C8863 Free Energy Calculations

Lesson 4 Chemical Equilibrium - Experimental Methods

JS/2022 Present Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science Masaryk University, Kamenice 5, CZ-62500 Brno

C8863 Free Energy Calculations

4. Chemical Equilibrium - Exp. methods

Overview

Revisions

At the given temperature and definition of the standard state, the equilibrium constant is determined only by the standard reaction Gibbs energy:

$$\Delta G_r^{0} = -RT \ln K$$

• The equilibrium constant *K* is proportional to activities of all compounds in the equilibrium.

$$K = \prod_{i=1}^{N} a_{r,i}^{v_i}$$

Sign convention for stochiometric coefficients v_i

products (end state)- positive valuereactants (initial state)- negative value

• For ideal (diluted) solutions, activities can be approximated by molar concentrations:

$$K \approx \prod_{i=1}^{N} [X_i]_r^{v_i}$$

Equilibrium

multiple chemical processes

Complex Chemical Mixtures

Composition of the chemical system with multiple reactions is determined by a system of equations. These equations include

- each equilibrium process
- balance of all reacting compounds

Example:

Complex Chemical Mixtures

Composition of the chemical system with multiple reactions is determined by a system of equations. These equations include

- each equilibrium process
- balance of all reacting compounds

Example:

C8863 Free Energy Calculations

4. Chemical Equilibrium - Exp. methods

balance

-6-

Numerical Solution I

Example:

$$A + 2B \iff AB_{2} \qquad K_{1} = \frac{[AB_{2}]}{[A][B]^{2}}$$

$$2A + C \iff A_{2}C \qquad K_{2} = \frac{[A_{2}C]}{[A]^{2}[C]}$$
Unknowns:

$$[A], [B], [C], [AB_{2}], [A_{2}C]$$

$$\rightarrow 5 \text{ equations}$$

$$AB_{2} \qquad K_{1} = \frac{[AB_{2}]}{[A][B]^{2}}$$

$$K_{2} = \frac{[A_{2}C]}{[A]^{2}[C]}$$

$$K_{2} = \frac{[A_{2}C]}{[A]^{2}[C]}$$

$$C_{0,A} = [A] + [AB_{2}] + 2[A_{2}C]$$

$$C_{0,B} = [B] + 2[AB_{2}]$$

$$C_{0,C} = [C] + [A_{2}C]$$

Only two components are independent:

- five components
- three balances

Numerical Solution I, cont.

Find [A] and [B] such that the last two equations are satisfied:

1. Determine dependent parameters:

2. Solve system of independent equations: f(X) = 0

$$K_{1} = \frac{[AB_{2}]}{[A][B]^{2}} \qquad 0 = \log([AB_{2}]) - \log([A]) - 2\log([B]) - \log(K_{1})$$
$$K_{2} = \frac{[A_{2}C]}{[A]^{2}[C]} \qquad 0 = \log([A_{2}C]) - 2\log([A]) - \log([C]) - \log(K_{2})$$

Octave, Matlab: Isqnonlin

Numerical Solution II

Find concentration of all components such that all equations are satisfied: [A], [B], [C], $[AB_2]$, $[A_2C]$

1. Solve system of equations:	f(X) = 0
$c_{0,A} = [A] + [AB_2] + 2[A_2C]$	$0 = [A] + [AB_2] + 2[A_2C] - c_{0,A}$
$c_{0,B} = [B] + 2[AB_2]$	$0 = [B] + 2[AB_2] - c_{0,B}$
$c_{0,C} = [C] + [A_2C]$	$0 = [C] + [A_2C] - c_{0,C}$
$K_1 = \frac{[AB_2]}{[A][B]^2}$	$0 = \log([AB_2]) - \log([A]) - 2\log([B]) - \log(K_1)$
$K_2 = \frac{[A_2C]}{[A]^2[C]}$	$0 = \log([A_2C]) - 2\log([A]) - \log([C]) - \log(K_2)$

this might be numerically less stable

-9-

Problems

Host with two binding sites

Note: binding sites are chemically equivalent

Host with two binding sites, tasks

- 1. Are K_1 and K_2 equal?
- 2. Determine the composition of the reaction mixture for $c_{0,H} = 1 \ mM$ titrated by guest up to 6 molar equivalents for:
 - $K_1 = 10^2$
 - $K_1 = 10^5$
- 3. Determine Job Plots for $c_{0,H} = 1 \ mM$ and
 - $K_1 = 10^1$
 - $K_1 = 10^2$
 - $K_1 = 10^3$
 - $K_1 = 10^4$

Host Dimerization

• What is K_D for dimerization process of the host? Selected 1H NMR signal (fast exchange) undergoes the following change during the sample dilution.

TBA

References

- Hibbert, D. B.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. *Chemical Communications* 2016, *52* (87), 12792–12805. <u>https://doi.org/10.1039/C6CC03888C</u>.
- Gilson, M. K.; Irikura, K. K. Symmetry Numbers for Rigid, Flexible, and Fluxional Molecules: Theory and Applications. *J. Phys. Chem. B* 2010, *114* (49), 16304–16317. <u>https://doi.org/10.1021/jp110434s</u>.
- Duboué-Dijon, E.; Hénin, J. Building Intuition for Binding Free Energy Calculations: Bound State Definition, Restraints, and Symmetry. J. Chem. Phys. 2021, 154 (20), 204101. <u>https://doi.org/10.1063/5.0046853</u>.

https://arxiv.org/abs/2102.06089