in y, letting it

propagate to x, then annihilating that photon in x,
appears in a time-ordered fashion—i.e., the photon is

first created at time y0, and then later at time x0 it is
annihilated (left side of Fig. 3)—formally this is

taken care of by the time-ordering operator T. For the
case x0 , y0 (right diagram in Fig. 3) the photon is

created in x, propagates to y where it is annihilated

again. The photon only exists while propagating from

y to x (or from x to y when the time order is

reversed), the initial and final field states are photon

vacuum states. It is for that reason that the intermedi-

ate single-photon state, j1i ¼ aðlÞþðkÞj0i, appearing
here is referred to as occupied with a virtual photon.

Virtual photons emerge as intermediate states

between the initial and final photon vacuum state.

Therefore, the Feynman propagator, also referred to

as the photon propagator, represents the mathemati-

cal vehicle describing virtual photons. With Eq. [31]

we could set up a new expression for the action func-

tional W, Eq. [21], which now has also a new inter-

pretation for the probability amplitude Z ¼ exp(iW),

Eq. [17], that governs the probability |Z|2 for the pho-
ton propagation between the site of emission and the

site of absorption. Photons are being exchanged with

probability |Z|2 � 1. Photon propagation is thus not a

deterministic process, it exhibits some uncertainty

measure expressed by |Z|2 admitting the possibility

that an actual photon exchange happens, as illustrated

in Fig. 3, emission and subsequent reabsorption (the

appearance of a virtual photon) as well as admitting

the possibility that photons emitted are not

Figure 3 Pictorial representation of the photon propaga-

tor with explicit time ordering according to Eq. [30]. For

x0 , y0 the photon is created in space-time point x and

propagates to space-time point y where it is annihilated

(right diagram). For y0 , x0 the photon is created in y
and propagates to x where it is annihilated (left diagram).
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reabsorbed or photons absorbed have not been emit-

ted in the past.

In the scheme drawn here it seems that the virtual

photon apparently emerges out of nothing and disap-

pears into nothingness. This is, of course, not the

case, we just have isolated the interaction part—

interaction occurs between two current densities

jm(x) and jn(y) and the diagrams in Fig. 3 can be seen

as subdiagrams contained in the diagrams of Fig. 2.

So, it is more appropriate to say that virtual photons

are emitted by one current density and reabsorbed by

another (or the same) current density. Emission of

virtual photons changes the state of the particles that

constitute the current density, likewise the reabsorp-

tion of virtual photons. In Fig. 2 we have indicated

that by a kink in the lines symbolizing the current

densities, appearing when emission or absorption

occurs. The particles that compose the current den-

sities in Eq. [20] might be conduction electrons in a

piece of metal wire being a part of a coil, or it might

be a spin particle in a specific spin state.

The photon propagator governs the electromag-

netic interaction between current densities. To see

this, we must turn back to Eqs. [20] and [31] and fur-

ther analyze the distribution dþððx� yÞ2Þ, an essen-

tial constituent of the Feynman propagator DF(x�y)
and arising from Eq. [31]. As shown in lengthy detail

in Appendix C (see, Eqs. [C8] to [C17]), DF(x�y)
turns out to be,

Dmn
F ðx� yÞ ¼ �gmndþððx� yÞ2Þ

¼ � gmn

4p2
pdððx� yÞ2Þ � i}

1

ðx� yÞ2
 !" #

½33�

As already mentioned in Section ‘‘The Feynman

Propagator’’ when introducing the probability ampli-

tude Z (Eq. [17]), we observe in Eq. [33] that

DF(x � y) is complex-valued; it consists of a real

part, given by Dirac’s d distribution, and of an imagi-

nary part, given by Cauchy’s principal value distribu-

tion }(1/(x � y)2). The appearance of both is elabo-

rated in Appendix C (see Eqs. [C1–C7]). As a pre-

liminary and very crude exposition, we can say that

the d distribution represents a singular function that

is zero everywhere except where its argument is

equal to zero—there it is divergent. The Cauchy prin-

cipal value distribution }(1/(x � y)2) behaves like

the function 1/(x � y)2, for (x � y)2 approaching 0 it

is also divergent. We have to suspect, that such sin-

gular ‘‘functions’’ are not simply functions in the or-

dinary sense, their singular behavior and other fea-

tures warrant a whole mathematical theory—their

treatment is part of the theory of distributions as

introduced by Schwartz (83) (see also Refs. 84 and

85). It would be far outside the scope of the present ar-
ticle to elaborate on this theory here; we will only pick

those bits and pieces necessary to formulate the pho-

ton propagator and other Green functions. Functions

or distributions with singularities are only one kind of

infinity or divergence characteristic of quantum elec-

trodynamics or, more generally, of quantum field the-

ories. In QED, expressions that reveal divergent

behavior can be submitted to procedures called

renormalization or regularization, which allow us to

calculate expectation values for physical quantities

like energy, linear momentum, angular momentum,

and others, which then turn out to be finite. One

relatively simple example for such a regularization

procedure, the ‘‘taming’’ of the singularities of d(x)
and }(1/x), is carried out in Appendix C.

In four-dimensional k space, the Fourier domain

of space-time, we find for the photon propagator (see

Appendix C, Eq. [C14]),

Dmn
F ðkÞ¼ lim

e!0

gmn

k2þ ie
¼ gmn }

1

k2

� �
� ipdðk2Þ

� �
[34]

In Eq. [34] we recognize, comparing it with Eq.

[33], that the d and } distribution exchange their

roles as far as the real and imaginary parts are con-

cerned. We stress the point: Eqs. [33] and [34] repre-

sent the central result of this section and will provide

us with the key characteristics for virtual photons.

For our following discussion of Eqs. [33] and [34]

it is worthwhile to introduce two technical concepts:

(a) the concept of a lightcone in space-time and (b)

the concept of a mass shell in momentum space. The

technical definition of the notions of a lightcone and

a mass shell is given in Appendix A (in particular,

see Figs. A1 and A2), where it is shown that a four-

vector u given in space-time can be one of three

kinds, depending on its norm-square u2. If u2 is posi-
tive, then vector u is referred to as time-like. For

coordinate vectors x this means x2 ¼ c2t2 � r2 > 0,

from which follows c2t2 > r2. In other words, time-

like coordinate vectors in space-time refer to propa-

gation over distances r with a propagation speed

below the speed of light, c, i.e., subluminal propaga-

tion, where r , c|t|. These vectors refer to points

inside a region in space-time that forms a double

cone with its apex at the coordinate origin (Fig. A1).

There are time-like vectors in the forward cone for

which t . 0 and in the backward cone for t , 0. Fur-

thermore, there are vectors u in space-time, called

space-like vectors, for which u2 , 0 holds. For coor-

dinate vectors this becomes x2 ¼ c2t2 � r2 < 0,

consequently c2t2 < r2, referring to superluminal
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propagation. Finally, there are vectors u with u2 ¼ 0,

called light-like vectors. Coordinate vectors x with x2

¼ 0 are precisely those vectors that lie on the surface

of the lightcone and it holds c2t2 ¼ r2, i.e., propaga-
tion with luminal speed c.

The k space is characterized by the same metric

properties as space-time. Thus, the Fourier domain of

the time dimension x0 ¼ ct becomes the k0 dimen-

sion, which is frequency or energy. Likewise, the

three spatial dimensions needed to specify a three-

dimensional position vector x have their Fourier do-

main counterpart in three k space dimensions with

the momentum vector k. The relationship k2 ¼ 0, or

equivalently o ¼ 2pc/l with frequency o and wave-

length l of a freely propagating electro-magnetic

wave or free photons (see Appendix A, Eqs. [A11,

A12]) defines a spherical shell with radius k0 (Appen-
dix A, Fig. A2) in three-momentum space. Those

photons that satisfy the energy-momentum relation-

ship k2 ¼ 0 are called on-shell, otherwise off-shell.

Likewise, photons that travel exactly on the surface

of the lightcone are called to be on the lightcone,

otherwise off the lightcone.

Now let us examine in detail the expressions in

Eqs. [33] and [34]. In Eq. [33] we have the sum of

two terms. The first term contains d((x�y)2), which
means that it contributes only for (x�y)2 ¼ 0, (where

Dirac’s d function becomes singular) to integrals like

[21] or [22], i.e., the space-time difference vector

x�y is light-like, hence it describes propagation of

photons on the lightcone, propagation with the speed

of light, c. The second term in Eq. [33] constitutes

Cauchy’s principal value }(1/((x�y)2)). This distri-

bution is singular for (x�y)2 ¼ 0 (i.e., on the light-

cone), but it is also different from zero for (x�y)2 ,
0 as well as for (x�y)2 . 0, i.e., for time-like as well

as for space-like distances x�y in space-time. Hence

this term formally describes propagation off the

lightcone! Turning our attention to Eq. [34], we find

again two terms: d(k2) contributing only for k2 ¼ 0,

i.e., corresponding to photons on-shell, and }(1/k2)
being singular for k2 ¼ 0, but contributing for k2 = 0

as well, hence allowing photons to be off-shell. We

also recognize that in Eq. [33] the real part of the

photon propagator, Re(DF(x�y)), contains d((x�y)2)
while the imaginary part, Im(DF(x�y)), contains

}(1/((x�y)2)). In momentum space it is just the other

way around, Re(DF(k)) gives }(1/(k2)) while

Im(DF(k)) contains d(k
2).

These findings are illustrated in Fig. 4. In this fig-

ure propagation on the lightcone (with d((x�y)2)) is
symbolized by a sharply drawn diagram. In contrast,

propagation off the lightcone [characterized by

}(1/((x�y)2))] is drawn as a slightly fuzzy lightcone

symbolizing that propagation may deviate from the

lightcone surface. Likewise in momentum space:

being off-shell (with }(1/(k2))) is symbolized by a

sphere with unsharp boundary, being on-shell (d(k2))
by a sharply drawn sphere. We further recognize that

a sharp lightcone corresponds to an unsharp momen-

tum sphere and vice versa, a sharp momentum sphere

has an unsharp lightcone as its Fourier counterpart.

We summarize these results once more in Table 1

where we also provide a first interpretation. As dis-

cussed before with Eq. [32], the photon propagator

DF yields virtual photons, i.e., photons that are emit-

ted and reabsorbed, and between these two events

they propagate through space arbitrating the interac-

tion between emitting and absorbing current den-

sities. But now apparently we have found two kinds

of photons to which we referred to in Table 1 as

Figure 4 Pictorial illustration of the Fourier transform

relationships as expressed in Eqs. [33 and 34] and Table

1. The real part of DF(x) characterizes propagation strictly

on the lightcone indicated by a sharply drawn lightcone

surface, corresponding to off-shell positioning in k space,

as given by the real part of DF(k), symbolically indicated

by a sphere with fuzzy surface. Likewise, off-lightcone

propagation described by the imaginary part of DF(x) is

illustrated by an unsharp lightcone, and on-shell position-

ing as given by the imaginary part of DF(k) pictured by a

k sphere in 3D momentum space with sharp radius k0.
Re(DF(x)) and Re(DF(k)) are Fourier transforms of each

other. The same holds for Im(DF(x)) and Im(DF(k)) also

forming a Fourier transform pair.
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virtual photons and asymptotically free photons,

either being on the lightcone or off the lightcone in

space-time, or equivalently, being off-shell or on-

shell in k-space, respectively. In a general setting, the

distinction of virtual photons and asymptotically free

photons on the basis of analyzing Eqs. [33, 34] has

been suggested in a article by Castellani, et al. (94).
The peculiarity of two types of photons needs an

explanation that involves (i) Heisenberg’s uncertainty

relations for the virtual photon exchange and (ii) an

iteration of the argument related to the imaginary

part of DF(x�y) to explain the probabilistic appear-

ance of asymptotically free photons.

Ad (i) In a general setting, as regards the uncer-

tainty relations for quantum mechanical observables

expressed by (Hermitian) operators F and G acting

on state functions f that are elements of a Hilbert

space, we have the general relationship

DFDG � ð1=2Þjh½F;G�ij

for the standard deviations (uncertainties) DF ¼
||(F�hFi) f || and DG ¼ ||(G�hGi) f ||, which fol-

lows from Schwarz’ inequality valid for state func-

tions in Hilbert space (e.g., Ref. 98, pp. 191). The
notation h. . .i indicates the quantum expectation

value and [F, G], as usual, denotes the commutator

of the two operators F and G. The symbol ||f|| stands
for the norm (which is a real, positive number for f
= 0) of the state function f. Hence the expression

||(F�hFi) f || denotes the norm of the state function

that we get as a result when applying the operator

(F� hFi) to f. As an example, we could take the

position coordinate X (as an operator) and the

operator of three-momentum component Px and with

the commutator ½X;Px� ¼ i�h we arrive at the

well-known position-momentum uncertainty relation

DXDPx � �h=2.

If we want to apply the same ‘‘recipe’’ to the physi-

cal quantities energy and time to infer how energy and

time uncertainties are related to each other, we face a

serious obstacle: while energy E appears as an opera-

tor, it is the Hamiltonian of the system considered,

time t is just a parameter, a coordinate in space-time.

There is no time operator, neither in orthodox nonrela-

tivistic quantum mechanics nor in quantum electrody-

namics! Nevertheless, the question of the validity of an

energy-time uncertainty relation DEDt � �h=2 is

entirely reasonable as long as we can provide a physi-

cal meaning for the time interval Dt. To further clar-

ify this meaning of Dt, let us return to the accepted

uncertainty relation DE DG � (1/2) |h[H,G]i | involv-
ing the energy uncertainty DE, with G equal to an ar-

bitrary Hermitian operator, and H equal to the Hamil-

tonian. Denoting by _G the operator for ‘‘change of G
over time,’’ then the equation of motion reads
_G ¼ ði=�hÞ½H;G� þ qG=qt. If we suppose that G does

not depend explicitly on time, then _G ¼ ði=�hÞ½H;G�
and we are allowed to write DEDG � ð�h=2Þh _Gi.
Now, due to Ehrenfest’s theorem (Ref. 98, p. 210)
it holds h _Gi ¼ dhGi=dt, such that DEDG �
ð�h=2Þjdi=dtj. Let us define the time duration

Dt ¼ DG
dhGi
dt

��� ��� [35]

which can be understood as that time interval it takes

for the expectation value hGi to change in time by a

value as large as the uncertainty DG, or to change

over time and take all values within the range DG.
With this definition for the time interval Dt, it directly
follows the energy-time uncertainty relation

DEDt � �h=2. Now with Eq. [35] providing a meaning

to the ‘‘time uncertainty’’ Dt, we may claim, for
example, that DEDtx � �h=2 where in this case G
represents the position operator X (for one dimen-

Table 1 Characteristics of the Real and Imaginary Parts of the Feynman–Green Function in Space-Time and k
Space Representation and Their Interpretation in Terms of Virtual and Asymptotically Free Photons

Feynman-Green Function DF Real Part of DF Imaginary Part of DF

Minkowski space-time,

coordinates x, y
� 1

4p dððx� yÞ2Þ does propagate
on the lightcone

þ 1
4p2 }

1

ðx�yÞ2
� �

may propagate

off the lightcone
Four-dimensional momentum

space, Coordinates k
þ}ð1=k2Þ positioned off-shell �pd(k2) positioned on-shell

Interpretation Virtual photons travel on the lightcone,

i.e., (x�y)2 ¼ 0, but they may be off

zero-mass shell, k 2 = 0

Asymptotically free photons may

travel off the lightcone, i.e., (x�y)2 = 0,

but they are on zero-mass shell, k 2 ¼ 0.

Associated solution of the

wave equation

Inhomogeneous solution,

interacting fields

Homogeneous solution, free fields
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sion), further DG ¼ r is given by a distance, such that

for a virtual photon propagating with velocity

dhGi=dt ¼ dhXi=dt ¼ c on the lightcone we arrive at

Dtx ¼ r/c and may interpret Dtx as the average life-

time (the propagation time) between emission and

absorption of the virtual photon with the associated

energy uncertainty DE. Nonetheless we emphasize,

that this is just one possibility depending on the

choice of the operator G ¼ X. Alternatively we

may take G ¼ P with P equal to the three-momen-

tum (again in one dimension), then we obtain Dtp
¼ DP/Fp with the force Fp equal to the total time

derivative of the expectation value hPi for the mo-

mentum P. As we see here, the duration Dtp refers

to the time derivative of the expectation value of

operator P and thus has a different definition and

meaning as compared to Dtx, because now it is

related to the operator P instead of X. Summarizing,

the time duration Dt appearing in the energy-time

uncertainty relation DEDt � �h=2 depends on the

choice of the operator G, generally noncommuting

with the Hamiltonian H. For short, G specifies Dt,
see Eq. [35].

It should be clear by now that the question of the

energy uncertainty DE for a virtual photon depends

on the second observable G that we may want to con-

sider for a measurement, as an experimental bound-

ary condition. Suppose we know the precise distance

r (obtained by some measurement) between emission

and absorption, the energy uncertainty for the virtual

photon is equal to DE � �hc=ð2rÞ. But we keep in

mind that this is only one possibility. For example, as

we will investigate later in Section ‘‘Spin Current

Density, Zeeman Hamiltonian, and Larmor Preces-

sion’’ when looking at Larmor precession through the

QED view frame, we may face the situation that, for

some additional reason, DE goes to zero, i.e., we

may know that the virtual photon has a sharp or cer-

tain energy. For this case it follows that we are not

allowed to interpret the duration Dt as arising from a

certain propagation distance r, instead we have to

take Dtp ¼ DP/Fp with the uncertainty DP of the

photon’s three-momentum going towards infinity, or

Fp going to zero, in such a way that still

DEDtp � �h=2 holds. The fact that here in our exam-

ple we focus on the three-momentum P as possibly

being entirely uncertain (DP becoming infinite) with

an associated time interval Dtp going towards infin-

ity, does not contradict the situation that the virtual

photon travels the propagation distance r during the

time interval r/c ¼ Dtr on the lightcone. It is just that

Dtp = Dtr and in the case of sharp energy E the

energy-time uncertainty relation has to be written

down with the time interval Dtp, not Dtr. As we also

can see, there is no contradiction with the statement

that virtual photons are off-shell: the photon energy

may have a sharp value, i.e., the zero-mass shell

has a sharp radius, while the three-momentum is

entirely uncertain. For a discussion on the notion of

the uncertainty with respect to the Fourier transfor-

mation in relation to magnetic resonance we refer

to Ref. 86.
Ad (ii) As discussed earlier with Eqs. [31, 32] and

with the introduction of the probability amplitude Z,
the Feynman propagator as expressed in Eq. [33] also

includes the transition for a photon being emitted and

not being reabsorbed yet (and maybe it never will be

reabsorbed) within a given time interval, or a photon

being absorbed but with the uncertainty at which

time it has been emitted (and, perhaps, it never was).

The positivity requirement for the photon energy led

to a complex-valued action functional W. The associ-

ated probability amplitude for photon propagation is

equal to Z ¼ exp(iW) where the probability character

is governed by the imaginary part of W. Table 1 lists

virtual photons as those which, within a given time

interval x0�y0, are emitted and reabsorbed. All other

photons are asymptotically free in the sense that ei-

ther emission or absorption has not taken place yet

within this specified time interval. In the literature

these asymptotically free photons are sometimes

referred to as real photons. We prefer not to use the

term ‘‘real photon’’ here, because in real interactions

virtual photons appear to be just as real as asymptoti-

cally free photons. Nevertheless, as pointed out in

expression [31], the Feynman propagator DF(x�y) as
a whole characterizes the travelling path or trajectory

of photons, but these trajectories appear to be ‘‘fuzzy

trajectories,’’ the fuzziness given by the term }(1/
((x�y)2)), which is the imaginary part in the action

functional W. This uncertainty does not only cover

the trajectory between their beginning (emission) and

end points (absorption), it also includes these initial

and end ‘‘points’’ themselves. When discussing Eq.

[16], where we have restricted the frequency or

energy range for photons to be positive (including

zero), thus making a restriction in k0 space by reduc-

ing the energy value range from �1 . . . þ1 to a

smaller subrange of 0 . . . þ1, the price to pay when

doing this is that we got time dispersion, the associ-

ated uncertainty is Dt as specified by Eq. [35]. An

increasing uncertainty Dtr for the propagation time

also includes the possibility that within a given time

interval no emission or no reabsorption may take

place. If this happens to be the case for increasingly

long, or asymptotically long time intervals, then the

corresponding photons are asymptotically free, either

when looking towards the past (backward lightcone)
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or looking towards the future (forward lightcone).

Thus the photon propagator DF includes or admits

the possibility, that exchanging photons escape from

their fate of otherwise being caught as truly virtual

and going forth and back between the interaction

partners. The probability for a photon to succeed in

escaping to ‘‘asymptotic freedom’’ is different from

zero and can be computed from DF and by taking the

interacting current densities into account. We will

perform the calculation of such an escape probability

(Eq. [57]) when discussing a specific NMR probe

model in the next section.

Last but not least, with the dichotomy in Table 1

we are reminded of the distinction well-known in

classical electromagnetism: near field and far field.

The near field is considered as the electromagnetic

field in a region with distances from the source below

(or small compared to) one wavelength for a given

field mode. The far field is found at distances at or

larger than one wavelength. There is no sharp bound-

ary between near and far field, the transition from

near to far field is gradual. Asymptotically free pho-

tons may escape to the far field, or more precisely,

they may constitute the far field. Likewise, virtual

photons should belong to the near field. The interpre-

tation of virtual and asymptotically free photons out-

lined above will be applied to all electromagnetic

phenomena discussed in the following.

From Table 1 we may derive a useful means of rec-

ognizing the signature of the presence of virtual pho-

tons. Apart from using the general definition that in

QED virtual photons mediate the electromagnetic inter-

action, the following indicator points to the appearance

of virtual photons: the free-photon energy-momentum

relationship k2 ¼ 0 does not hold (see Appendix A,

Eq. [A10] and Fig. A2), i.e., virtual photons are off-

shell. Let us review briefly some examples:

(i) In structures with wave compression (which

means k2 , 0) like helical waveguides or sole-

noidal coils (87), there it is the interaction of

one part of the structure with another part of

the same structure, for instance two neighbor-

ing coil turns or a space-periodic repetition of

structural elements like coil turns, that signi-

fies an exchange of virtual photons. In this

sense, wave compression is understood as

l=c < 2p=o, i.e., we have o2=c2 < 4p2=l2

and consequently we arrive at

o2=c2 � 4p2=l2 ¼ ðk0Þ2 � jkj2 ¼ k2 < 0:

Classically we may say that the geometric

boundary conditions of wave propagation are

different from those in free space. Using the

language of QED we may say that virtual pho-

tons, appearing because of geometric bound-

ary conditions not present in free space, gov-

ern the wave propagation, which is different

from the free space propagation characterized

by asymptotically free photons.

(ii) Another example where k2 = 0 occurs in

electromagnetic fields interacting with

dielectric materials. Here, we encounter

interactions between the electromagnetic

field and the bound electric charges or elec-

tric dipoles in these materials. Macroscopi-

cally we find again wave compression: for

example, a standing wave in an resonating

transmission line filled with a dielectric ma-

terial with er . 1 experiences a compression

of its effective wavelength.

(iii) Static interactions typically lead to k0 ? 0

(see our discussion of the Larmor precession

in Section ‘‘Spin Current Density, Zeeman

Hamiltonian, and Larmor Precession’’), i.e.,

the zero-mass shell degenerates to a point in

k space and every photon with |k|2 . 0

must be virtual.

A QED NMR PROBE MODEL: PULSED
NMR AS A SCATTERING PROCESS

In the previous two sections the basic understanding

of how to interpret the Feynman-Green function, or

synonymously, the photon propagator has been intro-

duced. In the following, we want to apply and illus-

trate the basic concepts in a model that has relevance

for pulsed NMR spectroscopy. Among all the parts

of an NMR spectrometer it is the NMR probe whose

design is based on the interaction between the spins

in a sample and the radiofrequency (rf) electromag-

netic field produced or received by the probe. In their

2002 article (55) on pulsed magnetic resonance with

full quantization of the rf field, Jeener and Henin pro-

pose a probe model that is well suited to the task of

describing NMR in QED terms. Their model decom-

poses the rf electromagnetic field into two parts: the

free field and the bound field. The ‘‘free’’ field corre-

sponds to the (undamped) eigenmodes of the probe

circuitry including the transmission line connecting

probe with the transmitter or the receiver. The bound

field, in Jeener and Henin’s terms, is associated with

the NMR sample. To avoid modeling the losses that

occur in any real probe, which would lead to dissi-

pation, the probe and the transmission line are
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assumed to be loss-free but with a length of the trans-

mission line (whose characteristic impedance acts as

a load to the circuit) being sufficiently large to ensure

a large propagation time for the pulse. As a conse-

quence such an incident rf pulse—propagating from

the transmitter to the NMR coil or resonator (con-

taining the sample), reflected there and travelling

back as an outgoing pulse—can be considered as an

event like a bypassing perturbation and, within a cer-

tain time interval in the model, the pulse is supposed

to not re-appear in the probe. In this sense, we are

actually allowed to view the rf pulse as being scat-

tered by the spins in the sample with the incoming

pulse as arising from some asymptotic initial condi-

tion in the past and the outgoing pulse disappearing

with some asymptotic final condition in the future.

This strongly idealized model is sketched in Fig. 5.

On the basis of the decomposition into a free field and

a bound field, Jeener and Henin provide a discussion

of the quantization of the electromagnetic field within

this model by setting up an ad hoc Hamiltonian that

provides a link between the fully quantized scheme

with the classical scheme based on Bloch’s equations.

Although we will make use of the above principal

probe model here as well, we will choose a different

approach to introduce the QED view into NMR. We

want to consider the following situation: first, let us

suppose that the electromagnetic four-potential asso-

ciated with the incident pulse, denoted by Am
in, is

given as a quantum field. Please remember that the

superscript m in Am
in is a contravariant index that

counts components, m ¼ 0, 1, 2, 3, while here the

subscript ‘‘in’’ indicates the incoming field.

Second, when the incoming pulse arrives at the

NMR sample region inside the NMR coil, it starts

interacting with the spins inside the sample. Third,

after the pulse travelled through the NMR coil and

sample region, it leaves as outgoing pulse, where

now, of course, the field of the outgoing pulse, sym-

bolized by Am(t,x), has been changed as compared to

Am
in. It is as if the incident pulse has collided with or

has been scattered by the spins in the sample, the lat-

ter represented by a current density jn(y), and the

associated electromagnetic interaction has changed

the overall field. Since we have not allowed dissipa-

tion in our model, we may claim that the scattered

field Am(t,x) is related to the field Am
in of the incident

pulse by a unitary transformation,

Amðt; xÞ ¼ UðtÞAm
inU
þðtÞ [36]

with the field operator Ain in [36] referring to the

incoming electromagnetic pulse an (asymptotically)

long time before it arrives in the spin sample region.

The time evolution operator U(t) is given as the

unitary operator

Figure 5 Schematic model of an NMR probe for pulsed NMR similar to those proposed by

Jeener and Henin in Ref. 55. An incident rf pulse generated by the rf transmitter travels over the

transmission line, through the circuit to the NMR coil or resonator where it is reflected and travels

back through the circuit and transmission line. The NMR sample containing the spins (not shown)

is situated inside the coil or resonator and represents a spin current density which interacts with the

incident pulse. The result of this interaction is the outgoing pulse followed by the FID signal, the

latter is routed to the receiver (this usually happens in the preamplifier, which is here thought as

part of the receiver). The coil/resonator and the circuitry are enclosed by a shielding tube. The rf

electromagnetic field can only enter and exit through the long transmission line.
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UðtÞ ¼ T exp �i
Z t

�1
dt0Hintðt0Þ

0
@

1
A [37]

with the interaction Hamiltonian

Hintðt0Þ ¼
Z

d3yAm
inðy; t0Þjmðy; t0Þ [38]

where now Am
inðy; t0Þ refers to the field during the

scattering process in the region characterized by

position vectors y for the spins in the sample. Dys-

on’s time-ordering operator T, defined by Eqs. [30],

appears in Eq. [37] because, in general, the interac-

tion Hamiltonian does not commute with itself at dif-

ferent time instants. We have introduced the interac-

tion between spins and electromagnetic field in a

fairly general manner. The product Am
inðy; t0Þjmðy; t0Þ

in the integrand in Eq. [38] representing a Hamilto-

nian density describes in a universal manner the elec-

tromagnetic coupling between any current density

and the electromagnetic field, as we have convinced

ourselves in Section ‘‘The Feynman Propagator,’’ Eq.

[23]. To specialize to the case of magnetic resonance,

one has to characterize the current density jnðy; t0Þ
that represents the spins. We will derive that spin

current density later on in Section ‘‘Spin Current

Density, Zeeman Hamiltonian, and Larmor Preces-

sion,’’ where we also show that jnðy; t0Þ may repre-

sent a function although we treat the spin particle

quantum mechanically. So far, we have taken

account of the action of the rf field pulse Ain(x) to the

spin system and the action of the spin system on the

rf field, during the pulse. After the pulse has propa-

gated through the sample region, then some past-

pulse response of the spin system—the free induction

decay, FID—appears. For the case of a single-spin

FID, we look more closely in Section ‘‘Single-Spin

FID: NMR Radiation Damping.’’

Now Eq. [36] is supposed to tell us in detail how

the electromagnetic four-potential of the incident

pulse is changed by the interaction with the spins in

the sample or, so-to-say, by the scattering process.

The time evolution in U(t) covers a time interval

from an (infinitely) far past or, in practice, a suffi-

ciently far past when there is not yet any interaction

between incoming pulse and spin system, yet, lasting

to a time instant labeled by t. This instant t can be sit-

uated in the interval during which the interaction

happens, but also before or afterwards, taking into

account that the Hamiltonian density Am
inðy; t0Þjmðy; t0Þ

itself is dependent on space position and time. In the

following, starting from Eq. [37], we want to derive

an expression for the time evolution operator that

contains the photon propagator DF, such that we may

be set in a position to analyze the appearance of vir-

tual and asymptotically free photons within the probe

model for pulsed magnetic resonance. To achieve

this goal, we will proceed by focusing on the incom-

ing and outgoing pulse, which propagate through the

rf coil or resonator and interact with the spins.

The unitary time evolution operator U(t) trans-

forms the incident quantum electromagnetic field

pulse Am
in into a quantum field that includes the effect

of propagation through the probe and also includes

interactions with the current density jnðy; t0Þ of the

spins. Hence, taken from Eqs. [37, 38], we begin with

UðtÞ ¼ T exp �i
Z t

�1
dt0Hintðt0Þ

0
@

1
A

¼ T exp �i
Z t

�1
dt0
Z

d3yAn
inðy; t0Þjnðy; t0Þ

0
@

1
A ½39�

To introduce the virtual-photon picture by re-estab-

lishing the role of DF in the time evolution operator

[39], we have to consider a factorization of U(t) that
allows us to view time ordering (as signified by

Dyson’s time ordering operator T) of operators of the
electromagnetic field as retardation in the propagation

process of electromagnetic fields. After performing

this first step and familiarizing ourselves with the con-

cept of normal ordering of field operators, we will be

in a position to derive an expression for U(t), which
contains the photon propagator DF. These steps, be-

ginning with the factorization of U(t), are presented in

detail in Appendix D; the result of the first step (see

Eqs. [D1–D10]), which relates U(t) to retardation, is

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A

� exp � i

2
gmn

Z t

�1
dx0
Z

d3x

0
@

�
Z t

�1
dy0
Z

d3yjmðxÞDretðx� yÞjnðyÞ
1
A ½40�

One crucial assumption made in the derivation of

Eq. [40] is that the current densities jm(x) and jn(y)
are functions, not operators. This may happen, if we

would treat them as classical current densities. But

also in the case of particles obeying ordinary quan-

tum mechanics (first quantization), current densities

are functions as we will see later on. The assumption
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of current densities being functions, not operators,

restricts the generality of [40] and all expressions that

depend on it. The consequences will be discussed at

the end of this section and more thoroughly in Sec-

tion ‘‘Interaction of a Spin-1/2 Particle with External

Time-Harmonic Fields.’’

Equation [40] represents a noteworthy result.

Comparing it with Eq. [39], it tells us that time-order-

ing, symbolized by the time-ordering operator T in

Eq. [39], translates into a multiplicative exponential

term in Eq. [40] with an integral in the exponent con-

taining the retarded propagator. Thus time-ordering

transforms into time-retardation. The first exponential

term in Eq. [40] contains the unitary operator part,

with the Hermitian field operator Ain(x) in the expo-

nent. Furthermore, in the interpretation of Eq. [39] we

were clear about the physical meaning of the field op-

erator Am
in(y) and the current density jm(y). The opera-

tor Ain(y) stood for the four-potential of the quantized

incident field pulse within the spatial region y of the

spin particles while j(y) represented the current den-

sity of the spin particles themselves. In the second

term of Eq. [40] there are now two current densities,

j(x) and j(y), the interaction between both mediated

through the retarded propagator Dret(x�y). Although
jm(y) still represents the spins in the sample, we now

have to admit that j(x) must signify the rf current in

the circuit and the coil of the probe. The retarded

four-potential of the incident pulse,

An;retðxÞ ¼ 1

2

Z t

�1
dy0
Z

d3yDretðx� yÞjnðyÞ; [41]

acting in the spatial region x where the rf current den-

sity is to be found, is generated by the spin current

density j(y). Hence Eq. [40] could be written as

UðtÞ¼ exp �i
Z t

�1
dx0
Z

d3xðAn
inðxÞ�An

retðxÞ1ÞjnðxÞ
0
@

1
A

[42]

with the field (operator) Ain(x) generated by the rf cur-
rent and Aret(x) produced by the spin current and

being retarded. 1 denotes the unity operator. An im-

portant observation should be made, namely, the

four-potential Aret(x) expressed by Eq. [41] is not an

operator of the electromagnetic field anymore—in

terms of field variables it represents a function. The

detailed properties of jn (except that they have to be

functions) are still left open and will be treated below.

The field operator part for the time evolution operator

characterizing the quantum evolution of the electro-

magnetic field is taken over by the first exponential

term in Eq. [40].

So far we have managed to express U(t) in [40]

via the retarded propagator Dret, indicating the inher-

ent time-ordering requirement in Eq. [39]. Proceed-

ing further from Eq. [40], U(t) can be expressed via

the photon propagator DF. For that purpose we define

the shorthand notation : . . . : by

: exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A :

¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dx0
Z

d3xAnþ
in ðxÞjnðxÞ

0
@

1
A ½43�

called normal-ordered product, where we have used (see

Eq. [24]) the positive-frequency part including the pho-

ton annihilation operator of the four-potential, given as

A
mðþÞ
in ðxÞ ¼

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l¼0

emðlÞðkÞaðlÞðkÞe�ikx

[44]

and the negative-frequency part with the photon crea-

tion operator,

A
mð�Þ
in ðxÞ ¼

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l¼0

emðlÞðkÞaðlÞþðkÞeikx

[45]

From [44, 45] we recognize that when we expand

the two exponentials on the right-hand side of [43] in

a power series, normal ordering results in an arrange-

ment of creation and annihilation operators in product

terms such that all creation operators aþ are always to

the left of all annihilation operators a appearing in

that product. Thus, products like aþa or aþaþa are

normal-ordered, while aaþ or aþaaþ are not.

With these definitions, as shown in detail in Ap-

pendix D, Eqs. [D11–D17], Eq. [40] leads to

UðtÞ ¼ : exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A :

exp � i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@
�
Z

d3yjmðxÞDmn
F ðx� yÞjnðyÞ

�
½46�
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Equation [46] formally achieves our goal of

expressing the time evolution operator U(t) via the

photon propagator DF(x�y). However, as written in

Eq. [46], we have some preliminary price to pay:

U(t) on the left-hand side is supposed to be a unitary

operator. The exponential containing DF in the expo-

nent is not an operator or operator function related to

the electromagnetic field variables and the normal-or-

dered exponential operator : . . .: taken separately by

itself is not unitary. For the sake of demonstration,

how can we convince ourselves that the entire right-

hand side of Eq. [46] fulfills the condition of unitar-

ity? For that purpose we insert Eqs. [33, 43] into

[46], such that we see all separate factors explicitly

written out,

UðtÞ¼exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

�exp �i
Z t

�1
dx0
Z

d3xAnþ
in ðxÞjnðxÞ

0
@

1
A

�exp þ i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞg
mn

4p2
pdððx�yÞ2Þ�i} 1

ðx�yÞ2
 !" #

jnðyÞ
!

In the third exponential we detach the real and

imaginary parts of DF into separate factors—this is

possible if j(x) and j(y) commute—such that we obtain

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dx0
Z

d3xAnþ
in ðxÞjnðxÞ

0
@

1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞ g
mn

4p2
}

1

ðx� yÞ2
 !

jnðyÞ
!

� exp þ i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞ g
mn

4p
dððx� yÞ2ÞjnðyÞ

�
½47�

We see that that the imaginary part of DF (con-

taining i times the principal value distribution })
gives rise to an exponential with real-valued expo-

nent. Introducing the amplitudes

aðk; x0Þ ¼ �iemðlÞðkÞJmðk; x0Þeikx0 ;

aðk; tÞ ¼
Z t

�1
dx0aðk; x0Þ ½48�

containing the three-dimensional k space Fourier

transform of the four-current density,

Jmðk; x0Þ ¼
Z

d3x expðik � xÞjmðx; x0Þ [49]

and confining ourselves to the case where the cur-

rents generate only a single mode k of the electro-

magnetic field with polarization l, we may derive

from [47] (see Appendix D, Eqs. [D18–D25]

UðtÞ ¼ exp aðk; tÞaþðkÞ � a�ðk; tÞaðkÞð Þ

� exp
i

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
1
A ½50�

where we have omitted the integral over momentum

space and where now k is referring to one specific

field mode. The restriction to one field mode is not

really a strong restriction of generality here, because

in all terms and expressions of U that contain the

amplitudes a(k,t) we may reintroduce multiple

modes by writing again the integral over d3k, see

Appendix D, Eqs. [D24, D25]. Nevertheless writing

down the expressions only for one mode makes the

notation less bulky and easier to read. The first expo-

nential in Eq. [50] represents Glauber’s displacement

operator (see Refs. 4, 5, and 97),

DaðtÞ ¼ exp aðk; tÞaþðkÞ � a�ðk; tÞaðkÞð Þ
¼ expðaaþÞ expð�a�aÞ expð�aa�=2Þ ½51�

where on the right-hand side in the second equation

of [51] we have omitted the arguments k and t. Thus
for Eq. [50] we may write

UðtÞ ¼ DaðtÞ exp i

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
1
A ½52�
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So starting from the general, time-ordered expres-

sion [39], passing through Eq. [40], which provides a

link to the retarded propagator, arriving first at Eq.

[46], which expresses U(t) via the photon propagator,

we finally arrive at Eq. [52], which represents U(t) as
a product of Glauber’s displacement operator Da(t)
and an exponential that contains the real part of the

photon propagator, i.e., it contains the d function

d((x�y)2) indicating photon propagation on the light-

cone. The imaginary part of DF has been subsumed

into the operator Da(t). Hence we are led to the con-

clusion that Glauber’s displacement operator repre-

sents asymptotically free photons (being on-shell)

appearing in the incoming or outgoing rf pulse, while

the exponential containing the real part of DF stands

for the virtual photons being exchanged between the

current density in the circuit, resonator, or coil and

the spin current density. By power series expansion

of the displacement operator Da(t) we can easily con-

vince ourselves that the adjoint operator associated

with Da(t) is equal to Dþa ðtÞ ¼ D�aðtÞ and from Eq.

[51] it follows then, that DaD
þ
a ¼ DþaDa ¼ 1, i.e.,

the displacement operator Da is, indeed, unitary. For

multiple modes this argument stays valid, because

creation and annihilation operators, belonging to dif-

ferent modes, commute (Eq. [25]), which allows us

to factorize Da and each factor Dak for each mode k
is unitary by itself. Also by using the power series

expansion for the unitary operator Da, we obtain the

commutator relationships ½aþ;Da� ¼ a�Da; ½a;Da� ¼
aDa. These yield, when left-multiplying by Da

þ:

DaðtÞaþDþa ðtÞ ¼ aþ � a�ðtÞ;
DaðtÞaDþa ðtÞ ¼ a� aðtÞ ½53�

From Eqs. [53] the name displacement operator

for Da becomes clear: performing a unitary transfor-

mation of the photon creation operator aþ or the pho-

ton annihilation operator a by means of Da results in

a displacement by a* or by a, respectively. The Fou-
rier expansion of field operators, Eq. [24], and the

property of Da expressed by [53] lead us to conclude

DaðtÞAmðt;xÞDþa ðtÞ ¼Amðtþ t;xÞ�Am
a ðt;xÞ;

Am
a ðt;xÞ ¼aðk;tÞe�ikxþa�ðk;tÞeikx; x¼ ðct;xÞ ½54�

Thus time evolution via Da changes the quantum

field Am(x) by displacing the time coordinate and displac-

ing it by the field Am
a (x) that depends on the current den-

sities involved in the interaction. When we apply Da to

the photon vacuum state |0i, we create a new state (4)

jaðtÞi ¼ DaðtÞj0i [55]

In order to characterize this time-dependent state

|a(t)i, we note first that it can be expanded in a basis

of Fock states |ni as follows (4)

jaðtÞi ¼
X1
n¼0
hnjaijni ¼ e�

1
2
aa�
X1
n¼0

anðtÞ
ðn!Þ1=2

jni [56]

which can be verified by using the power series

expansion for Da(t) given in Eq. [51]. States |a(t)i
defined by Eq. [56] are called coherent states. Since

they represent a superposition of Fock states, they

are not eigenstates of the photon number operator,

i.e., coherent states are characterized by an uncer-

tainty of the photon number in the field. Another

interesting feature of these states is that |a(t)i repre-
sents an eigenvector of the incident-field photon

annihilation operator a(k), aðkÞjai ¼ ajai, associ-

ated with the time-dependent eigenvalue a(t). Note,
the photon annihilation operator a(k) is

not Hermitian and a(t) is a complex number. From

Eq. [56] we can compute the probability to find

exactly n photons in the field that is in coherent

state |ai, i.e., the square of the transition amplitude

hn|ai,

paðnÞ ¼ jhnjaij2 ¼ e�jaj
2 jaj2n
n!

; jaj2 ¼ aa� ¼ �n

[57]

We recognize in [57] a Poissonian distribution

with �n being the average number of photons in the

field being in coherent state |ai, while the width

(standard deviation) of this distribution is equal toffiffiffi
�n
p

. In mathematical statistics the Poisson distribu-

tion appears as a limiting case of the Bernoulli or

binomial distribution

pn;z ¼ z
n

� �
pnð1� pÞz�n [58]

stating the probability pn,z for an event X to occur n
times in a number z of independent trials, where the

probability for X to occur in an individual trial is

equal to p. For the specific case where this individual
probability is very small, p� 1, one obtains

pn;z ¼ ðzpÞ
n

n!
expð�zpÞ [59]

which is identical to Eq. [57] when we set �n ¼ zp.
Hence we may interpret Eq. [57] as providing the

probability for the emission (the event X) of n pho-

tons, e.g., in a number z of consecutive time inter-
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vals, or alternatively by a number z of independent

nuclear or electron spins, where the individual proba-

bility p that one photon is emitted (in a given time

interval or by a given spin) is small compared to

unity. The average number of photons emitted is

equal to �n ¼ zp, hence this average number, accord-

ing to Eqs. [48, 49], depends on the current density in

three-dimensional momentum space. Moreover from

[57], the probability that no photons are emitted at all,

p0 ¼ expð��nÞ; [60]

becomes larger, if the expectation or average value �n
of the photon number becomes smaller.

If we consider the time evolution (Eq. [36]) lead-

ing from the incident field into the interacting and

outgoing field pulse, we realize that the exponential

in [52] containing the real part of DF commutes with

Am
inðt; xÞ, because it does not contain any operator

term that acts on electromagnetic field states. Thus

Eq. [36] becomes

Amðt; xÞ ¼ DaðtÞAm
inD
þ
a ðtÞ [61]

Therefore Glauber’s displacement operator Da

alone governs the time evolution of the field opera-

tors for the external incoming and outgoing field. Da

depends on the time-dependent quantity a, which in

turn depends on the k space current density Jmðk; x0Þ,
Eqs. [48, 49], representing the current density

involved in the interaction of the incident rf pulse.

Da includes the imaginary part of the photon propa-

gator DF (see Eqs. [47–50]) that we connected with

on-shell and off-lightcone photons. So the field

Amðt; xÞ of the interacting and outgoing pulse,

according to Eq. [61], contains asymptotically free

photons emitted by either the spin current distribu-

tion jm(y) or by the rf current jm(x). The detailed

action of Da on the quantum field operator has been

shown already in Eq. [54]—the associated unitary

transformation leads to a displacement of the field

operator Am
in(x) by Am

a (x). Note, A
m
a (x) is not an elec-

tromagnetic field operator anymore.

Let us draw some conclusions from the findings in

the current section for the NMR probe model:

(i) The rf field of the incoming, interacting and

outgoing pulse is generated by the rf current

density in the circuit or resonator and inter-

acting with the spin current density located in

the sample. The time evolution operator for

the field operators is given by Eq. [39].

(ii) For non-operator current densities, j(x) and

j(y), we have found the single-mode electro-

magnetic rf field pulse in a coherent state

|ai, characterized by an average photon

number �n that depends on the integral over

the current density in k space (Eqs. [48, 49])

and governed by a Poissonian probability

distribution [57].

(iii) Coherent states |ai are linear superpositions

of Fock states |ni (Eq. [56]), hence they are

not energy eigenstates; more precisely, they

are not eigenstates of the Hamiltonian for

the free electromagnetic field.

(iv) The time evolution [61] of field operators

with the electromagnetic field in a coherent

state |ai is governed by Glauber’s displace-

ment operator Da, Eq. [51], which contains

the normal-ordered product [43] and the

imaginary part =mðDFðx� yÞÞ of the photon

propagator (worked out in Eqs. [47–50] and

Appendix D). Therefore the action of Da as

time evolution operator for the electromag-

netic field originates from asymptotically

free photons (Section ‘‘Quantization of the

Electromagnetic Interaction Field: Virtual

Photons’’).

(v) As it turns out, coherent states |ai are

quasi-classical states. This means that the

probability distribution [57], characterized

by the average value �n and by the standard

deviation
ffiffiffi
�n
p

(Poisson distribution), leads to

a relative standard deviation offfiffiffi
�n
p

=�n ¼ 1=
ffiffiffi
�n
p

which goes towards zero for

very large average photon numbers. For the

expectation value ha|(Am(x))
2|ai of the

square of the four-potential with the field in

coherent state |ai we find, according to [24]

and remembering |ai as an eigenstate of the

annihilation operator, as follows from Eq.

[56], that ha|(Am(x))
2 |ai ! �n. Hence, the

relative standard deviation for Am(x) in the

coherent state is proportional to 1=
ffiffiffi
�n
p

. The

same applies to the electric field strength

and the magnetic induction field strength

computed from Am(x) (see Ref. 4). There-

fore, the field strengths take on sharp aver-

age values, i.e., the relative standard devia-

tions vanish, for large average photon num-

bers, i.e., in that case we are in the

classical limit.

Generalizing the above considerations to multiple

modes, we recognize that the electromagnetic field

with each mode in a coherent state |aki gives rise to

a product state jf i ¼Qk jaki which is still a

quasi-classical state in the sense that the relative
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uncertainties of observables vanish in the classical

limit, but it is not a coherent state as defined by Eq.

[56] anymore (that means that for |fi the Poisson dis-

tribution does not apply). However, because |fi can
be written as a product of coherent states, it holds

that (a) a unitary time evolution operator can be

derived as Df ¼
Q

k Dak with Dak equal to Glauber’s

displacement operator for mode k and that (b) this

unitary operator Df acts still as the creation operator

for the quasi-classical state |fi from the vacuum state:

jf i ¼ Df j0i (Refs. 54, 55, and 97).
One major supposition made in the derivations of

the present section is that the current densities j(x)
and j(y) are functions, not operators. In our probe

model, j(x) represents the rf current density, and j(y)
represents the spin current density. More specifically:

j(x) corresponds to a current density of electrons in

an conduction band of a metal that makes up the

building material of coils or resonators and other cir-

cuit elements, while the spin current density j(y) spe-
cifically stands for the spin particles in the sample.

Before we address these issues in more detail in Sec-

tion ‘‘Interaction of a Spin-1/2 Particle with External

Time-Harmonic Fields,’’ we will turn our focus in

the next section to the question of how to specify the

spin current density.

SPIN CURRENT DENSITY, ZEEMAN
HAMILTONIAN, AND LARMOR
PRECESSION

Although we have introduced electromagnetic fields

generated by sources, we have not treated in any

detail the sources themselves. We will begin to do so

now in the present section with particular attention to

the spin particle. As we have outlined in the introduc-

tion, we call particles Dirac particles in the strict

sense, if their associated wave functions satisfy the

Dirac equation when acted on by an external electro-

magnetic field, and if these particles do not undergo

strong interactions. In the strict sense, the electron

and the positron, the latter being the anti-particle

associated with the electron, are Dirac particles. For

these particles we have the following: (a) The Dirac

equation allows us to predict that these particles have

a magnetic moment originating from the spin angular

momentum with spin quantum number of 1/2, hence

they are fermions, (b) to within a high degree of ac-

curacy, the Landé factor g can be calculated assum-

ing a quantized electromagnetic field, and (c) the cal-

culated g factor agrees very well with the experimen-

tally determined value. Protons or compound nuclei

with spin 1/2 are not Dirac particles in this strict

sense. These particles have an internal structure

whose components (quarks) interact with each other

via strong nuclear forces that are not subject to quan-

tum electrodynamics. The field theory for particles

with strong interactions is QCD. Nevertheless, at low

energies (as compared to the nuclear rest mass and as

compared to nucleon-nucleon binding energies) and

abstracting from nuclear structure by just considering

them as nearly point-like particles with rest mass m
and a given nuclear g factor—which however then

cannot be inferred from quantum electrodynamics—

they may be considered as Dirac-like particles in proc-

esses that describe only electromagnetic couplings

between nuclei and electrons, or electromagnetic cou-

plings among different nuclei. Therefore low-energy

nucleus-electron interactions can be treated by quan-

tum electrodynamics—such interactions appear, e.g.,

in the NMR chemical shift interaction or scalar cou-

plings, in EPR fine structure or hyperfine structure

couplings, or also as electromagnetic nucleus-electron

couplings with measurements mediated by the rf elec-

tromagnetic field either generated by a macroscopic

electron current through an rf coil or resonator acting

on a nuclear spin-dipolar moment, or vice versa, the

nuclear spin-dipolar magnetic field as inducing a Fara-

day voltage with a resulting electron current through

an rf coil connected to an rf circuit. Even direct dipo-

lar spin-spin couplings between two nuclei can be

investigated in this way. In the present article we will

not treat the Dirac equation with all its implications.

For a brief introduction including definitions we refer

to Appendices E and F, and the textbook literature

(e.g., Refs. 21, 22, 79–82, 89, 90, and 93).
Nevertheless, to continue with our discussion, we

need one essential result concerning the density of a

current of Dirac particles or Dirac-like particles—in

the following let us refer to these particles jointly as

spin-1/2 particles. As discussed above, electrons

strictly obey Dirac’s equation. Protons do not do that,

although protons can be characterized by the same

principal mathematical form of the current density as

for electrons. This general form can be derived for

electrons from Dirac’s equation by demanding condi-

tions that we expect to be fulfilled by any four-cur-

rent density jk of spin-1/2 particles, notably the ful-

fillment of a continuity equation and the existence of

a positive-definite time-like component j0 such that it

can be interpreted as a probability density for the

spin-1/2 particle. It reads

jkðxÞ ¼ e�cðxÞgkcðxÞ [62]

For more details on how to obtain [62] we refer to

Appendices E and F, in particular to the result
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obtained in Eq. [F3]. The algebra behind Dirac’s

equation requires that the Dirac matrices gk appear-

ing in Eq. [62] are of dimension 4�4 and the wave

function c(x) represents an object called bispinor,

having four components, each a function of space-

time coordinates x. A bispinor is a mathematical

object which takes into account that the covariance

of Dirac’s equation requires to tackle (a) the Lorentz

transformation of space-time variables, and in juxta-

position, (b) the associated unitary transformation in

Hilbert space of spin variables (21, 79, 81). An early,

comprehensive investigation on the unitary represen-

tation of the inhomogeneous Lorentz group dates

back to Wigner (99). In the past, NMR has been used

to explicitly demonstrate the spinor character of spin-

1/2 nuclei and the rotational symmetries of spins-1/2

and spin-1 nuclei (100–103). The current density

jk(x) represents a four-vector in space-time—it is not

a bispinor. The quantity e is equal to the electric

charge of the particle. In connection with the condi-

tions mentioned above for the four-current density jk,
note the following two features of the current density

[62]: (a) jk(x) has vanishing four-divergence, i.e.,

qkjk ¼ 0. Using ordinary vector notation it becomes

apparent that this represents a continuity equation

(see Appendix A, Eqs. [A16, A31, A32]). Further-

more (b) the time-like component j0ðxÞ ¼ �cg0c ¼
cþc of the current density is equal to the squared

magnitude of c, hence positive definite, and can be

interpreted as a probability density for the spin-1/2

particle. For the proper definitions of the bispinors

c;�c;cþ we refer to Appendices E and F (Eqs. [E11,

E12, F1]).

Before going into technical details, one important

remark has to be made here. For the electromagnetic

field (given by four-potential functions) we have

directly applied quantum field theory based on

CCR’s and obtained quantum field operators An. We

took the classical electromagnetic field and per-

formed quantization. For spin-1/2 particles the initial

situation is different ! The Dirac equation with the

Dirac wave function c as the solution of the former

is one possible relativistic generalization of the

Schrödinger equation for a quantum particle. Thus

here the function c does not indicate a proper classi-

cal field function as in the case of the electromag-

netic field, rather c represents already a (multi-com-

ponent) field function for the quantum spin-1/2 parti-

cle which allows a probabilistic interpretation. In

order to arrive at a full quantum field theory includ-

ing both, spin-1/2 particles and electromagnetic

fields, one would have to quantize the field c as well

(as if it were a classical field) by assigning operator

character to c and require the fulfillment of anticom-

mutation rules for these new field operators. In the

present article we do not perform this field quantiza-

tion (sometimes called second quantization) for the

spin-1/2 particle wave function c. That means we

treat spin-1/2 particles with wave functions c in anal-

ogy to nonrelativistic Schrödinger quantum mechan-

ics, because we want to stay as close as possible to

the ‘‘orthodox’’ spin particle picture as used in mag-

netic resonance. It is for that reason, that the current

density jn in Eq. [62], with c representing functions

and not operators, is a (vector) function as well. The

requirement for the current density jn representing a

function (and not an operator) is essential for the

appearance of coherent states and quasi-classical

states as discussed in Section ‘‘A QED NMR Probe

Model: Pulsed NMR as a Scattering Process.’’

A short time after Dirac introduced his equation

of motion, it could be shown that the current density

[62] can be decomposed into two physically relevant

parts. The first part represents the particle current

resulting from the spatial motion of the particle and

the second part originates from the spin of the parti-

cle. In the literature this decomposition is commonly

referred to as Gordon decomposition (see Refs. 21,
91, 92, and Appendix F),

jkðxÞ ¼ e�cðxÞgkcðxÞ ¼ � e

2m
�cðxÞðPkcðxÞÞ�

�ðPk �cðxÞÞcðxÞ � iPnð�cðxÞskncðxÞÞ	 ½63�

In Eq. [63] we have introduced the momentum

Pk ¼ pk � eAk of a particle situated in an electromag-

netic field with the four-potential Ak(x) (m denoting

the rest mass of the spin-1/2 particle and pk ¼ iqk

designating the momentum operator for the free par-

ticle). In other words, we look already at an electro-

magnetic coupling between the particle and the exter-

nal field. The prescription Pk ¼ pk � eAk to introduce

the electromagnetic field into Dirac’s equation is

called minimum coupling condition and can be

understood as a direct consequence of gauge invari-

ance of the electromagnetic field equation (Appendix

B) with the concomitant phase invariance of Dirac’s

equation (see for example, Ref. 10). As we recognize
on the right-hand side of Eq. [63], the first contribu-

tion, consisting of the first two terms involving the

linear momentum Pk only, may be considered as a

‘‘convection’’ or ‘‘conduction’’ current, arising from

the motion of the Dirac particle in space. The second

contribution is given by the third term in Eq. [63]

and represents the spin current as signified by the

spin tensor skn (Appendix F, Eq. [F12]).

With an explicit expression like Eq. [63] for the

current density, we are now in a position to describe
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the interaction of a spin-1/2 particle with an external

electromagnetic field. The particle is characterized

by a Dirac wave function c (x,s), where x denotes

space-time coordinates and s stands for the spin vari-

able. An external electromagnetic field is represented

by the four-potential Am. The interaction Hamiltonian

density reads

Hintðx; sÞ ¼ jmðx; sÞAmðxÞ ¼ e�cðx; sÞgmcðx; sÞAmðxÞ
[64]

The associated Feynman diagram, specified for

the case of spin interaction, is depicted in Fig. 6, dis-

playing a diagram similar to the one in Fig. 1(A). It

shows an incident particle in the state c with spin

angular momentum s ¼ L1, an outgoing particle in

the state �c with spin angular momentum s ¼ L2 and
an exchange of a photon between the source (shown

as a small circle) of the external field and the particle.

In Fig. 6 the time axis points in vertical direction

upwards, but the arrows labeled with c and �c do not

symbolize spatial motion. The diagram depicts a par-

ticle initially in spin state cðL1Þ, then exchanging a

photon characterized by three-momentum K and

angular momentum M with the source of the external

field Am which leaves the particle in spin state �cðL2Þ.
The energy density associated with this interaction is

given by the Hamiltonian density [64].

Focus on the spin current, more specifically, the

spin part of the current density for a single spin, as

follows from [63]

jmspin ¼
ie

2m
PnðcsmncÞ [65]

In [65] we want to separate jmspin into its timelike

and spacelike components. Accomplishing this goal

is somewhat tedious and lengthy and can be achieved

best by calculating all components of the spin tensor

smn (defined in Appendix F, Eq. [F12]), then assem-

bling all component expressions together, and finally

reading off the following result from the component

expressions:

j0spin ¼
�e
2m
ðp� eAÞðj�sw� w�sjÞ;

jspin ¼
e

2m
ðp0 � eA0Þ � ðj�sw� w�sjÞ½
þiðp� eAÞ � ðj�sj� w�swÞ� ½66�

where ‘‘�’’ denotes the ordinary cross product of

vector analysis and where we have formally decom-

posed the bispinor c into two spinors j and w
according to

c ¼
c1

c2

c3

c4

0
BB@

1
CCA ¼ j

w

� �
; j ¼ j1

j2

� �
; w ¼ w1

w2

� �

[67]

and s ¼ ðs1;s2;s3ÞT denotes the ‘‘vector of Pauli

2�2 spin matrices’’. Each of the quantities j and w is

a spinor, hence the term bispinor for c.
In order to find the bridge between the general

physical formalism of spinors and associated current

densities and the more familiar spin formalism uti-

lized in magnetic resonance, we need to proceed in

two steps. First, we have to make the passage to the

nonrelativistic realm, i.e., the domain of low veloc-

ities as compared to c, low energies, low momenta,

stable particles, excluding antiparticles. Second, we

need to find a link between the notation with spinor

wave functions and the more familiar nonrelativistic

spin operator formalism that we encounter in mag-

netic resonance.

Nonrelativistic Limit

In the nonrelativistic limit—a precise definition is

given in Appendix F, Eqs. [F23]—the magnitude of

the spinor w becomes small compared to that of the

spinor j (see Appendix F, Eqs. [F17] to [F25]). If in

Eqs. [66] for the components of the spin current den-

sity we are allowed to neglect w altogether due to its

smallness, then the timelike component j0spin of the

spin current density vanishes and the spacelike part

reads

jspin ¼
ie

2m
ðp� eAÞ � ðj�sjÞ [68]

Figure 6 Interaction of a particle with an external field

characterized by the exchange of a photon with three-mo-

mentum vector K and angular momentum vector M
between the source of the external field (small circle) and

the spin particle with initial state c(L1) and final state
�cðL2Þ and their associated angular momenta L1 and

L2, respectively.
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With the three-momentum operator p ¼ �ir we

have

jspin ¼
e

2m
r� ðj�sjÞ � ie2

2m
A� ðj�sjÞ [69]

Pauli referred to the vector

d ¼ j�sj ¼
j�s1j
j�s2j
j�s3j

0
@

1
A [70]

as spin density vector (Ref. 104, pp. 159–164). In Eqs.
[69, 70] we have connected quite diverse objects with

different algebraic character. First, d is an ordinary

three-vector. In contrast j ¼ (j1, j2)
T (the superscript

T denotes the transpose), stands for a two-component

column vector with wave functions j1 and j2, repre-

senting a spinor defined in a two-dimensional Hilbert

space and j* ¼ (j1*, j2*) denotes the two-component

row vector with conjugate complex elements j1* and

j2*, while s1, s2, s3 are operators (given by the Pauli

2�2 matrices) acting on j. The spin density vector d
has the particular feature that any rotation of it in ordi-

nary three-dimensional coordinate space, mediated by

the 3�3 rotation matrix R, is equivalent to a unitary

transformation, given by a 2�2 unitary matrix U in

the two-dimensional Hilbert space of spinors j:

Rd ¼ Rðj�sjÞ ¼
j�Us1U

þj
j�Us2U

þj
j�Us3U

þj

0
@

1
A [71]

To separate space (x) and spin (s) variables, we

take the ansatz

jðx; sÞ ¼ xðxÞtðsÞ

with the scalar wave function x(x) depending only on

space-time coordinates xm ¼ (ct, r) and the spinor t(s)
being a function of spin variables s only. This ansatz
is only consistently possible in a nonrelativistic treat-

ment (cf. [26], pp. 134). Thus the nonrelativistic two-

component spinor wave function is going to be

jðx; sÞ ¼ j1

j2

� �
¼ xðxÞt1ðsÞ

xðxÞt2ðsÞ
� �

[72]

The functions t1 and t2 are to be regarded as two

orthogonal wave functions for the spin-1/2 particle

and the scalar function x(x) represents the spatial part
of the wave function. For expressions like the spin

density vector d ¼ j�sj as in Eqs. [69, 70], we may

write

d ¼ j�sj ¼
j�s1j

j�s2j

j�s3j

0
B@

1
CA ¼

j�1j2 þ j�2j1

�ij�1j2 þ ij�2j1

j�1j1 � j�2j2

0
B@

1
CA

¼
x�xðt�1t2 þ t�2t1Þ
�ix�xðt�1t2 � t�2t1Þ
x�xðt�1t1 � t�2t2Þ

0
B@

1
CA ¼ x�x

tT
tS
tP

0
B@

1
CA ½73�

Note that in the last equation of [73] we have

introduced the spin functions tT, tS, and tP by the

definitions

tT ¼ t�1t2 þ t�2t1; tS ¼ �iðt�1t2 � t�2t1Þ;
tP ¼ t�1t1 � t�2t2 ½74�

With d being a three-vector with each component

being a spin function, it becomes clear that the first

term r� ðj�sjÞ in the spin current density jspin
(Eq. [69]) is also a vector of functions. The second

term A� ðj�sjÞ appearing in jspin contains the

three-vector potential A that, when we would take it

as field operator and not as an external classical field

function, would also cause jspin to become an opera-

tor of the electromagnetic field. However as we will

see below (Eqs. [76, 77]), we are allowed to disre-

gard the term A� ðj�sjÞ because it does not con-

tribute to the interaction energy of the spin in the

electromagnetic field. Thus, finally taking the spin

current density as depending only on r� ðj�sjÞ, it
represents a vector with functions as components.

Therefore, the spin current density fulfills the

requirement that we have emphasized in Section ‘‘A

QED NMR Probe Model: Pulsed NMR as a Scatter-

ing Process,’’ which allowed us to arrive at the for-

malism of coherent states and quasi-classical states

of the electromagnetic field.

Spin Operator Formalism

Up to and including Eq. [74] we have treated tT, tS,
and tP as spinor functions (of spin variables s). In
order to find the link to the familiar spin operator for-

malism commonly used in magnetic resonance, the

components tT, tS, and tP appearing in the spin den-

sity vector d need to be interpreted as spin operators.

This can be rapidly achieved by not relying formally

on the spin density vector d but rather directly take the

three-vector s ¼ ðs1;s2;s3ÞT of Pauli matrices. It

becomes clear that then the resulting spin current den-

sity becomes dependent on a spin vector operator s
and thus looses its ‘‘innocence’’ of appearing merely

as a vector of functions. With this transition from spin

wave functions to spin operators, we arrive at
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ĵspin ¼
e

2m
rðx�xÞ � s� ie2

2m
x�xðA� sÞ [75]

where now we have written a caret sign over the sym-

bol of the spin current density in order to indicate the

formal difference of the function jspin in [69] and the

operator ĵspin in [75]. In both cases the spin physics is

the same: we are still in the single-particle regime and

do not consider quantum field theory of spin-1/2 par-

ticles, we just switch from spin functions to the asso-

ciated spin operators. The only reason to write down

the spin current density in the form [75] is to establish

the connection to the common spin operator formal-

ism used in magnetic resonance. For the general

Hamiltonian density [64], which characterizes the

interaction between a Dirac current and external field,

we specialize for the spin interaction

Hint;spin ¼
e

2m
A � rðx�xÞ � sÞ � iex�xðA� sÞð

¼ e

2m
A � rðx�xÞ � sÞð ½76�

where on the right-hand side of the last equation we

took into account the identity

A � ðA� sÞ ¼ 0 [77]

so the field dependent part of the spin current density

does not contribute to the energy of the spin particle

in an external field. An alternative derivation of Eq.

[76] based on the formalism in k space can be found

in Steven Weinberg’s monograph (21).
Applying to Eq. [76] a series of transformations

using well-known vector relationships (see Appendix

F, Eqs. [F26–F35]), we arrive at

Hint;spin ¼
e

2m
A � rðx�xÞ � sð Þ

¼ e

2m
x�xB � tþr � ðs� ðx�xAÞÞð Þ ½78�

with the magnetic induction field B as defined by Eq.

[F35]. In order to get the Hamiltonian from the Ham-

iltonian density, we need to integrate over three-

dimensional space,

Hint;spin ¼
Z
V

d3xHint;spinðxÞ [79]

Applying that to Eq. [78] we obtain

Hint;spin ¼ þ e

2m

Z
V

d3x x�xB � sð Þ

þ e

2m

Z
V

d3x r � ðs� ðx�xAÞÞð Þ; ½80�

In [80] we recognize that the divergence term

(second term on the right-hand side) can be trans-

formed into a closed surface integral according to

Gauss-Ostrogradski’s theorem, i.e.,Z
V

d3xð ~r � aÞ ¼
I
S

dS � a [81]

by setting a ¼ s� ðx�xAÞ,

Hint;spin¼ e

2m

Z
V

d3x x�xB �sð Þþ e

2m

I
S

dS�ðs�ðx�xAÞÞ

[82]

and the surface S encloses the integration volume V.
The differential dS is equal to a surface element with

associated normal vector dS.
Now consider the case of a spin particle strongly

localized in three-dimensional space. This means that

the probability density x*x in space is a very narrow

peak, i.e., in the limit of a point-like particle it is

equal to a d function at the coordinate origin if we

place the particle there:

x�x ¼ 1

2
gd3ðrÞ;

Z
V

d3xx�x ¼ 1 [83]

g denotes again the Landé factor. With the assump-

tion [83] in mind we observe that the surface integral

in [82] becomes identically equal to zero,

I
S

dSðs� ðd3ðrÞAÞÞ ¼ 0 [84]

and the volume integral term on the right-hand side

of [82] reads

Z
V

d3x d3ðrÞB � s� 	 ¼ Bðr ¼ 0Þ � s ¼ B � s [85]

Hence

Hint;spin ¼ gB � 1
2
s [86]

The quantity

g ¼ ge

2m
[87]

is referred to as gyromagnetic ratio. The spin opera-

tors s1/2, s2/2, and s3/2 are equal to the components

Ix, Iy, and Iz, of the spin vector II:
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Ix ¼ 1

2
s1; Iy ¼ 1

2
s2; Iz ¼ 1

2
s3 [88]

such that [86] takes the final form of the Zeeman

Hamiltonian

Hint;spin ¼ gB � I [89]

The Landé factor g introduced above in Eq. [83]

appears to be slightly larger than 2 for electrons as

genuine Dirac particles. As discussed earlier, for

nuclei, g cannot be determined this way—Dirac’s

theory is not capable to predict nuclear g factors.

However, the principal expression [88] and [89]

remain valid with the nuclear gyromagnetic ratio

[87] obtained either from experiment or from a

theory of strong nuclear interactions.

Let us return briefly to the classical picture of Lar-

mor precession of the magnetic dipolar moment vec-

tor g�hI in a static magnetic field. For the sake of con-

necting this classical picture with the QED view,

consider the following heuristic argument. Take a

particle with the intrinsic angular momentum

L ¼ �hI [90]

with the spin vector operator I ¼ ðIx; Iy; IzÞ according
to Eq. [88]. The particle is situated in an external

static field aligned along the z axis. According to

classical physics the angular momentum vector L
will perform a Larmor precession with angular fre-

quency o around the z axis, as illustrated in Fig. 7A.

Although during the precession motion the length of

L remains constant, the direction of L changes with

time. Consider the angular momentum at two succes-

sive instants of time separated by the interval Dt. Let
L1 ¼ Lðt1Þ and L2 ¼ Lðt1 þ DtÞ and denote the dif-

ference vector that arises from this discretized Lar-

mor precession by M ¼ L1 � L2. We just have

expressed the conservation of angular momentum for

the system particle þ field: the change of angular

momentum L2 � L1 during the precession motion of

the vector L in the static field is compensated by the

angular momentum M conveyed from the particle to

the static magnetic field, or vice versa, from the field

to the particle, such that Mþ ðL2 � L1Þ ¼ 0 [Fig.

7(B,C)]. The interaction energy [89] of the particle

does not change during Larmor precession. If we

declare a virtual photon as the arbiter of the interac-

tion between the source of the static magnetic field

and the spin particle, then this photon carries the

angular momentum M ¼ L1 � L2. In addition, this

photon possesses the linear momentum K and a non-

negative energy K0. Yet we have to conclude that the

energy of this virtual photon is equal to zero, because

absorption or emission of the photon just identified

by the spin particle with angular momentum L while

performing Larmor precession does not change the

energy of the spin particle in the static magnetic

field. This is also a statement about the certainty of

energy in this specific interaction process—certainty

of the energy of the spin particle as well as certainty

of the photon energy. In other words, because of the

condition that the spin particle before and after the

emission or absorption event of the virtual photon

has the same energy, the virtual photon cannot carry

finite energy. The emission or absorption event in

Figs. 6 and 7(C) occurs, symbolically, at the vertex

where the lines meet, the photon line is associated

with K0 ¼ 0 and with the finite angular momentum

M as well as linear momentum K (both may be

expressed in combination with each other as the hel-

icity operator M�K/(|M||K|) of the virtual photon.
Note, in the argument for the zero energy of the

virtual photon involved in Larmor precession we

have not included yet any appeal that this photon is

off-shell. We just stated that at the interaction vertex

[Figs. 6 and 7(c)] the balance of energy, momentum,

Figure 7 Conservation of angular momentum during the

Larmor precession of an magnetic dipole associated with

the spin angular momentum L of a particle in an external

static field B. Although the vector L has constant length,

its direction changes over time. The resulting angular mo-

mentum M is taken from, or conveyed to a virtual photon

which mediates the interaction.

298 ENGELKE

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



and angular momentum between incoming particles

(here the spin particle) and outgoing particles (again

the spin particle and the virtual photon) has to be

maintained. This vertex property is universally

valid—we will elaborate that in a slightly more gen-

eral way in Section ‘‘Outlook and Conclusion’’ when

discussing Feynman rules and Feynman diagrams.

The statement that the virtual photon carries zero

energy means that we consider the energy to be cer-

tain, i.e., for the uncertainty we have DE ? 0. In

Section ‘‘A QED NMR Probe Model: Pulsed NMR

as a Scattering Process’’ we have already spoken

about the signature of virtual photons.

Ascribing the energy K0 ¼ 0 to the photon creates

an extreme case for a virtual photon: the zero-mass

shell (with radius K0) degenerates to a point in k
space and the three-momentum vector K is uncertain,

so the photon is really far off-shell. As the uncer-

tainty relation dictates, according to Eq. [35] and as

discussed in Section ‘‘A QED NMR Probe Model:

Pulsed NMR as a Scattering Process,’’ in the present

case we consider the two complementary (i.e., non-

commuting) observables energy E and three-momen-

tum K (or energy E and angular momentum M). The

characteristic time interval associated to E and K is

given by DtK ¼ DK/FK with the force FK equal to

the total time derivative of hKi. This leads to the

uncertainty relation DEDtK � �h=2 and for DE ? 0

we have to conclude DtK ? 1, the latter either

because DK ? 1 (or because FK ? 0). The situa-

tion that the momentum uncertainty DK ? 1 refers

to the fact that for virtual photons in static interac-

tions, the sharp energy (zero radius of the zero mass

shell) is associated with an completely uncertain mo-

mentum K, an extreme case for virtual photons.

The heuristic argument for the exchange of virtual

photons with zero energy between the spin particle

and the surrounding magnet current generating the

static induction field is not only appropriate when

starting from the classical view with Larmor preces-

sion, we may also take the spin-1/2 particle quantum-

mechanically. The spin angular momentum I is quan-
tized along the axis of the magnetic induction field.

Let this be defined as the z axis, so that eigenstates of

the spin component Iz are simultaneously energy

eigenstates of the spin particle in the static field B.
There are two such eigenstates for spin-1/2 particles,

both states differ in energy (Zeeman levels) by �ho
with o being equal to the Larmor frequency. How-

ever, the spin particle thus characterized does not

perform transitions from one Zeeman state to the

other Zeeman state as long as there is no perturbation

acting on the spin particle or as long as spontaneous

emission does not occur, hence the spin particle does

not change its energy. The external perturbation on

the spin could, e.g., arise from a time-harmonic field

superimposed on the static field or it could originate

from relaxation processes. Except for such external

perturbations, the spin remains in its Zeeman energy

eigenstate, hence its energy does not change.

The diagram in Fig. 7(C) has been drawn in such

a way to show the similarity to the diagram in Fig. 6,

or to the general Feynman diagram in Figs. 1 and 2.

In contrast to our discussion in Section ‘‘A QED

NMR Probe Model: Pulsed NMR as a Scattering Pro-

cess’’ where we modeled the interaction between an

rf or microwave pulse of short duration with a spin

particle as a scattering process, the QED picture of

Larmor precession confronts us with a different situa-

tion. First, it is not appropriate to view Larmor pre-

cession as a short-time scattering process, i.e., assum-

ing that the spin particle is submitted to the static

magnetic field only for a limited short time interval.

It is rather the opposite, we face a situation where the

spin particle is permanently interacting with the exter-

nal static field, at least for time periods many orders

of magnitude larger than the duration of any rf or

microwave pulse. Second, it becomes thus clear that

the diagram in Fig. 6 can only represent the elemen-

tary process, a building block showing the principle

of photon exchange during Larmor precession such as

in Fig. 7(A) where it becomes obvious that only a

small time interval is considered. A more appropriate

diagrammatic representation covering the spirit of the

whole process of permanent interaction of a spin par-

ticle in a constant magnetic field is shown in Fig. 8. It

illustrates the repeated exchange of virtual photons

between the spin current density [69,75] and the cur-

rent density of the magnet coil generating the constant

magnetic field in which the spin particle is embedded.

The Feynman diagram of Fig. 6 can be seen as an ele-

ment of the extended diagram in Fig. 8. The QED for-

mal treatment of multiple exchange processes as illus-

trated in Fig. 8 would require to go into the full theory

of bound states, i.e., a theory that takes into account

not just short scattering events but time-like extended,

permanent interactions. Having in mind the introduc-

tory character of the present article, this clearly would

exceed its scope.

INTERACTION OF A SPIN-1/2 PARTICLE
WITH EXTERNAL TIME-HARMONIC
FIELDS

In the model for a magnetic resonance probe intro-

duced in Section ‘‘A QED NMR Probe Model:

Pulsed NMR as a Scattering Process’’ we supposedly
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dealt with current density functions. We will reex-

amine this assumption more closely now. In space-

time we do easily distinguish two current densities,

j(x) and j(y). The first one, j(x), is related to the rf

current where electrons in the conduction band in a

metal are the carriers of the current. These conduc-

tion-band electrons could be characterized by Bloch

wave functions in the periodic potential of a metal

lattice or simply approximated as nearly free elec-

trons with the spatial boundary condition that

restricts their position distribution to inside the mac-

roscopic metal parts that constitute, e.g., the resona-

tor or coil. The second current density, j(y), relates to
the spins in the sample in a different space region.

With this distinction, j(x) and j(y) certainly commute,

because even when both current densities would be

operators, they refer to different particles or different

variables—conduction electrons in the coil or circuit

on one side, spin particles in the sample on the other

side—we consider the two currents as distinguish-

able. The situation would change if we have a more

general situation: we may regard all nearly free elec-

trons in the metal conduction band as indistinguish-

able among themselves, or likewise, an assembly of

identical spin particles represents a statistical ensem-

ble of indistinguishable particles. Therefore, within

one family of particles for one specific current den-

sity when treating the particles as fermions character-

ized by wave or field functions and then performing

quantization of the fermion field, it is not justified to

treat the current density in each family as noncom-

muting for different space-time points. However, this

is not the case that we treat in the present article.

In the sequel we will study the interaction between

the rf current density j(x) and spin particles under the

following circumstances: we are concerned with j(x)
as a classical, macroscopic current density and look at

the coupling with a single spin. Hence, even with j(x)
being a classical function, it generates the quantized

electromagnetic field in some coherent state |ai
whose time evolution governed by Glauber’s dis-

placement operator Da is given by Eq. [61]. The spin

current density j(y), as given by the first term on the

right-hand side in Eqs. [69], has vector character with

vector components being functions. Hence the condi-

tion that the current densities are functions (thus they

commute) is satisfied and all the previous theoretical

implications for the quantized electromagnetic field

apply, as discussed in Section ‘‘A QED NMR Probe

Model: Pulsed NMR as a Scattering Process.’’ Turn-

ing back to Eq. [52], which expresses the time evolu-

tion operator for the electromagnetic field, we look at

the exponential expression containing the real part

d((x�y)2) of the photon propagator DF(x�y), and take

j(y) as a spin current density function according to

Eq. [69]. The electromagnetic field (one mode) is

transformed by Da. The exponential expression in

[52] depends on the spin current density, it does not

affect coherent states |ai. There are spin states |si,
these in turn are not affected by Da. As we recognize

now, we have achieved a factorization of the time-

evolution operator U(t) such that for any matrix ele-

ment of U(t) formed with product states |a,si ¼ |ai |si
it holds

ha; sjUðtÞja0; s0i ¼ hajDaðtÞja0i

� hsj exp i

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
�
js0i ½91�

In the derivation of the unitary operator U per-

formed in Section ‘‘A QED NMR Probe Model:

Pulsed NMR as a Scattering Process,’’ we relied on

Figure 8 A special Feynman diagram illustrating the

repeated photon exchange between the magnet static cur-

rent density j0(x) and the spin current density jspin(y). The
space-time points y1, y2, . . . denote time intervals and

refer to orientations of the spin angular momentum during

Larmor precession.
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the assumption that, formally, the current densities

j(x) and j(y) represent functions. Furthermore, we

have shown, beginning with the general Dirac current

density as given in Eq. [62], that the spin current den-

sity [69] is, indeed, a vector with spin wave functions

as components. Furthermore in Section ‘‘Spin Cur-

rent Density, Zeeman Hamiltonian, and Larmor Pre-

cession’’ we have seen that the spin current density

function, jspin, Eq. [69], has an associated operator

counterpart, ĵspin, Eq. [75]. If we want to include in

our arguments not only the time evolution of the

electromagnetic field but also the quantum time evo-

lution of the spin-1/2 particle when discussing the

unitary operator U, we have to perform the subtle

switch from taking j(y) as a function to taking ĵðyÞ
(note the caret symbol) as an operator depending on

spin operators. We observe that this is an a posteriori

construction like in Section ‘‘Spin Current Density,

Zeeman Hamiltonian, and Larmor Precession,’’ with

the purpose to incorporate the more familiar spin op-

erator formalism. We could live without this con-

struct, in that case the exponential in Eq. [91] inside

the Dirac bra hs| and the Dirac ket |s0i would become

simply a complex number and U would describe the

time evolution of the electromagnetic field only.

With the operator ĵðyÞ for the spin current density the

unitary operator for the time evolution of the spin

reads

VðtÞ ¼ exp
i

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjnðxÞdððx� yÞ2ÞĵnðyÞ
1
A ½92�

such that the complete time evolution operator for

the electromagnetic field and the spin can be

written as

UðtÞ ¼ DaðtÞ 	 VðtÞ [93]

The two unitary operators Da and V act on differ-

ent kinds of state functions, either states of the elec-

tromagnetic field or spin states, thus their product in

[93] is rather to be understood as direct product, not

as an ordinary matrix product.

We may summarize the situation as follows:

(i) the single-mode electromagnetic field Am

evolves according to the unitary transforma-

tion [61] with Glauber’s displacement opera-

tor Da, where the field parameter a depends

on the current density in k space. This part

describes the action on the field originating

from all the current densities (arising from

the rf current as well as the spin current).

The photons involved are asymptotically free

photons, the ‘‘constituents’’ of the interacting

and outgoing rf pulse.

(ii) the states |si of the spin particle evolve

according to the unitary time evolution

V(t)|si with the unitary operator V given by

Eq. [92]. Here we have built-in the direct

interaction between spin current and rf cur-

rent density. The photons appearing in V(t)
are virtual photons being exchanged between

the classical current j(x) and the spin particle

current density ĵðyÞ as formally indicated by

the d function in the real part of DF(x�y)
inside the integral in Eq. [92].

For the purpose of illustration, let us investigate

coherent states |ai with a small number of photons

(Fig. 9). First, the ground state of the electromagnetic

field is the vacuum state |0i, this is a coherent state

and simultaneously it is also a Fock state (with the

Figure 9 Poisson probability distributions over numbers

n of asymptotically free photons with the electromagnetic

field in various coherent states |ai according to Eq. [57]

with associated average photon numbers �n ¼ aa�.
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lowest possible energy). Only the state |0i can claim that

double role. With the field in state |0i the average num-

ber �n ¼ 0 and the probability to find exactly zero pho-

tons in the field, i.e., n ¼ 0, is equal to unity (Fig. 9,

top histogram), hence the probability that there are

n . 0 photons is identical to zero. That means that in

the vacuum state |0i there are no asymptotically free

photons, but virtual photons do occur. Now consider

the coherent state |ai with an average photon number

�n ¼ aa� ¼ 1. According to Eq. [56], this state is

equal to the superposition of Fock states

jaðtÞi ¼ h0jaij0i þ h1jaij1i þ h2jaij2i þ . . .

so due to the histogram in the second row in Fig. 9,

there is a finite probability to find n ¼ 1 or n ¼ 2 or

. . . asymptotically free photons, but also there is still

a significant probability for n ¼ 0 (the case where

only virtual photons, but no asymptotically free pho-

tons occur). In that specific coherent state with �n ¼ 1

the probability to have zero asymptotically free (i.e.,

to find only virtual) photons in the field is equal to the

probability to find exactly n ¼ 1 photons in the field.

The same argument can be iterated now for coherent

states |ai with higher average numbers �n ¼ aa� ¼
2; 3; . . . where from inspection of the histograms in

Fig. 9 for these cases we recognize that the maximum

of the probability distribution occurs always for

n ¼ �n and the width of the distribution (not shown

here, but being equal to the standard deviation) is

equal to
ffiffiffi
�n
p

. Having thus illustrated the uncertainty

of the photon number n in electromagnetic fields

being in coherent states (we only know the average

and the standard deviation), it becomes obvious that

this uncertainty directly relates to the energy of the

field—here not to be confused with the energy of a

single photon: every asymptotically free photon for a

given field mode k carries an energy �ho and is on-

shell, but the photon number is uncertain, and so is

the total electromagnetic field energy being the sum

over all photon energies. Specifically the uncertainty

of the photon number could be understood as photon

emission to the field or photon absorption from the

field, hence a varying number of photons over time

requiring that the average �n ¼ aa�, now being taken

as time average, is sustained and as long as the Pois-

sonian photon distribution is maintained for the field

mode considered. In particular, the time evolution op-

erator Da allows photon emission, either from the rf

current density or from the spin current density into

the rf field. Since in time-harmonic fields oscillating

with the angular frequency o each asymptotically free

photon carries energy equal to �ho, for a given field

mode, each act of emission or absorption of these

asymptotically free photons changes the energy of the

participating particle whose motion or spin consti-

tutes the respective current density and changes the

energy of the field, accordingly. The only exception

from this general picture is the vacuum state |0i;
insofar here specifically all emissions lead to subse-

quent complete absorption with the result of net num-

ber zero of asymptotically free photons in the field.

We want to corroborate the fact that the unitary

operator V(t) characterizes the evolution of the spin

state as claimed above. For that purpose, let us derive

a more familiar form for V(t) explicitly exhibiting the

spin operators in the spin current density as defined

in Eq. [75]. We introduce the four-potential function

as the convolution integral of the classical rf current

density j(x) in the coil or resonator and the real part

<e(DF(x)) of the photon propagator:

~AnðyÞ¼� 1

4p

Z t

�1
dx0
Z

d3xjnðxÞdððx�yÞ2Þ¼� 1

4p

Z
d3x

�
Z t

�1
dx0jnðxÞdððx

0�y0Þ�rÞþdððx0�y0ÞþrÞ
2r

½94�

where in the second equation in [94] we have

inserted the first identity as given in Eqs. [18]. We

note again the two d functions indicating the two dif-

ferent time orderings as in our discussion of Eq. [12]

in Section ‘‘The Feynman Propagator.’’ Performing

the integration over the time variable x0 in [94] yields

the four-potential generated by the coil current arbi-

trated by <e(DF(x)) as

~AnðyÞ ¼ � 1

8p

Z
d3x

jnðx;y0þ rÞ þ jnðx;y0� rÞ
r

[95]

Having obtained [95], we may write the time-evo-

lution operator [92] acting on spin states as

VðtÞ ¼ exp i

Z t

�1
dy0
Z

d3y ~AnðyÞĵnðyÞ
0
@

1
A [96]

According to Eq. [64] the integral over ~AnðyÞĵnðyÞ
is equal to the interaction Hamiltonian density for the

spin particle interacting with the time-harmonic field,

and as we have derived with Eq. [89], it holds

Z
d3y ~AnðyÞĵnðyÞ ¼ Hint;spin ¼ gI � Bðy0Þ [97]

Just slightly changing the notation by setting y0 ¼
t0 and assuming a finite time interval (t1, t) during

which the electromagnetic field of the incident pulse
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interacts with the spin, Eq. [97] inserted into [96]

finally leads to

Vðt; t1Þ ¼ exp ig
Z t

t1

dt0I � Bðt0Þ
0
@

1
A; [98]

an expression for the time evolution operator of the

spin particle that is familiar from the formalism used

in magnetic resonance. Supposing that the magnetic

induction field B(t) represents a linearly polarized

time-harmonic field,

BðtÞ ¼ B1ðtÞ ¼ B10 cosðotÞ [99]

with amplitude B10, Eq. [98] characterizes exactly

the time evolution operator in the laboratory frame

for a spin-1/2 angular momentum interacting with

this time-harmonic field oscillating at the angular fre-

quency o. Expressing the time evolution operator as

in Eq. [98], we have formulated the semi-classical

limit for the interaction of a spin-1/2 with the radio-

frequency field. The term semi-classical refers to the

approximation in which the time-harmonic electro-

magnetic field B(t) in Eq. [98] is taken as a classical

field, obtained from the vector potential ~AðtÞ via

BðtÞ ¼ r � ~AðtÞ, where ~AðtÞ represents the space-

like part of the four-potential conveyed by Eqs. [94,

95]. The time evolution operator V(t) according to

Eq. [98], which characterizes the action of the elec-

tromagnetic field on the spin-1/2 particle during an rf

pulse of duration t ¼ t�t1, is associated with the

exchange of virtual photons.

The interaction Hamiltonian Hint;spin ¼ gI � B in

Eq. [97] may contain the static Zeeman interaction

and the interaction with the time-harmonic field. Let

us briefly discuss how this interaction Hamiltonian is

related to the total Hamiltonian (free-field Hamilto-

nian Hem plus Hint,spin). The Hamiltonian for a single-

mode free electromagnetic field reads

Hem ¼ oaþaþ o=2 [100]

where the term o/2 represents the zero-point or vac-

uum energy term. Note, Hem is an operator independ-

ent of time. Taking the expectation value with the

electromagnetic field in a coherent state |ai yields
the field energy in that state:

hajHemjai ¼ hajoaþajai þ o=2

¼ oa�aþ o=2 ¼ �noþ o=2 ½101�
which is, apart from the zero-point energy, equal to

the average number, �n, of photons in the field multi-

plied by the energy of a single photon, o (or rather

�ho). Let us take a look at the effect of performing

the unitary transformation of the free-field Hamilto-

nian Hem with Glauber’s displacement operator Da,

which gives

�Hem¼DaHemD
þ
a ¼oðaþa�aþa�aa�þaa�Þþo=2;

[102]

and calculate again the expectation value in coherent

state |ai:

haj �Hemjai¼hajDaHemD
þ
a jai¼h0jHemj0i¼o=2

[103]

where we have applied Eq. [55]. Eq. [103] means

that the average free field electromagnetic energy

with the field in coherent state |ai in the frame co-

rotating with or rotated by Da is equal to the vacuum

energy, i.e., in that frame there are no free photons,

or more precisely, no asymptotically free photons.

Let us refer to the frame co-rotating with Da as the

a-rotating frame. We consider the complete Hamilto-

nian H, first in the laboratory frame (without unitary

transformation with Da),

H¼HemþHint;spinðtÞ¼oaþaþo=2þgI � ðB0þB1ðtÞÞ
[104]

where Hint,spin(t) incorporates the interaction of the

spin with the static field B0 (Zeeman interaction) as

well as with the (e.g., linearly polarized) rf field B1(t)

(i.e., for example, [99]). In the free-field Hamiltonian

Hem we have electromagnetic field operators,

i.e., photon creation and annihilation operators only.

Hint,spin depends on spin operators and the electro-

magnetic field appears as functions of classical

space-time variables, as exhibited by Eq. [94].

According to Eq. [93], which shows the factorization

of the time development operator for the entire sys-

tem, electromagnetic field plus spin, we have

achieved that states depending on field and spin vari-

ables can be expressed as direct products. While the

time evolution of the field operators is given by Eq.

[54] as Da(t)A
m(x)Da

þ(t), the time variation of the

coherent state |ai can be expressed as

q
qt
jai ¼ q

qt
DaðtÞj0i [105]

where we took into account Eq. [55], i.e., Da acts as

a creation operator of the coherent state |ai from the

vacuum state |0i. Because the vacuum state is a state

which does not dependent on time, we only need to
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calculate the time derivative of Glauber’s displace-

ment operator following from Eq. [51],

qDa

qt
¼ qa

qt
aþDa � qa�

qt
Daa� 1

2

qa�

qt
aDa

� 1

2

qa
qt

a�Da ¼¼ �ioðaaþ þ a�a� a�aÞDa ½106�

so that

qjai
qt
¼�ioðaaþ þa�a�a�aÞDaj0i

¼ �ioðaaþ þa�a�a�aÞjai
¼ �ioaaþjai ¼ �ioaþajai ¼ �ioaþajai ½107�

That means, in the laboratory frame the time evo-

lution of jai occurs under the free-field Hamiltonian

(without vacuum energy term Hvac ¼ o/2),

qjai
qt
¼ �iðHem � HvacÞjai

with the solution

jaðtÞi ¼ expð�ioaþatÞjað0Þi [108]

For the equation of motion in the a-rotating
frame, let us look at the equation of motion analo-

gous to [105] for the state jai transformed to the a-
rotating frame. As a field state it transforms accord-

ing to

jāi ¼ Dþa jai [109]

According to Eq. [55] we observe that jāi ¼ j0i,
i.e., the coherent field state in the a-rotating frame

equals the vacuum state, which also follows from Eq.

[102],

haj �Hemjai ¼ hajDaHemD
þ
a jai ¼ hājHemjāi

¼ h0jHemj0i ¼ o=2

As a consequence, because the state |0i is time-in-

dependent, we conclude qjāi=qt ¼ 0. Continuing to

work in the a-rotating frame, by first transforming

the complete Hamiltonian H (Eq. [104]), excluding

the vacuum energy part,

H0 ¼ DaðHem � Hvac þ Hint;spinÞDþa ¼ �H � Hvac

¼ �Hint;spinðtÞ ¼ Hint;spinðtÞ ¼ gI � BðtÞ ½110�

shows that in this manner we have removed the free-

field part. The interaction Hamiltonian Hint,spin is not

affected by the transformation with Da, because it

does not contain field variables as electromagnetic

field operators anymore, here the field appears as

classical field ~AðtÞ (Eqs. [94, 95]), via B(t), derived
from the real part of Feynman’s photon propagator.

The semi-classical Hamiltonian H0 contains the time-

dependent induction field function BðtÞ ¼ B0þ B1ðtÞ,
i.e., the rf field, and the static field function B0 lead-

ing to the static Zeeman interaction. Nevertheless,

when seen from its origin, the way we have obtained

B1(t) or B0 it becomes clear that we deal with virtual

photons: we say B(t) is equal to the curl of the vector

potential ~AðtÞ, Eq. [95], the latter is equal to the con-

volution integral [94] of the rf or static current den-

sity (generating the induction fields) with the real

part of the photon propagator,

~AnðyÞ¼ 1

4p

Z t

�1
dx0
Z

d3xjmðxÞ<eðDmn
F ðx�yÞÞ [111]

This vector potential appears here as a field func-

tion, not an operator anymore. According to Table 1,

<e(DF(x�y)) signifies the presence of virtual pho-

tons, concealed via Eq. [111] in the semi-classical

Hamiltonian H0 of Eq. [110].

SINGLE-SPIN FID AND NMR RADIATION
DAMPING

We return to Eq. [92] as a tool for explaining the free

induction decay (FID) as virtual photon exchange

between the spin current density j(y) and the current

density in the rf coil. This statement needs some

more clarification: specifically we may say that the

spin current density j(y) generates an electromagnetic

field that acts on the conducting elements of the coil

or resonator and causes a current density j(x)—which

we may observe as FID. This latter current density

j(x), now in turn being the source of the rf field, acts

back on the spin current density j(y)—a phenomenon

called NMR radiation damping (105–120). A more

proper term would be back-action or reaction, since

no radiation is involved here at all and radiation

damping in general electromagnetics is a different

phenomenon. Nevertheless, NMR radiation damping

as an established technical term means the second

step of the interaction between a spin dipolar moment

and the surrounding resonator: (1) the spin current

density generates an rf current j(x) that can be

detected as FID in a closed circuit (such that actually

we have a macroscopic current density j(x)), and (2)

this rf current j(x) acts back on the spin current den-
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sity. Note, Eq. [92] does not allow us to actually

compute the FID, or more precisely, does not allow

to compute the effects imposed upon the FID by si-

multaneous NMR radiation damping, because to be

able to do so would require knowledge of the magni-

tude of rf current density in the coil or resonator, and

this depends on the details of our macroscopic device

contained in the probe circuitry. Thus here we meet

one border aspect to the engineering side of the

NMR probe.

We need to clarify the differences that appear

when on one hand we apply an rf pulse to our spin

system and on the other hand when after the pulse

the spin current density becomes the source of elec-

tromagnetic fields. In Sections ‘‘A QED NMR Probe

Model: Pulsed NMR as a Scattering Process’’ and

‘‘Interaction of a Spin-1/2 Particle with External

Time-Harmonic Fields’’ we have described the

impact of an rf pulse on the spin as a kind of scatter-

ing process with an incident pulse with the single-

mode field in a coherent state |ai characterized by an

unsharp, average photon number �n obeying a Poisson

distribution [57]. The four-potential of the interacting

and outgoing pulse obeys a unitary time evolution

according to Eq. [36], provided the losses of the

NMR probe circuitry and coil as well as the dielectric

losses possibly caused by the sample are negligibly

small. Assuming commuting current densities, the

overall time evolution operator U(t) turned out to be

decomposable into a direct product Da(t) 	 V(t) with
Da governing the propagation of the rf pulse and V(t)
characterizing the interaction between spin current

density and rf current. We could show that during a

time interval when the pulsed rf field interacts with

the spin we can perform a transformation into the a-
rotating frame, which leaves, apart from the vacuum

energy of the electromagnetic field, only the interact-

ing part Hint,spin of the total Hamiltonian including

the Zeeman coupling of the spin situated in a strong

external field and the interaction of the spin with the

time-harmonic electromagnetic field associated with

the rf pulse following V(t). This holds for each dis-

tinct mode in the electromagnetic field. If more than

one mode is present, the state of the electromagnetic

field is equal to the product state |a1i |a2i . . . |aki
. . ., which is not a coherent state anymore, but the

property to be dispersion free (vanishing relative

uncertainties) in the classical limit is maintained (see

the discussion at the end of Section ‘‘A QED NMR

Probe Model: Pulsed NMR as a Scattering Process’’).

Suppose prior to the arrival of the incident rf pulse

that the spin state is equal to one of the two Zeeman

energy eigenstates |þi or |�i while the electromag-

netic field is found to be in the vacuum state |0i. The

compound state for the composite system, spin plus

field, appears to be |0, 6i with |6i denoting one of

the two Zeeman spin states. The arrival of the rf

pulse suddenly changes the electromagnetic field

vacuum into a coherent state |ai, where the complex

field amplitude a = 0 depends on the three-dimen-

sional Fourier transform of the current density. As

becomes clear from Eqs. [D18, D19], in k space we

do not distinguish between rf and spin current as we

did in space-time based on the spatial separation of

currents j(x) and j(y) in regions x and y. So the emer-

gence of Glauber’s displacement operator Da con-

tains the joint contribution to the electromagnetic

field from both current densities, rf current and spin

current, the latter depending on the spin state at a

given instant in time. Due to Eqs. [D18, D19], the

photons in the field associated with the rf pulse are

on-shell, i.e., these are asymptotically free photons

either emitted by the rf current density or emitted by

the spin current density, or likewise, absorbed. The

overall electromagnetic field is characterized by an

average number of photons �n in the field with a

standard deviation
ffiffiffi
�n
p

of the Poisson distribution

[57]. The exchange of virtual photons between rf cur-

rent density and spin current density is hidden in the

unitary time evolution V1(t) during the pulse and in

V2(t) after the pulse (Fig. 10, vide infra). Thus in Eq.

[92] the role of the current densities is clear during

the time interval when the electromagnetic field of

the rf pulse interacts with the spin (time evolution

V1) and the rf current density j(x) associated with the

incident pulse is injected from outside the probe.

This role of j(x) and j(y) is different prior to the

arrival of the pulse in the spatial region of the spin

particle and after the pulse has passed that region. In

the latter case, the current density j(x) is no longer

externally impressed, it is either zero (when the cir-

Figure 10 Time evolution in pulsed magnetic resonance:

during the rf pulse, the field operators A(x) are governed

by the unitary operator Da whereas the spin operators fol-

low a time evolution due to V1(t). After the pulse, the

state of the electromagnetic field returns to the vacuum

state as new initial state at time t, associated with the

time evolution operator for the electromagnetic field equal

to the unity operator 1. The interaction of the spin is char-

acterized by the unitary evolution as given by the unitary

operator V2(t).

VIRTUAL PHOTONS IN MAGNETIC RESONANCE 305

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



cuit is an open circuit) or it is originating from the

effect of the spin current density j(y) generating an

electromagnetic field which in turn produces a cur-

rent j(x) when the circuit is a closed circuit and an

macroscopic rf current can exist. The details of the

field generated by the spin current density depend on

the spin state present at the end of the rf pulse at time

t. With the spin state known after the pulse, in com-

plete analogy to Eq. [111] we may claim that the

electromagnetic four-potential generated by the spin

particle is equal to

~AnðxÞ ¼ 1

4p

Z t

�1
dy0
Z

d3yĵmðyÞ<eðDmn
F ðx� yÞÞ;

[112]

where, compared to Eq. [111], we have exchanged

the coordinates x and y—this is a form of reciproc-

ity—because now the spin current density represents

the source. Note, ~AnðxÞ in [112] is a function as far

the electromagnetic field variables are concerned, but

it is an operator with respect to spin variables,

because we have inserted the spin operator version

ĵðyÞ. It becomes a function in all variables when we

take expectation values over spin states (see below,

Eq. [113]). It is the field ~AnðxÞ at space-time position

x generated by the magnetic dipole of the spin parti-

cle in space-time position y, which in turn may gen-

erate j(x) leading to an FID detected as a current.

At that point we need to emphasize again the two

possible macroscopic boundary conditions imposed

by the rf circuit. Either we look at an open circuit,

e.g., an isolated resonator or a simple nonresonant

Hertzian loop with open ports where there is no mac-

roscopic current j(x) propagating through the resona-

tor or the loop and as a consequence no NMR radia-

tion damping occurs. Alternatively we have a closed

circuit, which in practice means that our coil or reso-

nator or loop is embedded in some larger circuitry

connected to the outer world by cables to transmitters

and receivers outside the probe. In that latter case

NMR radiation damping appears because we allow a

macroscopic classical rf current density through the

coil—this is the case that occurs more often in prac-

tice. The closed circuit case fits easily into our

scheme of two interacting current densities (Eq.

[92]).

However for the purpose of a crucial understand-

ing, we do elaborate the case with the open circuit,

because it allows us to separate the concept of a sin-

gle-spin FID from additional phenomena associated

with NMR radiation damping. Without a macro-

scopic rf current j(x) we cannot straightforwardly rely

on Eq. [92] for an elucidation of the quantum electro-

dynamic origin of the FID. Nonetheless we can turn

to Eqs. [94–95] which in our context can be inter-

preted such that the single spin particle generates a

very weak, but in principle macroscopically detecta-

ble electromagnetic field ~AnðxÞ, according to Eq.

[112]. The nature of that field, being at the heart of

realizing the FID as arising from a single spin parti-

cle, becomes more obvious when we write out Eq.

[112] in an explicit manner with all the constituent

quantities involved:

~AnðxÞ ¼ 1

4p
e

m

Z t

�1
dy0

Z
d3yrðx�xÞ � IÞm<eðh0jiTðAmðxÞAnðyÞÞj0iÞ

where we took into account Eqs. [31, 75, 88] inserted

into [112]. In Eq. [75] for the spin current density,

we took only the field-independent part, because in

the case we treat here, the emergence of the FID,

there is no externally applied time-harmonic field.

We recognize that ~AnðxÞ becomes a three-vector
~AðxÞ, because in the approximation applied for the

non-relativistic limit the spin current density is a

three-vector as well, the time-like component being

equal to zero. Hence the spin-dipolar momentum g�hI
generates a three-vector potential. The time-like

component of the four-potential, the scalar potential,

vanishes. Furthermore we see, although ~AðxÞ is a

field function as far as the variables of the electro-

magnetic field are concerned, it still depends on the

spin vector operator I. Thus in order to complete our

discussion of virtual photons in the context to link

them to an entirely classical electromagnetic field,

we need to take the expectation value over the sin-

gle-spin state function |si:

AavðxÞ ¼ hsj~AðxÞjsi ¼ 1

4p
e

m

Z t

�1
dy0

�
Z

d3yrððx�ðyÞxðyÞÞ � hsjIjsiÞm
<eðh0jiTðAmðxÞAnðyÞÞj0iÞ ½113�

Equation [113] contains all the information we

need to know about the origin of the classical electro-

magnetic field Aav(x) generated by a spin particle sit-

uated in an electromagnetic field in its vacuum state

|0i, the spin particle is characterized by a spatial

wave function x(y), spin operator I, and spin wave

function |si. Note first that Aav(x) depends on the
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vacuum correlation function of the quantum fields

Am(x) and An(y) at positions x (resonator) and y
(spin). More specifically, the vector field Aav(x)
depends on the real part of these vacuum correla-

tions, which indicates the presence of virtual pho-

tons—either photons being exchanged between the

spin and the surrounding resonator or photons being

emitted and reabsorbed by the spin particle itself,

indicating an effect called self interaction or self-

energy. Furthermore Aav(x) depends on the expecta-

tion value of the spin vector operator in spin state |si.
The spatial extension of the spin particle plays a role,

characterized by the spatial wave function x (y).
Given the classical vector potential Aav(x) pro-

duced by the single spin particle, we may infer the

associated classical induction field B ¼ r� AavðxÞ.
Suppose, for the sake of simplicity, our coil sur-

rounding the spin particle is just an open Hertzian

loop circumscribing a surface area S with surface

area element dS and associated normal vector dS,
then the magnetic flux through the loop surface area

is equal to F ¼ R B � dS and the change of the mag-

netic flux over time through a the loop (here it is an

immobile loop), qF=qt ¼ R qB=qt � dS, is equal to

the negative emf or voltage induced across the ports

of the open loop—Faraday’s law of induction.

Equation [113] also makes obvious why in the

semi-classical picture—spin particle as quantum par-

ticle and rf field as classical—we are allowed to

express the FID, the observable signal here mani-

fested as an emf, as expectation value over spin vari-

ables, more specifically, hsjIjsi. In Eq. [113] we are

allowed to move the expression hsjIjsi out of the in-

tegral over space coordinates such that

qAðxÞ=qt ¼ R� hsjIjsi with vector R representing

the integral of all the space-coordinate dependent

contributions over d3y.
One crucial characteristics of the classical electro-

magnetic field Aav(x) should not go unnoticed. The

field Aav(x) does not propagate through space in the

sense of classically propagating electromagnetic

waves. This becomes evident when we take Eq. [95]

and swap coordinates x and y so that it applies to the

spin particle as source j(y) of the field,

~AnðxÞ ¼ � 1

8p

Z
d3y

ĵnðy; x0 þ rÞ þ ĵnðy; x0 � rÞ
r

[114]

The four-potential in Eq. [114] appears formally

as the sum of a time-retarded and time-advanced part

(arising from time ordering, Section ‘‘The Feynman

Propagator,’’ e.g., Eq. [14]). Such a composition of

two propagating fields, one travelling from the spin

particle outbound, the other travelling inbound

towards the spin particle, yields a standing wave pat-

tern in the space around the spin particle with an am-

plitude proportional to the inverse distance 1/r. The
corresponding induction field would drop off with 1/

r2, a characteristic that one finds for the region at dis-

tances below one wavelength for the given field

mode—in classical electrodynamics also referred to

as the near field region. The standing wave pattern is

the classical signature of virtual photon exchange

between the spin particle and the electrons in the

loop wire—even if there is no macroscopic rf current

through the wire for an open loop—the electrons in

the metal experience a torque equal to the change in

angular momentum hsj�hIjsi of the spin particle—

while their spatial motion is negligibly small (57). In
the situation observed here, the exchange of a virtual

photon does not transmit energy to an electron in the

conduction band of the metal material of the open

loop where it would appear as kinetic energy (as it

would be the case if a current flows in a closed cir-

cuit). Thus we conclude, for an open loop the virtual

photon exchange transmits three-momentum but zero

energy, the energy of the spin particle as well as the

energy of the electrons in the metal wire do not

change upon photon exchange.

The situation becomes different when the Hertzian

loop is closed and a macroscopic rf current can be

induced originating from the induced emf or Faraday

voltage. Equation [92] becomes directly applicable

again. Now the photon exchange transmits energy

from the single spin to a conduction band electron

current where the transmitted energy appears as ki-

netic energy, the electron current performs an oscilla-

tory motion at a frequency equal to the Larmor fre-

quency o0 with an amplitude that depends on the

details of the macroscopic circuit (the load) in which

the current loop is embedded. The fact that the oscil-

lation frequency o0 is equal to the rf frequency of the

induced current, however, does not imply that now

each virtual photon involved in the exchange process

must have exactly the energy �ho0. In order to make

this evident, consider the following Gedanken experi-

ment with a line of arguments: (a) suppose initially

our single spin is in a definite Zeeman eigenstate,

say, state |þi such that Hz |þi ¼ þ (1/2) �ho0 with Hz

denoting the Zeeman Hamiltonian. Furthermore sup-

pose we know with certainty that the spin is in that

state, because, for example, we may have prepared

the spin in that state by some earlier experiment. As

a consequence, we do know the precise energy of the

spin in the static magnetic field B0 ¼ o0/g, the energy
being equal to þ�ho0/2. Now (b) we apply an rf pulse

of amplitude a and some duration t with circular
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polarization transverse to the static magnetic field. It

follows (c) that after the rf pulse our spin is, in gen-

eral, not in a Zeeman eigenstate anymore, instead the

spin state appears to be a superposition |s(t)i ¼ c1(t)
|þi þ c2(t) |�i of Zeeman eigenstates with time-

periodic coefficients c1 and c2 depending on the

rf pulse parameters a and t as well as on the

time elapsed after the pulse. We note, |s(t)i is not

an energy eigenstate anymore, thus the energy of

the spin particle is uncertain—expressed in techni-

cal terms: the spin energy given by its expectation

value hEspini ¼ hs(t) |Hz |s(t)i is associated with

an uncertainty, which is given by the variance or

standard deviation hDEspini ¼ (hs(t) |H2
z-hHzi2 |s(t)i)1/2,

the latter being nonzero for states |s(t)i different

from energy eigenstates. We conclude, (d) the

energy of a virtual photon emitted or absorbed by

the spin particle might be well within the range,

or is on the order of the energy uncertainty

h2DEspini. Therefore (e) the energy of the spin

may change as well as the energy of the other

interaction partner (an electron in our current

loop): the photons being exchanged between spin

and closed loop may carry nonzero energy in the

range from 0 to h2DEspini and they transfer three-

momentum.

Having characterized the virtual photon exchange

between two nonvanishing current densities, spin

current and rf current, let us briefly return to the sit-

uation of an open current loop where we found out

that for this specific situation the photons do not

carry energy, even if they transfer three-momentum.

The associated classical vector potential field is

given by Eq. [113] where we recognize that this

field does not depend on any quantities or parame-

ters of the open loop at all. So we may assert that,

for example, when we would choose a larger loop

diameter or even if we omit the loop leaving a soli-

tary spin particle sitting in the external static mag-

netic field, the principal form of Aav(x) remains

unchanged and, more importantly, the existence of

Aav(x) is independent of whether the Hertzian loop

is present or not. Of course the question arises, if

there is only the single spin particle generating the

field Aav(x), how do we understand virtual photon

exchange for this case? Who does exchange pho-

tons with whom? The simple sounding answer of

quantum electrodynamics (although it is not really

simple) is that the spin particle exchanges photons

with itself, i.e., the spin particle interacts with itself.

Although this kind of interaction seems to be rather

obscure on the first sight, in QED self-interaction

must be counted as a real process being part of

other interaction processes.

OUTLOOK AND CONCLUSION

The present article aimed to introduce the quantized

electromagnetic interaction field in magnetic reso-

nance and to elaborate the related concept of virtual

photons. For that purpose we have applied the Feyn-

man propagator formalism for photons. For the physi-

cal interpretation of the photon propagator, which

mathematically represents a special Green function

associated with the inhomogeneous wave equation for

the electromagnetic field, we encountered two kinds

of photons—asymptotically free photons and virtual

photons, the former being always on the zero-mass

shell, the latter being allowed off-shell. When consid-

ering a model for pulsed NMR as a scattering process,

we inferred that the incident rf pulse, considering a

single mode of that field, is characterized well by an

electromagnetic field in a coherent state, which also

provides an explanation of the features of the field in

the classical limit, where the relative uncertainties of

the field amplitude and phase become vanishingly

small. Relying on the assumption that the current den-

sities (rf current and spin current) interacting with

each other are functions, we succeeded in a separation

of electromagnetic field variables from the spin varia-

bles. This separation enabled us to describe a scenario

where, during the rf pulse, both kinds of photons

appear—asymptotically free photons as well as virtual

photons—whereas after the rf pulse the emerging FID,

either with or without NMR radiation damping effects,

can be characterized by virtual photon exchange only.

The way we have presented QED here leaves one

principal aspect open—the incompleteness that we

took into account by focusing on the quantum elec-

tromagnetic field while not taking care of the fermion

field as a quantum field, although we took spin-1/2

carrying particles (fermions) as quantum objects. We

remain aware of this limitation and take it as prelimi-

nary conclusion: it might be well justified for educa-

tional reasons, but it leaves open a series of crucial

questions. Formally seen, fermion field quantization

requires us to endow the former fermion wave func-

tion c with operator character (in analogy to the

four-potential Am of the electromagnetic field) and to

submit the c operators to anticommutation rules (as

opposed to commutation rules for the Am). In the

present article, we have not taken this step of per-

forming fermion field quantization, thus some of the

statements made above rest on an incomplete basis

insofar that we have not shown in detail the evidence

for these statements. For example, we have claimed

that a solitary spin particle as described above under-

goes self-interaction as a consequence of the observa-

tion that the classical field Aav(x), originating from
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the real part of the photon propagator and hence signi-

fying virtual photons, does not depend on the circuitry

to detect either the emf or the rf current density. On

the first sight it may seem plausible that it plays no

role whether the detecting circuit is present at all,

however, the difference turns out to be that for the

virtual photon exchange in the case of an existing cir-

cuit surrounding the spin particle the exchange occurs

between circuit and spin and in the case of a nonexist-

ing circuit the spin particle exchanges photons only

with itself. In this concluding section there is cer-

tainly not enough space to complete a presentation of

QED suitably worked out for magnetic resonance, it

is nevertheless worthwhile to at least point out some

possible extensions that may enhance and deepen the

basic notions of QED discussed in the present article.

A sort of central position is taken by the time evo-

lution operator for the compound system, spin particle

plus electromagnetic field, whose general form we

have expressed in Eq. [39]. If we take the limit of the

time parameter t, being the upper integration bound-

ary in [39], towards þ1, we obtain a unitary operator

S ¼ U (1) that is referred to as scattering operator

and that plays an important general role in QED. The

scattering operator S completely characterizes a scat-

tering process of incident particles or fields, interact-

ing with each other and then reappearing in one or the

other form as outgoing particles or fields. In that

respect, U(t) as used in our probe model for a scatter-

ing process represents a finite-time version of S. In
full QED the scattering operator S reads

S ¼ T exp �i
Z

d4yAn
inðyÞjnðyÞ

� �

¼ T exp �ie
Z

d4y�cðyÞgkAn
inðyÞcðyÞ

� �
½115�

where An and jn are electromagnetic field and fermion

current density operators, not commuting among each

other. With fermion fields quantized, i.e., with Dirac

wave functions c becoming (non-Hermitian) opera-

tors, the form of Eq. [62] for the fermion current den-

sity is still generally valid. A large part of understand-

ing QED from a formal or technical point of view is

to learn (a) how to expand the time-ordered exponen-

tial operator S, Eq. [115], in a perturbative power se-

ries, (b) to find a meaningful physical interpretation

for the terms of increasing order in this series expan-

sion with each term seen as an elementary process,

and (c) to be able to actually calculate transition

amplitudes hf |S |ii between initial states |ii and final

states |fi, and following from them, scattering cross

sections for the various elementary processes as well

as the total scattering cross section as the sum of all

particular cross sections. The transition amplitude

hf|S(n) |ii for a term S(n) of nth order in the power se-

ries expansion of S yields a probability measure asso-

ciated with the corresponding elementary process in

the overall scattering process. It is interesting to

observe that when, in the series expansion of S, we re-
introduce the assumption that current densities com-

mute, no terms higher than second order appear. This

becomes evident by reminding ourselves that (i) with

only noncommuting electromagnetic field operators

being present and (ii) the commutator of two electro-

magnetic field operators yielding a nonoperator

(a complex-valued function), the nested commutator

[. , [ . , . ]] of electromagnetic field operators appear-

ing in third and higher order terms is equal to zero.

Thus, we might say that the assumption of commuting

current densities and current densities representing

functions led us to consider QED processes up to

second order in the perturbative series expansion of

the scattering matrix S given by [115].
In the present article we have tacitly introduced

Feynman diagrams such as Figs. 1–3 and 6–8 in a

rather informal way, often as a kind of illustration for

the related formal analytical expressions. Neverthe-

less, Feynman diagrams are not just graphical repre-

sentations of some intuitive pictures what quantum

objects might do. They are concise and precise dia-

grammatic tools corresponding to well defined analyti-

cal terms appearing in the power series expansion of

the scattering operator S. However, despite their

abstract and rigorous meaning as a graphical tool and

even if one may not push the pictorial information too

far, Feynman diagrams certainly provide some kind of

intuitive insight—beside the rigorous meaning—that

is hardly experienced when just looking at the corre-

sponding analytical expressions. Nevertheless, as we

do not have the opportunity and space here to elabo-

rate this correspondence between Feynman diagrams

and analytical terms given by strict rules, we refer to

the textbook literature, e.g., (79, 81, 89, 90, 95), and
just discuss one aspect in some exemplary fashion that

appears relevant and interesting when studying nonre-

lativistic spins (i.e., we will avoid encounters with

antiparticles) interacting with electromagnetic fields.

We first introduce some technical terminology.

Feynman diagrams as in Figs. 1 and 2 are composed

of fermion lines (spin-1/2 particles) and boson lines

(photons). A fermion line is drawn as a solid line

with an arrow, to symbolize fermion propagation.

Likewise, boson lines are drawn as wavy lines, sym-

bolizing photon propagation. Interaction between fer-

mions and photons is symbolized by points where two

fermion lines meet one boson line, such a point is

called vertex. Boson or fermion lines that connect two
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vertices in a diagram are called internal lines—they

represent virtual particles. Fermion or boson lines that

either end in one vertex or start in one vertex but do

not connect to other vertices are called external

lines—they stand for asymptotically free particles.

Feynman diagrams can be drawn to represent proc-

esses in space-time, like in Figs. 2, 3, and 8, where the

vertices are labeled with space-time coordinates, each

vertex representing an event in space-time (which is

not necessarily and not always literally point-like in

space or time) when some photon emission or absorp-

tion by a fermion occurs. But also in four-dimensional

k space Feynman diagrams have their usage and bene-

fit, examples are shown in Figs. 6, 7, and 11. In k
space vertices also symbolize interaction events (emis-

sion, absorption), but here we label the inner and outer

fermion and boson lines with their respective four-

momenta or, in some cases, angular momenta (as in

Figs. 6 and 7) carried either by the photon or fermion.

A few strict rules, derived from the underlying analyti-

cal formalism, apply in a universal manner to all k-
space Feynman diagrams in QED: (1) all fermions

symbolized by external fermion lines correspond to

asymptotically free fermions and obey the energy-mo-

mentum relationship p2 ¼ m2, synonymously, these

fermions are on-shell (Appendix A, Eqs. [A8, A9]).

Likewise, all photons corresponding to external pho-

ton lines satisfy the energy-momentum relationship

for photons, k2 ¼ 0, (Appendix A, Eq. [A10]), hence

they are on-shell and asymptotically free. For internal

fermion lines p2 ¼ m2 is not required, as well as for in-

ternal photon lines k2¼ 0 is not required. Internal fer-

mions or photons correspond to virtual particles, these

can be off-shell. Finally, in addition to these rules that

apply to lines, there is one general rule for vertices: in

every vertex, the meeting point of two fermion lines

and one photon line, the energy and the three-momen-

tum of all incident and outgoing particles is strictly

balanced—that means, as a vertex property managing

interacting fermions and photons, energy and three-

momentum are conserved quantities!

Let us consider a few examples compiled in Fig.

11. Each diagram is an example for a particular kind

of elementary interaction process. Starting with Fig.

11(B), the Feynman diagram drawn here is the k
space equivalent of the diagram in Fig. 2. In general,

it shows the elementary process of exchanging a vir-

tual photon (internal wavy line) between two fer-

mions (making up the current densities between

which the interaction occurs). There are two incident

fermions, one with four-momentum p, the other with

four-momentum q, the virtual photon being

exchanged carries the four-momentum k. After the

photon exchange one fermion carries four-momentum

p0, the other q0. Since all fermion lines are external, it

must hold p2 ¼ p02 ¼ m2 for the left fermion (with rest

mass m), likewise it must hold q2 ¼ q02 ¼ M2 for the

right fermion (rest mass M). For the internal photon

line there is no restriction on k, virtual photons can be

off-shell. However for the two vertices we have to

insist that p ¼ p0 þ k [left vertex in Fig. 11(B)] and q
þ k ¼ q0 [right vertex in Fig. 11(B)]—conservation of

energy and momentum in vertices. Diagram 11B has

been the elementary process discussed in Section

‘‘Single-Spin FID: NMR Radiation Damping’’ as far

as the FID and radiation damping is concerned. We

could continue to go through the other diagrams in

Fig. 11 in the same detailed way, but let us dwell for a

moment on diagram 11A. It shows a single vertex

with one incident external fermion line, one outgoing

external fermion line and one external photon line.

This is a diagram of the first order term in the series

expansion of the scattering operator S. As it turns out
generally, the number of vertices in a diagram indi-

cates the order in the series expansion—so first order,

one vertex. First formally, for the fermion and the

photon in Fig. 11(A) we have to require

p2 ¼ p02 ¼ m2; k2 ¼ 0; p ¼ p0 þ k [116]

Second, attempting to interpret diagram 11A, we

may say that it represents the spontaneous emission

of a photon with four-momentum k (on-shell) where

the fermion with initial momentum p after the spon-

taneous emission event appears to have the final

four-momentum p0. So, we could try to imagine our

solitary spin particle suddenly emitting a photon. Do

such first-order spontaneous emission processes

really occur? The answer is no, for the following rea-

son. At first we notice, although we have correctly

applied the rules for Feynman diagrams, that the

equations in [116] are incompatible with each other, or

Figure 11 Feynman diagrams in k space illustrating the

following elementary electromagnetic processes: (A)

spontaneous emission of a photon as a first order process,

(B) fermion-fermion interaction by virtual photon

exchange, (C) Compton scattering including photon

absorption and emission, (D) fermion self interaction.

Except for the process in (A), which is of first order, all

other processes shown are of second order.
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even harder, we may prove that the equations p2 ¼ p02

¼ m2 in conjunction with k2 ¼ 0 are in contradiction

with the equation p ¼ p0 þ k. To see this, one could

write down these four-dimensional equations sepa-

rately for the time-like components (energy terms) and

the space-like components (three-momentum terms)

and one recognizes, that they are only noncontradic-

tory if the photon energy k0 ¼ 0 as well as the photon

three-momentum k ¼ 0, in other words—there is no

photon. If we calculate the transition amplitude

hf|S(1a)|ii for the first order process in diagram 11A

which is represented by the term S(1a) in the expansion

of S, we obtain zero (a detailed derivation of this result

can be found, e.g., in Ref. 124). That means: spontane-

ous emission of a photon as a first order elementary

process is a forbidden process. These findings do not

imply that spontaneous emission is impossible. They

just show that spontaneous emission as a first order

process does not occur. It might be possible that a dia-

gram with the topology like the one in Fig. 11(A)

appears as a subdiagram in higher order diagrams. This

is the case in diagram 11C which can be read as photon

absorption with subsequent photon emission—a pro-

cess that for optical, UV and X-ray photons we would

call Compton effect. In the second-order diagram 11C

we do not meet contradictory energy-momentum rela-

tionships and vertex relations for energy and three-mo-

mentum conservation because in that diagram there

appears a virtual fermion that can be off-shell. Calcu-

lating the corresponding transition amplitude hf |S(2c)|ii
gives a nonzero result. Processes like in Fig. 11(C)

occur during the interaction between the spin-1/2 parti-

cle with the incident rf pulse.

In summary, the probability that a spin-1/2 particle

spontaneously emits an asymptotically free photon is

zero in first order. Higher order processes may lead to

a finite probability for such emission processes.

Finally, let us say a few words about the diagram in

Fig. 11(D). It depicts a process where a virtual photon is

emitted by a spin-1/2 particle and subsequently this pho-

ton is absorbed by the same spin-1/2 particle. In the liter-

ature this diagram is referred to as self-energy diagram.

The elementary process behind it and other processes

play a crucial role for the understanding of the anoma-

lous magnetic moment of the electron (g. 2) (21, 124).
Summing up, the elementary processes depicted

in Fig. 11 are relevant for electromagnetic interac-

tions of a spin-1/2 particle: (a) first-order spontane-

ous emission of an asymptotically free photon does

not occur—it is a forbidden process. (b) the basic

interaction process, the exchange of a virtual photon

between two electromagnetic current distributions, is

of second order—this is the elemental process in FID

formation and NMR radiation damping as well as the

interaction between an externally generated rf current

density and a spin particle or a spin particle system. (c)

the absorption of a photon with subsequent emission of

an asymptotically free photon is an allowed process.

This process can be seen as elemental for the emission

and absorption of photons during the rf pulse interact-

ing with the spins where the rf field is in a coherent

state. (d) self energy generally plays a role in interac-

tion processes. It leads to a mass renormalization of

the electron and plays a partial role in the origin of the

anomalous magnetic moment of the electron.

In our discussion of QED processes we have met

other approximations. We have relied on the unitarity

of the time evolution for the electromagnetic field and

the spin particle by explicitly excluding dissipative

processes—loss mechanisms for conduction band

electrons in metals, dielectric losses in macroscopic

samples, or spin-lattice relaxation processes. In mov-

ing beyond this approximation, it might be possible to

develop models for magnetic resonance that include

the thermal photon field—photons with an energy dis-

tribution corresponding to thermal equilibrium—in

such a way to study noise processes using to the QED

view of magnetic resonance. Another possibility

would be to focus on the inclusion of spin-spin cou-

plings besides the coupling between spin and exter-

nally applied rf field. As a result of such studies, an

NMR probe model more complex than the one dis-

cussed in the present article as well as a more realistic

model of the spin system in the NMR sample, and

finally, e.g., the actual study of micro or nanosamples

and micro or nanocoils could provide a further appli-

cation for the QED framework as a tool for physical

interpretation and analysis of magnetic resonance.
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APPENDIX A

Covariant Notation, Minkowski Space,
Lorentz Transformation, Maxwell’s
Equations (78)

It is in the very spirit of special relativity to treat

space and time at an equal footing. Thus, three-
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dimensional space and one-dimensional time are

united in four-dimensional space-time, providing a

vector space with pseudo-Euclidean metric called

Minkowski space. A position vector in Minkowski

space has four components with the first one repre-

senting the time coordinate x0 ¼ ct, and the remain-

ing three being equal to the common coordinates of

a point in three-dimensional space. Such a vector in

Minkowski space is called four-vector and it comes

in two flavors: one is called contravariant four-

vector indicated by a superscript index,

x ¼ xk ¼ ðct; x1; x2; x3Þ ¼ ðct; rÞ [A1]

where time and space coordinates have the same

sign, the other is referred to as covariant four-vector

labeled by a subscript index

xk ¼ ðct;�x1;�x2;�x3Þ ¼ ðct;�rÞ [A2]

where the time and usual space coordinates have the

opposite sign. The superscripts or subscripts i, k, m,
. . . enumerate the component, e.g., k ¼ 0, 1, 2, 3.

The infinitesimal distance ds between two points in

Minkowski space is called line element and given as,

ds2 ¼
X3
i¼0

X3
k¼0

gikdx
idxk 
 gikdx

idxk

¼ c2dt2 � dx1 � dx2 � dx3 ½A3�

with coordinate differentials dxi, which are also four-

vectors. In the notation of Eq. [A3] we have made

use of an important convention: any expression with

one or more pair(s) of equal covariant and contravar-

iant indices is summed up (Einstein summation con-

vention). In Eq. [A3] there are two such pairs. This

simplifies notation—in [A3], for example, one can

omit the two sum signs. Also, appearing in [A3] is

the metric tensor, a symmetric, second-rank tensor

(written as a diagonal 4 � 4 matrix), which appears

to be Lorentz-invariant. In Cartesian coordinates, the

metric tensor reads

gik ¼ gik ¼
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

0
BB@

1
CCA [A4]

Note that for the metric tensor, covariant and

contravariant components coincide. By means of the

metric tensor, we can raise or lower covariant or

contravariant indices of a vectors and tensors,

respectively. For a vector,

ui ¼ giku
k; ui ¼ gikuk [A5]

The scalar product of two four-vectors x and y
reads xmym ¼ x0y0 þ ðx1y1 þ x2y2 þ x3y3Þ. This does

not hold only for space-time position vectors allo-

cating points in space-time, it holds for arbitrary

four-vectors,

uiw
i ¼ uiwi ¼ u0w0 � u � w: [A6]

The norm square (equal to the squared magni-

tude) of vector uiis defined as

uiui ¼ uiu
i ¼ ðu0Þ2 � juj2 [A7]

We recognize that the norm square uiui of a

four-vector ui cannot be positive-definite. It might

be a positive or negative number or equal to zero. If

uiui . 0, vector ui is called a time-like vector, if

uiui , 0, vector ui is called a space-like vector, and

if uiui ¼ 0, vector ui is called a null vector or a

light-like vector. All time-like coordinate vectors xk

correspond to points in four-space that are within

the lightcone whose surface is defined by coordinate

vectors that are light-like, i.e., xk xk ¼ 0 or c2t2 ¼
r2, which means, the surface of the lightcone is

given by light rays that travel the distance r during

the time interval t with the speed of light c
(Fig. A1).

Now let us switch to four-dimensional k space

which is the Fourier domain of space-time. From

special relativity we know that for the total energy

E of a free particle (i.e., a particle without interac-

tion) with momentum p and rest mass m it holds

Figure A1 In four-dimensional Minkowski space-time

with pseudo-Euclidean metric the norm square of any

four-vector x is given by x2 ¼ x20�x21�x22�x23. Hence, it
can be positive, negative, or zero. In the latter case, it

follows x20 ¼ c2t2 ¼ x21þx22þx23 ¼ r2. This represents a

(double) cone surface in space-time which defines the

light cone.
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E2 ¼ jpj2c2 þ m2c4 [A8]

For the particle at rest, p ¼ 0 we see that its

energy is equal to its rest energy mc2. For particle

velocities v small compared to c, it follows

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2c2 þ m2c4

q
¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2 þ 1

p
� mc2ð1þ v2=2c2Þ ¼ mc2 þ m

2
v2

i.e., we obtain the total energy E being equal to the

rest energy plus kinetic energy of a slowly moving

particle. Let us rewrite Eq. [A8] in four-dimensional

form with the total energy E equal to the time-like

component k0 of the four-momentum k and for the

three-momentum it holds p ¼ �hk. Then Eq. [A8]

reads (k0)2 ¼ |k|2 þ m2, where we have set �h ¼ 1,c
¼ 1 to simplify notation. With the four-momentum

vector k ¼ kn ¼ (k0, k), Eq. [A8] becomes

k2 ¼ m2 [A9]

Equation [A8] or its four-dimensional variant

[A9] is called energy-momentum relationship for

the particle with rest mass m. We are allowed to

apply [A8] or [A9] also for the case of free photons.

In that case it holds m ¼ 0, photons have no rest

mass, and Eq. [A9] converts into

k2 ¼ 0 [A10]

In classical electromagnetism Eq. [A10] has a well

familiar meaning. Writing k0 ¼ o/c and |k|¼ 2p/l, we
see that [A10] becomes the well-known relationship

between angular frequency o and wavelength l of

freely propagating electromagnetic waves:

o ¼ 2pc=l [A11]

In three-dimensional momentum space we may

define the spherical shell with radius r given by

jkj2 ¼ ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2 ¼ ðk0Þ2 � m2 ¼ r2 � 0

[A12]

This spherical shell is referred to as the mass

shell with radius r ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 � m2

q
and drawn in

Fig. A2. For photons with m ¼ 0 it is called zero

mass shell and its radius is equal to k0.
Photons or electromagnetic waves that satisfy

Eq. [A10] or Eq. [A11] are called on-shell or on-

zero mass shell.

We define the covariant partial derivative with

respect to the space-time coordinates as

qk 
 q
qxk
¼ q

cqt
;r

� �
[A13]

and d’Alembert’s operator (the operator for the

wave equation) in four-dimensional notation

q2 
 qkq
k ¼ 1

c2
q2

qt2
�r2 [A14]

Any expression which can be written as

qiuk � qkui [A15]

is called four-rotation (a generalization of the curl

in three dimensions) of the vector ui and is an anti-

symmetric tensor of rank 2. Analogously, a scalar

quantity a given by

a ¼ qiui ¼ qiui ¼ 1

c

qu0

qt
�r � u

� �
[A16]

is called four-divergence of the vector ui. A vector

wi that results from a scalar quantity b such that

wi ¼ qib ¼ 1

c

qb
qt

;rb
� �

; [A17]

is called four-gradient of the scalar b.
The principle of special relativity states that the

physical phenomena observed by observers in

Figure A2 Definition of the zero-mass shell for photons

in three-dimensional momentum space.
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different inertial frames are independent from these

frames, i.e., that all inertial frames are equivalent.

Inertial frames are frames that are moving with con-

stant velocity relative to each other or that trans-

form into each other by spatial translations and rota-

tions. The transition from one frame to another is

accomplished by the Lorentz transformation. As an

example, a Lorentz transformation may describe the

transformation from one inertial system with coordi-

nate frame xk to a second one, coordinate frame �xk,
moving with the velocity v along the x1 axis:

�x0 ¼ x0 � bx1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p ; �x1 ¼ x1 � bx0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p ;

�x2 ¼ x2; �x3 ¼ x3; b ¼ v=c ½A18�

The specific transformation in [A18] is referred

to as a Lorentz boost along the x1 axis. Setting

tanhV ¼ b, then Eq. [A18] can be rewritten as

�x0

�x1

�x2

�x3

0
BB@

1
CCA ¼

coshO � sinhO 0 0

� sinhO coshO 0 0

0 0 1 0

0 0 0 1

0
BB@

1
CCA

x0

x1

x2

x3

0
BB@

1
CCA

[A19]

which can be understood as a rotation in the x0x1

plane with the (imaginary) rotation angle V. Gener-

ally, Lorentz transformations can be viewed as ei-

ther hyperbolic rotations (like the one in [A19]) or

as real rotations in three-space (without the time

dimension being involved). They belong to the class

of linear coordinate transformations in Minkowski

space and can be expressed as

�xk ¼ �k
i x

i; �k
i ¼

q�xk

qxi
; �k

i�
i
m ¼ dkm ¼ gmng

nk

[A20]

with the transformation matrices Lk
i (an example of

such a matrix is given in [A19]), forming a group,

called the (homogeneous) Lorentz group.

The common three-vector of the electromagnetic

vector potential A ¼ (A1, A2, A3) and the scalar

potential f form a four-vector

Ak ¼ ðf;A1;A2;A2Þ ¼ ðf;AÞ;
Ak ¼ ðf;�A1;�A2;�A3Þ ¼ ðf;�AÞ ½A21�

The electromagnetic field strength tensor (a com-

pletely antisymmetric tensor of rank 2) is defined as

the four-rotation (see Eq. [A15]) of the four-potential:

Fik ¼ qAk

qxi
� qAi

qxk

 qiAk � qkAi [A22]

i.e., Fii ¼ 0 and Fik ¼ �Fki. For example, we have

F01 ¼ qA1

qx0
� qA0

qx1
¼ 1

c

qA1

qt
� qf
qx1
¼ E1 ¼ Ex;

F02 ¼ qA2

qx0
� qA0

qx2
¼ 1

c

qA2

qt
� qf
qx2
¼ E2 ¼ Ey; etc.

and

F12 ¼ qA2

qx1
� qA1

qx2
¼ �B3 ¼ �Bz;

F13 ¼ qA3

qx1
� qA1

qx3
¼ B2 ¼ By; etc.

hence

Fik ¼

0 E1 E2 E3

�E1 0 �B3 B2

�E2 B3 0 �B1

�E3 �B2 B1 0

0
BBB@

1
CCCA;

Fik ¼

0 �E1 �E2 �E3

E1 0 B3 �B2

E2 �B3 0 B1

E3 B2 �B1 0

0
BBB@

1
CCCA; ½A23�

and Eqs. [A22] correspond to the well-known three-

space equations

E ¼ � 1

c

qA
qt
�rf; B ¼ r� A [A24]

defining the electric field strength E and the magnetic

induction B in terms of the electromagnetic poten-

tials. Note, the present definitions suppose that elec-

tric field strength and magnetic induction have identi-

cal units. In order to convert the units for E and B into

conventional SI units (with V/m for the electric and

Vs/m2 for the induction field), E needs to be divided

by c (with B unchanged), or alternatively, B needs to

be multiplied by c (with E unchanged). Since we are

treating time and space as equivalent as well as unify-

ing the scalar and the vector potential in a four-vector,

it appears natural to also treat E and B unified in the

field strength tensor in a system of identical units.

The electromagnetic field tensor Fik satisfies the

cyclic equation

Fhikjmi 
 qmFik þ qiFkm þ qkFmi ¼ 0 [A25]

Identities for antisymmetric second-rank tensors

Fik of the form of Eq. [A25] are called Bianchi
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identities. The validity of [A25] can be easily

proved by inserting [A22] into [A25].

Fhik|mi is a tensor of rank 3 with 64 components

being nonzero only if i = k = m. Fhik|mi is com-

pletely antisymmetric, i.e., Fhik|mi ¼ � Fhki|mi, Fhik|mi
¼ � Fhim|ki, etc. This condition leaves only 24 non-

zero, thus 12 nonzero and different components.

Since for every index triple i, k, m with if i = k = m
there are three permutations yielding the same equa-

tion, we conclude that Eq. [A25] corresponds to

actually four distinct equations:

Fh12j3i ¼ q3F12 þ q1F23 þ q2F31

¼ � qBz

qz
� qBx

qx
� qBy

qy
¼ �r � B ¼ 0

and

Fh23j0i ¼ q0F23 þ q2F30 þ q3F02

¼ � qBx

cqt
� qEz

qy
þ qEy

qz
¼ � qBx

cqt
� ðr � ~EÞx ¼ 0

Fh01j3i ¼ q3F01 þ q0F13 þ q1F30

¼ qEx

qz
þ qBy

cqt
� qEz

qx
¼ þ qBy

cqt
þ ðr � ~EÞy ¼ 0

Fh02j1i ¼ q1F02 þ q0F21 þ q2F10

¼ þ qEy

qx
þ qBz

cqt
� qEx

qy
¼ þ qBz

cqt
þ ðr � ~EÞz ¼ 0

These four equations, and therefore Eq. [A25],

constitute the first two of Maxwell’s differential

equations (one vector equation and one scalar equa-

tion)

r� E ¼ � 1

c

qB
qt

; r � B ¼ 0 [A26]

Note, these two equations are the strict con-

sequence of the definition of the field strength ten-

sor [A22].

We turn our attention to the second set of Max-

well’s equations. The differential electric charge of a

particle, dq, is a scalar quantity. Let us denote by r
the three-dimensional electric charge density, with dq
¼ r dV and dV ¼ dx1dx2dx3 equal to the volume ele-

ment in three-space that contains the charge dq. Mul-

tiplying dq ¼ r dV on both sides with dxi, we obtain

dqdxi ¼ rdVdxi ¼ rdVdt
dxi

dt
[A27]

and we observe, since dq dxi is a four-vector (dq is a

scalar, dxi is a four-vector), that the right-hand side of

Eq. [A27] must be a four-vector. Because dVdt is

scalar, we conclude that rdxi/dt is a four-vector defin-
ing the electromagnetic current density

jk ¼ r
dxk

dt
¼ ðcr; jÞ [A28]

j ¼ rdr/dt ¼ rv is equal to the three-dimensional cur-

rent density. The third and fourth of Maxwell’s equa-

tions read in four-dimensional notation

qiFik ¼ �jk; [A29]

In three-dimensional notation it follows from Eq.

[A29]

r � E ¼ r; r� B ¼ qE
cqt
þ j

� �
[A30]

Furthermore from Eq. [A29] we obtain

qkqiFki ¼ �qkjk

Because qkqi is a symmetric tensor (the partial

derivatives commute) and the electromagnetic field

tensor Fki is an antisymmetric tensor, we find that

qkqiF
ki : 0. Therefore the four-divergence of the

current density vanishes,

qkjk ¼ 0 [A31]

expressing the continuity equation

qr
qt
þr � j ¼ 0 [A32]

APPENDIX B

Gauge Transformation, Lorenz
Gauge, Wave Equation,
and Green Functions

The electromagnetic potentials Ak do not uniquely

determine the field strength tensor Fik, Eq. [A22].

To each Ak one might add or subtract the four-gra-

dient of a scalar function f without changing the

electromagnetic field tensor Fik:

~Ak ¼ Ak � qkf [B1]

Equation [B1] is called gauge transformation and

the arbitrary scalar function f is referred to as gauge

function. The invariance of Fik under the transfor-

mation [B1] can easily be demonstrated,
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~Fik ¼ qi ~Ak � qk ~Ai ¼ qiAk � qiqkf � qkAi þ qkqif

¼ qiAk � qkAi ¼ Fik ½B2�

For that reason, Maxwell’s equations are also

invariant under gauge transformations. In three-

space, Eq. [B1] reads

~A ¼ A�rf ; ~f ¼ f� qf
cqt

[B3]

The four-potentials ~Ak obtained by Eq. [B1] and

the four-potentials Ak describe electromagnetic fields

which are equivalent in the sense that both lead to the

same field strength tensor [B2], i.e., the same electric

and magnetic fields. From Maxwell’s equations

[A28] we obtain by inserting the definition [A22] of

the field tensor Fik by the four-potentials ~Ak:

qiðqi ~Ak � qk ~AiÞ ¼ qiq
i ~Ak � qiq

k ~Ai ¼ �jk

i.e.,

qiq
i ~Ak � qkðqi ~AiÞ ¼ �jk [B4]

That means, Maxwell’s equations allow to derive

Eq. [B4] for the four-potential containing the mixed

term qkðqi ~AiÞ. The ambiguity of the potentials

allows to impose one arbitrary additional condition

for Ak, thus gauging the electromagnetic field. Let

us therefore choose the condition

qiq
if ¼ qiAi [B5]

which leads to

qi ~Ai ¼ 0 ¼ qiAi � qiq
if [B6]

Eqs. [B6] is called Lorenz gauge condition (not

Lorentz gauge, see Ref. 121). Inserting Eq. [B6]

into Eq. [B4] yields the inhomogeneous wave equa-

tion (d’Alembert’s equation)

q2 ~Ak ¼ qiq
i ~Ak ¼ �jk [B7]

which reads in three-space

1

c2
q2~f
qt2
�r2~f ¼ �r 1

c2
q2 ~A
qt2
�r2 ~A ¼ �j [B8]

Details on electromagnetic gauge invariance

linked to local phase invariance in quantum theory

can be found in Ref. 10.
Taking the wave equation [B7] (omitting the

tilde over A),

q2AmðxÞ ¼ �jmðxÞ [B9]

we ask how to solve [B9] for certain given bound-

ary conditions. Formally, we can Fourier transform

the partial differential equation [B9] to obtain the

algebraic equation in four-dimensional k space

� k2AmðkÞ ¼ �jmðkÞ [B10]

Equation [B10] could be formally solved for

Am(k), however, this solution would diverge for

the case

k2 ¼ 0 ¼ ðk0Þ2 � j~kj2 ¼ ðo=cÞ2 � ð2p=lÞ2 [B11]

Equation [B11] represent the energy-momentum

or, equivalently, the frequency-wavelength relation-

ship for free electromagnetic waves, see Appendix A,

Eqs. [A10–A12]. The theory of linear partial differen-

tial equations suggests the following particular solu-

tion for the inhomogeneous differential equation [B9]:

AmðxÞ ¼
Z

d4yGðx� yÞjmðyÞ [B12]

The function G(x) is referred to as a Green func-

tion associated with the differential operator q2 :
qnqn. A Green function is a fundamental solution of

the associated differential equation,

q2GðxÞ ¼ �dð4ÞðxÞ; [B13]

which is, in our case here, the inhomogeneous wave

equation with the general source current density

jm(x) replaced by the Dirac d function in space-time

representing a point source in space as well as in

time. When we take into account the definition

[A13] for the wave operator q2, Eq. [B13] reads, in
ordinary vector notation,

1

c2
q2Gðx0; xÞ

qt2
� ~r2Gðx0; xÞ ¼ �dðx0Þdð3ÞðxÞ

Applying the wave operator q2 to Eq. [B12] and tak-
ing into account Eq. [B13], we see immediately, that

q2AmðxÞ ¼ q2
Z

d4yGðx� yÞjmðyÞ

¼
Z

d4yq2xGðx� yÞjmðyÞ ¼

¼ �
Z

d4ydð4Þðx� yÞjmðyÞ ¼ �jmðxÞ
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i.e., Am(x) given by [B12] is a particular solution to

the wave equation [B9]. There exists a variety of

Green functions G(x), each representing specific

boundary conditions. Examples are the retarded

Green function or the Feynman Green function

treated in more detail in Appendix C.

Equations [10] and [D10] for the retarded
propagator Dret(x�y) are equivalent.

We want to show that the retarded Green func-

tion defined by Eq. [10] (with m0 ¼ 1, c ¼ 1),

Dretðx� yÞ ¼ 1

4p
dððx0� y0Þ � rÞ

r
; r ¼ jx� yj [10]

is equivalent to the retarded Green function appear-

ing in Eq. [D10] (see Appendix D)

Dretðx� yÞ ¼ yðx0� y0ÞDðx� yÞ [D10]

with D(x�y) denoting the Pauli-Jordan function

defined by

� igmnDðx� yÞ ¼ ½Am
inðxÞ;An

inðyÞ� [B14]

We start with Eq. [24] for the Fourier expansion

of the four-potential

AmðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q

�
X3
l¼0

eðlÞm ðkÞ aðlÞðkÞe�ikx þ aðlÞþðkÞeikx
� �

½24�

to calculate the commutator of four- potentials, tak-

ing into account the CCR’s [25],

½aðlÞðkÞ;aðrÞþðk0Þ� ¼ �glrd3ðk�k0Þ; l;r¼ 0;1;2;3

[25]

Therefore we write down at first

� igmnDðx�yÞ¼½Am
inðxÞ;An

inðyÞ�¼

¼
Z

d3k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok0

q Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l0¼0

X3
l¼0

eðl
0Þ

m ðk0ÞeðlÞn ðkÞ

� aðl
0Þðk0Þe�ik0xþaðl0Þþðk0Þeik0x

� �
;

h
aðlÞðkÞe�ikyþaðlÞþðkÞeiky
� �i

which gives, after disposing of commutator terms

that yield zero by definition,

� igmnDðx� yÞ ¼ ½Am
inðxÞ;An

inðyÞ� ¼

¼
Z

d3k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok0

q Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l0;l¼0

eðl
0Þ

m ðk0ÞeðlÞn ðkÞ

� aðl
0Þðk0Þe�ik0x; aðlÞþðkÞeiky

h i�
þ aðl

0Þþðk0Þeik0x; aðlÞðkÞe�iky
h i�

Applying the commutator relationships [25]

yields

�igmnDðx�yÞ¼½Am
inðxÞ;An

inðyÞ�¼

¼
Z

d3k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok0

q Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l0;l¼0

eðl
0Þ

m ðk0ÞeðlÞn ðkÞ

� �gll0d3ðk0�kÞe�iðk0x�kyÞþgll0d3ðk0�kÞeiðk0x�kyÞ
� �

Because the metric tensor is diagonal, the double

sum over l, l0 reduces to a single sum over l ¼l0,

� igmnDðx� yÞ ¼ ½Am
inðxÞ;An

inðyÞ� ¼

¼
Z

d3k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok0

q Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l¼0
ð�gllÞeðlÞm ðk0Þ

�eðlÞn ðkÞ d3ðk0 � kÞe�iðk0x�kyÞ � d3ðk0 � kÞeiðk0x�kyÞ
� �

Performing the integration over k0 yields

� igmnDðx� yÞ ¼ ½Am
inðxÞ;An

inðyÞ� ¼

¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q X3
l¼0
ð�gllÞeðlÞm ðkÞeðlÞn ðkÞ

� expð�ikðx� yÞÞ � expðikðx� yÞÞð Þ ½B15�

We observe that for the sum over the polariza-

tion dependent terms the completeness relation in

four dimensions holds:

X3
l¼0
ð�gllÞeðlÞm ðkÞeðlÞn ðkÞ ¼ �gmn [B16]

Inserting [B16] into [B15] yields

� igmnDðx� yÞ ¼ ½Am
inðxÞ;An

inðyÞ� ¼ �gmn

�
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ32ok

q expð�ikðx� yÞÞ � expðikðx� yÞÞð Þ

[B17]

VIRTUAL PHOTONS IN MAGNETIC RESONANCE 317

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



In order to calculate the integral over three-

dimensional k space, we introduce spherical coordi-

nates ok ¼ x ¼ jkj; # ¼ ffðk; ðx� yÞ ¼ rÞ, j, such

that Eq. [B17] reads

igmnDðx� yÞ ¼ gnm
Z1
0

x2dx

2pð Þ32x

Zp
0

sin#d#

�
Z2p
0

dj e�ik
0ðx0�y0Þeixr cos# � eik

0ðx0�y0Þe�ixr cos#
� �

Integrating over dj and observing that �d cos W
¼ sin WdW allows us to write

igmnDðx� yÞ ¼ � gnm

8p2

Z1
0

xdx

�
Z�1
1

d cos# e�ik
0ðx0�y0Þeixr cos# � eik

0ðx0�y0Þe�ixr cos#
� �

After integrating over d cos W, we arrive at

igmnDðx� yÞ ¼�gnm

8p2

Z1
0

xdx

� e�ik
0ðx0�y0Þ

ixr
ðe�ixr� eixrÞ� eik

0ðx0�y0Þ

�ixr ðe
ixr � e�ixrÞ

 !

which after rearrangement of terms gives

igmnDðx� yÞ ¼ ignm

8p2r

�
Z1
0

dx e�ik
0ðx0�y0Þ � eik

0ðx0�y0Þ
� �

ðe�ixr � eixrÞ

Multiplying out the parentheses with the expo-

nentials, we get

Dðx� yÞ ¼ 1

8p2r

Z1
0

dx e�iðk
0ðx0�y0ÞþxrÞ

�

�e�iðk0ðx0�y0Þ�xrÞ � eiðk
0ðx0�y0Þ�xrÞ þ eiðk

0ðx0�y0ÞþxrÞ
�

Suppose that for the energy it holds x ¼ k0. Then
the exponentials simplify,

Dðx� yÞ ¼ 1

8p2r

Z1
0

dx e�ixððx0�y0ÞþrÞ � e�ixððx0�y0Þ�rÞ
�

�eixððx0�y0Þ�rÞ þ eixððx0�y0ÞþrÞ
�

The third and fourth exponential term can be

omitted when we extend the range of integration to

the x interval from �1 to þ1. Hence

Dðx�yÞ¼ 1

8p2r

Z1
�1

dx e�ixððx0�y0ÞþrÞ�e�ixððx0�y0Þ�rÞ
� �

Performing finally the integration over x yields

Dðx�yÞ¼� 1

4pr
dððx0�y0Þ�rÞ�dððx0�y0ÞþrÞð Þ

[B18]

Then with Eq. [D10] we get

Dretðx� yÞ ¼ yðx0� y0ÞDðx� yÞ ¼ �dððx0� y0Þ� rÞ
4pr

[B19]

The term in Eq. [B18] with d((x0�y0) þ r) does
not contribute because d((x0�y0) þ r) only contrib-

utes for (x0�y0) þ r ¼ 0, hence (x0�y0) ¼ �r , 0,

but for (x0�y0) , 0 the Heaviside step function

yields y(x0�y0) ¼ 0. This concludes the proof for

the equivalence or equality of Eqs. [10] and [D10].

APPENDIX C

Generalized Functions and How to
Work with Them

Relying with our description of quantum electrody-

namics on propagators (i.e., Green functions as fun-

damental solutions to the wave equation) and using

their analytical properties, we have to admit and

manage the fact that these propagators are not

‘‘well-behaved’’ ordinary functions. In this Appendix

we aim at some more careful explanation of some

of the mathematics of propagators. In Section ‘‘The

Feynman Propagator’’ we have introduced the math-

ematical objects d(x) (Dirac’s d function) and dþ(x)
(a modification of d) where we have tacitly assumed

that they may behave like ordinary functions. We

even have written down integral expressions that we

have attempted to consider as definitions for d and

dþ, like Eqs. [15] and [16],

dðx0Þ ¼ 1

2p

Zþ1
�1

expð�iox0Þdo; [15]
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dþðx0Þ ¼ 1

4p2

Zþ1
0

expð�iox0Þdo: [16]

However, if we take these two integral expres-

sions literally, in the ordinary classical sense of in-

tegral calculus, the integrals in Eqs. [15, 16] are not

existing at all, because periodic functions like

e�iox
0

, or likewise, cos(ox0) or sin(ox0) have no

definite value for o ¼ 61. Furthermore, d(x) is

singular, it holds d(x) ¼ 0 for x = 0 and d(x)
diverges for x ¼ 0. The function dþ(x

0) possesses’

similar features. Apart from this singular behavior,

all the features often applicable to ordinary ‘‘well-

behaved’’ functions like, e.g., continuity, differenti-

ability, and integrability, do not seem to work in a

straightforward way with objects like d and dþ. One
way to handle them in a mathematical appropriate

way is to understand them as the result of limit

processes, i.e., we start with ordinary functions

being finite or regular versions of the singular

objects, containing a parameter e specifying their

functional form and let this parameter go towards

zero such that during this limit process the function

approaches more and more the behavior associated

with the singular objects. So we may understand

integrals like [15, 16] as synonymous to expressions

with limits of the following kind,

dðx0Þ ¼ 1

2p
lim
e!0

Z0
�1

expð�oð�eþ ix0ÞÞdo

þ 1

2p
lim
e!0

Z1
0

expð�oðeþ ix0ÞÞdo; [C1]

dþðx0Þ ¼ 1

4p2
lim
e!0

Zþ1
0

expð�oðeþ ix0ÞÞdo [C2]

with the cutoff or attenuation functions exp(�eo) for
o . 0, with exp(eo) for o , 0, and with e being a

positive, real number. Now with the integrands in

[C1, C2] containing regular functions being finite-

integrable, we may perform the integration while

keeping the limit operation outside the integral,

dðx0Þ ¼ 1

2p
lim
e!0

e�oð�eþix
0Þ

�ð�eþ ix0Þ

" #0
�1

þ 1

2p
lim
e!0

e�oðeþix
0Þ

�ðeþ ix0Þ

" #1
0

¼ 1

2p
lim
e!0

1

�ð�eþ ix0Þ

 �

þ 1

2p
lim
e!0

1

ðeþ ix0Þ

 �

4p2dþðx0Þ ¼ lim
e!0

e�oðeþix
0Þ

�ðeþ ix0Þ

" #þ1
0

¼ lim
e!0

1

ðeþ ix0Þ

 �

¼ �i lim
e!0

1

ðx0 � ieÞ

 �

[C3]

Separating real and imaginary parts, we obtain

dðx0Þ ¼ 1

2p
lim
e!0

ð�e� ix0Þ
�ð�eþ ix0Þð�e� ix0Þ

 �

þ 1

2p
lim
e!0

ðe� ix0Þ
ðeþ ix0Þðe� ix0Þ

 �

¼ 1

2p
lim
e!0

�ð�e� ix0Þ þ ðe� ix0Þ
e2 þ ðx0Þ2

" #

4p2dþðx0Þ ¼ lim
e!0

ðe� ix0Þ
ðeþ ix0Þðe� ix0Þ

 �

¼ lim
e!0

ðe� ix0Þ
e2 þ ðx0Þ2
" #

¼ lim
e!0

e

e2 þ ðx0Þ2 �
ix0

e2 þ ðx0Þ2
" #

dðx0Þ ¼ 1

p
lim
e!0

e

e2 þ ðx0Þ2
" #

[C4]

The expressions inside the square brackets of

Eqs. [C3, C4] are regularized versions of the singular

functions on the left-hand sides of Eqs. [C3, C4] with

e as the regularization parameter. We recognize

e/(e2þ(x0)2) as the function with a Lorentzian shape.

For e ? 0 its width becomes infinitesimally narrow

while its amplitude diverges for x0 ¼ 0, thus becom-

ing the Dirac d generalized function or distribution as

we know it, as infinitely narrow and infinitely high

‘‘spike’’. The expression lime!0ðx0=ðe2 þ ðx0Þ2ÞÞ has
a singularity at x0 ¼ 0, everywhere else it behaves

like the function 1/(x0). We denote it by

}
1

x0

� �
¼ lim

e!0

x0

e2 þ ðx0Þ2
" #

[C5]

and refer to it as the prinicipal value distribution

with respect to 1/x0.
An equivalent way of introducing the distribu-

tions d(x0) and <(1/x0) can be found by considering

them as functionals, i.e.,

dðjÞ ¼
Z1
�1

dðx0Þjðx0Þdx0 ¼ jð0Þ

}
1

x0

� �
ðjÞ ¼ lim

e!0

Z�e
�1

dx0
jðx0Þ
x0
þ
Z1
e

dx0
jðx0Þ
x0

8<
:

9=
;
[C6]
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which means for a given function j (called test

function, provided it fulfills certain special proper-

ties, not discussed here), the distribution d(x0) or

}(1/x0) taken as functionals defined in [C6] associ-

ates a numerical value (d(j) or }(1/x0)(j)) to the

function j. Note, Eqs. [C4, C5] and Eqs. [C6] are

equivalent to each other. For example, d(x0) associ-
ates to each test function j the numerical value

j(0). This interpretation via functionals using inte-

gral expressions like [C6] is particularly interesting

when we take a look at the action functional W in

Eq. [19] or the time evolution operator US(t) in Eq.

[50]. There we were tacitly introducing them in

Sections ‘‘The Feynman Propagator’’ and ‘‘A QED

NMR Probe Model: Pulsed NMR as a Scattering

Process’’ and they appeared naturally as functionals

via integrals like in [C6]. The role of the test func-

tion j in Eq. [C6] has its counterpart with a physi-

cal meaning, namely the current density function

j(x).
With [C4, C5] and [C3] we obtain Sokhotski’s

formula, i.e., the decomposition of dþ(x
0) into the

distribution d (x0) and the principal value distribu-

tion }(1/x0),

4p2dþðx0Þ ¼ pdðx0Þ � i}
1

x0

� �
¼ �i lim

e!þ0
1

x0 � ie

� �
[C7]

which plays a central role in the interpretation of

the photon propagator in terms of virtual photons.

Making use of the identities [18] (see also below,

Eqs. [C18, C19]),

dððx0 � y0Þ � rÞ þ dððx0 � y0Þ þ rÞ
2r

¼ dððx0 � y0Þ2 � r2Þ ¼ dððx� yÞ2Þ
dþððx0 � y0Þ � rÞ þ dþððx0 � y0Þ þ rÞ

2r

¼ dþððx0 � y0Þ2 � r2Þ ¼ dþððx� yÞ2Þ [18]

we are also allowed to write

4p2dþðx2Þ ¼ pdðx2Þ � i}
1

x2

� �
¼ �i lim

e!þ0
1

x2 � ie

� �
[C8]

DERIVATION OF EQ. [31]

Inserting Eq. [24] for the field operators appearing

in h0|T (Am(x)An(y)) |0i we find

h0jTðAmðxÞAnðyÞÞj0i ¼ h0jT
Z

d3k0

ð2pÞ32ok0

�
Z

d3k

ð2pÞ32ok

X
l0

X
l

eðl
0Þmðk0ÞeðlÞnðkÞ

� aðl
0Þðk0ÞaðlÞðkÞe�iðk0xþkyÞ

�
þ aðl

0Þðk0ÞaðlÞþðkÞe�iðk0x�kyÞ
þ aðl

0Þþðk0ÞaðlÞðkÞeiðk0x�kyÞ

þaðl0Þþðk0ÞaðlÞþðkÞeiðk0xþkyÞ
�
j0i

and taking into account Eqs. [26], we get

h0jTðAmðxÞAnðyÞÞj0i ¼ h0jT
Z

d3k0

ð2pÞ32ok0

Z
d3k

ð2pÞ32ok

�
X
l0

X
l

eðl
0Þmðk0ÞeðlÞnðkÞaðl0Þðk0ÞaðlÞþðkÞe�iðk0x�kyÞj0i

According to [30], applying the time-ordering

operator T yields

h0jTðAmðxÞAnðyÞÞj0i ¼ h0j
Z

d3k0

ð2pÞ32ok0

�
Z

d3k

ð2pÞ32ok

X
l0

X
l

eðl
0Þmðk0ÞeðlÞnðkÞ

yðx0 � y0Þaðl0Þðk0ÞaðlÞþðkÞe�iðk0x�kyÞ
�

þyðy0 � x0ÞaðlÞðkÞaðl0Þþðk0Þe�iðky�k0xÞ
�
j0i

From the CCR’s [25] we conclude

aðl
0Þðk0ÞaðlÞþðkÞe�iðk0x�kyÞj0i

¼ �gl0ldðk0 � kÞe�iðk0x�kyÞj0i
aðlÞðkÞaðl0Þþðk0Þe�iðky�k0xÞj0i

¼ �gll0dðk� k0Þeiðk0x�kyÞj0i

such that after integration over k0,

h0jTðAmðxÞAnðyÞÞj0i ¼ h0j
Z

d3k

ð2pÞ32ok

�
X
l0;l

ð�gll0 Þeðl0ÞmðkÞeðlÞnðkÞ

yðx0 � y0Þe�ikðx�yÞ þ yðy0 � x0Þeikðx�yÞ
� �

j0i

Because the metric tensor is diagonal and

because for the polarization sum holds (see [B16]),X
l

ð�gllÞeðlÞmðkÞeðlÞnðkÞ ¼ �gmn
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we arrive at

h0jTðAmðxÞAnðyÞÞj0i ¼ �gmn
Z

d3k

2okð2pÞ3

� yðx0 � y0Þe�ikðx�yÞ þ yðy0 � x0Þeikðx�yÞ
� �

[C9]

We define the energy ok of one photon as a

strictly positive quantity or ok ¼ 0. We observe with

kðx� yÞ ¼ k0ðx0 � y0Þ � k � ðx� yÞ that, depending

on the time order, we obtain from Eq. [C9],

yðx0 � y0Þe�ikðx�yÞ ¼ yðx0 � y0Þe�iokðx0�y0Þeikðx�yÞ

yðy0�x0Þeikðx�yÞ ¼yðy0�x0Þeiokðx0�y0Þe�ikðx�yÞ [C10]

Physically, the energy variable k0 being the time-

like component of the momentum four-vector km ¼
(k0, �k) is a real-valued quantity. For the further

calculation the following trick turns out to be help-

ful: we extend k0 to a complex quantity with a ficti-

tious imaginary part. Then we can submit this to

complex functional analysis to evaluate Eqs. [C9,

C10], and in a final step we perform again the limit

of vanishing imaginary part to re-obtain real values

of k0. Towards this goal, we first apply Cauchy’s

formula (88),

1

2pi

Z
C0

f ðzÞ
z� zS

dz ¼ f ðzSÞ [C11]

that relates the value f (zS) at the specific point z ¼
zS in the complex plane of a function f (z) being ana-

lytic inside the closed contour C0 and on the contour

C0, to the integral over f (z)/(z�zS) taken along the

closed contour C0 of arbitrary shape surrounding the

point zS that represents a singularity (i.e., here a

pole) for f (z)/(z�zS). Let us introduce the following

substitutions: z ¼ k0, zS ¼ ok, and f ðzÞ ¼ f ðk0Þ ¼
e�ik0ðx

0�y0Þ: Then it follows from [C11]:

e�iokðx0�y0Þ ¼ � 1

2pi

Z
Cþ

dk0
e�ik0ðx

0�y0Þ

k0 � ok

for the singularity at k0 ¼ þok

eiokðx0�y0Þ ¼ þ 1

2pi

Z
C�

dk0
e�ik0ðx

0�y0Þ

k0 þ ok

for the singularity at k0 ¼ �ok

The first equation holds for x0 . y0, i.e., y(x0 �
y0) ¼ 1, where the closed contour Cþ surrounding

the singularity at k0 ¼ þ ok runs clockwise (minus

sign in front of the integral) and the second equation

holds for x0 , y0, i.e., y(y0 � x0) ¼ 1, where the

closed contour C� runs counterclockwise (plus sign

in front of the integral) enclosing the singularity at k0
¼ �ok. The integration contours Cþ and C� are

drawn in Fig. C1. For both cases, the integration

along the real axis is identical, only the infinite semi-

circle is different when closing the contour (once in

the lower, once in the upper half plane) and thus

defining the different outcomes of the integral. The

integral vanishes when taken only over the semi-

circle with infinite radius, however this semi-circle

matters as the element closing the contour, because it

defines which of the pole is inside and which is out-

side the closed contour. Nevertheless, because the

integration along the real axis are identical in both

cases, we may write the sum of the two integrals as

one integral over the contour CF with the sum of the

two integrands such that for [C9] we obtain

h0jTðAmðxÞAnðyÞÞj0i ¼ � gmn

2pi

Z
d3k

2pð Þ32ok

�
Z
CF

dk0
eikðx�yÞe�ik0ðx

0�y0Þ

k0 � ok
� eikðx�yÞe�ik0ðx

0�y0Þ

k0 þ ok

 !

¼ gmn

2pi

Z
d3k

2pð Þ32ok

Z
CF

dk0e
ikðx�yÞe�ik0ðx

0�y0Þ

� �ðk0 þ okÞ þ ðk0 � okÞ
ðk0 � okÞðk0 þ okÞ

� �
¼ gmn

2pi

Z
d3k

2pð Þ32ok

�
Z
CF

dk0e
ikðx�yÞe�ik0ðx

0�y0Þ �2ok

ðk0 � okÞðk0 þ okÞ
� �

¼

¼ � gmn

2pi

Z
d3k

2pð Þ3
Z
CF

dk0
eikðx�yÞe�ik0ðx

0�y0Þ

ðk0 � okÞðk0 þ okÞ

¼ � gmn

2pi

Z
d3k

2pð Þ3 e
ikðx�yÞ

Z
CF

dk0e
�ik0ðx0�y0Þ

k20 � o2
k

[C12]

where on the right-hand side of the first equation in

the sum term with (k0 þok) in the denominator, we

have replaced the three-momentum vector k by �k in

the exponent, i.e., as before the reversal of time order

is understood in conjunction with a reversal of the

motion. The contour CF in Eqs. [C12] above encloses

a singularity either at k0 ¼ þok or at k0 ¼ �ok, as

shown in Fig. C1. For these singularities holds k20 �
o2
k ¼ k2 ¼ 0. Introducing the regularization parameter

e (analogous to Eq. [C7]), Eq. [C12] finally reads
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h0jTðAmðxÞAnðyÞÞj0i ¼ lim
e!0

igmn

2p

Z
d3k

2pð Þ3 e
ikðx�yÞ

�
Z

Reðk0Þ

dk0e
�ik0ðx0�y0Þ

k20 � o2
k þ ie

¼ igmn lim
e!0

Z
d4k

ð2pÞ4
e�ikðx�yÞ

k2 þ ie

where in the last equation we have united the two

integrals into one four-dimensional momentum inte-

gral. Thus

h0jTðAmðxÞAnðyÞÞj0i ¼ lim
e!0

igmnZ
d4k

ð2pÞ4 e
�ikðx�yÞDFðk; eÞ [C13]

where Dmn
F ðkÞ ¼ gmn lime!0 DFðk; eÞ denotes the four-

dimensional Fourier transform of the two-point corre-

lation function h0jTðAmðxÞAnðyÞÞj0i,

Dmn
F ðkÞ ¼ gmnDFðkÞ ¼ gmn lim

e!0
DFðk; eÞ ¼ lim

e!0

gmn

k2 þ ie
[C14]

So far we have not yet obtained an analytical

expression for h0jTðAmðxÞAnðyÞÞj0i, instead we

derived its Fourier transform in four-dimensional k
space. On the first glance it seems straightforward to

compute the correlation function h0jTðAmðxÞAnðyÞÞj0i
in space-time by inverse Fourier transformation.

However we recognize that Dmn
F (k) has singularities

for k2 ¼ ðk0Þ2 � j~kj2 ¼ 0, thus the integral which

appears as the inverse Fourier transformation is not

existing in the classical sense. Nevertheless, follow-

ing the derivation given by Castellani, et al. (94), we
can explicitly calculate the four-dimensional Fourier

integral DFðxÞ ¼ lime!0þ
R

d4k
ð2pÞ4

e�ikx
k2þie as follows. At

first we observe that

i

Z1
0

eisk
2

ds¼ lim
e!0þ

i

Z1
0

e�eseisk
2

ds¼ lim
e!0þ

i

Z1
0

e�ðe�ik
2Þsds

¼� lim
e!0þ

i
e�ðe�ik

2Þs

ðe� ik2Þ

�����
1

0

¼ lim
e!0þ

i

ðe� ik2Þ

¼ lim
e!0þ

1

ð�k2� ieÞ¼� lim
e!0þ

1

k2þ ie
[C15]

From Eq. [C15] we infer

DFðxÞ ¼ lim
e!0þ

Z
d4k

ð2pÞ4
e�ikx

k2 þ ie

¼ � i

ð2pÞ4
Z

d4ke�ikx
Z1
0

dseisk
2

¼ � i

ð2pÞ4
Z1
0

ds

Z
d4ke�ikxeisk

2

¼ � i

ð2pÞ4
Z1
0

ds

Z
d4keiðk

2s�kxÞ

Figure C1 Integration contour CF in the complex plane for the two-point correlation function

h0jTðAmðxÞAnðyÞÞj0i: (A) for time order x0 . y0 the contour extends to infinity on both

sides and encloses the point þok by a semi-circle with infinite radius in the lower half

plane. (B) For the opposite time order, x0 , y0, the contour extends to infinity to both

sides and encloses the point �ok by a semi-circle with infinite radius in the upper half

plane. The two respective half circles do not contribute directly to the contour inte-

grals, nevertheless they are necessary to close the contour around the associated singu-

larities thus defining the value of the integral. The two small semi-circles at the poles

have infinitesimally small radius e.
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Introduce the new momentum variable q by the

substitution k ¼ qþ x
2s, then we arrive at

DFðxÞ ¼ lim
e!0þ

Z
d4k

ð2pÞ4
e�ikx

k2 þ ie

¼ � i

ð2pÞ4
Z1
0

ds

Z
d4qeiðq

2s�x2=ð4sÞÞ

¼ � i

ð2pÞ4
Z1
0

ds

Z
d4qeiq

2se�ix
2=ð4sÞ

i.e., we can separate the variables such that the two

integrals appear as a product:

DFðxÞ ¼ lim
e!0þ

Z
d4k

ð2pÞ4
e�ikx

k2 þ ie

¼ � i

ð2pÞ4
Z1
0

dse�ix
2=ð4sÞÞ

Z
d4qeiq

2s

We need to calculate the Gaussian integral over

d4q:Z
d4qeiq

2s¼
Z

dq0

Z
dq1

Z
dq2

Z
dq3e

isðq2
0
�q2

1
�q2

2
�q2

3
Þ

¼
Z

dq0e
isq2

0

Z
dq1e

�isq2
1

Z
dq2e

�isq2
2

Z
dq3e

�isq2
3

¼
Z1
0

dq0e
�aq2

0

Z1
0

dq1e
�bq2

1

Z1
0

dq2e
�bq2

2

Z1
0

dq3e
�bq2

3

where we have used Cartesian coordinates for the

four-vector q and substituted a ¼ �is and b ¼ þis.
For one particular integral holds (122)

Z1
0

dq0e
�aq2

0 ¼
ffiffiffi
p
a

r

Hence

Z
d4qeiq

2s ¼ p2ffiffiffiffiffiffiffi
ab3
p ¼ p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�isðisÞ3
q ¼ p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�iÞð�iÞss3p

¼ p2ffiffiffiffiffiffiffiffi
�s4
p ¼ p2

is2
¼ � ip2

s2

such that we obtain

DFðxÞ¼ lim
e!0þ

Z
d4k

ð2pÞ4
e�ikx

k2þ ie

¼ð�iÞð�iÞp
2

ð2pÞ4
Z1
0

ds

s2
e�ix

2=ð4sÞÞ ¼� 1

4ð2pÞ2
Z1
0

ds

s2
e�ix

2=ð4sÞÞ

Now substitute u¼ 1
4s;

du
ds¼� 1

4s2 to arrive at

DFðxÞ ¼ lim
e!0þ

Z
d4k

ð2pÞ4
e�ikx

k2 þ ie

¼ 1

4ð2pÞ2
Z0
1

4s2du

s2
e�iux

2 ¼ � 1

ð2pÞ2
Z1
0

due�iux
2

Analogous to the derivation given in [C15] we

observe

Z1
0

e�iux
2

du¼ lim
e!0þ

Z1
0

e�eue�iux
2

du¼ lim
e!0þ

Z1
0

e�ðeþix
2Þudu

¼� lim
e!0þ

e�ðeþix
2Þu

ðeþix2Þ

�����
1

0

¼ lim
e!0þ

1

ðeþix2Þ¼� lim
e!0þ

i

x2�ie

such that finally

DFðxÞ ¼ lim
e!0þ

Z
d4k

ð2pÞ4
e�ikx

k2 þ ie
¼ i

4p2
lim
e!0þ

1

x2 � ie

[C16]

According to [18], taking into account Sokhot-

ski’s formula [C7, C8], we arrive at

DFðxÞ ¼ i

4p2
lim
e!þ0

1

x2 � ie

� �
¼ �dþðx2Þ

such that finally it follows

iDmn
F ðx� yÞ ¼ h0jTðAmðxÞAnðyÞÞj0i

¼ � igmn

4p2
dþððx� yÞ2Þ [31]

or

iDmn
F ðx� yÞ ¼ h0jTðAmðxÞAnðyÞÞj0i

¼ �igmn 1

4p
dððx� yÞ2Þ � i

4p2
}

1

ðx� yÞ2
 !" #

[C17]

Proof of Eq. [18]

The first equation in [18] involving the d function is

a special case of the general feature

dðjðxÞÞ ¼
X
n

1

jj0ðxnÞj dðx� xnÞ [C18]

VIRTUAL PHOTONS IN MAGNETIC RESONANCE 323

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



where j0 (x) denotes the derivative of the function

j(x) and xn denotes the nth zero of the function

j(x). Thus j0 (xn) is equal to the derivative of j(x)
for x ¼ xn. A proof for the general relation [C18]

can be found, for example, in the appendix of Ref.

98.
Setting j(x) ¼ x2 ¼ (x0)2�r2 and letting x2 ¼ 0,

we have two zeroes (x0) ¼ þ r and (x0) ¼ �r. That
means,

dðx2Þ ¼ dððx0Þ2 � r2Þ ¼ 1

j2rj ðdðx
0 � rÞ þ dðx0 þ rÞÞ

¼ dðx0 � rÞ þ dðx0 þ rÞ
2r

[C19]

The proof of Eq. [18] for dþ would involve the

principal value distribution }(1/x2). In order to

achieve that, the Fourier transform relations that

exist between [33] and [34] can be used—i.e., we

prove the analogous relation [C19] for d(k2) which

then, transformed to the space-time domain, shows

the validity for }(1/x2), and both together, d(x2) and
}(1/x2), the validity for the second equation in [18].

APPENDIX D

Derivation of Eq. [40]

Let us consider some finite time interval (ti, tf)
between some initial and final instant in time and

divide that interval into N subintervals of duration

Dt ¼ (tf�ti)/N being sufficiently small such that dur-

ing each short interval Dt we may assume that the

interaction-Hamiltonian Hint(tm) (with m ¼ 1, 2, . . .,
N) does not change in time, i.e., we assume a piece-

wise constant Hamiltonian over time. The time- or-

dered exponential appearing in Eq. [39] can then be

approximated by the following expression

T exp �i
Ztf
ti

dt0Hintðt0Þ
2
4

3
5

� expð�iDtHintðtNÞÞ � � � expð�iDtHintðt2ÞÞ
� expð�iDtHintðt1ÞÞ [D1]

with the time instants tm ¼ ti þ ((2m�1)/2)Dt such
that they appear time-ordered: tN � tN�1 � . . .� t2
� t1. We remind ourselves that the commutator of

the Hamiltonian with itself at different times does

not vanish. However this commutator is equal to a

complex number whenever the current densities j(x)
and j(y) are functions. In order to see this, remem-

ber that the Hamiltonian density contains the prod-

uct jm Am
in of current density and field operator. Let

us focus upon the commutator expression

½Am
inðxÞjmðxÞ;An

inðyÞjnðyÞ� ¼ Am
inðxÞjmðxÞAn

inðyÞjnðyÞ
� An

inðyÞjnðyÞAm
inðxÞjmðxÞ ¼ Am

inðxÞAn
inðyÞjmðxÞjnðyÞ

� An
inðyÞAm

inðxÞjnðyÞjmðxÞ ¼ ½Am
inðxÞ;An

inðyÞ�jmðxÞjnðyÞ
þ Cmnðx; yÞAn

inðyÞAm
inðxÞ; Cmnðx; yÞ¼½jmðxÞ; jnðyÞ�

[D2]

where we have assumed that the A field commutes

with the j field. Thus it becomes clear that for com-

muting current densities, i.e., Cmn(x, y) ¼ 0, the

commutator of Hamiltonian densities is equal to the

commutator [Am
in(x),A

n
in(y)] (which is a complex

number) times the product jm(x) jn(y) of current den-
sities. If the current densities are functions (then

they obviously commute), not operators, then the

commutator of the Hamiltonian densities is itself a

complex number.

We take into account the operator identity

expðBÞ expðCÞ ¼ expðBþ Cþ ½B;C�=2Þ ½D3�

which holds if [B,[B,C]] ¼ [C,[B,C] ¼ 0. The oper-

ator identity [D3] is a special case of the general

Baker-Campbell-Hausdorff (BCH) formula (95, 96).
Applying Eq. [D3] piece by piece to Eq. [D1], we

arrive at

T exp �i
Ztf
ti

dt0Hintðt0Þ
2
4

3
5 � exp �iDt

XN
m¼1

HintðtmÞ
 

�ðDtÞ
2

2

XN
m¼1

XN
n¼1

1�m�n�N

½HintðtmÞ;HintðtnÞ�

1
CCA

Now we let go N to infinity, which means that

the artificial time intervals Dt become infinitesimally

small again. We replace the sums by integrals again

and obtain

T exp �i
Ztf
ti

dt0Hintðt0Þ
2
4

3
5 ¼ exp �i

Ztf
ti

dt0Hintðt0Þ
0
@

þ 1

2

Ztf
ti

dt0
Ztf
ti

dt00yðt0 � t00Þ½Hintðt0Þ;Hintðt00Þ�
1
A [D4]

and because on the right-hand side of Eq. [D4] the

second term in the exponential (the one with the
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double integral) is equal to a complex number, we

may write it as a separate exponential factor:

T exp �i
Ztf
ti

dt0Hintðt0Þ
2
4

3
5 ¼ exp �i

Ztf
ti

dt0Hintðt0Þ
0
@

1
A

� exp þ 1

2

Ztf
ti

dt0
Ztf
ti

dt00yðt0 � t00Þ½Hintðt0Þ;Hintðt00Þ�
0
@

1
A

Taking, as initially in Eq. [39], for the initial

time ti ? �1 and set tf ¼ t, we may rewrite the

time evolution operator [39] as

UðtÞ ¼ exp �i
Z t

�1
dt0Hintðt0Þ

0
@

1
A exp þ 1

2

Z t

�1
dt0

0
@

�
Z t

�1
dt00yðt0 � t00Þ½Hintðt0Þ;Hintðt00Þ�

1
A ½D5�

With the time-dependent interaction Hamiltonian

as given in Eq. [38], we may express the integrals

in Eq. [D5] as

UðtÞ ¼ exp �i
Z t

�1
dt0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yyðx0 � y0Þ½Am
inðxÞjmðxÞ;An

inðyÞjnðyÞ�
1
A [D6]

Because the field operators commute with the

current densities and the current densities are sup-

posed to commute with themselves, we have

½Am
inðxÞjmðxÞ;An

inðyÞjnðyÞ� ¼ �igmnDðx� yÞjmðxÞjnðyÞ
[D7]

where for the commutator of the electromagnetic

field operators we have introduced the Pauli-Jordan

function:

½Am
inðxÞ;An

inðyÞ� ¼ �igmnDðx� yÞ [D8]

defined by the commutator in [D8], see also Eq.

[B14], Appendix B. Now Eq. [D6] may be re-

expressed as

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A

� exp � i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yyðx0 � y0ÞgmnjmðxÞDðx� yÞjnðyÞ
1
A [D9]

The retarded propagator Dret can be expressed by

the function D as

Dretðx� yÞ ¼ yðx0 � y0ÞDðx� yÞ [D10]

y denotes Heaviside’s step function as defined for

Eq. [30], it encodes now the time ordering. The re-

tarded propagator in Eq. [D10] corresponds exactly

to the retarded Green function as introduced in Eq.

[10]. The equivalence of Eqs. [10] and [D10] is

demonstrated in Appendix B. Eq. [D10] inserted

into [D9] leads us further to

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A

� exp � i

2
gmn

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞDretðx� yÞjnðyÞ
1
A [40]

Derivation of Eq. [46]

Starting with Eq. [D9],

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A

� exp � i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yyðx0 � y0ÞgmnjmðxÞDðx� yÞjnðyÞ
!

we decompose the four-potential operator, according

to Eq. [24], into a positive frequency part containing

the annihilation operator and negative frequency

VIRTUAL PHOTONS IN MAGNETIC RESONANCE 325

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



part containing the creation operator (see Eqs.

[44, 45]:

Am
inðxÞ ¼ A

mðþÞ
in ðxÞ þ A

mð�Þ
in ðxÞ [D11]

such that we can write

� igmnjnðxÞDðx� yÞjmðyÞ ¼ jmðxÞ½AmðþÞ
in ðxÞ

þ A
mð�Þ
in ðxÞ;AnðþÞ

in ðyÞ þ A
nð�Þ
in ðyÞ�jnðyÞ

¼ jmðxÞðAmðþÞ
in ðxÞAnðþÞ

in ðyÞ þ A
mðþÞ
in ðxÞAnð�Þ

in ðyÞ
þ A

mð�Þ
in ðxÞAnðþÞ

in ðyÞ þ A
mð�Þ
in ðxÞAnð�Þ

in ðyÞ�
� A

nðþÞ
in ðyÞAmðþÞ

in ðxÞ � A
nð�Þ
in ðyÞAmðþÞ

in ðxÞ
� A

nðþÞ
in ðyÞAmð�Þ

in ðxÞ � A
nð�Þ
in ðyÞAmð�Þ

in ðxÞÞjnðyÞ ¼
¼ jmðxÞð½AmðþÞ

in ðxÞ;AnðþÞ
in ðyÞ� þ ½AmðþÞ

in ðxÞ;Anð�Þ
in ðyÞ�þ

þ½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ� þ ½Amð�Þ
in ðxÞ;Anð�Þ

in ðyÞ�ÞjnðyÞ

We observe that when we take the vacuum ex-

pectation value h0 |. . . |0i of this last result, we do

not change it, because the result represents already

a complex number. We may even write

� igmnjnðxÞDðx� yÞjmðyÞ
¼ �igmnh0jjnðxÞDðx� yÞjmðyÞj0i
¼ h0jjmðxÞð½AmðþÞ

in ðxÞ;AnðþÞ
in ðyÞ�

þ ½Amð�Þ
in ðxÞ;Anð�Þ

in ðyÞ� þ ½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�
þ ½Amð�Þ

in ðxÞ;AnðþÞ
in ðyÞ�ÞjnðyÞj0i ¼

¼ h0jjmðxÞð½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�
þ ½Amð�Þ

in ðxÞ;AnðþÞ
in ðyÞ�ÞjnðyÞj0i

¼ jmðxÞh0jð½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�
þ½Amð�Þ

in ðxÞ;AnðþÞ
in ðyÞ�Þj10ijnðyÞ

and Eq. [D9] becomes

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yyðx0 � y0ÞjmðxÞh0jð½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�

þ ½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ�Þj0 i jnðyÞ�
1
A [D12]

According to the operator identity Eq. [D2], we

are allowed to transform the first exponential term

in [D12] into

exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A

¼ exp �i
Z t

�1
dx0
Z

d3xðAn�
in ðxÞ þ Anþ

in ðxÞÞjnðyÞ
0
@

1
A

¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dy0
Z

d3yAnþ
in ðyÞjnðyÞ

0
@

1
A

� exp � 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3y½An�
in ðxÞjnðxÞ;Amþ

in ðyÞjmðyÞ�
1
A

Introducing this into [D12] yields

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dy0
Z

d3yAnþ
in ðyÞjnðyÞ

0
@

1
A

� exp � 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3y½Am�
in ðxÞjnðxÞ;Anþ

in ðyÞjrðyÞ�
1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yyðx0 � y0ÞjmðxÞh0jð½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�

þ ½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ�Þj0ijnðyÞ�
1
A

The third and fourth exponential term are usual

exponential functions, not operator exponentials.

Therefore we can collect them into one common

exponent which gives

326 ENGELKE

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dy0
Z

d3yAnþ
in ðyÞjnðyÞ

0
@

1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞh0jðyðx0 � y0Þ½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�

þ yðx0 � y0Þ½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ�
�½Am�

in ðxÞ;Anþ
in ðyÞ�j0ijnðyÞÞ [D13]

In Eq. [D13] let us focus on the two terms

that contain specifically the commutator [Ain
m(�)(x),

Ain
n(þ)(y)] and we find

yðx0 � y0Þ½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ� � ½Am�
in ðxÞ;Anþ

in ðyÞ�

¼ 0 for x0.y0

�½Am�
in ðxÞjnðxÞ;Anþ

in ðyÞ� for x0 < y0;

(

hence it holds

yðx0 � y0Þ½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ� � ½Am�
in ðxÞ;Anþ

in ðyÞ�
¼ �yðy0 � x0Þ½Amð�Þ

in ðxÞ;AnðþÞ
in ðyÞ�

such that Eq. [D13] can be rewritten as

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dy0
Z

d3yAnþ
in ðxÞjnðxÞ

0
@

1
A

� exp

 
þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0
Z

d3yjmðxÞ

h0jðyðx0 � y0Þ½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�
� yðy0 � x0Þ½Am�

in ðxÞ;Anþ
in ðyÞ�j0ijnðyÞÞ

We observe that

½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�¼h0j½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�j0i
¼h0jAmðþÞ

in ðxÞAnð�Þ
in ðyÞj0i

½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ�
¼h0j½Amð�Þ

in ðxÞ;AnðþÞ
in ðyÞ�j0i¼�h0jAnðþÞ

in ðyÞAmð�Þ
in ðxÞj0i

because, due to Eqs. [24, 26], it holds

A
mðþÞ
in ðxÞj0i¼h0jAnð�Þ

in ðyÞ¼0. In addition,

h0j½AmðþÞ
in ðxÞ;Anð�Þ

in ðyÞ�j0i
¼h0jAmðþÞ

in ðxÞAnð�Þ
in ðyÞj0i¼h0jAm

inðxÞAn
inðyÞj0i

h0j½Amð�Þ
in ðxÞ;AnðþÞ

in ðyÞ�j0i¼�h0jAnðþÞ
in ðyÞAmð�Þ

in ðxÞj0i
¼�h0jAn

inðyÞAm
inðxÞj0i ½D14�

Therefore

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dy0
Z

d3yAnþ
in ðxÞjnðxÞ

0
@

1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

Z
d3yjmðxÞh0jðyðx0 � y0ÞAm

inðxÞAn
inðyÞ

þ yðy0 � x0ÞAn
inðyÞAm

inðxÞÞj0ijnðyÞ
1
A [D15]

The term inside the expectation value h0 |. . . |0i
in the third exponential term of Eq. [D15] is equal

to the time-ordered product of An
in(x)A

m
in(y) as given

by Dyson’s chronological operator T according to

Eqs. [29]:

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dy0
Z

d3yAnþ
in ðxÞjnðxÞ

0
@

1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞh0jTðAm
inðxÞAn

inðyÞÞj0ijnðyÞ
1
A [D16]

The first two exponentials in [D16] define the

normal ordering form indicated by the enclosure in

colons, : . . . : (see Eq. [43]),
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: exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A :

¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dx0
Z

d3yAnþ
in ðxÞjnðxÞ

0
@

1
A [43]

where in the product of the series expansion of the

exponentials all creation operators appear to the left

from all annihilation operators. With Eqs. [D16, 43]

the notation of Eq. [D15] simplifies to

UðtÞ ¼: exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A :

exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞh0jTðAm
inðxÞAn

inðyÞÞj0ijnðyÞ
1
A

The photon propagator is defined as

� igmnDFðx� yÞ ¼ h0jTðAm
inðxÞAn

inðyÞÞj0i [D17]

thus

UðtÞ ¼: exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A :

exp � i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞgmnDFðx� yÞjnðyÞ
1
A

and finally

UðtÞ ¼: exp �i
Z t

�1
dx0
Z

d3xAn
inðxÞjnðxÞ

0
@

1
A :

exp � i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞDmn
F ðx� yÞjnðyÞ

1
A [46]

Derivation of Eq. [50]

We begin with

UðtÞ ¼ exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

� exp �i
Z t

�1
dx0
Z

d3yAnþ
in ðxÞjnðxÞ

0
@

1
A

� exp þ 1

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞ g
mn

4p2
}

1

ðx� yÞ2
 !

jnðyÞ
1
A

� exp þ i

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞ g
mn

4p
dððx� yÞ2ÞjnðyÞ

1
A [47]

From [33, 34] it follows

�p
Z

d4k

ð2pÞ4dðk
2Þe�ikðx�yÞ ¼ 1

4p2
}

1

ðx�yÞ2
 !

[D18]

which inserted into [47] gives

UðtÞ¼exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

�exp �i
Z t

�1
dx0
Z

d3yAnþ
in ðxÞjnðxÞ

0
@

1
A

�exp �pg
mn

2

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞ
Z

d4k

ð2pÞ4dðk
2Þe�ikðx�yÞjnðyÞ

1
A

�exp igmn

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjmðxÞdððx�yÞ2ÞjnðyÞ
1
A

Taking the integrals of the three-dimensional

space volumes, the third exponential (the one con-

taining the on-shell contribution d(k2)) can be

rewritten in terms of the three-dimensional k space
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Fourier transform Jmðk;x0Þ (Eq. [49]) of the current

density jm(x) as

UðtÞ¼exp �i
Z t

�1
dx0
Z

d3xAn�
in ðxÞjnðxÞ

0
@

1
A

�exp �i
Z t

�1
dx0
Z

d3yAnþ
in ðxÞjnðxÞ

0
@

1
A

�exp �pg
mn

2

Z t

�1
dx0e�ik0x

0

Z t

�1
dy0eik0y

0

0
@

�
Z

d4k

ð2pÞ4dðk
2ÞJ�mðk;x0ÞJnðk;y0Þ

1
Aexp

igmn

8p

Z t

�1
dx0

0
@

�
Z

d3x

Z t

�1
dy0
Z

d3yjmðxÞdððx�yÞ2ÞjnðyÞ
1
A [D19]

Taking into account the Fourier expansion [24]

for the four-potentials, let us define the complex

valued amplitudes

aðlÞðk; x0Þ ¼ �iemðlÞðkÞJmðk; x0Þeikx0 [D20]

where

a
�ðl0Þðk; x0ÞaðlÞðk; y0Þ

¼ gl
0lJn

� ðk; x0ÞJnðk; y0Þe�ik0x0eik0y0 [D21]

in view of the fact that the polarization vectors form

an orthogonal frame of vectors in space-time. Per-

forming the integral over x0, we may further define

aðk; tÞ ¼
Z t

�1
dx0aðk; x0� [D22]

such that [D19] appears as

UðtÞ ¼ exp

Z
d3k

ð2pÞ32ok

X
l

aðlÞðk; tÞaðlÞþðkÞ
 !

� exp �
Z

d3k

ð2pÞ32ok

X
l

aðlÞ
� ðk; tÞaðlÞðkÞ

 !

� exp � p
2

Z
d4k

ð2pÞ4 dðk
2Þ
X
l

aðlÞ
� ðk; tÞaðlÞðk; tÞ

 !

� exp
i

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
1
A

Decomposing the four-dimensional integral over

k into one over three-dimensional k space and one

over k0 leads us to

UðtÞ ¼ exp

Z
d3k

ð2pÞ32ok

X
l

aðlÞðk; tÞaðlÞþðkÞ
 !

� exp �
Z

d3k

ð2pÞ32ok

X
l

aðlÞ
� ðk; tÞaðlÞðkÞ

 !

� exp � p
2

Z
d3k

ð2pÞ3
Z

dk0
2p

dðk20 � jkj2Þ
 

�
X
l

aðlÞ
� ðk; tÞaðlÞðk; tÞ

!
exp

i

8p

Z t

�1
dx0
Z

d3x

0
@

�
Z t

�1
dy0
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
1
A

In analogy to the identities [18], it holds in k
space,

dðk2Þ ¼ dðk20 � jkj2Þ ¼
dðk0 � jkjÞ þ dðk0 þ jkjÞ

2ok
;

ok ¼ jkj [D23]

such that

UðtÞ ¼ exp �i
Z

d3k

ð2pÞ32ok

X
l

aðlÞðk; tÞaðlÞþðkÞ
 !

� exp �i
Z

d3k

ð2pÞ32ok

X
l

aðlÞ
� ðk; tÞaðlÞðkÞ

 !

� exp � 1

4

Z
d3k

ð2pÞ3
2

2ok

X
l

aðlÞ
� ðk; tÞaðlÞðk; tÞ

 !

� exp
i

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
1
A [D24]

For the sake to simplify notation, not giving

up too much in generality, let us consider only

one discrete field mode with polarization l and

four-momentum k such that we can skip the inte-

grals
R

d3k
ð2pÞ32ok

and sums
P

l over polarizations. In

that way k becomes fixed for that particular

mode:
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UðtÞ ¼ exp aðk; tÞaþðkÞð Þ exp �a�ðk; tÞaðkÞð Þ

� exp � 1

2
a�ðk; tÞaðk; tÞ

� �
exp

i

8p

Z t

�1
dx0

0
@

�
Z

d3x

Z t

�1
dy0
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
1
A [D25]

Applying the identity [D2] to factorize exponen-

tial operators, exp(B)exp(C) exp(�[B,C]/2)¼
exp(BþC), with exp(B) being the first and exp(C)
being the second exponential in [D24], we arrive at

UðtÞ ¼ exp aðk; tÞaþðkÞ � a�ðk; tÞaðkÞð Þ

� exp
i

8p

Z t

�1
dx0
Z

d3x

Z t

�1
dy0

0
@

�
Z

d3yjnðxÞdððx� yÞ2ÞjnðyÞ
�

[50]

APPENDIX E

Dirac Equation

Dirac postulated that the equation of motion sought

as a relativistic generalization of the Schrödinger

equation has to be of first order, both in space and

time derivatives (covariance) and he assumed it to

be in the form (123)

i�h
qc
qt
¼ �hc

i
a � r þ bmc2

� �
c [E1]

with certain algebraic quantities a ¼ (ax, ay, az)

and b yet to be determined by means of the follow-

ing conditions:

(i) Equation [E1] has to admit plane-waves

being solutions to the Klein-Gordon equa-

tion—the latter follows as second-order rela-

tivistic wave equation from Eq. [A8], Appen-

dix A, and reads (q2 þ m2)c ¼ 0 (in Heavi-

side-Lorentz units) for particles with rest

mass m,

(ii) the Hamiltonian operator resulting from Eq.

[E1] has to be a Hermitian operator,

(iii) there exists a four-current density whose

time component is positive-definite such that

it allows an interpretation as a probability

density, and

(iv) Equation [E1] can brought into a form that

is covariant.

Equation [E1] is called Dirac equation in non-covari-

ant form. We first focus on condition (i) by showing that
from Eq. [E1] and the requirement that plane waves of

the Dirac field c have to satisfy the Klein-Gordon equa-

tion several constraints follow that allow us to determine

the quantities ~a ¼ (ax, ay, az) and b. Taking the

square of the operators in Eq. [E1] and taking into

account the Klein Gordon equation, we have

�hc

i
a � r þ bmc2

� �2

¼ ��h2c2a2r2 þ b2m2c4

þ �hc

i
ab � r þ �hc

i
ba � r

¼ ��h2c2r2 þ m2c4 ¼ ��h2 q
2

qt2

and we obtain

a2 ¼ a2
x þ a2

y þ a2
z ¼ b2 ¼ 1;

axbþ bax ¼ aybþ bay ¼ azbþ baz ¼ 0

i.e.,

a2 ¼ 1; b2 ¼ 1; abþ ba ¼ 0 [E2]

Introducing the quantities

gk ¼ ðb; baÞ ¼ ðb; gÞ ¼ ðb; bax; bay; bazÞ [E3]

we may rewrite Eq. [E1] in four-dimensional nota-

tion as follows

i�h
q
qt
þ ca � r

� �
c� bmc2c ¼ 0 ¼

� 1

i�hc
b i�h

q
qt
þ i�hca � r � bmc2

� �
c; b2 ¼ 1

�b q
cqt
� ba � r þ b2

mc

i�h

� �
c

¼ �g0
q
qx0
� g1

q
qx1
� g2

q
qx2
� g3

q
qx3
þmc

i�h

� �
c ¼ 0

i.e., with the notational conventions

qk ¼ q
qxk ¼ q0;r� 	

and qk ¼ gkmqm ¼ ðq0;�rÞ and

in Heaviside-Lorentz units, we arrive at

�igkqk þ m
� 	

c ¼ 0 [E4]

In contrast to Eq. [E1], Eq. [E4] is the Dirac

equation in covariant notation. Now, if we multiply

Eq. [E4] from the left with igmq
m þ mð Þ, we get

igmq
mþmð Þ �igmqmþmð Þc¼ðgmgkqmqkþm2Þc¼ 0
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Because qmqk¼ qkqm, it holds gmgkq
mqk¼

1
2
gmgkþgkgmð Þqmqk, and we obtain

1

2
fgm;gkgqmqkþm2

� �
c¼ 0 [E5]

with the anticommutator

fgm;gkg¼ gmgkþgkgm [E6]

Because we require Eq. [E5] to be identical to

the Klein-Gordon equation (q2 þ m2)c ¼ 0, we

may write

1

2
fgm; gkgqmqk þ m2

� �
c ¼ ðq2 þ m2Þc ¼ 0

such that we have to conclude that

fgm; gkg ¼ 2gmk [E7]

For m ¼ k this implies the first two equations in

[E2], for m ¼ 1,2,3 and k ¼ 0 the third equation in

[E2]. For m = k and m = 0, k = 0, we obtain in

addition to Eqs. [E2]:

axayþayax ¼ 0; ayazþazay¼ 0; axazþazax¼ 0

[E8]

With Eq. [E7] (or Eqs. [E2, E8]) we have found

all constraints for gk (or a ¼ ðax;ay;azÞ and b).
The conditions [E2, E8] for the quantities

b;ax;ay;az, or equivalently Eq. [E7] for the quanti-

ties gk defined by Eq. [E3], are a consequence that

the ‘‘square of the Dirac equation should be equal

to the Klein-Gordon equation’’—they cannot be ful-

filled by real or complex numbers, but by matrices

b;ax;ay;az being at least of size 4-by-4. One possi-

ble set of matrices satisfying Eqs. [E2, E8], the so

called standard or Dirac representation, reads

b¼
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BB@

1
CCA; ax ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0
BB@

1
CCA;

ay ¼
0 0 0 �i
0 0 i 0

0 �i 0 0

i 0 0 0

0
BB@

1
CCA; az ¼

0 0 1 0

0 0 0 �1
1 0 0 0

0 �1 0 0

0
BB@

1
CCA

[E9]

or the corresponding set satisfying Eq. [E7],

g0 ¼
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BB@

1
CCA; g1 ¼

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

0
BB@

1
CCA;

g2 ¼
0 0 0 �i
0 0 i 0

0 i 0 0

�i 0 0 0

0
BB@

1
CCA; g3 ¼

0 0 1 0

0 0 0 �1
�1 0 0 0

0 1 0 0

0
BB@

1
CCA

[E10]

The matrices gk are called Dirac matrices. We use

the indices k, m, . . . to enumerate the matrices, not the

elements within one particular matrix, thus the nota-

tion for the Dirac matrices is complete when we write

ðgabÞk with a, b indicating the matrix elements in ma-

trix gk. In distinction to the index k indicating the

dimensions in 4D space, the inner indices a, b in con-

junction with g matrices are called spinor indices.

The fact that gk are 4-by-4 matrices implies that the

wave functions c satisfying Dirac’s equation [E4]

have to have four components,

c ¼
c1

c2

c3

c4

0
BB@

1
CCA [E11]

These wave functions are also referred to as

bispinors, defined in Hilbert space and satisfying

specific transformation properties in that space (see,

for example, 78–81). Here again, the indices 1, 2, 3,

4 are spinor indices, not space-time indices. Each

component is a complex function, i.e., there exists a

complex conjugate wave function cþ given as

cþ ¼ ðc�1;c�2;c�3;c�4Þ [E12]

with ca* being the complex conjugate of the compo-

nent ca. As it turns out, bispinors c describe spin-1/

2 particles and their associated antiparticles. If we

define the following 2-by-2 matrices (Pauli matri-

ces) as well as the 2-by-2 unit matrix 1 and the 2-

by-2 zero matrix 0,

s1 ¼
0 1

1 0

� �
; s2 ¼

0 �i
i 0

� �
;

s3 ¼
1 0

0 �1

� �
; 1 ¼ 1 0

0 1

� �
; 0 ¼ 0 0

0 0

� �
[E13]

the Dirac matrices gk in the standard representation

can be written as
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g0 ¼
1 0

0 �1

� �
; g1 ¼

0 s1

�s1 0

� �
;

g2 ¼
0 s2

�s2 0

� �
; g3 ¼

0 s3

�s3 0

� �
: ½E14�

Introducing the ‘‘matrix vector’’ s ¼
ðs1;s2;s3Þ, we arrive at the convenient and com-

pact expression

gk ¼ ðg0;gÞ ¼ 1 0
0 �1

� �
;

0 s
�s 0

� �� �
[E15]

Besides the Dirac standard representation in Eqs.
[E10] or [E14, E15], there are other matrix repre-
sentations possible that are obtainable by unitary
transformations g0k ¼ UgkU

�1 in the Hilbert space

of the bispinor wave functions [E11, E12], i.e., by

forming linear combinations of Dirac wave func-

tions. Each wave function c transforms into the

new representation c0 ¼ Uc satisfying again Dir-

ac’s equation, if the latter is simultaneously submit-

ted to a Lorentz transformation of space-time coor-

dinates (Refs. 78–81), as expressed by condition

(iv) above.

Turning to condition (ii), in order to verify that

the Dirac-Hamiltonian is Hermitian, we first observe

that all Pauli matrices [E13], r ¼ ðs1;s2;s3Þ, are
Hermitian, therefore it follows

g0 ¼ gþ0 ; gþ ¼ �g; gþk ¼ g0gkg0 [E16]

(because forming the adjoint matrix requires taking

the conjugate complex of its elements and the trans-

pose of the matrix). This leads to

g0gð Þþ¼ g0g [E17]

From Eq. [E1] we read that the Hamiltonian is

equal to

HD ¼ �hc

i
a � ~rþ bmc2 ¼ ca �~pþ bmc2 [E18]

Multiplying both sides with b2 ¼ 1 and taking

into account Eq. [E3] with g ¼ ðg1; g2; g3Þ, we

arrive at

HD ¼ cg0g � pþ g0mc
2 [E19]

Since the momentum operator p is Hermitian,

and, according to Eqs. [E16, E17], g0g as well as g0
are Hermitian, we conclude that the Dirac Hamilto-

nian HD is also Hermitian. Thus, Dirac’s equation

can also be written in the form i�hqc=qt ¼ HDc,
being in the form of Schrödinger’s equation, how-

ever, containing the Dirac Hamiltonian HD linear in

momentum.

For the sake of brevity, in the sequel we call par-

ticles characterized by Dirac’s field equation [E4]

free Dirac particles. We wish to derive the com-

bined field equations when a electromagnetic field

is present. In order to achieve this, we have to

replace the linear momentum pk ¼ iqk for the free

particle by the momentum pk � eAk, i.e., we replace

the partial differential operator iqk in Eq. [E4] by

iqk � eAk, in the literature sometimes the latter is

referred to as the covariant derivative. The replace-

ment of momentum pk by pk � eAk is called the

minimum coupling condition and its physical rele-

vance can be derived from requiring invariance of

the Dirac equation under local phase transforma-

tions of the field function c, which leads, in con-

junction with gauge invariance of the electromag-

netic wave equation, to that condition (see for

example, Ref. 10). We arrive at the Dirac equation

in the presence of an electromagnetic field:

�gk iqk � eAk
� 	þ m

� 	
c ¼ 0 [E20]

which is the relevant equation of motion for Dirac

particles with electromagnetic interactions.

APPENDIX F

Current Density for Particles Obeying
the Dirac Equation

We want to show that condition (iii) (Appendix E)

is satisfied by constructing the four-current density

for Dirac particles. We start with the free particle

Dirac equation [E4] and take the Hermitian conju-

gate of it,

cþ iqkgþk þ m
� 	 ¼ 0

where it is understood that the differential operator

qk now acts on those quantities standing on the left

side of it and cþ is given by Eq. [E12]. To deter-

mine the Hermitian conjugate gþk of g, we notice

that according to Eqs. [E16], gþk ¼ g0gkg0, and that

g20 ¼ 1, hence

cþ iqkg0gkg0 þ m
� 	 ¼ cþ iq0g0g

2
0 � iqmg0gmg0 þ m

� 	
¼ 0; m ¼ 1; 2; 3
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Defining the adjoint of c to be

�c ¼ cþg0 [F1]

we arrive at

cþ iq0g0g
2
0 � iqmg0gmg0 þ m

� 	
¼ �c iq0 � iqmgmg0

� 	þ cþm ¼ 0

Multiplying from the right with g0 yields

�c iq0g0 � iqmgmg
2
0

� 	þ cþg0m

¼ �c iq0g0 � iqmgm þ m
� 	 ¼ 0

simplifying to

�c iqkgk þ m
� 	 ¼ 0 [F2]

Now we consider the bilinear expression �cgkc
which we will identify with the current density of

Dirac particles. By means of Eqs. [E4] and [F2], we

calculate the derivative

qkð�cgkcÞ¼ðqk�cÞgkcþ �cgkðqkcÞ¼ im�cc� im�cc¼0

i.e., the quantity

jk¼e�cgkc [62; F3]

has vanishing four-divergence, qkjk¼0. The time-

like component �cg0c¼cþc is equal to the squared

magnitude of c, hence positive-definite, and can be

interpreted as the probability density for the Dirac

particle. Therefore jk as defined in Eq. [F3] satisfies

the needs for a four-current density (condition (iii)):

it is a genuine four-vector, its four-divergence van-

ishes, and its time-like component is positive-

definite.

Just for the sake of demonstration, Eqs. [62,F3]

written in conventional form would result in the fol-

lowing matrix equations for the time-like compo-

nent j0 and the space-like components j1:

j0 ¼ e�cg0c ¼ ecþg20c ¼ ecþc

¼ eðc�1;c�2;c�3;c�4Þ
c1

c2

c3

c4

0
BB@

1
CCA

¼ eðc�1c1 þ c�2c2 þ c�3c3 þ c�4c4Þ

j1 ¼ e�cgkc ¼ cþg0g1c ¼ eðc�1;c�2;c�3;c�4Þ

�

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BBB@

1
CCCA

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

0
BBB@

1
CCCA

c1

c2

c3

c4

0
BBB@

1
CCCA ¼

¼ eðc�1;c�2;c�3;c�4Þ

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0
BBB@

1
CCCA

c1

c2

c3

c4

0
BBB@

1
CCCA

¼ eðc�1;c�2;c�3;c�4Þ

c4

c3

c2

c1

0
BBB@

1
CCCA

¼ eðc�1c4 þc�2c3 þc�3c2 þc�4c1Þ

Considering these and similar lengthy expres-

sions, the concise covariant form [F3] can only be

appreciated.

Gordon Decomposition (91, 92) of
Dirac Current Density

The four-current density [F3] associated with the

Dirac equation [E20] can be decomposed into two

parts—one related to the spatial motion of particles,

the other related to the spin of particles. We begin

with the Dirac equation including the electromag-

netic field,

�gkðiqk � eAkÞ þ m
� 	

c ¼ 0 [E20; F4]

We introduce the notation with the momentum

operator Pk that takes into account the presence of

the electromagnetic field,

Pk ¼ pk � eAk; pk ¼ iqk [F5]

Two four-vectors am and bn always satisfy the

relationship

gma
mgnb

n ¼ gmamgnbn ¼ ambngmgn

¼ 1

2
ambnðgmgn þ gngm þ gmgn � gngmÞ ¼

¼ ambnðgmn � ismnÞ ¼ ambm � iambmsmn ½F6�

where we have used the fact that the anticommuta-

tor of Dirac matrices yields the metric tensor and

the spin tensor smn is defined by the commutator of

Dirac matrices. Eqs. [F6] indicate that a certain
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product of four-vectors and Dirac matrices may be

decomposed into a ‘‘metric’’ part and a ‘‘spinor’’

part, the latter containing the spin tensor smn. We

will now apply the above relationships to arrive at

analogous decomposition of the Dirac current den-

sity. For that purpose we consider two particular

vector solutions ca and cb of the Dirac equation,

ðgkPk � mÞca ¼ 0; ðgkPk � mÞcb ¼ 0 [F7]

For the second solution cb let us take the adjoint

equation

�cbððgkPkÞ þ mÞ ¼ 0 [F8]

with the notations

�cbðgkPkÞ ¼ ðPm
�cbÞgm; ðgkPkÞ!ca ¼ ðPmcaÞgm

[F9]

and

�cb ¼ cþb g0 [F10]

Multiplying the first equation in [F7] by �cbðgkakÞ
and multiplying the second equation in [F7] by

�ðgkakÞca, then subtracting the two resulting equa-

tions yields

0 ¼ �cbð�ðgkPkÞ � mÞðgkakÞca

þ�cbðgkakÞððgkPkÞ! � mÞca

From this equation it follows

�cbðgkakÞca¼
1

m
�cbðgkakÞðgkPkÞ!�ðgkPkÞ ðgkakÞÞca

and taking into account the relation [F6] this gives

�cbðgkakÞca ¼
1

m
ðPmam�cbÞca � �cbðPmamcaÞ
�

�iðPmansmn�cbÞca þ i�cbðPmansmncaÞ

 ½F11�

The tensor smn is, by definition, an antisymmet-

ric tensor,

smn ¼ i

2
½gm; gn� [F12]

hence

Pmansmn�cb ¼ �Pnamsnm�cb

which yields

�cbðgkakÞca ¼
1

m
ðPmam�cbÞca � �cbðPmamcaÞ
�

þiððPnamsnm�cbÞca þ �cbðPmansmncaÞÞ

 ½F13�

Pn is a differential operator such that the product

rule of differentiation applies,

Pnamð�cbs
mncaÞ¼ðPnamsnm�cbÞcaþ �cbðPmansmncaÞ

which inserted into [F13] gives

�cbðgkakÞca ¼
1

m
ðPmam�cbÞca � �cbðPmamcaÞ
�

þiPnamð�cbs
mncaÞ



For the special case that am is a spatially constant

vector, we may write

�cbg
mcaam ¼ �

1

m
�cbðPmcaÞ � ðPm�cbÞca

�
�iPnð�cbs

mncaÞ


am ½F14�

and in this case we may omit am on both sides of

the equation. Furthermore setting ca ¼ cb and ca ¼
c and introducing a factor 1/2 for the purpose of

normalization, we arrive at

jmðxÞ ¼ e�cðxÞgmcðxÞ ¼ � e

2m
�cðxÞðPmcðxÞÞ�

�ðPm�cðxÞÞcðxÞ � iPnð�cðxÞsmncðxÞÞ
 ½F15�
and the spin-dependent part, i.e., the spin current

density reads

jmspin ¼
þie
2m

Pnð�csmncÞ [F16]

Nonrelativistic First-Order Limit
for the Spin Current Density
(See ref, 92 and 93)

We remind ourselves that the Dirac wave function

c is a four-component vector in Hilbert space. We

divide this vector into two 2-component vectors

(spinors) and write the Dirac equation [F4] as

�gniqn þ egnA
n þ mð Þ j

w

� �
¼ 0 [F17]

With iqn ¼ pn Eq. [F17] becomes

�gnpn þ egnA
n þ mð Þ j

w

� �
¼ 0
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and if we separate this into timelike (n ¼ 0) and

spacelike (n ¼ 1,2,3) components we obtain

�ðg0p0 � g � pÞ þ eðg0A0 � g � AÞ þ m
� 	 j

w

� �
¼ 0

�g0ðp0 � eA0Þ þ g � ðp� eAÞ þ m
� 	 j

w

� �
¼ 0

[F18]

With the definitions [E13-E15] for the Dirac mat-

rices this becomes

� 1 0

0 �1

� �
ðp0 � eA0Þ j

w

� �
þ 0 s

�s 0

� �

�ðp� eAÞ j

w

� �
þ m

j

w

� �
¼ 0 ½F19�

hence we obtain two equations:

� ðp0 � eA0Þjþ s � ðp� eAÞwþ mj ¼ 0

ðp0 � eA0Þw� s � ðp� eAÞjþ mw ¼ 0 ½F20�

The constant term m in both equations leads to a

time dependence of spinor wave functions j and w
expressed by the factor exp(�imt). We may easily

remove the mj term in [F20] by introducing the

new spinor wave functions j0, w0:

j0ðtÞ
w0ðtÞ

� �
¼ jðtÞ

wðtÞ
� �

expðþimtÞ [F21]

Taking into account that p0 ¼ iq=qt, inserting Eq.

[F21] into Eqs. [F20] yields

� ðp0 � eA0Þj0 þ s � ðp� eAÞw0 ¼ 0

ðp0 � eA0 þ 2mÞw0 � s � ðp� eAÞj0 ¼ 0 ½F22�

For a nonrelativistic particle, as mentioned

above, we take now into account that its energy

p0 � eA0 in the field is small compared to its rest

energy m, i.e.,

p0 << m; eA0 << m [F23]

An analogous relation holds for the magnitude of

the three-momentum p and the magnitude of the

vector potential A. For a free particle, p0 is equal to

its kinetic energy, so in the nonrelativistic regime,

the kinetic energy is small compared to the rest

energy. Likewise, eA0, representing the energy of

the particle in the electromagnetic field with scalar

potential A0, is supposed to be small compared to

the rest energy.

With the assumption in [F23], we keep only the

term 2m in the second equation of [F22] in the first

pair of parentheses,

� ðp0 � eA0Þj0 þ s � ðp� eAÞw0 ¼ 0

2mw0 � s � ðp� eAÞj0 ¼ 0 ½F24�

The second equation in [F24] allows us to

express the wave function w0 in terms of the wave

function j0:

w0 ¼ 1

2m
s � ðp� eAÞj0 [F25]

For a nonrelativistic particle the components of

the spinor wave function w0 thus become small com-

pared to the components of the 2-spinor wave func-

tion j0. Consequently, the particle can be thus

approximately described by the spinor j0 only.

Derivation of Eq. [78] From Eq. [76]

Hint;spin ¼
e

2m
A � rðx�xÞ � sÞ þ iex�xðA� sð Þ

¼ e

2m
A � rðx�xÞ � sð Þ ½76�

First, with the vector-algebraic identity

a � ðb� cÞ ¼ ða� bÞ � c [F26]

and setting

a ¼ A; b ¼ ðrx�xÞ; c ¼ s

we may write

A � rðx�xÞ � sð Þ ¼ A�rðx�xÞð Þ � s [F27]

Secondly, we have

r� ðfaÞ ¼ f ðr � aÞ � a�rf ; [F28]

i.e.,

A�rðx�xÞð Þ ¼ x�xðr � AÞ � r � ðx�xAÞð Þ
[F29]

so that [F28] becomes
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A � ðrðx�xÞ � sÞ ¼ x�xðr � AÞ � ðx�xAÞð Þ � s
[F30]

According to the chain rule for the vector prod-

uct,

r � ða� bÞ ¼ b � ðr � aÞ � a � ðr � bÞ [F31]

with a ¼ s; b ¼ x�xA we obtain for the second

term on the right-hand side of [F30]

� r� ðx�xAÞð Þ � s ¼ �ðx�xAÞ � ðr � sÞ
þr � ðs� ðx�xAÞÞ ½F32�

Because the spin operators are not depending on

space variables, we have

r� s ¼ 0; [F33]

thus

� ðr � ðx�xAÞÞ � s ¼ r � ðs� ðx�xAÞÞ

and from [F30, F32] we arrive at

A � rðx�xÞ � sð Þ ¼ x�xðr � AÞ � s
þr � ðs� ðx�xAÞÞ ½F34�

Introducing the magnetic induction field associ-

ated with the vector potential, i.e.,

B ¼ r� A [F35]

[F34] simplifies to

A � rðx�xÞ � sð Þ ¼ x�xB � sþr � ðs� ðx�xAÞÞ

and the interaction Hamiltonian density [77] now

reads

Hint;spin ¼
e

2m
A � rðx�xÞ � sð Þ

¼ e

2m
x�xB � sþr � ðs� ðx�xAÞÞð Þ [78]
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