1-Dimensional Nanostructures

1

1-Dimensional Nanostructures

Aspect ratio (AR) = the ratio of length to diameter Cross section Internal twin structure Straight, wavy (worm-like), branched (dendritic) Solid or hollow Monocomponent, bicomponent, multicomponent Homogeneously mixed, spatially segregated Monocrystalline, twinned (1 or 5 twin planes), polycrystalline

2

1-Dimensional Nanostructures

Core-Satellite Core-Sheath Hollow Branched (dendritic)

Dimension-Properties Interplay

Carbon allotropes

Role of Dimensionality

Dimensionality influences electronic structure From continuous bands to discrete energy levels Changes in electrical, optical, magnetic,....properties

1D Nanostructures

Potential Applications of Nanowires

Interconnects Novel probes Multifunctional Hierarchical alignment Building blocks for devices

Quantum Confinement Effect

The band gap increases with decreasing diameter (quantum confinement)

Mechanical Properties

Strain-stress curve of a nanotube

Carbon Nanotubes

- (Re)discovered by Iijima (1991, NEC)
- 1952 Russians (CO + Fe hot, SEM)
- Rolled up sheet of graphene
- Capped at the ends with half a fullerene

Carbon Nanotubes

Bulk graphite - molecular slabs (graphene) stacked together via weak van der Waals interactions The rim atoms of graphite (sp²) are only two-fold bonded - a dangling bond pointing outward, but the number of surface atoms is outnumbered by the three-fold-bonded "bulk" atoms The relative chemical energy stored by the rim atoms is negligibly small

Flat graphite nanoclusters cannot tolerate the large chemical energy stored in the dangling bonds of the rim atoms of a small

graphene sheet:

- rolling to nanotubes
- curling to fullerenes

Carbon Nanotubes

Single Walled Nanotubes (SWNT)

- Single atomic layer wall
- Diameter of 0.7 5 nm
- Length several microns to centimeters

Double Walled Nanotubes (DWNT)

exactly two concentric CNT

• the outer wall selectively functionalized while maintaining an intact inner-tube

Multi Walled Nanotubes (MWNT)

- Concentric tubes ca. 50 in number, separation 0.34 nm
- Inner diameters : 1.5 15 nm
- Outer diameters : 2.5 150 nm

Lengths: micrometers to centimeters **Aspect Ratio**: up to 10⁷

SWCNT Diameter from Raman Spectroscopy

- RBM (Radial Breathing Mode): 100 to 300 cm⁻¹, vibration at which the nanotube diameter contracts and expands
- D-band: vicinity of 1350 cm⁻¹, defect-derived peak
- G-band: vicinity of 1550 -1605 cm⁻¹, in-plane vibration of graphite
- G'-band: 2700 cm⁻¹, overtone of D-band

The wavenumber of **RBM** is inversely proportional to the tube diameter **D**

Raman Spectroscopy

Raman effect

- interaction between the electron cloud of a molecule and the external electrical field of the monochromatic light

- a change in **polarizability** with respect to the vibrational coordinate

CNTs: Properties and Potential

Electronic: Bandgap $E_g \sim 1/d$ Ballistic conductivity in metallic CNTs, the highest current density 10^9 A/cm^2 (Cu only 10^6 A/cm^2) SWNT – metallic or semiconducting, MWCNT - metallic

Magnetic: Anisotropic magn. susceptibility $\chi \perp >> \chi \parallel$

Mechanical: Young's Modulus 1.8 –4.5 TPa (SWNT, axial), 0.95 TPa (MWNT) (Steel: 230 GPa) tensile strength above 100 GPa (steel: 1–2 GPa) the highest known

Thermal: Conductivity theor. 6600 W/m K axial, 1.5 perpendicular, 3500 experim. (Diamond 3000, Cu 400 W/m K) 300 W/m K bulk SWCNTs, 3000 W/m K individual MWCNTs Thermal stability 650 °C (SW)–800 °C (MW) in air, 2800 °C in Ar (anealing to graphitize defects), 320 °C with metal oxides on the

surface – O vacancies, Mars-van Krevelen catatlytic mechanism ¹⁵

- DC arc discharge: growth on a cathode C electrode at 3000 °C, MWCNTs and SWCNTs (with catalyst), easy design, few structural defects, short tubes, low yield, low purity, random diameters
- Laser ablation: primarily SWCNTs, few defects, good control over diameter, most costly method, poor scalability, requires Class 4 lasers, Co and Ni catalyst
- Molten salt: primarily MWCNTs, simple process, used for filling CNTs, low yield and crystallinity, poor controllability
- Chemical vapor deposition: both types, high yields, easy scalability, long tubes, alignment and pattern growth, some defects, medium purity

DC Arc discharge

NTs observed in carbon soot of graphite electrodes during arc discharge (during production of fullerenes) The most used method of synthesis in early 1990's

2 carbon electrodes touch, T rises, gap, electric arch, fast e⁻ from cathode ionize He gas He⁺ attracted to cathode (-) Carbon (with catalyst) contained in negative electrode sublimes thanks to high temperatures of the electric discharge (3000 °C)

Yield up to 30 %wt, produces both SWNTs, MWNTs Length up to 50 µm, few structural defects

Laser ablation

Pulsed laser vaporizes graphite target in a high-temperature reactor filled with inert gas (650 mbar, Ar, N_2) CNTs develop on the cooler surfaces of reactor as the carbon condenses Pure graphite – MWNTs

Graphite + metal catalyst particles (Co + Ni) – SWNTs

Yield up to 70 %wt, few defects

Controllable diameter of SWNTs by changing p, T

More expensive than arc discharge, CVD

Molten salt

LiCl, LiBr, 600 °C, graphite electrodes Cathode exfoliates and graphite sheet wraps MWCNTs Yield up to 30 %wt, low purity Large number of defects, amorphous carbon impurity, salt encapsulating a

CVD (Chemical Vapor Deposition)

Substrate + metal catalyst particles (cobalt, nickel, iron)

Distribution of metal catalyst and the size of the particles influence the diameter of NTs

Patterned (or masked) deposition of metal, annealing, plasma etching Substrate is heated

Two gasses are bled into the reactor – process gas (ammonia, nitrogen, hydrogen) and carbon-containing gas (acetylene, methane, ethylene)

Carbon-containing gas is broken apart at the surface of the metal catalyst particle, carbon is transported to the edges of the particle, where it forms the NT

Catalyst is removed by acid treatment

Resulting NTs are randomly oriented

CVD (Chemical Vapor Deposition)

 CH_4 + metal catalyst particles (cobalt, nickel, iron) $\rightarrow Fe_3C/C + H_2$

CVD (Chemical Vapor Deposition)

Plasma Enhanced CVD Plasma is generated by the application of strong electric field during growth Growing NTs follow the direction of the electric field With the correct use of reactor geometry, vertically aligned (perpendicular to substrate) NTs can be grown

Substrate patterned (lithography) with Fe NPs

CDV shows the best promise for industrial manufacturing of CNTs Better price/unit ratio NTs grown on desired substrates

Super-growth CVD

New methods of CVD using different substrates, catalysts Activity and lifetime of catalyst can be enhanced by adding water into the reactor Growing CNTs then form "forests" up to several mm high, aligned normaly Improved efficiency, reaction time and purity of CNTs (more than 99,9%)

Hata, K.; Futaba, DN; Mizuno, K; Namai, T; Yumura, M; Iijima, S (2004). "Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes". *Science* **306** (5700): 1362– 1365. <u>doi:10.1126/science.1104962</u>. PMID 15550668

Defect-free (n,m) SWNTs with Open Ends

A bundle of (10,10) nanotubes held together with strong π - π -stacking interactions

A) Armchair - an achiral metallic conducting (10,10) tube

B) Chiral - semiconducting (12,7) tube

C) Zigzag - an achiral conducting (15,0) tube

All the (n,n) armchair tubes are metallic Chiral or zigzag tubes are metallic only if (n - m)/3 is a whole number, otherwise, they are semiconductors

$$(n,m) = (4,2)$$

A 2D graphite layer the lattice vectors a_1 and a_2

The roll-up vector $C_h = na_1 + ma_2$ Achiral tubes exhibit roll-up vectors derived from (n,0) (zigzag) or (n,n) (armchair).

The **translation vector T** is parallel to the tube **axis** and defines the 1D unit cell.

The rectangle represents an unrolled **unit cell**, defined by T and C_h

Roll-up of (n,m) SWNTs

$$\overline{C_h} = n\overline{a_1} + m\overline{a_2} \equiv (n,m)$$
 (and $0 \le |m| \le n$)

Tube diameter

$$d_{t} = \frac{|C_{h}|}{\pi} = \frac{a_{0}\sqrt{(n^{2} + nm + m^{2})}}{\pi}$$

$$|a_{1}| = |a_{2}| = a_{0} = 0.249 \text{ nm}$$

$$\theta = \tan^{-1} \left[\sqrt{3}m/(m + 2n) \right]$$

$$a = 1.42 \sqrt{3} = 2.49 \text{ Å}$$

$$d(\text{Csp}^{2}\text{-}\text{Csp}^{2}) = 1.42 \text{ Å}$$

Defects in SWNTs

Atomic vacancies – reduction of tensile strength, electrical and thermal conductivity

Topological (Stone Wales) defect – rearrangement of bonds into pentagonic and heptagonic pair (connected, no other types of rings known)

Defects lead to phonon scattering – increased phonon relaxation rate – reduction of mean free path (reduction of ballistic conductivity) leads to reduced thermal conductivity

Defects in SWNTs

Stone-Wales defect (7-5-5-7 defect) \Rightarrow Larger curvature, esp. where the 5membered rings are condensed \Rightarrow addition reactions at this C=C favored

Separation of CNTs

Semiconducting CNTs

- Separation by surfactants, (octadecylamine), a strong affinity

Metallic CNTs

 Separation by diazonium reagents, biomolecules, DNA
 AC dielectrophoresis – 10 MHz, induced dipole, causes the two types of CNTs to migrate along the electric field gradient in opposite directions

Doping of CNTs

Intercalation CNTs

- Between walls of MWCNT – during synthesis or posttreatment

On-wall substitution CNTs

- N or B substitute for C
- In-situ element-containing precursor
- Ex-situ removal of C atom graphite (n) or pyridine (n or p) type of group
Functionalization Possibilities for SWNTs

- A) defect-group functionalization
- B) covalent sidewall functionalization

C) noncovalent exohedral functionalization with surfactants – wrapping

D) noncovalent exohedral functionalization with polymers

E) Endohedral functionalization with C_{60} (C_{60} @CNT, "peapods)

Functionalization Possibilities for SWNTs

Functionalization Possibilities for CNTs

Reactions will occur **first at the end caps**, then on the surface, at structural defects

Functionalization Possibilities for CNTs

TiO₂ and SiO₂ on acid-treated CNTs via ALD

SEM image for the case of SiO₂

TEM image of vertically grown CNT coated with RuO₂ both outside and inside

Assembly of CNTs

CNT applications: Ultra-hard Composites Nanopipettes Field Emission Transistor Nanomanipulator

CNT Applications

CNT Applications

CNTs as photosensitizers:

- (a) electron injection into the conduction band of TiO_2
- (b) electron back-transfer to CNTs with the formation of a hole in the valence band of TiO_2 and reduction of the hole by oxidation of adsorbed OH⁻ species

Nanowires

- Good transport properties Single crystalline nature
- Mechanically robust Defect free
- Flexibility in composition
- Doping possible to create p- and n-type nanowires
- Nanowires-based FETs and basic logic circuits demonstrated in the laboratory
- Techniques for mass manufacture

Synthetic Routes to Nanowires

Epitaxial growth

Catalytic VLS growth

Catalytic base growth

Colloidal synthesis

Defect nucleation

Templated growth

Arrested growth

Assembly of nanoparticles

Vapor-Liquid-Solid (VLS) Growth

(1) Metal catalyst nanoparticles - Au(s)

Feed another element (Ge vapor, GeH_4 or SiH_4) at an elevated temperature (440-800 °C/ultra-high-vacuum)

Gaseous precursor feedstock is absorbed/dissolved in Au(s) till the solid solubility limit is reached (2)

A liquid phase appears, melts to a droplet (3) The droplet becomes supersaturated with Ge

When the solubility limit is reached (4), an excess material is precipitated out to form solid NWs beneath the droplet

Eutectic 360 °C Au (mp 1064 °C) Si (mp 1410 °C) Ge (mp 938 °C)

47

Vapor-Liquid-Solid (VLS) Growth

In-situ TEM images of the VLS process

In-situ TEM images recorded during the process of nanowire growth: (a) Au nanoclusters in solid state at 500 °C

(b) alloying initiated at 800 °C, at this stage Au exists mostly in solid state
(c) liquid Au/Ge alloy
(d) the nucleation of Ge nanocrystal on the alloy surface
(e) Ge nanocrystal elongates with further Ge condensation
(f) Ge forms a wire

Ge NWs on the Bare Ge(110) Substrate

1 micrometer

Si Nanowire Growth

 $SiH_4 \rightarrow Si + 2H_2$

Mass transport in the gas phase

Diffusion in molten catalyst

Chemical reaction at the V-L interface

Incorporation of material in the crystal lattice

Si Nanowires

53

Size Control

Metal particle acts as a soft template to control the diameter of the nanowire

Colloidal Synthesis

Anisotropic shape 1D instability LaMer mechanism

The concentration of atoms increases with time as the precursor is decomposed

The concentration reaches the minimum level of supersaturation, C_{min} , the atoms start to aggregate to generate nuclei and then seeds - homogeneous nucleation

The seeds grow in an accelerated manner because of autocatalysis, the concentration of metal atoms in the solution drops quickly

The concentration drops below the minimum level of supersaturation, no more nucleation

A continuous supply of atoms - decomposition of the remaining precursor, the seeds will grow into nanostructures with increasing sizes until the synthesis is terminated or an equilibrium state is reached between the atoms on the surface of the nanostructures and free atoms in the reaction solution

Colloidal Synthesis

Seeding - heterogeneous nucleation - a much smaller driving force a lower concentration of atoms or a lower reaction temperature) is needed

Assembly of Nanoparticles

Templated Growth

1. Pores filled with material by CVD

2. Alumina matrix dissolved

3. Wires separated

Selective binding of a compound to certain crystal faces

CdTe, TOPO blocks (111)

Alivistos

SLS-growth Mechanism

Nanoengine

Nanoengine runs on catalytic reactions:

Pt part splits H_2O_2 to O_2 and protons H^+ .

Excess electrons move to Ag/Au, reduce H_2O_2 and protons to water.

Release of O₂ causes streaming that propels the engine through the liquid

- 150 micrometers per second
- Joseph Wang UC San Diego and Arizona State

Inorganic NanoTubes INT WO₃ + 2 H₂S + H₂ \rightarrow 3 H₂O + WS₂

Defect free INT-WS₂; (a) SEM image (b) TEM image (scale bar 10 nm)

ZnO Nanorods

Electrospinning

Electrospinning

Parameters:

Electrospraying

- Solution (viscosity, conductivity, surface tension)
- Instruments (voltage, distance b/w electrodes, collector shape)
- Ambient (temperature, humidity, atmosphere)

Electrospinning

Left: Photograph of a jet of PEO solution during electrospinning Right: High-speed photograph of jet instabilities

Taylor Cone

Viscosity

73

Volume Charge Density

Needle-Collector Distance

PA fibers, electrode distance 2 cm (a) and 0.5 cm (b)

Conductivity

Morphology of fibers as a function of electric current (a) 20 hm.% PU (b) 20 hm.% PU with addition of 1.27% TEAB

Relative Humidity

PEO fiber diameter as a function of relative humidity

Coaxial Electrospinning

Side-by-Side Electrospinning

Multijet Electrospinning

Needle-less Spinning

Inorganic Fibers

Th(acac)₄; PVP; EtOH; acetone

Electrospinnin g

Calcination at 400 °C

Soft-Templating

b)

10nm

Na₂WO₄ + CTAB – hydrothermal = lamellar mesostructured composite [CetyIMe₃N]⁺ WO₄²⁻

Pyrolysis and carbothermal reduction in vacuo at 500 - 850 °C

W nanowires - single crystallites grew along the [110] direction

Hard-Templating

Phosphotungstic acid ($H_3PW_{12}O_{40}.6H_2O$, PTA) precursor is completely filled into the mesochannels of SBA-15 via a solvent evaporation-induced impregnation

H₂ as a reducing agent at a temperature of 800 °C for 3 h

Etching the SBA-15 template with HF 5% aqueous

Hard-Templating

Tobacco mosaic virus (TMV) the first virus discovered

Inner diameter 4 nm Length 300 nm

Amine groups in the channel complex with Pd(II) or Pt(II)

The outer surface no amine groups

The selectivity for binding of metal ions to the interior of the TMV

After activation of the channel with Pt(II) or Pt(II), Ni deposited within the TMV channel in an electroless plating bath: Ni(II) + (CH3)2NHBH3

Chemical Vapor Transport

The chemical vapor transport of tungsten in the presence of oxygen onto substrates kept at temperatures higher than the tungsten oxide decomposition temperature (1450 °C)

Substrates were placed close to the filaments (0.5 mm diam) at a distance of 1 mm or less

 O_2 flow rate was varied from 0.03 to 0.1 sccm in 90 sccm of either N_2 or Ar

Experiments were performed at different filament temperatures ranging from 1200 to 2000 °C and at a pressure of 150 mTorr

Chemical Vapor Transport

W + O₂ → WO₂ (g) $\Delta G = -40.08 \text{ kJ/mol K (1450 °C)}$ WO₂ (g) → W (s) + O₂ $\Delta G = -267.33 \text{ kJ/mol K (1500 °C)}$

Chemical Vapor Deposition

 $WO_3 + H_2O \rightarrow WO_2(OH)_2$

$WO_2(OH)_2 + 3 H_2 \rightarrow W + 4 H_2O$

Arrays of single crystalline wires embedded in a single crystalline matrix

Ni-Al - W 1.5 at.% W Directional solidification in a Bridgman type crystal growing facility The crucible support, cooling ring and heating element (tungsten net) The alumina crucible ~1700 ∘C for initial melting thermal gradient 40 K cm⁻¹ a growth rate of 30 mm h⁻¹

Digestion of the matrix HCI (32%):H₂O₂ (30%):H₂O, 10:10:80

the potential oscillates between 0.150 and -0.025 V SHE reference electrode

The counter electrode - a strip of Pt foil pH of 6.0

The tungsten wires A diameter of 200 nm and the mean inter fibre spacing 3 μ m

The fibre orientation was 100 referring to the rod axis

High aspect-ratios (>1000!)

The growth rate V and the nanowire spacing $\boldsymbol{\lambda}$

The increase in the growth rate results in the decrease of wire diameter and an increase in wire density $\lambda^2 V = const$

The growth rate increases, the effect of the lateral diffusion flux along the solid/liquid interface diminishes and the boundary layer thickness increases

These changes in the growth conditions at the solid/liquid interface lead to a decrease in the fibre spacing

The nanowire diameter, a, is related to the spacing, λ , and the volume fraction of the wires, V_f :

 $a^2 = gV_f \lambda^2$

g = the geometrical factor dependent on the fibre arrangement

93

Cold-Field Electron Emission

The ions are formed by direct electron impact from the field-emitted electrons

 $M(CO)_n + e^- \rightarrow M(CO)_{n-x}^+ + x CO + 2e^-$ 8.47 eV

 $W(CO)_6$, $Fe(CO)_5$, $Co_2(CO)_8$, $Co(CO)_3NO$, benzene, naphthalene, acetylene, Tetramethyl silane

1D Metal Nanostructures

Electronic, plasmonic, magnetic, electrical, mechanical, and thermal properties

Optical transparency Electrical conductivity Mechanical flexibility Magnetic anisotropy (Fe, Co, Ni)

- Touchscreens
- Flexible solar cells
- Optical sensors
- Contrast agents for biomedical imaging
- Therapeutic agents for cancer treatment
- Electrocatalysts
- Electrically and thermally conductive composites
- Wearable electronics

1D Metal Nanostructures

Monometallic Multimetallic Heterogeneously structured systems

(A) Alloyed
(B) Segmented
(C) Tadpole-like
(D) Dumbbell-like
(E) Core-shell
(F) Core-satellite
(G) Multiwalled nanotube

1D Metal Nanostructures

Localized Surface Plasmon Resonance

Anisotropic shape

Two LSPR modes - transverse and longitudinal directions

97