Jaro 2021 C9906 Spektroskopické metody charakterizace nanomateriálů 1. Spektroskopie multifunkčních koloidálních nanostruktur - reprezentativní strategie kondenzace polymérních a nanočásticových solů - příklady spektroskopického pozorování fyzikálních a strukturálních vlastností 2. Polovodičové nanočástice v elektrotechnickém sektoru (ZnO, „CdZnSSe") - Transparentníplanární elektrody - Elektrochromie - Elektro/fotoluminescencí systémy 3. Ti02 v solárním nanosektoru - Úvod do solární technologie - Nanofotokatalytické systémy - Nanofotovoltaika ď* - a gfyi Institut des) i IUI S Sciences Chimiques í Ulil £ L de Rennes J^ L. Spanhel Chemické inženýrství anorganických nanokoloidu Multiparametrální syntézy: Cíl: Monodisperzita, stabilita, bez toxicity, jednoduchou cestou Prekurzor I + Ligand Komplexace Prekurzor II + Ligand Dopovací prvky Nukleace/Zrání Modifikace povrch/interior 2 Čištění Voda/Etanol/Koordinační solventy (- 40°C < T < +360 °C) >títut desí % Sciences Chimiques § í """SS de Rennes p — v&c L. Spanhel Multifunkcionalita H L-CD Bi-funkcionalita Jádro/Slupka co-dopovánŕ El. náboje Stabilizátor Sol-gelova Nanochemie 1. Molecular bottom-up approach 2. High homogeneity of multi-atomic compositions 3. Macroscopic property tuning on the molecular scale tf| - — Institut desl £ IUI S Sciences Chimiques o- v&c L. Spanfte/ L. Spanhel Komplexace alkoxidů Snížení reaktivity a protekce vůči srážení Chelating Agents R R j** I M M \ / M Carboxylates R o y \ / M R .O y I M M Sulfonates R R1' vr M J 1 ? I M m M p-Diketonates a-Amino- Phosphonates carboxylates M(OR)n R-( M(OR)n, M = V, W, Sn, Ti, Zr, Ce, Al, Y, Zn,... hydrolýza & kondenzace X5 ti *É ^ Institut deal •; ILJI í Sciences Chimiques ŕ UfU í k de Rennes L. Spanhel Strategie organizace nanočástic na substrátech ii(OEt): Tvorba tenkých vrstev • dip-coating • spin-coating • spray • Doctor Blade Sol vrstva Spékání Fotolitografie Adhéze ! Kovalentní vazby Elektrostatické spojení (0 E co i- o (X: SH, NH2, COO) X- i-+-> w n 3 w > o > o ■ i^í1. Institutes) í nit % Sciences Chimiques Ĺ ""SS de Ren nes v&c L. Spanhel Kontrolované ponořování/tažení substrátu (ongl. dip coating) Solgelway Paris Landau- Levichova teorie: e[jim] = 0,94(n vt)% (Tai^-iP-g^ e tloušťka vrstvy rj dyn. viskozita Ygi napětí fázového rozhraní p hustota roztoku g gr. zrychlení (9,806 m/s2) vt rychlost ponoru \3( - a »M-4"t Institut des) t IUI fe Sciences Chimiques UBU/ &KdeRenvn&ecs L. Spanne/ Centrifugální pokrytí: Roztok na rotujících substrátech, angl. Spin-on coating a) \ 0 55 55 1 + 4 • p • co2 • e\ • ř 3-/; e tloušťka filmu e0 počátková tloušťka r| dyn. viskozita co rotační rychlost substrátu p hustota roztoku t doba rotace \3( - ^ »M-4"t Institut des) ľ ILJI fe Sciences Chimiques UBU/ &KdeRenvn&ecs L. Spanfte/ mobile substrates tf| - — »V Institut des) £ IUI S Sciences Chimiques v&c L. Span hei fs-Laser Printed Freeform 3D Structures Laser source: 100-400 fs, MHz-kHz SHG g)->2g) initiates 2PP (340 nm - 540 nm) ective Sub-100 nm voxel S. Steenhusen, R. Houbertz FhG, ISC, Wurzburg, Germany Fraunhofer ISC Low NA focus auditory ossicles human middle ear jů * * A A\p Institut d J * * a * ' IUI % Sciences Chimiques ycu/ ^7:deRenviecs L. Spanhel solid/liquid Sciences Chimiques f ""EE de Rennes «~ v&c L. Spanhel Note: Av|/ = energy barrier at the interface (> 100 nm) EgaP = §aP energy varies with size jfe> SFermi= Fermi level (eV) ces Chimiques ""' de Rennes v&c L. Spanhel _±_ anode cathode Note: Surface chemistry, nanoporosity And size are the key parameters Figure of merit ~ T / Rs T = optical transmission (UV : 400-900 nm) Rs = surface (sheet) resistance (< 20 Q) macro Large specific surface area!! w 7and Rs are controled by : Morphology (porosity, degree of crystallinity) Surface chemistry (traps, oxidizing agents) Defects - intrinsic and extrinsic Doping ionic/cationic Sciences Chimiques L ""S3 de Rennes o~ v&c L. Spanhel Rs = p / e = 1 / q ne |i t Rs: sheet resistance (Q/D) p: electyric resistivity (Q cm) t: film thickness ( < 2 |iim) ne: number of free electrons / cm3 \x: electron mobility (cm2V1s"1) q: elementary charge N \x q = conductivity (Q_1 cm1) H20. H +OH" 10 24 23 £ 10 o O Sio2' ti -/n20 ft 10* 10 19 -1_I I 11^ III_I_I I I 1.1 III_I_I 111 Bi Au**AJ,/i0?O' » ft ■ cm" J *fl0'O cm • * * % ■ / v /%X N InO; ^io'ncm'f iJ-.-- S SnO, 2 *x k. 10*0' cm 0.1 S Sr GaAs _» _» _ 10 100 1000 Electron Mobility, (cmVV1) t|i via morphology & surface chemistry IUI S Sciences Chimiques L. Spanhel .....ill - I_I_ĺ L j i ■ i I_i_I_]_lJ 0.3 0.5 1 2 3 5 10 ?0 30 50 Wavelength {jiml ■i'--- . Institut des) f IkJI Sciences Chimiqu« L. Spanhel Elaboration methods Pulsed Laser Deposition Sputtering Sputter cathode /-Vacuum chamber - - Unhealed glass Sputter plasma Spray pyrolysis SPRAY PYR0LYSIS Spray nozzle Aerosol !/ _ o o ó i o o o/cni J o u ^ Heated glass Soft chemistry Metal alkoxides H&C dip/spin heat —► Sol-* Gel -► Films source polymeric OO o° particulate Institut ties) * IUI Sciences Chimiques yßU/ ^7;deRenvn&ecs L. Spanne/ nano-ZnO JACS 1991, 113, 2826 EtOH, 90°C 4 Zn(Ac)2-2(H20) 2 H Ac + 7 H20 + [Zn40](Ac)6 (T) nanoparticulate 2.5 n m < taille < 5 nm polymeric taille < 1 nm [Zn40](Ac)6 Zn(Ac)22(H20) 2-aminoethanol LiOH-HoO Zn-Ac • ■» ■ ln.tltuld™) ■ ILJI e Sciences Chimiques ÜB)/ ^75deRenviecs L. Spanhel AZO electrode via sol-gel (ZnO/AI3+) 3500 2500 1500 500 Wavenumber [cm1] - -a InMltutdei) Sciences Chimiques ( ™a de Rennes vxar^f v&c L. Spanhel (Zn40)Ac OH' w Post-condensation: F 1. Pore filling 2. Elimination of 02, H20 1 A Creation of conducting € ^^channels " nD ~ 2.1 |i = 9 cm2/Vs nD = refractive index (ZnO bulk: = 2.1) 100 80 60 \- 40 20 0 2 |jm 0.5 1.0 1.5 2.0 2.5 3.0 M|im] ■ » i|X in.tin.tdW) ■ 111 £ Sciences Chimiques JBI/ tt";:deRTaecS L. Spanhel H CE = coloration yield (optical efficiency) A O.D. = optical density change (contrast) Q = injected charges (C/cm2) Instltutdea) i Sciences Chimiques ™ai de Rennes rtsm^f *—•— v&c L. Spanhel Ni(OH)2 NiOOH + H+ + e" NiO + Ni(OH)2 Ni203 + 2H++ 2 e" green to brownish Institut de«) * IUI Sciences Chimiques yKU/ ^7;deRenvn&ecs L. Spanhel Electrochromic cells design (global overview) glass or plastics + 1-4V inserted electrode ® Molecules Nanoparticles Org. Conjugated Polymers Key parameters: Engineering of electronic and ionic transport Life time: 104-105 cycles (5-20 ans) Coloration/decoloration dynamics - ms, sec, min Temperature: -50'Xtill + 100°C Optical transparency of multilayers inserted electrode H+, Li+, Na+ glass or plastics Ionic Conductors: Gels, membranes, organoceramics - Zr02, Ta205 - Organic-inorganic hybrids - polyelectrolytes: PEO, PVA ' Sciences Chimiques s f ""SS: de Rennes ■Vj^^tf v&c L. Spanhel II Viologenes (methyl-, ethyle-) at the Ti02 NP's interface MV gj 60 £ to c TO 400 450 500 550 600 650 Wavelength (nm) 700 -1 1 j. Catalyzed electrochromy -1 1 P- r 0 OCT Ti02/MV2+ <- Redox pair r h L i J 1—Li+ © OCT • ■» 11^. In.titut.teJ) S IUI % Sciences Chimiques %Wj ^:deRenvn&ecS L. Spanhel TiOo/MV2+ + Lil Ti02/MV + + e- + Li+ + I2 bleached darkened Thin film technologies 1. rf-sputtering 2. CVD (molecular precursors of W, Nb, Ti) 3. Sol-gel - WOfOEtjj, W02(OEt)2 - W/H202/(COO)2 - Nb(OR)5 - Ti(OR)4 - Ni(Ac)2 4H20/MeOH/dimethylamlnoethanol Pilkington, St Gobain, Daimler Chrysler, Renault, Toyota, Skoda etc... '" Sciences Chimiques .....~\ de Rennes L. Spanhel Vö^f v&c anode EL- Figure of merit Hel — Tel ' ^photons ^ ^el,injected - • Inrtttut d>«) " Sciences Chimiques " 1 de Rennes v&c L. Spanhel Global design of hybrid cells for intersectorial applications cathode ^NjJ-n - diode (plastics) anode PPV p-SC 6 \ 1 T SOj Na+ Q Nanoparticles and plastics PEDOT = poly-(3,4-ethylenedioxythiophene) PSS = poly( styrene sulfonät) PPV = poly(p- phenylene vinylene) Luminophors et conductors p or n ■ij* «X Institut de«) IUI % Sciences Chimiques JBU/ ^i'":deRenvn&ecs L. Spanhel CdS, CdSe, ZnS, CdTe, ZnTe, Silicium, Carbon! etc... Cations 77? (III): Er, Yb, Tm ZnO, CdSe, NaYF4 Silica, Au, Ag Organic chromophors (Er, Yb)@NaGdF4 Sciences Chimiques ŕ ""SS de Rennes L. Spanhel o< 0,1% í IUI % Sciences Chimiques W ^7;deRenvn&ecS L. Spanhel Life time of charge carriers in SC-NPs 5 -10 nm lumiere 1 fs 10 100h 1 ps Recombinaison thermique NP 1 ns Note: Blocking of ultrarapid thermal recombinations is needed 1 |IS logt Duree de vie-T I 1 JH Recombinations/Relaxations of charge carriers SC-NP's Luminescence » - » Institut des) > IUI » Sciences Chimiques %JBU/ ^™deRenvn&ecs ^ L. Spanhel 7/ % lanthanide doping I Luminescence Activation via « core-shell » Spatial charge separation Note: 1. Choice of SC-couple 2. Shell nanochemistry (epitaxy, strong chemical bonds) Nanocomposites "Core-Shell" CdS-M(OH)2 Cd(CI04)2/H2S/H20 NaOH M(CI04)2 (M:Cd, Zn) M(OH), acivated 0,5 0,4 0,3 E 2 0,2 Q d 0,1 Absorption Lumineszenz .türkis 300 350 X [ nm ] JACS 1987 i IUI Sciences Chimiques % 1ml S L """"" de Rennes vMIIJ/ v&c L. Spanhel Core-shell activated luminescence TOPO Cd(CH3)2 Se (s) + TBP (I) Se=P(C4H9)3 360°C - -,^1^ Institut de«t i Sciences Chimiques „ £ r-"a de Rennes 1IMJ rCdSe^ Se2- M „ Cd2^ (Me3Si)2S/Ar Zn(CH3)2 TOPO: O = P(C8H17)3 HS-C12H25 Hydrophobic, soluble in toluene !! CdSe Quantum Dots (Bavendi Group) ííflll Bawendi et al, MIT; Alivisatos et al, Berkley L. Spanhel Q Lanthanide doped Nanoparticles (Ln(5)NP's) Figure of merit ~ NLn (cm3) t (ms) T (%) / n (pph0non) 1. NLn = 1020 - 1021 Er3+/cm3 2. t = life time of luminescence Er3+: 10-25 ms 3. Film transparency 4. Luminescence efficiency (phonon energy!) Luminescence efficiency Wr + Wnr Wr + AeBp Wr = probability of recombination (radiative) Wnr = Probabilitě de la recombination (non-radiative) p = number ofphonons bridging the fundamental gap A,B = empirical constantes 11/2 13/2 15/2 A savoir: Phonon = elastic waves produced by collective atomic vibrations Multi-phonon Relaxation Energy Transfer (Dexter) Er - O - Er -gap 1.54 jim 1.54 u.m (0,8 eV) = 6537 cm1 • ■x Institut des) ? I ft JI « Sciences Chimiques f ""SS de Rennes »■ «— v&c L. Spanhel p = A E/ n oj = 6537 cmV n oj Vibration nw (cm-1) p - phonons O-H 3000-3500 2 C-H 2800 2-3 P-O-P 1300 5 Si-O-Si 1000 6 MxOy MxChalcy 300-800 8-20 fluorides 200-400 15-30 Note: To maximize the fluorescence intensity Institut des) * IUI Sciences Chimiques v&c L. Spanhel 1. Avoid Ln- ionic agregations 2. Avoid high energy phonons (OH, CH) Multiphonon relaxation in ethanolic nanocolloids 11/2 13/2 15/2 1.54 urn Er3+ u c U O 3 Er@CdSe 1,7 nm clusters Er@ZnO 5 nm nanocrystals Er-@APTES mplexes 1400 1500 1600 1700 A, [nmj ■.....A) s Sciences Chimiques ""SS de Rennes ■ignJS — v&c L. Spanne/ „—,r M Local networks I IUI % Sciences Chimiques w ^7;deRenvn&ecS L. Spanrte/ Er,Si-co-doping" of nano-ZnO Zn(OAc)2 in 1-Propanol Me4N-OH 5-10% TEOS 1-10 at.% Er(OAc): 2-3 M Er,Si@ZnO-Sol for dip coatings u c Qi u s_ O 3 E E ^> Er3+,Si4+@Zn0 1 waveguide \ \ t ~ 10 ms ~i-I-i-r 1460 1500 1540 1580 1620 I IMI % Sciences Chimiques W ^7;deRenvn&ecS L. Spanfte/ Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals** By Stephan Heer. Karsten Kämpe. Hans-Ulrich Giulel, and Markus Haase* Adv. Mater. 2004 LnCI3 6H20, Ln : Y, Yb, Er, Tm in methanol Ligand! NH4F DMSO Chloroform NaYF4/Ln NaYF4/Ln IUI ut des) Tiiquc lenm v& L. Spanhel 7: Sciences Chimiques * L~~ďeRennes ř v&c Q Nanoparticles = Carriers and Activateurs of FRET FRET = « Forster resonant energy transfer » Critical parameters FRET: Donneur Accepteur Ex Em Em AAA Longueurs d'ondes (nm) B 1.0 0 0,6 15 1 0.4 111 02 0.0 o R < 10 nm R-6 E = ■ —r-i-1-1-1 0 2 4 6 8 10 Pin lie FRET J g R » 10 nm Distance (nm) I'm ,k l/itl Angle t 30° Angle - 90° Wikipedia s Sciences Chimiques £ L "■•»; de Rennes L. Spanhel ML Nanoparticules de NaGdF4dopees par Er3+et Yb3+ pour l'upconversion de la luminescence shell: NaGdF4-Yb rS/2 core: NaGdF4- Er3+, Yb3+ r9/l «I 1 ■ll/l '13/2 Tin Yb5' Shell 'is/2 £ IUI % Sciences Chimiques # ^7"deRenvnsecS ^ L. Spante/ Er34 Yb3* Yb3' Yb3, Core Er3« Yb3* Shell Vetrone et al, Adv. Fund. Mater. 2009 Blue Emission reen Emission Red Emission Wang&Tang, Nanoletters 2006 Greffage de trois chromophores organiques en tandem sur les NP de la silice xqv = 480 \FRET *ex nm SiO Taille ■ v ■O2 i/aptes I IUI £ Sciences Chimiques L. Spanhel v&c DJfl -J 0.6 H J °-4 -I E o 0.2 H o.tH •0# excitation:/l i FITC Ex FITC Em R6G Ex R6G Err ROX Ex ROX Em -1—1—1—1—1—1—>—1—1—1—1—1—■—1—p—1—1—1 350 400 450 500 550 600 950 700 7 50 800 Wavelength {nm) Chapter 2. Revision, questions: 1. Explain energy diagram differences between macro- and nanoelectrodes in contact with electrolyte 2. Knowledge of crucial phys. parameters governing the performance of TCO electrodes 3. Strategy of controlling mobility and concentration of free electrons 4. Describe the component design and chemical composition of catodic and anodic electrochromy device 5. What are the competing processes taking place in photoexcited semicondutor nanoparticles? 6. What are the strategies of photoluminescence activation? 7. Explain the energy diagramme of strongly luminscent SC NP's 8. Explain the close relation between photovoltaics and electroluminescence 9. What are the crucial parameters of lanthanide based luminescing devices? Instltutdesl i IUI & Sciences Chimiques k UVU I L """?">de Rennes \Uaf# v&c L. Spanhel Veselovskii & Shub 1952 1839 Fujishima & Honda 1972 [nO colloids id ° o° 8 o o ° ° °0 ° _ ° Q, J membranes H202 H20 microcristaux micropoudres H2 + 02 Ti02, ZnO, W03, Fe20o, CdS, ZnS,graphene, fullerenes 1954 1980 nanotechnology History of solar technology Phänomene photoelectrigue 1. Generation: mono-Si Chapin, Fuller, Pearson (USA) 2. Generation: couches minces a base de a-Si, CdTe, CulnSe2 (CIS) 3. Generation: nanostructures, metamateriaux 7& ......As, i IUI S Sciences Chimiques ■ ■■■ * , de Rennes *- , vac L. Spanhel Photocatalysis applications 1. Organic preparative synthesis 2. Environmental detoxification 3. Self-cleaning windows 4. Solar water splitting (solar fuels, 02, H2) 5. Carbon dioxide transformations 6. Biosystems in photocatalysis g3§ ■ Sciences Chimiques j L "'»- de Rennes ■0^^^ *—• v&c L Spanhel IUI ► spectral profile based selection visible light active nano's are needed (400 - 600 nm) ► thermodynamics based selection comparison of band energy levels with redox potentials ► kinetics oriented selection heterostructures, dopings and surface modifications ► morphology of immobilized nanostructures particle shapes, aggregate architectures and mesoporosity ► integration into photoreactor prototypes on various scales nanocolloids, powders, thin coatings, photoreactor design i IIII \ Sciences Chimiques % [Ml $ L U"SS de Rennes L. Spanhel Photocata selection : 1. Optical Gap 2. Energy levels of VB and CB 3. Photostability 4. Toxicity 5. Applications (energie/environnement/preparative synthesis > .2 0 = at o 0- Conduction band —™ Valance band • Band gap (eV) -1.8 1 Ti02 3.2 WO, 2.79 -0.42 2 4 -0.31 CdS 2.18 -0.8 -0.4 2.7 2.37 1.78 SnS2 2.11 -0.90 2.89 ZnO 3.2 2.9 v2o5 2.6 1.9 ZnS 3.7 2.6 SrTi03 3.4 -0.93 -0.3 InP 1.34 -0.84 2.25 -0.48 0.5 . TaON 2.29 -0.4 AgCl 3 GaN 'J:1 3.4 -0.7 AgBr 2.6 Ni2P 1 0.8 CdSe 1.8 1.89 Ta3N5 2.04 2.5 AgNbO, 2.8 2.7 1.15 2.2 2-61 NaNb03 2.32 2,5 uv visible IR E 1-5- 5 1 - 0,5 - 1 000 1 500 2 000 Longueur d'onde (nm) C Brki fducotanffLUTicnia. 2020 Emuqnrrrent icV./qvr Tfim i..... 1 ■& Sciences Chimiques ""."I de Rennes fe—•—- v&c L Spanhel IUI £ Sciences Chimiques INU g L "fS de Rennes L. Spanhel 0 1 2 3 4 -4 --3--2 1 "I 0 +1 Physical +2 scale +3" Electrochemical scale ■ Sciences Chimiques C -"SS de Rennes • v&c L. Spanhel Thermodynamics of charge carrier transfer Photo-oxidation Evb> E°(D/D+) ! Photo-reduction ECB Eg Example: formation of Cu nanoislands on Ti02 1. Cu2+, NaBH4 2. Cu2+, isopropanol in water UV- light > +1 — > LU X in o lli Acceptor + 0,34 (Cu2+/Cu°) 0 — \ s \ \ + o,i (e",teB-Tio2) \ \ \ \ - 0,48 (H3B03/BH4") > i Donor Cu2+ + 2e-> Cu° (x4) BH4" + 3 H20 -> H3BO3 + 7H+ +8 e" BH4" + 4 Cu2+ + 3 H20 -> H3BO3 + 7H+ +4 Cu° HoO - H3BO3 imiqut Renru v& L Spanhel •s Sciences Chimiques % L de Rennes Kinetics and photocatalysis Note: 10 nm Reacting ... species l. 2. To eliminate the rapid thermal relaxations and recombination's is the biggest challenge Efficient photo catalysis requires a closed contact (covalent, electrostatic) at the interface NP/molecule The best actual approach is the spatial charge separation logt 1 fs 10 100 1 ps 1 ns 1 jus p Recombination/Relaxation of charge carriers Brawnian motion fluorescence I IUI % Sciences Chimiques I IHII 5 L u""«» de Rennes L. Spanhel M £ Sciences Chimiques «? L *"SS de Rennes p • v&c L. Spanhel C02 photo-transformations via surface plasmons Vacuum (eV) -3- -5- NHE (Volts) -2 -1 Fermi level of Au COj/HCHO -0.40 v C0)CH30H -0.32 V CO,/CH4 -0.244 V \f HjO/02 0.82 V D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188 i IUI S Sciences Chimiques * I Irl J $ w "" '■ de Rennes L. Spanhel reaction C02 + 2H + + 2e" — CO + H20 C02 + 2H + + 2e" — HCOOH C02 + 4H + + 4c — HCHO CQz + 6H + + & " — CH3OH t^^O^ + &H + + Se" NO; M-[: rS OH + .1 H3C-C-CH3 H Au/TiOj-Ag X 0 tl + 3 H3C—C—CH3 + 2 H20 Xe lamp {X - 450-600 nm) OH Au/Cc02 green LfcDs X ^ X=N02s CI, CH3> OCH^ and NH,( CUO Note: Yield >50% Selectivity > 90% or NH-. Au/ ivtile TiO: Xe lamp (X,> 430 nm) ir 'N* X= H, McT C) and OMc. R= Me and CH2Ph, 'N' N R M/TiO.(M=Au, PI and Ag) Xc anc lamp (k > 400 mti) OH D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188 4H> £=*S) ■£ Sciences Chimiques * L ""SJ ......% ! IUI £ Sciences Chimiques vac L. Spanhel ......Sb, i |U| % Sciences Chimiques L. Spanhel A (Pbl2 + CH3NH3I)/DMA TiO- ONE-STEP COATING 6 Pbl2/DMF ^ CH3NH3I/IPA TiO Pbl CH3NH3 TWO-STEP ( 4 1. Difference between « nano versus macro » in semiconductor photocatalysis. 2. How many elementary charges are needed to transform : a) water into hydrogen and oxygen b) C02 into CH4? 3. What are the essential radical states formed in photoexcited titania? Which applications are related to this process? 4. How function classical macroscopic and modern nanoscaled solar cells? 5. Give ay least three solar antennas used in nanoscale photovoltaics. JMf " L. Spanhel •Sum**-