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What is the maintenance of genome stability”?

't Is the ability of living organisms to preserve its genetic
material in time and across generations.
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What are the challenges to genome stability”?

What is more prevalent? Exogenous or endogenous damage”

Even-though, historically, exogenous DNA damage was
considered to be the prime cause of mutagenesis, recently,
as the methodology has progressed, the cellular DNA
metabolism pathways (replication and transcription) are being
recognised as the more prevalent cause of mutations.



What are the challenges to genome stability?

Inability to repair properly the damage may lead to cancer, senescence, or
apoptosis.
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Transient summary |

Terms Genome stability, DNA damage response, DNA repair, DNA damage
tolerance denote closely related, yet not interchangeable terms

Cells are continuously exposed to wide variety of DNA damage

Failure to properly deal with the damage may have fatal consequences to cells
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The challenges

- different types of DNA damage
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How do cells react to DNA damage?
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How do cells react to DNA damage?

Arclel
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How do cells react to DNA damage”?

A more comprehensive picture
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Cells possess specific factors - sensors - that recognise insults to DNA
structure, DNA breaks, or stalled machineries like transcription and replication.

18



Transient summary |

Cells possess specific factors - sensors - that recognise insults to DNA
structure, DNA breaks, or stalled machineries like transcription and replication.

The sensors subsequently activate complex signalling pathways that lead to
halt of cell-cycle, as well as to decision as of which pathway is to be used;
pbalancing the cell-cycle stage and other needs of the cell.
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How do cell maintain genome stability”

DNA repair is prevalent outside the S-phase, in which DNA damage
tolerance is preferred.

Hoeijmakers, 2001




Endogenous or
environmental

Lesion

Therapeutic

Repair pathway

How do cell maintain genome stability”

/0 SAM

* Nitrosated
amines and
bile acids

* Dietary

nitrosamines

N /

\/
" 10-30 )

~

O°-methyl-
guanine

- /

/0 T™Z
e Alkylating

agents
* Nitrosoureas

AN /

>

(ROS A

* SAM

e Natural IR

* Base deamination
or loss

[ ]

kTrapped TOPOI
\i

/"~ 10,000-100,000

® 8-oxoguanine

* N’-meG

* N3-meA

e Uracil

* Hypoxanthine
e Xanthine

/

°® SSB

)

/

’, N

* TMZ
e R

* Radiomimetics
* TOPOI poisons

e Antimetabolites

A /

O I
* ROS
o UV
* Tobacco
smoke
e Afflatoxin
& )
a I
* 64
photo-
products
* Cyclopurines
* Bulky
adducts
\ )
a N
e Cisplatin

* Carboplatin
* Nitrosoureas

A )

20

/

\

* Replication

errors
e SAM
* Base

deamination

"

)

\

~

Base
mismatches

-

~

)

)

/
e TMZ

N

* Nucleoside

analogues

A

/

& 0\
* ROS
® Natural IR
* Trapped
TOPOII
& 4
a N\
DNA double-
strand breaks
N %
- R O
* Radio-
mimetics
e TOPOI
oisons
\ 4 Y

4 N
Unrepaired
single strand
lesions

S /

 10-50 )

Stalled
replication
forks

\_ /

/0 T™MZ h
e TOPOI

poisons
* Anti-
metabolites

N %

- )
® Acrolein
* Croton-
aldehyde
S /
\i
'z I\
ICL
\ /
A
s N

* Cisplatin

* Carboplatin
 Nitrosoureas
* MMC

S /

Curtin et al., 2012



How do cell maintain genome stability”?
Double-stranded DNA breaks (DSB) repair

DSB

NHEJ: non-homologous end joining

SSA: single strand annealing

SDSA: synthesis-dependent strand-
annealing

DSBR: DSB repair

Sebesta and Krejci, 2016 o1



How do cell maintain genome stability”?
Double-stranded DNA breaks (DSB) repair

DSB

NHEJ

NHEJ: non-homologous end joining

SSA: single strand annealing

SDSA: synthesis-dependent strand-
annealing

DSBR: DSB repair

Sebesta and Krejci, 2016 o1



How do cell maintain genome stability”?
Double-stranded DNA breaks (DSB) repair

DSB

l NHEJ

NHEJ: non-homologous end joining

SSA: single strand annealing

SDSA: synthesis-dependent strand-
annealing

DSBR: DSB repair

Sebesta and Krejci, 2016 o1



How do cell maintain genome stability”?
Double-stranded DNA breaks (DSB) repair

DSB
e
l NHEJ
D-loop l
NHEJ: non-homologous end joining - —
SSA: single strand annealing l
SDSA: synthesis-dependent strand- — X

annealing

DSBR: DSB repair

gene conversion

SDSA

Sebesta and Krejci, 2016 o1



How do cell maintain genome stability”?
Double-stranded DNA breaks (DSB) repair
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How do cell maintain genome stability”?
Double-stranded DNA breaks (DSB) repair
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Non-homologous end joining
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Double-stranded DNA breaks (DSB) repair
Non-homologous end joining

NHEJ is an error-prone pathway

Restoration of DNA integrity
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Double-stranded DNA breaks (DSB) repair
Homologous recombination

Pre -synapsis
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Double-stranded DNA breaks (DSB) repair
Homologous recombination
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Transient summary Il

Ditferent types of DNA damage are repaired
by specific repair pathway

The repair is generally error-free, except for NHEJ and SSA

In S-phase, cells activate tolerance mechanisms that allow
timely completion of DNA replication
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How to study genome stability maintenance”
(Case study on Homologous recombination)

microbial Review

A,
) H H
‘4 Cel I www.microbialcell.com

Guidelines for DNA recombination and repair studies:
Mechanistic assays of DNA repair processes

Hannah L Klein®*, Kenny K.H. Ang?, Michelle R. Arkin?, Emily C. Beckwitt®*, Yi-Hsuan Chang®, Jun Fan®,
Youngho Kwon’2, Michael J. Morten?, Sucheta Mukherjee®, Oliver J. Pambos®, Hafez el Sayyed®, Elizabeth S.
Thrall'®, Jodo P. Vieira-da-Rocha®, Quan Wang!!, Shuang Wang!%!3, Hsin-Yi Yeh®, Julie S. Biteen'?, Peter
Chi>', Wolf-Dietrich Heyer®'®, Achillefs N. Kapanidis®, Joseph J. Loparo!®, Terence R. Strick'>**'’, Patrick
Sung’®, Bennett Van Houten?*!%1%, Hengyao Niu'"* and Eli Rothenberg*
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How to study genome stability maintenance”
(Case study on Homologous recombination)

Ditferent strategies exist

Genetic tools Microscopic tools
Enable us to identify genes Give us a glimpse at spacial
and the relationships among, and temporal relationships
thereby building a pathway of genes of interests

Biochemical tools Structural tools

Enable us to understand
mechanisms and complex
formations within a studied
pathway

Enable us to understand
molecular mechanisms
at atomic resolution

Single molecule technigues

Enable us to understand behaviour at of single
molecules as compared to bulk biochemical
reactions

28
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Step1: identify the genes
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© by Springer-Verlag 1973

Interactions among Genes Controlling Sensitivity
to Radiation and Alkylation in Yeast
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Department of Biology, York University, Toronto, Canada

Received March 27, 1973
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Step1: identify the genes
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How to study genome stability maintenance”
Step?2: purity and study the proteins alone

Catalysis of ATP-Dependent Homologous
DNA Pairing and Strand Exchange by
Yeast RAD51 Protein

Patrick Sung

Fig. 1. Overproduction
and purification of RAD51
protein. (A) Immunoblot
analysis. The nitrocellu-
lose blot of a 9% denatur-
ing polyacrylamide gel
was probed with affinity-
purified antibodies to
RAD51. Lane 1, extract
from the rad57 deletion
yeast strain YR51A-1;
lane 2, extract from the
yeast strain LP2749-9B
harboring the 2p. multi- {500 3 AWE

copy vector pSCW231,

which contains the ADC 1 promoter but lacks the RAD51 gene;
lane 3, extract from strain | P2749-9B harboring the 2. plasmid
pR51.2, which contains the RAD51 gene under the control of its 1 2 3

own promoter; lane 4, extract from strain LP2749-9B harboring

the 2u. plasmid pR51.1, which contains the RAD51 gene under the control of the ADC1 promoter; and lane
5, 10 ng of purified RAD51 protein. (B) Purity analysis by SDS-PAGE. A 9% denaturing polyacrylamide gel was
stained with Coomassie blue. Lane 1, molecular size markers; lanes 2 and 3, 1 pg and 3 pg of purified RADS51
protein. Molecular sizes are indicated on the left (in kilodaltons).

~ RADS51
< rad51*
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Using a purified protein, Patrick Sung was able to show that Rad51 is a bona fide recombinase.
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DNA end resection by Dna2-Sgs1-RPA and its
stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
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DNA end resection by Dna2-Sgs1-RPA and its
stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2

Petr Cejkal’z, Elda Cannavo"?, Piotr Polaczek®, Taro Masuda-Sasa’, Subhash Pokharel®, Judith L. CampbeII3
& Stephen C. Kowalczykowski'~

Using purified proteins, Cejka et al., were able to
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reconstitute end resection in vitro.
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Choreography of the DNA Damage Response:
Spatiotemporal Relationships among Checkpoint
and Repair Proteins
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Protein Group Modification
and Synergy in the SUMO Pathway
as Exemplified in DNA Repair
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By comparing the two structure a detailed, molecular
mechanism of the strand exchange reaction can be inferred.
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There are ditferent techniques that allow us understand any given
pathway

The techniques must be combined, in order to get a full picture of
the pathway

Use whatever technique at hand that will help you answer your
scientific question
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Summary

Maintenance of genome stability is a complex endeavour, which
requires intricate interplay of multiple pathways

Cells use sophisticated mechanisms in deciding which pathway to
use at any given moment

Majority of factors responsible for maintaining genome
stability acts in complexes, let those be dynamic or not

43



44



