C8863 Free Energy Calculations

Lesson 4
Chemical Equilibrium - Experimental Methods

JS/2022 Present Form of Teaching: Rev1

Petr Kulhánek

kulhanek@chemi.muni.cz
National Centre for Biomolecular Research, Faculty of Science
Masaryk University, Kamenice 5, CZ-62500 Brno

Overview

macroworld
 microworld

states

(thermodynamic properties, G, T,...)
phenomenological thermodynamics
equilibrium (equilibrium constant)
Kinetics (rate constant)
free energy
(Gibbs/Heimnoltz)

Description levels (model chemistry):

- quantum mechanics
- semiempirical methods
- ab initio methods
- post-HF methods
- DFT methods
- molecular mechanics
- coarse-grained mechanics

Simulations:

- molecular dynamics
partition function
statistical thermodynamics
microstates
(mechanical properties, E)
microstate \neq microworld
- Monte Carlo simulations
- docking
- ...

Revisions

- At the given temperature and definition of the standard state, the equilibrium constant is determined only by the standard reaction Gibbs energy:

$$
\Delta G_{r}^{0}=-R T \ln K
$$

- The equilibrium constant \boldsymbol{K} is proportional to activities of all compounds in the equilibrium.

$$
K=\prod_{i=1}^{N} a_{r, i}^{v_{i}}
$$

Sign convention for stochiometric coefficients v_{i} products (end state) - positive value reactants (initial state) - negative value

- For ideal (diluted) solutions, activities can be approximated by molar concentrations:

$$
K \approx \prod_{i=1}^{N}\left[X_{i}\right]_{r}^{v_{i}}
$$

Equilibrium

multiple chemical processes

Complex Chemical Mixtures

Composition of the chemical system with multiple reactions is determined by a system of equations. These equations include
$>$ each equilibrium process
> balance of all reacting compounds

Example:

$$
\begin{array}{rll}
\mathbf{A}+\mathbf{2} \mathbf{B} & \rightleftarrows \mathbf{A B}_{\mathbf{2}} & k_{1}=\frac{\left[A B_{2}\right]}{[A][B]^{2}} \\
\mathbf{2} \mathbf{A}+\mathbf{C} & \rightleftarrows \mathbf{A}_{\mathbf{2}} & \kappa_{2}=\frac{\left[A_{2} C\right]}{[A]^{2}[C]}
\end{array}
$$

Complex Chemical Mixtures

Composition of the chemical system with multiple reactions is determined by a system of equations. These equations include
$>$ each equilibrium process
> balance of all reacting compounds

Example:
$\mathbf{A}+2 \boldsymbol{B} \rightleftarrows \mathbf{A B}_{2} \quad K_{1}=\frac{\left[A B_{2}\right]}{[A][B]^{2}}$
$2 \boldsymbol{A}+\mathrm{C} \quad \boldsymbol{A}_{2} \mathbf{C} \quad K_{2}=\frac{\left[A_{2} C\right]}{[A]^{2}[C]}$

Unknowns:

$$
\begin{gathered}
{[A],[B],[C],\left[A B_{2}\right],\left[A_{2} C\right]} \\
\rightarrow 5 \text { equations }
\end{gathered}
$$

$$
\text { initial amount } \begin{aligned}
& c_{0, A}=[A]+\left[A B_{2}\right]+2\left[A_{2} C\right] \\
& c_{0, B}=[B]+2\left[A B_{2}\right] \\
& c_{0, C}=[C]+\left[A_{2} C\right]
\end{aligned}
$$

Numerical Solution I

Example:

$\boldsymbol{A}+2 \mathbf{B} \rightleftarrows \boldsymbol{A B}_{2} \quad K_{1}=\frac{\left[A B_{2}\right]}{[A][B]^{2}}$
 $\mathbf{2 A}+\mathbf{C} \rightleftarrows \mathbf{A}_{\mathbf{2}} \quad{ }_{K_{2}=\frac{\left[A_{2} C\right]}{[A][c]}}$

Unknowns:
$[A],[B],[C],\left[A B_{2}\right],\left[A_{2} C\right]$
$\rightarrow 5$ equations

$$
\text { initial amount } \begin{aligned}
& c_{0, A}=[A]+\left[A B_{2}\right]+2\left[A_{2} C\right] \\
& c_{0, B}=[B]+2\left[A B_{2}\right] \\
& c_{0, C}=[C]+\left[A_{2} C\right]
\end{aligned}
$$

Only two components are independent:

- five components
- three balances

Numerical Solution I, cont.

Find $[A]$ and $[B]$ such that the last two equations are satisfied:

1. Determine dependent parameters:

$$
\left.\begin{array}{ll}
c_{0, A}=[A]+\left[A B_{2}\right]+2\left[A_{2} C\right] \\
c_{0, B}=[B]+2\left[A B_{2}\right] \\
c_{0, C}=[C]+\left[A_{2} C\right] \rightarrow\left[A B_{2}\right]=\frac{1}{2} c_{0, B}-\frac{1}{2}[B] \\
& {\left[A_{2} C\right]=\frac{1}{2} c_{0, A}-\frac{1}{2}[A]}
\end{array}\right]-\frac{1}{2}\left[A B_{2}\right]
$$

2. Solve system of independent equations: $\quad f(\boldsymbol{X})=\mathbf{0}$

$$
\begin{array}{ll}
K_{1}=\frac{\left[A B_{2}\right]}{[A][B]^{2}} & 0=\log \left(\left[A B_{2}\right]\right)-\log ([A])-2 \log ([B])-\log \left(K_{1}\right) \\
K_{2}=\frac{\left[A_{2} C\right]}{[A]^{2}[C]} & 0=\log \left(\left[A_{2} C\right]\right)-2 \log ([A])-\log ([C])-\log \left(K_{2}\right)
\end{array}
$$

Octave, Matlab: Isqnonlin

Numerical Solution II

Find concentration of all components such that all equations are satisfied:
$[A],[B],[C],\left[A B_{2}\right],\left[A_{2} C\right]$

1. Solve system of equations: $\quad f(\boldsymbol{X})=\mathbf{0}$

$$
\begin{array}{ll}
c_{0, A}=[A]+\left[A B_{2}\right]+2\left[A_{2} C\right] & 0=[A]+\left[A B_{2}\right]+2\left[A_{2} C\right]-c_{0, A} \\
c_{0, B}=[B]+2\left[A B_{2}\right] & 0=[B]+2\left[A B_{2}\right]-c_{0, B} \\
c_{0, C}=[C]+\left[A_{2} C\right] & 0=[C]+\left[A_{2} C\right]-c_{0, C} \\
K_{1}=\frac{\left[A B_{2}\right]}{[A][B]^{2}} & 0=\log \left(\left[A B_{2}\right]\right)-\log ([A])-2 \log ([B])-\log \left(K_{1}\right) \\
K_{2}=\frac{\left[A_{2} C\right]}{[A]^{2}[C]} & 0=\log \left(\left[A_{2} C\right]\right)-2 \log ([A])-\log ([C])-\log \left(K_{2}\right)
\end{array}
$$

this might be numerically less stable

Problems

Host with two binding sites

Note: binding sites are chemically equivalent

Host with two binding sites, tasks

1. Are K_{1} and K_{2} equal?
2. Determine the composition of the reaction mixture for $c_{0, H}=1 \mathrm{mM}$ titrated by guest up to 6 molar equivalents for:

- $K_{1}=10^{2}$
- $K_{1}=10^{5}$

3. Determine Job Plots for $c_{0, H}=1 \mathrm{mM}$ and

- $K_{1}=10^{1}$
- $K_{1}=10^{2}$
- $K_{1}=10^{3}$
- $K_{1}=10^{4}$

Host Dimerization

- What is K_{D} for dimerization process of the host? Selected 1 H NMR signal (fast exchange) undergoes the following change during the sample dilution.

TBA

References

- Hibbert, D. B.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. Chemical Communications 2016, 52 (87), 12792-12805. https://doi.org/10.1039/C6CC03888C.
- Gilson, M. K.; Irikura, K. K. Symmetry Numbers for Rigid, Flexible, and Fluxional Molecules: Theory and Applications. J. Phys. Chem. B 2010, 114 (49), 16304-16317. https://doi.org/10.1021/ip110434s.
- Duboué-Dijon, E.; Hénin, J. Building Intuition for Binding Free Energy Calculations: Bound State Definition, Restraints, and Symmetry. J. Chem. Phys. 2021, 154 (20), 204101. https://doi.org/10.1063/5.0046853.

