

Kód předmětu: C8980

MASARYKOVA UNIVERZITA

Protein expression and purification I. The molecular principles for understanding proteins

Jozef Hritz, Lubomír Janda, Blanka Pekárová and Radka Dopitová

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

For which problems is understanding/theory/computational simulations useful ?

Theory can complement the experiment:

Properties of existing protein mutants, organic molecules

Simulation suggests
 new experiments

Design of drugs, enzymes Stock market prices

Example: Mutations within E2 protein of alpha viruses

Gardner C.L.; Hritz J.; Sun C.; Song T.Y.; Rogers M.B.; Vanlandingham D.L.; Higgs S.; Ghedin E.; Klimstra W.B.; Ryman K.D. Deliberate Attenuation of Chikungunya Virus by Adaptation to Heparan Sulfate- Dependent Infectivity: A Model for Rational Arboviral Vaccine Design. *PLoS Negl. Trop. Dis.* **2014,** 8, e2719

For which problems is understanding/theory/computational simulations useful ?

Theoretical models allow also understanding of situations where:

-experiments are very expensive

-experiments are almost impossible

-possibility for fantasy. How the situation would look like if e.g. water is neutral ...

General structure of an amino acid

The zwitterionic form of an amino acid

1.2. The amino acids

- 1.2.1. The variety of amino acids
 - 1.2.2. Clasification of the amino acids in terms of polarity
- Non-polar side chain Ala, Gly, Ile, Leu, Met, Phe, Pro, Trp, Val
- *Polar, uncharged side chain* Asn, Cys, Gln, Ser, Thr, Tyr

Polar charged side chain Arg, Asp, Glu, His, Lys

1.2. The amino acids

1.2.3. General properties of the amino acids

1.2.3.2. Ionization

										Amino Acid	Symbol	pK ₁ (COOH)	pK ₂ (NH2)	pK R Group
				As	partic Acid									
	14.0									Glycine	Gly	2,4	9,8	
	10.0							10.0		Alanine	Ala	2,4	9,9	
	12.0	Γ					рК _а 2= 1	9.8		Valine	Val	2,2	9,7	
	10.0							10.0-		Leucine	Leu	2,3	9,7	
						-				Isoleucine	lle	2,3	9,8	
	8.0	-						8.0-	1	Serine	Ser	2,2	9,2	
pН	6.0							6.0-		Threonine	Thr	2,1	9,1	
	0.0	Γ		nK	³ = 3.9)		0.0-		Cysteine	Cys	1,9	10,8	8,3
	4.0			P.,				4.0 -		Methionine	Met	2,1	9,3	
		pKa ¹ =	= 2.1	*						Aspartic Acid	Asp	2	9,9	3,9
	2.0			pI=3.0				2.0-		Glutamic Acid	Glu	2,1	9,5	4,1
		$\boldsymbol{\mathcal{C}}$								Asparagine	Asn	2,1	8,8	
	0	.0 1	0.5	1.0	1.5	2.0	2.	5 3	.0	Glutamine	Gln	2,2	9,1	
				Equiva	alents of OH	I-				Arginine	Arg	1,8	9	12,5
										Lysine	Lys	2,2	9,2	10,8
				_		~		~		Histidine	His	1,8	9,2	6
6	Ð (ÇO2H	_	Θ	φC	:02		CO_{2}		Phenylalanine	Phe	2,2	9,2	
-Нз	Ň—	∔_н	÷		HaN-	—H	ЧэN	JĤ		Tyrosine	Tyr	2,2	9,1	10,1
-	(ĊH2	$\begin{array}{ccc} H_3 N & H_1 & H_3 N & H_1 \\ & CH_2 & H_2 C \\ & CO_2 H & CO_2 \end{array}$				Tryptophan	Trp	2,4	9,4				
	0	со₂н		:02	co_2)	Proline	Pro	2	10,6			
	pl	H < 2	pl	- ⊣≈2.8	рН ≈	37	р	H > 10)					

7

1.3. The primary structure of proteins

1.3.1. The peptide bond

Resonance stabilization of the peptide bond

Partial double bond character of peptide bond

The cis and trans forms of the peptide bond

Atom	σ, Å	ε, kcal/mol		
0	2.96	0.210		
N	3.25	0.170		
C in C=O	3.75	0.105		
Other C	3.50	0.080		
H on N	0.00	0.000		
H on C	2.50	0.050		

$$S_{ij} = \frac{S_{ii} + S_{ji}}{2}$$
$$e_{ij} = \sqrt{e_{ii}e_{jj}}$$

Combination rules for Lennard-Jones potential

Calculate LJ potential energy between Ca..Ca and Ca..O at the distance 2.8 Å

What is general principle for stable – equilibrium state?

Condition for equilibrium state E_p ->min

What is the potential energy of a 1kg potato in the height 1m above the ground?

 $E_p = mgh$

Useful Physical/Chemical Constants

Constant Avogadro's Number Faraday Constant Molar Gas Constant Coulomb's Constant Speed of Light (Vacuum) Boltzmann Constant Charge on a Proton/Electron Standard acceleration of gravity Planck's Constant
$$\label{eq:Value} \begin{split} & \underline{Value} \\ N_A &= 6.022 \ \times \ 10^{23} \ mol^{-1} \\ F &= 96 \ 485.33 \ C \ mol^{-1} \\ R &= 8.314 \ J \ mol^{-1} \ K^{-1} \\ k_e &= 8.987 \ \times \ 10^9 \ N \ m^2 \ C^{-2} \\ c &= 299 \ 792 \ 458 \ m \ s^{-1} \\ k_b &= 1.38 \ \times \ 10^{-23} \ J \ K^{-1} \\ e &= 1.602 \ \times \ 10^{-19} \ C \\ g &= 9.8 \ m \ s^{-2} \\ h &= 6.6 \ \times \ 10^{-34} \ m^2 \ kg \ / \ s \end{split}$$

Please solve a problem.

Question 1: What is the potential energy [in Joules] of an object in the height 10000 m above see level. The potential energy at the see level is considered to be zero.

The object is molecule of nitrogen (N2)10 pointsMolecular mass of nitrogen atom is 14 Da8 points

 $J = kg m^2 s^{-2}$ 6 points

Solution:

 $E_p = mgh$ $g = 9.8 m s^{-2}$ h = 10000 m

m = $28 \text{ g} / 6.022 \times 10^{23} = 4.6 \times 10^{-23} \text{ g} = 4.6 \times 10^{-26} \text{ kg}$

 $E_p = 4.6 \times 10^{-26} \text{ kg} 9.8 \text{ m s}^{-2} 10000 \text{ m} = 45 \times 10^{-22} \text{ kg m}^2 \text{ s}^{-2} = 45 \times 10^{-22} \text{ J}$

Why molecules of nitrogen do not fall to the ground if E_p ->min?

Boltzmann formula

If the molecule can adopt two microstates A and B then the **ration** of their probabilities is:

 $\frac{p_{\mathsf{B}}}{p_{\mathsf{A}}} = e^{-\frac{(\mathsf{E}_{\mathsf{B}}-\mathsf{E}_{\mathsf{A}})}{k\mathsf{T}}}$

e – Euler number for T = 300K T*k_h = 300 K * 1.38 × 10⁻²³ J K⁻¹ = 4.14 * 10⁻²¹ J

How many times there is smaller probability to find molecule of nitrogen in the height 10000 m with respect to the ground level?

$$\frac{p_{10km}}{p_0} = e^{-\frac{4.5*10^{-21}J}{4.14*10^{-21}J}} = 0.34$$

Sometimes it is simpler to calculate amounts per mol

$$\frac{p_{B}}{p_{A}} = e^{-\frac{(E_{B}-E_{A})}{RT}}$$

$$R^{*}T = 300 \text{ K}^{*} 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} \cong 2500 \text{ J} \text{ mol}^{-1} = 2.5 \text{ kJ mol}^{-1}$$

$$E_{p} = \text{mgh} = 0.028 \text{ kg}^{*} 9.8 \text{ m} \text{ s}^{-2} * 10000 \text{ m} = 2744 \text{ J} \text{ mol}^{-1}$$

What energy difference leads to the Boltzmann probability ratio of 0.01? I.e. it is large energy difference with respect to the thermal energy

$$\frac{p_{B}}{p_{A}} = e^{-\frac{(E_{B}-E_{A})}{RT}}$$

$$\ln \frac{a}{c} \frac{p_{B}}{p_{A}} \frac{\ddot{o}}{\vartheta} = -\frac{(E_{B}-E_{A})}{RT}$$

$$-RT \ln \frac{a}{c} \frac{p_{B}}{p_{A}} \frac{\ddot{o}}{\vartheta} = (E_{B}-E_{A})$$

$$\ln 10 = 2.3$$

$$\ln 100 = \ln 10^{2} = 2\ln 10 = 4.6$$

$$\ln 0.01 = -\ln 100 = -4.6$$

$$for \frac{a}{c} \frac{p_{B}}{p_{A}} \frac{\ddot{o}}{\vartheta} = 0.01$$

$$(E_{B}-E_{A}) = -2500 \text{ J.mol}^{-1} * (-4.6) = 11500 \text{ J.mol}^{-1} = 11.5 \text{ kJ.mol}^{-1}$$

What energy difference leads to the Boltzmann probability ratio of 0.99? I.e. it is small energy difference with respect to the thermal energy

$$-RT \ln \stackrel{\&}{c} \frac{p_{B}}{p_{A}} \stackrel{\ddot{o}}{=} (E_{B} - E_{A})$$
$$\ln 0.99 = -0.01$$
$$for \stackrel{\&}{c} \frac{p_{B}}{p_{A}} \stackrel{\ddot{o}}{=} 0.99$$

 $(E_{B} - E_{A}) = -2500 \text{ J.mol}^{-1} * (-0.01) = 25 \text{ J.mol}^{-1} = 0.025 \text{ kJ.mol}^{-1}$

Please solve a problem.

Question 2: What is the probability of finding proline aminoacid in cis conformation?

The energy difference between cis and trans conformationof proline is E^{cis} - E^{trans} = 5 kJ.mol⁻¹.Temperature is 27 °C. For simplicity: p^{cis}+p^{trans} = 110 points

t = 27 °C corresponds to the T= 300 K 8 points

$$(p^{trans} / p^{cis}) = (p^{cis} / p^{trans})^{-1}$$
 4 point

Solution:

$$\frac{p^{\text{trans}}}{p^{\text{cis}}} = e^{-\frac{(E^{\text{trans}} - E^{\text{cis}})}{RT}} = e^{\frac{(E^{\text{cis}} - E^{\text{trans}})}{RT}} = e^{\frac{5\text{kJ.mol}^{-1}}{2.5\text{kJ.mol}^{-1}}} = e^2 = 7.4$$

$$p^{\text{cis}} + p^{\text{trans}} = 1$$

$$p^{\text{trans}} = 1 - p^{\text{cis}}$$

$$\frac{1 - p^{\text{cis}}}{p^{\text{cis}}} = 7.4$$

$$p^{\text{cis}} = \frac{1}{1 + 7.4} = 0.119 = 11.9\%$$

 \sim 10% of prolines are in cis conformations.

Very slow conversion between trans and cis conformations due to high energy barrier is often rate limiting step in protein folding kinetics.

Zoldak, G.; Aumüller, T.; Lucke, C.; Hritz, J.; Oostenbrink, C; Fischer, G.; Schmid, F.X. A library of fluorescent peptides for exploring the substrate specificities of <u>prolyl isomerases</u>. *Biochemistry* **2009**, 48, 10423-10436

Proteins are composed from aminoacids with different physico-chemical properties Individual aminoacids are connected by peptide bond Two possible conformations around peptide bond: trans and cis. Proline is the only aminoacid where cis conformation is non-neglible (~12%) Trans and cis conformations are separated by quite high energy bariier that in case of prolines can be lowered by prolyl isomerases

Ramachandran plot for a bad (left) and good (right) quality structure

pdh2ohx

Phi congress

Low resolution (2.9 Å) High resolution (1.8 Å)

Energetically unfavorable conformational areas

2.9Å <
$$r_{min}(C...C)=3.0Å$$

 $\leftarrow 2.9Å \rightarrow$
C' C' N N
 \swarrow / / / //
N - C^{\alpha}
 ϕ ψ
2.9Å > $r_{min}(N...N)=2.7Å$
 $\leftarrow 2.9Å \rightarrow$
N N
 \sim / //
 $V_{min}(N...N)=2.7Å$

Atom	σ, Å	ε, kcal/mol
0	2.96	0.210
N	3.25	0.170
C in C=O	3.75	0.105
Other C	3.50	0.080
H on N	0.00	0.000
H on C	2.50	0.050

Additional energetically unfavorable conformational areas because of the presence of carbonyl oxygen

Glycine – less sterically restricted because of lacking the side-chain

Additional energetically unfavorable conformational areas because of the presence of C^β

Alanine

Atom	σ, Å	ε, kcal/mol
0	2.96	0.210
N	3.25	0.170
C in C=O	3.75	0.105
Other C	3.50	0.080
H on N	0.00	0.000
H on C	2.50	0.050