F6122 Základy fyziky pevných látek – seminář elektrony v pevné látce verze 19. dubna 2023

1	Dru 1.1 1.2 1.3	deho model volných elektronů Mathiessenovo pravidlo Frekvenční závislost vodivosti volných elektronů v kovu v Drudeho modelu Optická odezva zlata v IR a VIS	1 1 1 2					
2	Son	nmerfeldův model volných elektronů	3					
	2.1	Betheho–Sommerfeldův rozvoj	3					
	2.2	Tepelná kapacita v Sommerfeldově modelu za nízkých teplot	4					
	2.3	Tepelná vodivost elektronového plynu	4					
3	Elel	Elektron v periodickém potenciálu						
	3.1	Důkaz Blochova teorému	5					
	3.2	Jednorozměrný kosinový potenciál	5					
	3.3	Fermiho plochy v prázdné čtvercové a kubické mřížce	7					
	3.4	Jednorozměrný potenciál	9					
	3.5	Metoda těsné vazby	21					
	3.6	Pás odvozený od s-orbitalů atomů v prosté kubické mřížce	23					
	3.7	Pásy odvozené od p-orbitalů atomů v čtvercové mřížce	23					
	3.8	Pásy odvozené od p-orbitalů atomů v čtvercové mřížce s bází (2D kamenná sůl)	23					
4	Kva	Xvaziklasická aproximace 2						
	4.1	Efektivní hmotnost v prosté kubické mřížce	27					
	4.2	Oscilace v homogenním elektrostatickém poli	28					
5	Pole	Polovodiče 2						
	5.1	Statistika nositelů náboje v polovodiči typu N	29					
	5.2	PN přechod	29					

1 Drudeho model volných elektronů

1.1 Mathiessenovo pravidlo

Mějme kovový materiál, kde elektrony se mohou rozptylovat na příměsech s teplotně nezávislou relaxační dobou τ_p a také na tepelných kmitech mříže s relaxační dobou $\tau_t(T)$. Předpokládejme, že oba druhy rozptylu jsou vzájemně nezávislé. Jaká bude celková relaxační doba, teplotní závislost měrného elektrického odporu a měrné vodivosti?

 $\dot{\mathbf{R}}$ ešení Pravděpodobnosti rozptylu jsou nezávislé, tudíž je pravděpodobnost rozptylu za jednotku času rovna součtu poravděpodobností. Pravděpodobnost za čas dt je

$$P(\mathrm{d}t) = \frac{\mathrm{d}t}{\tau} = \frac{\mathrm{d}t}{\tau_p} + \frac{\mathrm{d}t}{\tau_t(T)}.$$

Odtud $\sigma = \frac{ne^2\tau}{m_e}$

$$\rho = \rho_d + \rho_t(T) = \frac{m_e}{ne^2} \left(\frac{1}{\tau_p} + \frac{1}{\tau_t(T)}\right).$$

1.2 Frekvenční závislost vodivosti volných elektronů v kovu v Drudeho modelu

V Drudeho modelu je pohyb elektronů popsán rovnicí

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{\tau} = \frac{F}{m} = \frac{1}{m} \Re \left[-eE\mathrm{e}^{-\mathrm{i}\omega t} \right].$$

Najděte frekvenční závislost vodivosti. $\tilde{\mathbf{R}}\mathbf{e}\tilde{\mathbf{s}}\mathbf{e}\mathbf{n}\mathbf{i}$

$$j = -nev = \sigma E,$$

$$v(t) = v_0 e^{-i\omega t},$$

$$v_0(\omega) = -\frac{e\tau}{m} \frac{1}{1 - i\omega\tau} E,$$

$$\sigma(\omega) = -nev_0/E = \frac{\sigma_0}{1 - i\omega\tau} = \frac{\sigma_0}{1 + \omega^2\tau^2} + i\frac{\sigma_0\omega\tau}{1 + \omega^2\tau^2},$$

kde $\sigma_0 = \frac{Ne^2\tau}{m}$.

Alternativně: Řešení je podobné Lorentzovu modelu, s tím, že $\omega_0 = 0$.

$$\begin{aligned} \epsilon(\omega) &= 1 - \frac{Ne^2}{\epsilon_0 m} \frac{1}{\omega^2 + \mathrm{i}\omega/\tau} = 1 - \frac{Ne^2\tau}{\epsilon_0 m} \frac{1}{\omega(\mathrm{i}+\omega\tau)} = 1 - \frac{\omega_P^2\tau}{\omega(\mathrm{i}+\omega\tau)} = 1 - \frac{\sigma_0}{\epsilon_0 \omega} \frac{1}{\mathrm{i}+\omega\tau} \\ \epsilon(\omega) &= 1 - \frac{\omega_P^2\tau^2}{1+\omega^2\tau^2} + \mathrm{i}\frac{\omega_P^2\tau/\omega}{1+\omega^2\tau^2} = 1 - \frac{\sigma_0}{\epsilon_0} \frac{\tau}{1+\omega^2\tau^2} + \mathrm{i}\frac{\sigma_0}{\epsilon_0 \omega} \frac{1}{1+\omega^2\tau^2}, \end{aligned}$$

kde $\sigma_0=\frac{Ne^2\tau}{m}=\epsilon_0\omega_P^2\tau$ je statická vodivost v Drudeho modelu. Pro komplexní vodivost dostaneme

$$\sigma(\omega) = -\mathrm{i}\omega\epsilon_0(\epsilon(\omega) - 1) = \frac{\sigma_0}{1 - \mathrm{i}\omega\tau} = \frac{\sigma_0}{1 + \omega^2\tau^2} + \mathrm{i}\frac{\sigma_0\omega\tau}{1 + \omega^2\tau^2}.$$

1.3 Optická odezva zlata v IR a VIS

Optická odezva zlata v IR a VIS oblasti se dá popsat Drudeho formulí

$$\varepsilon(E) = \varepsilon_{\infty} - \frac{E_P^2}{E(E + i\Gamma)}$$
 [eV],

kde $\varepsilon_{\infty} = 3$, $E_P^2 = 57.2 \text{ eV}^2$ a $\Gamma = 0.0602 \text{ eV}$. Spočtěte reálnou část vodivosti, index lomu a hloubku průniku pro energie fotonu $\hbar\omega = 0.001, 0.01, 0.1, 1, 2 \text{ a } 3 \text{ eV}$.

$$\begin{split} \mathbf{\check{R}e\check{s}eni} \ E_P &= 7.56 \, \mathrm{eV}, \ \epsilon(\omega) = \epsilon_{\infty} - \frac{\omega_P^2 \tau^2}{1 + \omega^2 \tau^2} + \mathrm{i} \frac{\omega_P^2 \tau/\omega}{1 + \omega^2 \tau^2}, \\ \sigma_1(\omega) &= \frac{\sigma_0}{1 + \omega^2 \tau^2}, \ \omega\tau = \hbar \omega/\Gamma, \ \sigma_0 = \omega_P^2 \tau \epsilon_0 \ \mathrm{a \ tedy} \ \sigma_0 = \epsilon_0 E_P^2/\hbar\Gamma = 12.786 \cdot 10^6 \, \Omega^{-1} \mathrm{m}^{-1} \end{split}$$

$$N = \sqrt{\frac{\sqrt{\epsilon_1^2 + \epsilon_2^2} + \epsilon_1}{2}}, \quad K = \sqrt{\frac{\sqrt{\epsilon_1^2 + \epsilon_2^2} - \epsilon_1}{2}}, \quad d = \frac{\lambda_{\text{vac}}}{4\pi K}.$$

$\hbar\omega$ (eV)	$\lambda ~(\mu m)$	ϵ_1	ϵ_2	$\sigma_1 \ (10^6 \Omega^{-1} \mathrm{m}^{-1})$	N	K	$d~(\mu m)$	R
0.001	1239.8	-15776	949904	12.78	683	694	0.142	0.997
0.01	123.98	-15356	92465	12.44	198	233	0.042	0.992
0.1	12.398	-4195	2527	3.401	18	67	0.0146	0.985
1.0	1.2398	-54	3.4	0.046	0.23	7.4	0.0134	0.983
2.0	0.6199	-11.3	0.43	0.0116	0.064	3.36	0.0147	0.979
3.0	0.4133	-3.35	0.127	0.0051	0.035	1.83	0.0179	0.968

2 Sommerfeldův model volných elektronů

2.1 Betheho-Sommerfeldův rozvoj

Ukažte, že integrál $\int_0^\infty H(E) f_{FD}(E) \, \mathrm{d}E$ je možné aproximovat rozvojem

$$\int_0^\infty H(E) f_{FD}(E) \,\mathrm{d}E = \int_0^\mu H(E) \,\mathrm{d}E + \frac{\pi^2}{6} (k_B T)^2 H'(\mu) + \frac{7\pi^4}{360} (k_B T)^4 H'''(\mu) + \mathcal{O}\left[\left(\frac{k_B T}{\mu}\right)^6\right]$$

Pomůcka:

$$\int_0^\infty \mathrm{d}x \frac{x}{\mathrm{e}^x + 1} = \frac{\pi^2}{12}$$

Řešení Máme nalézt rozvoj integrálu

$$I = \int_0^\infty H(E) f_{FD}(E) \, \mathrm{d}E \;, \quad f_{FD}(E) = \frac{1}{\mathrm{e}^{\frac{E-\mu}{k_B T}} + 1} \;.$$

Prvním krokem bude úprava s využitím skokové funkce $f_0(E) = \theta(\mu - E)$, která nabývá hodnoty 1 pro $E < \mu$ a 0 pro $E > \mu$:

$$I = \int_0^{\mu} H(E) \, \mathrm{d}E + \int_0^{\infty} H(E) \left[f_{FD}(E) - f_0(E) \right] \, \mathrm{d}E$$

První integrál lze obvykle snadno spočítat, v druhém se vyskytuje funkce $f_{FD}(E) - f_0(E)$, která má vyjádření

$$f_{FD}(E) - f_0(E) = \frac{1}{\mathrm{e}^{\frac{|E-\mu|}{k_B T}} + 1} \mathrm{sgn}(E-\mu)$$

a následující příznivé vlastnosti: je nezanedbatelná jen v malém okolí chemického potenciálu μ (několik k_BT) a je lichá vůči μ . Rozviňme funkci H(E) v okolí $E = \mu$ do Taylorovy řady

$$H(E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left. \frac{\mathrm{d}^n H}{\mathrm{d} E^n} \right|_{\mu} (E-\mu)^n \,.$$

Je-li funkce H(E) dostatečně hladká v okolí $E = \mu$, budou koeficienty v této řadě rychle klesat s n a postačí tak vzít jen několik prvních členů. Po dosazení a prodloužení integračního oboru na $(-\infty, +\infty)$, které způsobí zanedbatelnou chybu $(k_B T \ll \mu)$, dostaneme

$$I = \int_0^{\mu} H(E) \, \mathrm{d}E + \sum_{n=0}^{\infty} \frac{1}{n!} \left. \frac{\mathrm{d}^n H}{\mathrm{d}E^n} \right|_{\mu} \int_{-\infty}^{\infty} (E-\mu)^n \left[f_{FD}(E) - f_0(E) \right] \, \mathrm{d}E$$

Členy se sudým n vypadnou, protože integrujeme lichou funkci $f_{FD}(E) - f_0(E)$ se sudou funkcí $(E - \mu)^n$ na symetrickém intervalu. Ve zbývajících členech zavedeme substituci

$$x = \frac{E - \mu}{k_B T}$$

a využijeme sudosti integrandů

$$I = \int_0^{\mu} H(E) \,\mathrm{d}E + \sum_{j=0}^{\infty} \frac{1}{(2j+1)!} \left. \frac{\mathrm{d}^{2j+1}H}{\mathrm{d}E^{2j+1}} \right|_{\mu} (k_B T)^{2j+2} \left. 2 \int_0^{\infty} \frac{x^{2j+1}}{\mathrm{e}^x + 1} \,\mathrm{d}x \right.$$

Omezíme-li se pouze na první dva opravné členy, máme

$$I \approx \int_0^{\mu} H(E) \,\mathrm{d}E + (k_B T)^2 H'(\mu) \, 2 \int_0^{\infty} \frac{x}{\mathrm{e}^x + 1} \,\mathrm{d}x + (k_B T)^4 H'''(\mu) \, \frac{1}{3} \int_0^{\infty} \frac{x^3}{\mathrm{e}^x + 1} \,\mathrm{d}x$$
$$= \int_0^{\mu} H(E) \,\mathrm{d}E + \frac{\pi^2}{6} (k_B T)^2 H'(\mu) + \frac{7\pi^4}{360} (k_B T)^4 H'''(\mu) \,.$$

2.2 Tepelná kapacita v Sommerfeldově modelu za nízkých teplot

Experimentálně zjištěná tepelná kapacita kovů pro nízké teploty splňuje vztah

$$\frac{C_v}{V_{\rm mol}} = \gamma T.$$

Vypočtěte koeficient γ následujících kovů a srovnejte s tabulkovou hodnotou.

	a [Å]	$\gamma \; [mJ/mol.K]$
Cu	$3,\!61$	$0,\!695$
Ag	4,09	$0,\!646$
Au	4,08	0,729

Předpokládejte jeden vodivostní elektron na atom. Všechny tyto kovy mají strukturu kubickou plošně centrovanou (fcc). Pomůcka: $\left(\frac{\pi}{12}\right)^{2/3} \frac{k^2 m N}{\hbar^2} = 3.848 \times 10^{15} \,\mathrm{Jmol}^{-1} \mathrm{K}^{-1} \mathrm{m}^{-2}$.

2.3 Tepelná vodivost elektronového plynu

Tok tepelné energie v materiálu, kde předpokládáme tepelný gradient ve směru osy z, je dán vztahem

$$j_E = \frac{1}{3} l \langle v \rangle \frac{\mathrm{d}u}{\mathrm{d}z},$$

kde l je střední volná dráha, $\langle v \rangle$ střední driftová rychlost a u je hustota vnitřní energie. Gradient $\frac{du}{dz}$ můžeme napsat ve tvaru

$$\frac{\mathrm{d}u}{\mathrm{d}z} = \frac{\mathrm{d}u}{\mathrm{d}T}\frac{\mathrm{d}T}{\mathrm{d}z} = c_V\frac{\mathrm{d}T}{\mathrm{d}z},$$

kde c_V je tepelná kapacita elektronového plynu. Dosaď
te do předchozích vztahů vztahy získané pro elektronový plyn a odvoď
te Wiedemannův-Franzův zákon

$$\frac{\lambda}{\sigma T} = \frac{\pi^2}{3} \left(\frac{k}{e}\right)^2 = 2.45 \times 10^{-8} \,\mathrm{W}\Omega\mathrm{K}^{-2}$$

Výsledek porovnejte s tabulkovými hodnotami pro reálné kovy.

kov	$L (10^{-8})$	$W\Omega.deg^{-2})$	kov	$L (10^{-8} W\Omega. deg^{-2})$		
	při 0°C	při 100°C		při 0°C	při 100°C	
Ag	2.31	2.37	Pb	2.47	2.56	
Au	2.35	2.40	\mathbf{Pt}	2.51	2.60	
Cd	2.42	2.43	Sn	2.52	2.49	
Cu	2.23	2.33	W	3.04	3.20	
Mo	2.61	2.79	Zn	2.31	2.33	

Řešení $c_V = \frac{\pi^2}{2} n k_B \frac{T}{T_F} = \frac{\pi^2}{2} n k_B^2 \frac{T}{E_F} = \pi^2 \frac{n k_B^2 T}{m v_F^2}$, kde $E_F = 1/2 m v_F^2$.

$$\lambda = \frac{1}{3}C_v v l = \frac{\pi^2}{3} \frac{nk_B^2 T}{m v_F^2} v_F(v_F \tau) = \frac{\pi^2 nk_B^2 T \tau}{3m}$$
$$L = \frac{\lambda}{\sigma \tau} = \frac{\pi^2 nk_B^2 T \tau/3m}{n e^2 \tau/m} = \frac{\pi^2 k_B^2}{3e^2}.$$

.

3 Elektron v periodickém potenciálu

3.1 Důkaz Blochova teorému

Podle Ascroft, Mermin: Solid state physics

3.2 Jednorozměrný kosinový potenciál

Metodou rozvoje do rovinných vl
n najděte vlastní energie elektronu v jednodimenzionálním potenciálu s periodou
 a zadaném funkcí

$$U(x) = -V_0 \cos\left(\frac{2\pi}{a}x\right)$$
.

Z vlastních energií pro dostatečný počet Blochových vektorů v 1. Brillouinově zóně sestavte pásové schéma. Při numerickém řešení použijte následující hodnoty parametrů: a = 0.4 nm. Srovnejte výsledky pro $V_0 = 1$ eV a $V_0 = 4$ eV s disperzními relacemi volných elektronů.

Řešení Metoda rozvoje do rovinných vln (PWE)

Uvažujme o řešení Schrödingerovy rovnice s periodickým potenciálem U(x)

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + U(x)\right]\psi(x) = E\psi(x) .$$
(1)

Blochův teorém nám umožňuje hledat toto řešení ve tvaru Blochovy vlny

$$\psi_{nk}(x) = \mathrm{e}^{\mathrm{i}k \cdot x} u_{nk}(x) , \qquad (2)$$

kde $u_{nk}(x)$ je funkce periodická shodně s potenciálem. Rozviňme potenciál a periodickou část Blochovy vlny do Fourierovy řady na mřížce

$$U(x) = \sum_{G} U_G e^{iGx} = -V_0/2e^{iG_1x} - V_0/2e^{iG_{-1}r}, \quad U_1 = U_{-1} = -V_0/2, \quad \psi(x) = e^{ikx} \sum_{G} \Psi_G e^{-iGx}.$$
 (3)

Sumace probíhají přes vektory reciproké mřížky. Dosazení těchto vyjádření do Schrödingerovy rovnice vede na

$$\sum_{G} \left[\frac{\hbar^2}{2m} (k-G)^2 \Psi_G + \sum_{G'} U_{G'-G} \Psi_{G'} - E_k \Psi_G \right] e^{i(k-G)x} = 0.$$
(4)

Přitom bylo užito úpravy dvojité sumy

$$\sum_{G_1} \Psi_{G_1} e^{i(k-G_1)x} \sum_{G_2} U_{G_2} e^{iG_2x} = \sum_{G} e^{i(k-G)x} \sum_{G'} U_{G'-G} \Psi_{G'} .$$
(5)

Protože rovinné vlny tvoří ortogonální systém, je nutné, aby člen v hranaté závorce předposlední rovnice byl nulový

$$\frac{\hbar^2}{2m}(k-G)^2\Psi_G + \sum_{G'} U_{G'-G}\Psi_{G'} = E_k\Psi_G .$$
(6)

Označíme-li

$$A_{GG'}(k) = \frac{\hbar^2}{2m} (k - G)^2 \delta_{G,G'} + U_{G'-G} , \qquad (7)$$

můžeme zapsat soustavu rovnic pro Fourierovy koeficienty periodické složky Blochovy vlny jako vlastní problém pro matici $A(\mathbf{k})$

$$\sum_{\mathbf{G}'} A_{\mathbf{G}\mathbf{G}'}(\mathbf{k}) \Psi_{\mathbf{G}'} = E_{\mathbf{k}} \Psi_{\mathbf{G}} .$$
(8)

Tridiagonální matice pro daný problém kosinového potenciálu. Diagonalizací matice $A(\mathbf{k})$ je možné nalézt vlastní energie a vlnové funkce pro daný Blochův vektor.

Poznámky: vysvětlit vlastní stavy komutujících operátorů – ne každý vlastní stav jednoho je i vlastním stavem druhého. Téměř volné elektrony pro kosinový potenciál.

3.3 Fermiho plochy v prázdné čtvercové a kubické mřížce

Najděte Fermiho plochy ve čtvercové mříži pro volné elektrony. Podobně také v kubické prosté, plošně cetrované a prostorově centrované pro 1, 2, 3 elektrony na primitivní buňku.

Porovnejte s Fermiho plochami kovů: http://www.phys.ufl.edu/fermisurface/periodic_table.html Řešení Čtvercová mřížka, 1 až 4 elektrony na elementární buňku

Prostá kubická mřížka, 1 a 2 elektrony na primitivní buňku

Prostorově centrovaná kubická mřížka (bcc), 1 a 2 elektrony na primitivní buňku

Plošně centrovaná kubická mřížka (fcc), 1 a 2 elektrony na primitivní buňku

3.4 Jednorozměrný potenciál

Metodou rozvoje do rovinných vl
n najděte vlastní energie elektronu v jednodimenzionálním potenciálu s periodo
uazadaném funkcí

$$U(x) = -V_0 \sum_{n=-\infty}^{\infty} \exp\left[-\frac{(x-na)^2}{\sigma^2}\right] ,$$

jehož Fourierovy složky jsou

$$U_G = -V_0 \sqrt{\pi} \frac{\sigma}{a} \exp\left(-\frac{\sigma^2 G^2}{4}\right) , \qquad G = \frac{2\pi n}{a} .$$

Z vlastních energií pro dostatečný počet Blochových vektorů v 1. Brillouinově zóně sestavte pásové schéma. Při numerickém řešení použijte následující hodnoty parametrů: a = 0.5nm, $\sigma = 0.1a$. Srovnejte výsledky pro $V_0 = 2$ eV a $V_0 = 10$ eV s disperzními relacemi volných elektronů.

Pozn.: Při srovnávání je výhodné použít energii vztaženou na střední hodnotu potenciálu, tj. $E - U_{G=0}$.

Řešení A. Metoda rozvoje do rovinných vln (PWE)

Metoda rozvoje do rovinných vln slouží mj. k řešení Schrödingerovy rovnice pro vlnovou funkci elektronu v periodickém potenciálu. Spočívá v převedení problému popsaného parciální diferenciální rovnicí na problém lineární algebry, konkrétně nalezení vlastních čísel a vlastních vektorů matice. Je vhodná pro potenciály s pozvolným průběhem, v případě rychlých změn potenciálu na malých oblastech špatně konverguje.

Uvažujme o řešení Schrödingerovy rovnice s periodickým potenciálem $U(\boldsymbol{r})$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r})\right]\psi(\mathbf{r}) = E\psi(\mathbf{r}) .$$
(9)

Blochův teorém nám umožňuje hledat toto řešení ve tvaru Blochovy vlny

$$\psi_{n\boldsymbol{k}}(\boldsymbol{r}) = \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} u_{n\boldsymbol{k}}(\boldsymbol{r}) , \qquad (10)$$

kde $u_{nk}(\mathbf{r})$ je funkce periodická shodně s potenciálem. Rozviňme potenciál a periodickou část Blochovy vlny do Fourierovy řady na mřížce

$$U(\boldsymbol{r}) = \sum_{\boldsymbol{G}} U_{\boldsymbol{G}} e^{i\boldsymbol{G}\cdot\boldsymbol{r}} , \quad \psi(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \sum_{\boldsymbol{G}} \Psi_{\boldsymbol{G}} e^{-i\boldsymbol{G}\cdot\boldsymbol{r}} .$$
(11)

Sumace probíhají přes vektory reciproké mřížky. Dosazení těchto vyjádření do Schrödingerovy rovnice vede na

$$\sum_{\boldsymbol{G}} \left[\frac{\hbar^2}{2m} (\boldsymbol{k} - \boldsymbol{G})^2 \Psi_{\boldsymbol{G}} + \sum_{\boldsymbol{G}'} U_{\boldsymbol{G}' - \boldsymbol{G}} \Psi_{\boldsymbol{G}'} - E_{\boldsymbol{k}} \Psi_{\boldsymbol{G}} \right] e^{i(\boldsymbol{k} - \boldsymbol{G}) \cdot \boldsymbol{r}} = 0.$$
(12)

Přitom bylo užito vzorce $\nabla^2 {\rm e}^{{\rm i}({\pmb k}-{\pmb G})\cdot {\pmb r}} = -({\pmb k}-{\pmb G})^2 {\rm e}^{{\rm i}({\pmb k}-{\pmb G})\cdot {\pmb r}}$ a úpravy dvojité sumy

$$\sum_{\boldsymbol{G}_1} \Psi_{\boldsymbol{G}_1} e^{i(\boldsymbol{k}-\boldsymbol{G}_1)\cdot\boldsymbol{r}} \sum_{\boldsymbol{G}_2} U_{\boldsymbol{G}_2} e^{i\boldsymbol{G}_2\cdot\boldsymbol{r}} = \sum_{\boldsymbol{G}} e^{i(\boldsymbol{k}-\boldsymbol{G})\cdot\boldsymbol{r}} \sum_{\boldsymbol{G}'} U_{\boldsymbol{G}'-\boldsymbol{G}} \Psi_{\boldsymbol{G}'} .$$
(13)

Protože rovinné vlny tvoří ortogonální systém, je nutné, aby člen v hranaté závorce předposlední rovnice byl nulový

$$\frac{\hbar^2}{2m}(\boldsymbol{k}-\boldsymbol{G})^2\Psi_{\boldsymbol{G}} + \sum_{\boldsymbol{G}'} U_{\boldsymbol{G}'-\boldsymbol{G}}\Psi_{\boldsymbol{G}'} = E_{\boldsymbol{k}}\Psi_{\boldsymbol{G}}.$$
(14)

Označíme-li

$$A_{\boldsymbol{G}\boldsymbol{G}'}(\boldsymbol{k}) = \frac{\hbar^2}{2m} (\boldsymbol{k} - \boldsymbol{G})^2 \delta_{\boldsymbol{G},\boldsymbol{G}'} + U_{\boldsymbol{G}'-\boldsymbol{G}} , \qquad (15)$$

můžeme zapsat soustavu rovnic pro Fourierovy koeficienty periodické složky Blochovy vlny jako vlastní problém pro matici $A({\bf k})$

$$\sum_{\mathbf{G}'} A_{\mathbf{G}\mathbf{G}'}(\mathbf{k}) \Psi_{\mathbf{G}'} = E_{\mathbf{k}} \Psi_{\mathbf{G}} .$$
(16)

Diagonalizací matice $A(\mathbf{k})$ je možné nalézt vlastní energie a vlnové funkce pro daný Blochův vektor.

B. Poruchový přístup v případě slabého periodického potenciálu – metoda téměř volných elektronů (NFE)

B1. Intuitivní postup bez korektní poruchové teorie

Řešení Schrödingerovy rovnice při nulovém potenciálu $U(\mathbf{r})$ je známé. Vlnové funkce v takovém případě jsou rovinné vlny s kvadratickou disperzní relací

$$\psi_{\mathbf{K}}(\mathbf{r}) = e^{i\mathbf{K}\cdot\mathbf{r}}, \qquad E_{\mathbf{K}} = \frac{\hbar^2 K^2}{2m}.$$
 (17)

Najdeme přibližné vlnové funkce a vlastní energie v situaci, kdy zapneme periodický potenciál. Přitom budeme předpokládat, že přidaný potenciál je malou poruchou a vlnové funkce a vlastní energie se jen velmi mírně liší od případu s $U(\mathbf{r}) = 0$. Přidaný potenciál je reálná funkce, jeho Fourierovy koeficienty proto splňují

$$U_{-\boldsymbol{G}} = U_{\boldsymbol{G}}^* \,. \tag{18}$$

Navíc budeme požadovat, aby přidaný potenciál měl nulovou střední hodnotou, tj.

$$U_{G=0} = 0$$
. (19)

Nenulová střední hodnota potenciálu pouze posune všechny energie, což není v našem případě zajímavý efekt.

Nejprve zapíšeme neporušenou vlnovou funkci ve tvaru Fourierovy řady (11). Protože Blochův vektor vybíráme z první Brillouinovy zóny a vlnový vektor K takto omezen není, musíme najít vhodný vektor reciproké mříže G_0 , aby $\mathbf{k} = \mathbf{K} + \mathbf{G}_0$ padl do 1. Brillouinovy zóny. Potom platí

$$\psi^{(0)}(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} e^{-i\boldsymbol{G}_0\cdot\boldsymbol{r}} , \qquad \Psi^{(0)}_{\boldsymbol{G}} = \delta_{\boldsymbol{G},\boldsymbol{G}_0} , \qquad E^{(0)}_{\boldsymbol{k}} = \frac{\hbar^2}{2m} (\boldsymbol{k} - \boldsymbol{G}_0)^2 .$$
(20)

Vezměme pro jednoduchost vektor K přímo z první Brillouinovy zóny, takže $G_0 = \mathbf{0}$ a

$$\Psi_{\boldsymbol{G}}^{(0)} = \delta_{\boldsymbol{G},\boldsymbol{0}} , \qquad E_{\boldsymbol{k}}^{(0)} = \frac{\hbar^2 k^2}{2m} .$$
(21)

Sledujeme tedy ovlivnění nejnižší hladiny v redukovaném pásovém schématu periodickým potenciálem. V ostatních případech je postup analogický následujícímu. Podle předpokladu o slabém potenciálu budou zřejmě koeficienty $\Psi_{G\neq 0}$ malé a $\Psi_{G=0}$ bude blízký jedničce. Zohledníme-li tyto předpoklady v rovnicích (14) s $G \neq 0$, dostáváme

$$\frac{\hbar^2}{2m} (\boldsymbol{k} - \boldsymbol{G})^2 \Psi_{\boldsymbol{G}} + U_{-\boldsymbol{G}} \approx \frac{\hbar^2 k^2}{2m} \Psi_{\boldsymbol{G}} .$$
(22)

Přitom jsme zanedbali všechny členy v sumě kromě $U_{-G}\Psi_0 \approx U_{-G}$ a rovněž opravu v energii. Pro Fourierovy koeficienty periodické části vlnové funkce s $G \neq 0$ tedy máme

$$\Psi_{\boldsymbol{G}\neq\boldsymbol{0}} \approx \frac{U_{-\boldsymbol{G}}}{\frac{\hbar^2}{2m} \left[\boldsymbol{k}^2 - (\boldsymbol{k} - \boldsymbol{G})^2 \right]} \,. \tag{23}$$

Z rovnice (14) pro $\boldsymbol{G} = \boldsymbol{0}$ pak získáme opravu energie

$$\frac{\hbar^2 k^2}{2m} + \sum_{\mathbf{G}' \neq \mathbf{0}} \frac{U_{\mathbf{G}'} U_{-\mathbf{G}'}}{\frac{\hbar^2}{2m} \left[\mathbf{k}^2 - (\mathbf{k} - \mathbf{G})^2 \right]} = \frac{\hbar^2 k^2}{2m} + \left(E_{\mathbf{k}} - E_{\mathbf{k}}^0 \right), \tag{24}$$

která činí

$$E_{k} - E_{k}^{(0)} \approx \sum_{G \neq 0} \frac{|U_{G}|^{2}}{\frac{\hbar^{2}}{2m} \left[k^{2} - (k - G)^{2} \right]}$$
 (25)

Vzorce (23) a (25) jsou pro dostatečně slabý potenciál v souladu se vzorci, které budou později odvozeny v prvním (pro Ψ_{G}) resp. druhém řádu (pro E_{k}) poruchové teorie. Potíže nastanou, pokud pro některý vektor G (případně více vektorů) je $(\mathbf{k} - \mathbf{G})^{2} \approx \mathbf{k}^{2}$. Pak je jmenovatel v (23) blízký nule a předpoklad o malé velikosti Ψ_{G} není splněn. Je to proto, že výchozí energie počátečních stavů s $\mathbf{K} = \mathbf{k}$ a $\mathbf{K}' = \mathbf{k} - \mathbf{G}$ jsou téměř stejné. Tyto téměř degenerované stavy pak budou ve vlnové funkci dominovat (odpovídající Fourierovy koeficienty Ψ_{G} budou velké ve srovnání s ostatními).

Předpokládejme, že máme dva téměř degenerované stavy ($\mathbf{k}^2 \approx (\mathbf{k} - \mathbf{G})^2$), což nastane poblíž hranice Brillouinovy zóny (pokud tam není degenerace ještě vyšší), a vlnová funkce je tedy

$$\psi(\mathbf{r}) = \Psi_0 \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} + \Psi_{\mathbf{G}} \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \mathrm{e}^{-\mathrm{i}\mathbf{G}\cdot\mathbf{r}} + \mathrm{mal\acute{e}\ členy\ pro\ ostatní}\ \mathbf{G}'\ .$$
(26)

Z rovnic (14) pak při zanedbání malých členů dostaneme přibližnou soustavu dvou rovnic pro dominantní koeficienty (připomeňme, že $U_{G=0} = 0$)

$$\frac{\hbar^2}{2m} \boldsymbol{k}^2 \Psi_{\boldsymbol{0}} + U_{\boldsymbol{G}} \Psi_{\boldsymbol{G}} = E_{\boldsymbol{k}} \Psi_{\boldsymbol{0}}$$
⁽²⁷⁾

$$\frac{\hbar^2}{2m}(\boldsymbol{k}-\boldsymbol{G})^2\Psi_{\boldsymbol{G}}+U_{-\boldsymbol{G}}\Psi_{\boldsymbol{0}}=E_{\boldsymbol{k}}\Psi_{\boldsymbol{G}}.$$
(28)

V maticovém tvaru

$$\begin{pmatrix} \frac{\hbar^2}{2m} \mathbf{k}^2 - E_{\mathbf{k}} & U_{\mathbf{G}} \\ U_{-\mathbf{G}} & \frac{\hbar^2}{2m} (\mathbf{k} - \mathbf{G})^2 - E_{\mathbf{k}} \end{pmatrix} \begin{pmatrix} \Psi_{\mathbf{0}} \\ \Psi_{\mathbf{G}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} .$$
⁽²⁹⁾

Podmínkou řešitelnosti této homogenní soustavy je nulový determinant matice soustavy, což vede na rovnici

$$\left(\frac{\hbar^2}{2m}\boldsymbol{k}^2 - E_{\boldsymbol{k}}\right) \left(\frac{\hbar^2}{2m}(\boldsymbol{k} - \boldsymbol{G})^2 - E_{\boldsymbol{k}}\right) = |U_{\boldsymbol{G}}|^2 .$$
(30)

Zaveď
 me nový vektor $\delta {\bm k}$ tak, aby ${\bm k}=\frac{1}{2}{\bm G}+\delta {\bm k}.$ Potom před
chozí rovnice přejde na

$$\left[\frac{\hbar^2}{2m}\left(\delta \boldsymbol{k} + \frac{1}{2}\boldsymbol{G}\right)^2 - E_{\boldsymbol{k}}\right] \left[\frac{\hbar^2}{2m}\left(\delta \boldsymbol{k} - \frac{1}{2}\boldsymbol{G}\right)^2 - E_{\boldsymbol{k}}\right] = |U_{\boldsymbol{G}}|^2 , \qquad (31)$$

odkud lze snadno získat závislost $E_{\boldsymbol{k}}$ na $\delta \boldsymbol{k}$

$$E_{\boldsymbol{k}} = \frac{\hbar^2}{2m} \left(\delta \boldsymbol{k}^2 + \frac{1}{4} \boldsymbol{G}^2 \right) \pm \sqrt{|U_{\boldsymbol{G}}|^2 + \left(\frac{\hbar^2}{2m} \delta \boldsymbol{k} \cdot \boldsymbol{G}\right)^2} \,. \tag{32}$$

Na hranici první Brillouinovy zóny je vektor δk kolmý k vektoru $\frac{1}{2}G$ (plyne ze způsobu konstrukce Wignerovy–Seitzovy primitivní buňky k reciproké mříži) a výraz se zjednoduší na

$$E_{\boldsymbol{k}} = \frac{\hbar^2}{2m} \left(\delta \boldsymbol{k}^2 + \frac{1}{4} \boldsymbol{G}^2 \right) \pm |U_{\boldsymbol{G}}| .$$
(33)

Na hranici první Brillouinovy zóny tedy lze pozorovat rozštěpení energiových pásů o velikosti přibližně

$$2|U_{\boldsymbol{G}}|. \tag{34}$$

Určeme ještě gradient $\nabla_{\bm{k}} E_{\bm{k}}$ poblíž hranice první Brillouinovy zóny

$$\nabla_{\boldsymbol{k}} E_{\boldsymbol{k}} = \nabla_{\delta \boldsymbol{k}} E_{\boldsymbol{k}} = \frac{\hbar^2}{m} \delta \boldsymbol{k} \pm \frac{\left(\frac{\hbar^2}{2m}\right)^2 \boldsymbol{G} \,\delta \boldsymbol{k} \cdot \boldsymbol{G}}{\sqrt{|U_{\boldsymbol{G}}|^2 + \left(\frac{\hbar^2}{2m} \delta \boldsymbol{k} \cdot \boldsymbol{G}\right)^2}},$$
(35)

což se přímo na hranici první Brillouinovy zóny redukuje na

$$\nabla_{\boldsymbol{k}} E_{\boldsymbol{k}} = \frac{\hbar^2}{m} \left(\boldsymbol{k} - \frac{1}{2} \boldsymbol{G} \right) \,. \tag{36}$$

Gradient E_k je v našem přiblížení rovnoběžný s hranicí první Brillouinovy zóny a ekvienergiová plocha je tedy na tuto hranici kolmá. Tento závěr je ve shodě s pásovými schématy ukázanými v tomto příkladu a v příkladu s Kronigovým–Penneyovým modelem, i když se jedná o přesná řešení.

B2. Řádná poruchová teorie

Dále se budeme věnovat obvyklé poruchové teorii probírané v úvodních partiích kvantové mechaniky aplikované na systém rovnic (14). Nyní budeme požadovat pouze reálnost potenciálu $U(\mathbf{r})$, střední hodnota již nemusí být nulová. Rovněž se neomezíme na případ s \mathbf{K} z první Brillouinovy zóny.

Místo potenciálu $U(\mathbf{r})$ použijeme ve Schrödingerově rovnici potenciál $\lambda U(\mathbf{r})$ škálovaný parametrem λ , který necháme spojitě měnit od $\lambda = 0$ do $\lambda = 1$. To odpovídá postupnému zapínání periodického potenciálu. V systému (14) tedy provedeme záměnu $U_{\mathbf{G}} \to \lambda U_{\mathbf{G}}$. Poruchová teorie předpokládá, že s postupným zapínáním interakce se $\Psi_{\mathbf{G}}$ a $E_{\mathbf{k}}$ mění pozvolna a lze je vyjádřit ve tvaru mocninné řady v parametru λ

$$\Psi_{G} = \Psi_{G}^{(0)} + \lambda \Psi_{G}^{(1)} + \lambda^{2} \Psi_{G}^{(2)} + \dots \qquad E_{k} = E_{k}^{(0)} + \lambda E_{k}^{(1)} + \lambda^{2} E_{k}^{(2)} + \dots$$
(37)

Dosazením těchto řad do systému (14)

$$\frac{\hbar^2}{2m} (\mathbf{k} - \mathbf{G})^2 \left(\Psi_{\mathbf{G}}^{(0)} + \lambda \Psi_{\mathbf{G}}^{(1)} + \dots \right) + \sum_{\mathbf{G}'} \lambda U_{\mathbf{G}' - \mathbf{G}} \left(\Psi_{\mathbf{G}}^{(0)} + \lambda \Psi_{\mathbf{G}}^{(1)} + \dots \right) = \\ = \left(E_{\mathbf{k}}^{(0)} + \lambda E_{\mathbf{k}}^{(1)} + \dots \right) \left(\Psi_{\mathbf{G}}^{(0)} + \lambda \Psi_{\mathbf{G}}^{(1)} + \dots \right)$$
(38)

a porovnáním koeficientů u jednotlivých mocnin λ dostaneme postupné opravy k vlnové funkci a disperzní relaci (dosazujeme $\lambda = 1$ v řadách (37)), které by měly klesat s řádem opravy. Porovnáním koeficientů získáme postupně

$$\lambda^{0}: \qquad \frac{\hbar^{2}}{2m} (\boldsymbol{k} - \boldsymbol{G})^{2} \Psi_{\boldsymbol{G}}^{(0)} = E_{\boldsymbol{k}}^{(0)} \Psi_{\boldsymbol{G}}^{(0)}$$
(39)

$$\lambda^{1}: \qquad \frac{\hbar^{2}}{2m} (\boldsymbol{k} - \boldsymbol{G})^{2} \Psi_{\boldsymbol{G}}^{(1)} + \sum_{\boldsymbol{G}'} U_{\boldsymbol{G}' - \boldsymbol{G}} \Psi_{\boldsymbol{G}'}^{(0)} = E_{\boldsymbol{k}}^{(0)} \Psi_{\boldsymbol{G}}^{(1)} + E_{\boldsymbol{k}}^{(1)} \Psi_{\boldsymbol{G}}^{(0)}$$
(40)

$$\Lambda^{j}: \qquad \frac{\hbar^{2}}{2m} (\boldsymbol{k} - \boldsymbol{G})^{2} \Psi_{\boldsymbol{G}}^{(j)} + \sum_{\boldsymbol{G}'} U_{\boldsymbol{G}'-\boldsymbol{G}} \Psi_{\boldsymbol{G}'}^{(j-1)} = \sum_{n=0}^{j} E_{\boldsymbol{k}}^{(n)} \Psi_{\boldsymbol{G}}^{(j-n)}$$
(42)

Uvažujme nejprve o nedegenerovaném případu, kdy lze za výchozí neporušený stav vzít (20). Rovnice (39) je pak zřejmě splněna pro všechna G. V nultém řádu poruchové teorie je tedy

$$\Psi_{G}^{(0)} = \delta_{G,G_0} , \qquad E_{k}^{(0)} = \frac{\hbar^2}{2m} (k - G_0)^2 .$$
(43)

Na nový stav vypočtený v rámci poruchové teorie lze klást různé podmínky. Je možné např. požadovat, aby byl normovaný, tj. $\sum_{\boldsymbol{G}} |\Psi_{\boldsymbol{G}}|^2 = 1$. Výhodnější ovšem je (a při odvozování vzorců poruchové teorie se to obvykle dělá) požadovat

$$\sum_{\boldsymbol{G}} \Psi_{\boldsymbol{G}}^{(0)*} \Psi_{\boldsymbol{G}} = 1 , \qquad (44)$$

což v Diracově symbolice odpovídá $\langle \psi^{(0)} | \psi \rangle = 1$ místo $\langle \psi | \psi \rangle = 1$. Po dosazení mocninné řady za Ψ_{G} zjistíme, že

$$\sum_{\boldsymbol{G}} \delta_{\boldsymbol{G},\boldsymbol{G}_0} \left(\Psi_{\boldsymbol{G}}^{(0)} + \lambda \Psi_{\boldsymbol{G}}^{(1)} + \ldots \right) = 1 + \lambda \Psi_{\boldsymbol{G}_0}^{(1)} + \ldots \qquad \Rightarrow \qquad \Psi_{\boldsymbol{G}_0}^{(j>0)} = 0 \ . \tag{45}$$

Tohoto s výhodou využijeme v rovnicích (40)-(42).

Z rovnic (40) pro ${\pmb G} \neq {\pmb G}_0,$ kdy se neuplatní poslední člen získáme

$$\Psi_{\boldsymbol{G}\neq\boldsymbol{G}_{0}}^{(1)} = \frac{U_{\boldsymbol{G}_{0}-\boldsymbol{G}}}{\frac{\hbar^{2}}{2m}\left[(\boldsymbol{k}-\boldsymbol{G}_{0})^{2}-(\boldsymbol{k}-\boldsymbol{G})^{2}\right]}.$$
(46)

Podobně z rovnice (40) pro $\boldsymbol{G} = \boldsymbol{G}_0$ dostaneme

$$\frac{\hbar^2}{2m} (\boldsymbol{k} - \boldsymbol{G}_0)^2 \Psi_{\boldsymbol{G}_0}^{(1)} + U_{\boldsymbol{0}} = E_{\boldsymbol{k}}^{(0)} \Psi_{\boldsymbol{G}_0}^{(1)} + E_{\boldsymbol{k}}^{(1)} \qquad \text{tj.} \quad E_{\boldsymbol{k}}^{(1)} = U_{\boldsymbol{0}} .$$
(47)

Nyní máme opravu vlnové funkce a energie v prvním řádu poruchové teorie. Obecně lze pomocí rovnic (39)–(42) vyjádřit opravy řádu j pomocí oprav řádu j - 1, vzorce se však poměrně rychle komplikují. Vypočteme ještě opravu energie v druhém řádu. Vezmeme rovnici (41) pro $\boldsymbol{G} = \boldsymbol{G}_0$ a po vyloučení všech nulových členů obsahujících $\Psi_{\boldsymbol{G}_0}^{(j>0)}$ ji upravíme na tvar

$$\sum_{{\cal G}' \neq {\cal G}_0} U_{{\cal G}'-{\cal G}_0} \Psi^{(1)}_{{\cal G}'} = E^{(2)}_{{\cal k}} \; ,$$

z něhož po dosazení z
a $\Psi_{{\bm G}}^{(1)}$ dostaneme výraz pro opravu energie druhého řádu

$$E_{k}^{(2)} = \sum_{\boldsymbol{G} \neq \boldsymbol{G}_{0}} \frac{|U_{\boldsymbol{G}-\boldsymbol{G}_{0}}|^{2}}{\frac{\hbar^{2}}{2m} \left[(\boldsymbol{k} - \boldsymbol{G}_{0})^{2} - (\boldsymbol{k} - \boldsymbol{G})^{2} \right]}.$$

Jak již bylo zmíněno, odpovídají právě odvozené výsledky vzorcům (23) a (25) odvozeným dříve nepříliš korektním způsobem.

Výrazně obtížnější je poruchový postup v degenerovaném případě. Zde se omezíme jen na první řád poruchové teorie. Navíc se budeme zajímat jen o situaci, kdy jsou výchozí neporušené stavy zcela degenerované (v předchozí části byly téměř degenerované). Pohybujeme se tedy s k přesně na hranici první Brillouinovy zóny.

Máme n degenerovaných stavů s $K_j = k - G_j$ a shodnou hodnotou $(k - G_j)^2$. Za výchozí stav pak musíme vzít obecnou lineární kombinaci

$$\psi^{(0)}(\boldsymbol{r}) = \sum_{\boldsymbol{j}=1}^{n} \Psi^{(0)}_{\boldsymbol{G}_{\boldsymbol{j}}} \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} \mathrm{e}^{-\mathrm{i}\boldsymbol{G}\cdot\boldsymbol{r}} \qquad \Rightarrow \qquad \Psi^{(0)}_{\boldsymbol{G}} = \sum_{\boldsymbol{j}=1}^{n} \Psi^{(0)}_{\boldsymbol{G}_{\boldsymbol{j}}} \delta_{\boldsymbol{G},\boldsymbol{G}_{\boldsymbol{j}}} \; .$$

Ta samozřejmě splňuje rovnici (39). Dosazení do rovnic (40) vede na vlastní problém s maticí $U_{\boldsymbol{G}_m-\boldsymbol{G}_j}$

$$\sum_{m=1}^{n} U_{\boldsymbol{G}_{m}-\boldsymbol{G}_{j}} \Psi_{\boldsymbol{G}_{m}}^{(0)} = E_{\boldsymbol{k}}^{(1)} \Psi_{\boldsymbol{G}_{j}}^{(0)} \qquad j = 1 \dots n \; .$$

Vlastní čísla této matice udávají opravy v energii prvního řádu, vlastní vektory pak obsahují koeficienty lineárních kombinací, pro které se tyto opravy realizují. Degenerovaná hladina se vlivem periodického potenciálu rozštěpí.

Jako příklad vezměme případ, kdy jsou degenerované stavy s K = k a K = k - G (diskutovaný v předchozí části), tj. platí $k^2 = (k - G)^2$ (tentokrát přesně). Potom řešíme vlastní problém

$$\begin{pmatrix} U_{\mathbf{0}} & U_{\mathbf{G}} \\ U_{-\mathbf{G}} & U_{\mathbf{0}} \end{pmatrix} \begin{pmatrix} \Psi_{\mathbf{0}}^{(0)} \\ \Psi_{\mathbf{G}}^{(0)} \end{pmatrix} = E_{\mathbf{k}}^{(1)} \begin{pmatrix} \Psi_{\mathbf{0}}^{(0)} \\ \Psi_{\mathbf{G}}^{(0)} \end{pmatrix} \ .$$

Opravy k energii jsou tedy

$$E_{k}^{(1)} = U_{0} \pm |U_{G}|$$
.

První člen dává posunutí energií o střední hodnotu potenciálu (nezajímavé), druhý člen rozštěpení hladin o velikosti $2|U_G|$ ve shodě s předchozí částí.

C. Aplikace na 1D potenciál

Vezmeme jako speciální případ jednorozměrný potenciál U(x) s periodou a. Jeho rozvojem je obvyklá Fourierova řada

$$U(x) = \sum_{n=-\infty}^{\infty} U_n e^{2\pi i n \frac{x}{a}} .$$
(48)

Fourierovy koeficienty pro zadaný potenciál jsou

$$U_n = -V_0 \sqrt{\pi} \,\frac{\sigma}{a} \exp\left(-\frac{\pi^2 \sigma^2 n^2}{a^2}\right) \,. \tag{49}$$

Podobně rozvineme vlnovou funkci elektronu v 1D potenciálu

$$\psi(x) = e^{ikx} \sum_{n=-\infty}^{\infty} \Psi_n e^{-2\pi i n \frac{x}{a}}$$

Soustava (14) přejde v jednorozměrném případě na tvar

$$\frac{\hbar^2}{2m}\left(k-\frac{2\pi}{a}n\right)^2\Psi_n+\sum_{n'=-\infty}^{\infty}U_{n'-n}\Psi_{n'}=E_k\Psi_n.$$

Při praktickém výpočtu pásového schématu a vlnových funkcí vhodně omezíme indexy n a n' a numericky řešíme vlastní problém pro konečně velkou matici. Na následujících obrázcích jsou ukázána pásová schémata pro hodnoty a = 0.5 nm, $\sigma = 0.1a$ a hloubky potenciálových jam $V_0 = 2$ eV a $V_0 = 10$ eV. Kvůli porovnání s disperzními relacemi volných elektronů jsou vyneseny závislosti $E_k - U_0$. Dále jsou ukázány vlnové funkce tří nejnižších pásů a odpovídající hustoty pravděpodobnosti v případě $V_0 = 10$ eV – pro k = 0 (bod Γ) a $k = \frac{\pi}{a}$ (bod X).

Poznámky k obrázkům:

- nejnižší stav v bodě Γ elektron je převážně lokalizován v jámách
- rozštěpení prvních dvou pásů na kraji Brillouinovy zóny je 0.67 eV ($V_0 = 2 \text{ eV}$) a 3.94 eV ($V_0 = 10 \text{ eV}$)
- stavy s vyššími energiemi jsou více podobné lineárním kombinacím stavů volných elektronů (neovlivňuje je tolik periodický potenciál)
- dvojice nejnižších stavů v bodě X hustota pravděpodobnosti stavu s nižší energií je lokalizována převážně v jamách, stavu s vyšší energií převážně mimo ně; odtud plyne rozdíl ve vlastních energiích

3.5 Metoda těsné vazby

Metoda těsné vazby vychází z elektronových orbitalů lokalizovaných u jednotlivých atomů. Předpokládá přitom, že ovlivnění vlnových funkcí elektronů na sousedních atomech není velké a soubor vlnových funkcí elektronů v izolovaných atomech lze použít jako vhodný základ ke konstrukci vlnové funkce elektronů v krystalu. Metoda těsné vazby je protipólem metody téměř volných elektronů, která naopak vychází z představy volných elektronů, jejichž vlnové funkce jsou jen mírně porušeny periodickým potenciálem.

Pro ilustraci východisek metody těsné vazby uvažujme o systému kvantových jam, které budou představovat atomy. Jsou-li kvantové jámy daleko od sebe, lze za vlnovou funkci elektronu vzít vlnovou funkci elektronu lokalizovaného v některé z jam, případně libovolnou superpozici takových funkcí. Protože vlnová funkce exponenciálně klesá se vzdáleností od jámy, bude odchylka od přesných řešení naprosto zanedbatelná. Přiblížíme-li k sobě kvantové jámy natolik, až se budou nezanedbatelně překrývat vlnové funkce pro izolované jámy, budou se přesná řešení pro takový systém výrazněji lišit od superpozice vlnových funkcí pro izolované jámy. Při malém překryvu ovšem vystihuje superpozice vlnových funkcí pro izolované jámy skutečnou vlnovou funkci docela dobře. Právě v takovém případě, tedy při malém překryvu orbitalů sousedních atomů, je vhodné použít metodu těsné vazby popsanou v následujícím.

Vlnové funkce elektronů v izolovaných atomech jsou řešením Schrödingerovy rovnice s hamiltoniánem

$$\hat{H}_0 = -\frac{\hbar^2}{2m} \nabla^2 + U_0(\mathbf{r}) , \qquad (50)$$

kde $U_0(\mathbf{r})$ je jednoelektronový potenciál v atomu. Označme tato řešení (atomové orbitaly) $\phi_n(\mathbf{r})$ a příslušné vlastní energie ε_n . Pak platí

$$\hat{H}_0 \phi_n(\boldsymbol{r}) = \varepsilon_n \phi_n(\boldsymbol{r}) . \tag{51}$$

Vlastní funkce hamiltoniánu \hat{H}_0 jsou ortogonální (pro nedegenerované stavy určitě, v degenerovaném případě je lze ortogonalizovat)

$$\int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \phi_{n'}(\boldsymbol{r}) = \delta_{n,n'} \,. \tag{52}$$

Například v atomu vodíku mají orbitaly s nejnižšími energiemi vlnové funkce tvaru

$$\psi_{1s} \sim e^{-r/a_0}$$
, $\psi_{2s} \sim (2 - r/a_0)e^{-r/2a_0}$, $\psi_{2p_x} \sim x e^{-r/2a_0}$, $\psi_{2p_y} \sim y e^{-r/2a_0}$, $\psi_{2p_z} \sim z e^{-r/2a_0}$.

Důležitou vlastností je exponenciální pokles radiální části vlnové funkce, což je typické pro atomové orbitaly nejen u vodíku.

Vlnovou funkci elektronu v krystalu vzniklém umístěním atomů do uzlů R prostorové mřížky lze v případě malého překryvu hledat ve tvaru superpozice

$$\psi_{\boldsymbol{k}}(\boldsymbol{r}) = \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}} \sum_{n=1}^{N} c_n \phi_n(\boldsymbol{r}-\boldsymbol{R}) .$$
(53)

Index n označuje vnější orbitaly v izolovaném atomu, které se na vlnové funkci podílejí. Často se lze setkat např. s s-orbitaly (u alkalických kovů), kombinací s-orbitalu a tří p-orbitalů (u Si, Ge a III-V polovodičů), případně s kombinací s-orbitalu a pěti d-orbitalů u přechodových kovů.

Snadno se přesvědčíme, že funkce (53) vyhovuje Blochovu teorému a k je příslušný Blochův vektor

$$\psi_{\boldsymbol{k}}(\boldsymbol{r}+\boldsymbol{R}_{0}) = \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}} \sum_{n=1}^{N} c_{n}\phi_{n}(\boldsymbol{r}+\boldsymbol{R}_{0}-\boldsymbol{R}) =$$
$$= e^{i\boldsymbol{k}\cdot\boldsymbol{R}_{0}} \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot(\boldsymbol{R}-\boldsymbol{R}_{0})} \sum_{n=1}^{N} c_{n}\phi_{n} \left[\boldsymbol{r}-(\boldsymbol{R}-\boldsymbol{R}_{0})\right] = e^{i\boldsymbol{k}\cdot\boldsymbol{R}_{0}}\psi_{\boldsymbol{k}}(\boldsymbol{r}) .$$
(54)

Přáli bychom si, aby (53) byla vlastní funkcí hamiltoniánu elektronu v krystalovém potenciálu

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \sum_{\boldsymbol{R}} U_0(\boldsymbol{r} - \boldsymbol{R}) , \qquad (55)$$

tedy, aby splňovala

$$\hat{H}\psi_{\boldsymbol{k}} = E_{\boldsymbol{k}}\psi_{\boldsymbol{k}} \ . \tag{56}$$

To se nám přirozeně nepodaří přesně, pouze se lze pokusit o co nejlepší přiblížení v rámci námi předepsaného tvaru vlnové funkce, který obsahuje pouze N volných parametrů c_1, \ldots, c_N . Pomocí Ritzovy variační metody probírané v kurzu kvantové mechaniky zjistíme, že optimální koeficienty c_i jsou dány rovnicemi

$$\int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \hat{H} \psi_{\boldsymbol{k}}(\boldsymbol{r}) = E_{\boldsymbol{k}} \int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \psi_{\boldsymbol{k}}(\boldsymbol{r}) \;, \tag{57}$$

které odpovídají projekcím Schrödingerovy rovnice do atomových orbitalů. Dosaď me z rovnice (53) a upravujme pravou stranu rovnice (57)

$$E_{\boldsymbol{k}} \int \mathrm{d}^{3}\boldsymbol{r} \,\phi_{n}^{*}(\boldsymbol{r})\psi_{\boldsymbol{k}}(\boldsymbol{r}) = E_{\boldsymbol{k}} \sum_{\boldsymbol{R}} \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{R}} \sum_{n'=1}^{N} c_{n'} \int \mathrm{d}^{3}\boldsymbol{r} \,\phi_{n}^{*}(\boldsymbol{r})\phi_{n'}(\boldsymbol{r}-\boldsymbol{R}) = E_{\boldsymbol{k}} \sum_{n'=1}^{N} c_{n'} \sum_{\boldsymbol{R}} \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{R}} S_{nn'}(\boldsymbol{R}) \,. \tag{58}$$

Veličina $S_{nn'}({\pmb R})$ vystihuje míru překryvu orbitalu
 nv místě ${\pmb 0}$ a orbitalu n'v míst
ě ${\pmb R}$

$$S_{nn'}(\boldsymbol{R}) = \int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \phi_{n'}(\boldsymbol{r} - \boldsymbol{R}) \;.$$
(59)

Při upravování levé strany rovnice (57) je vhodné vydělit z hamiltoniánu elektronu v krystalu \hat{H} hamiltonián izolovaného atomu v místě **0**

$$\hat{H} = \hat{H}_0 + \sum_{\mathbf{R} \neq \mathbf{0}} U_0(\mathbf{r} - \mathbf{R}) = \hat{H}_0 + \Delta U(\mathbf{r}) .$$
(60)

Dosadíme-li toto vyjádření do levé strany rovnice (57)

$$\int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \hat{H} \psi_{\boldsymbol{k}}(\boldsymbol{r}) = \int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \left[\hat{H}_0 + \sum_{\boldsymbol{R}' \neq \boldsymbol{0}} U_0(\boldsymbol{r} - \boldsymbol{R}') \right] \psi_{\boldsymbol{k}}(\boldsymbol{r}) \tag{61}$$

a zapůsobíme s \hat{H}_0 doleva, kde se nachází jeho vlastní funkce s vlastní hodnotou ε_n , dostáváme

$$\sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}} \sum_{n'=1}^{N} c_{n'} \int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \left[\varepsilon_n + \Delta U(\boldsymbol{r})\right] \phi_{n'}(\boldsymbol{r} - \boldsymbol{R}) \,. \tag{62}$$

Integrál v (62) zapíšeme jako

$$\int d^3 \boldsymbol{r} \, \phi_n^*(\boldsymbol{r}) \left[\varepsilon_n + \Delta U(\boldsymbol{r})\right] \phi_{n'}(\boldsymbol{r} - \boldsymbol{R}) = \varepsilon_n S_{nn'}(\boldsymbol{R}) + \Delta U_{nn'}(\boldsymbol{R}) \tag{63}$$

a sloučením (58) s (62) získáme rovnice (57) ve tvaru

$$\sum_{n'=1}^{N} c_{n'} \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}} \left[\varepsilon_n S_{nn'}(\boldsymbol{R}) + \Delta U_{nn'}(\boldsymbol{R}) \right] = E_{\boldsymbol{k}} \sum_{n'=1}^{N} c_{n'} \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}} S_{nn'}(\boldsymbol{R}) .$$
(64)

Tato soustava lineárních rovnic představuje zobecněný vlastní problém známý z lineární algebry. Jeho řešením nalezneme přibližné vlastní energie E_k a z vlastních vektorů $(c_1, \ldots, c_N)^T$ můžeme sestrojit příslušné vlastní funkce.

V principu bychom mohli ze známého průběhu U_0 a atomových orbitalů vypočítat veličiny $\Delta U_{nn'}(\mathbf{R})$ a $S_{nn'}(\mathbf{R})$. Obvykle se však použijí určité aproximace a zbylých několik parametrů se získá srovnáváním s experimentálními daty (typicky optická spektra). Tento postup se označuje jako empirická metoda těsné vazby.

Časté aproximace:

• Díky exponenciálnímu poklesu hustoty pravděpodobnosti $|\phi_n(\mathbf{r})|^2$ se vzdáleností lze zanedbat překryv orbitalů na sousedních a vzdálenějších atomech. Dále využijeme ortogonalitu orbitalů a klademe

$$S_{nn'}(\boldsymbol{R}) = \delta_{n,n'} \delta_{\boldsymbol{R},\boldsymbol{0}} , \qquad \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}} S_{nn'}(\boldsymbol{R}) = \delta_{n,n'}$$
(65)

• Maticové elementy $\Delta U_{nn'}(\mathbf{R})$ uvažujeme jen pro $\mathbf{R} = \mathbf{0}$ a pro nejbližší sousedy. Umožňuje nám to opět exponenciální pokles vlnových funkcí. Symetrie orbitalů a $\Delta U(\mathbf{r})$ navíc způsobí, že některé maticové elementy jsou nulové.

S těmito aproximacemi lze soustavu (64) výrazně zjednodušit na

$$\sum_{\prime=1}^{N} \left[\sum_{\boldsymbol{R}=\boldsymbol{0} \text{ a soused}\acute{e}} \Delta U_{nn\prime}(\boldsymbol{R}) \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{R}} \right] c_{n\prime} = (E_{\boldsymbol{k}} - \varepsilon_n) c_n .$$
(66)

Než přistoupíme ke konkrétním příkladům, poznamenejme ještě, že maticový element $\Delta U_{nn'}(\mathbf{0})$ se mnohdy do výpočtu nezahrnuje, neboť pro $n \neq n'$ je malý díky ortogonalitě atomových orbitalů a pro n = n' jen posouvá energie ε_n .

3.6 Pás odvozený od s-orbitalů atomů v prosté kubické mřížce

Uvažujme o dvourozměrné čtvercové mřížce s jednoatomovou bází. Najděte disperzní relace pásů odvozených z sorbitalů s. Vlnové funkce těchto orbitalů mají rotačně symetrický tvar $\psi_s(x,y) = f(\sqrt{x^2 + y^2 + y^2})$. Při výpočtu se omezte pouze na maticové elementy mezi nejbližšími sousedy a matici překryvových integrálů aproximujte jednotkovou maticí. Pásové schéma zobrazte podél lomené čáry $\Gamma - X - M - L - \Gamma$.

3.7 Pásy odvozené od p-orbitalů atomů v čtvercové mřížce

Uvažujme o dvourozměrné čtvercové mřížce s jednoatomovou bází. Najděte disperzní relace pásů odvozených z dvakrát degenerovaných *p*-orbitalů p_x a p_y . Vlnové funkce těchto orbitalů mají tvar $\psi_{p_x}(x, y) = x f(\sqrt{x^2 + y^2})$ a $\psi_{p_y}(x, y) = y f(\sqrt{x^2 + y^2})$. Při výpočtu se omezte pouze na maticové elementy mezi nejbližšími sousedy a matici překryvových integrálů aproximujte jednotkovou maticí. Pásové schéma zobrazte podél lomené čáry $M - \Gamma - X$.

3.8 Pásy odvozené od p-orbitalů atomů v čtvercové mřížce s bází (2D kamenná sůl)

Uvažujme o dvourozměrné čtvercové mřížce s dvouatomovou bází, kdy atomy A jsou ve vrcholech a atomz B ve středech čtverců. Najděte disperzní relace pásů odvozených z dvakrát degenerovaných p-orbitalů aa obou typech atomů. Při výpočtu se omezte pouze na maticové elementy mezi nejbližšími sousedy a matici překryvových integrálů aproximujte jednotkovou maticí. Pásové schéma zobrazte podél lomené čáry $M - \Gamma - X$.

Rešení Pro názornost se omezíme na čistě dvoudimenzionální problém. Vlnové funkce p-orbitalů jsou reálné kombinace vlnových funkcí vlastních stavů s vedlejším kvantovým číslem $l = \pm 1$, které lze zapsat ve tvaru

$$\psi_{p_x}(x,y) = xf(\sqrt{x^2 + y^2}) \quad \text{(orbital } p_x) , \qquad (67)$$

$$\psi_{p_y}(x,y) = yf(\sqrt{x^2 + y^2}) \quad \text{(orbital } p_y) . \tag{68}$$

Vlastní energie pro tyto stavy je rovna ε_A pro stavy na atomech A a ε_B na atomech B. Zvolíme bázi s p-orbitaly směřující k nejbližším sousedům

$$\phi_1(x,y) = \frac{1}{\sqrt{2}} (\psi_{Ap_x}(x,y) + \psi_{Ap_y}(x,y)$$
(69)

$$\phi_2(x,y) = \frac{1}{\sqrt{2}} (\psi_{Ap_x}(x,y) - \psi_{Ap_y}(x,y)$$
(70)

$$\phi_3(x,y) = \frac{1}{\sqrt{2}} (\psi_{Bp_x}(x,y) + \psi_{Bp_y}(x,y)$$
(71)

$$\phi_4(x,y) = \frac{1}{\sqrt{2}} (\psi_{Bp_x}(x,y) - \psi_{Bp_y}(x,y)$$
(72)

Abychom mohli spočítat pásové schéma, je třeba určit maticové elementy

$$\Delta U_{nn'}(\mathbf{R}) = \int \mathrm{d}x \int \mathrm{d}y \ \phi_n(x, y) \Delta U(x, y) \phi_{n'}(x - R_x, y - R_y) \ , \tag{74}$$

kde \boldsymbol{R} probíhá nejbližší sousedy a $n, n' \in \{1, 2, 3, 4\}$, celkem tedy $4 \times 16 = 64$ hodnot. ¹ Členy $\Delta U_{11}(\boldsymbol{R}), \Delta U_{12}(\boldsymbol{R}), \Delta U_{21}(\boldsymbol{R}), \Delta U_{22}(\boldsymbol{R}), \Delta U_{33}(\boldsymbol{R}), \Delta U_{44}(\boldsymbol{R}), \Delta U_{44}(\boldsymbol{R})$ budou nulové, ptoože tyto orbitaly se nenacházejí na sousedních atomech.

Díky symetrii nám ovšem postačí pouze dva parametry. Krystalový potenciál U(x, y) má symetrii čtvercové mřížky, o $U_0(x, y)$ lze předpokládat, že je úplně rotačně symetrický. Odtud ihned vidíme, že $\Delta U_{14}(\mathbf{R}), \Delta U_{23}(\mathbf{R}), \Delta U_{32}(\mathbf{R})$ a $\Delta U_{41}(\mathbf{R})$ budou nulové, neboť integrujeme součin sudé funkce ΔU se dvěma funkcemi, které mají různou paritu buď vůči diagonálám. Zvlášť musíme vyšetřit maticové elementy $\Delta U_{13}(\mathbf{R})$ a $\Delta U_{24}(\mathbf{R})$. Následující dva označené jako $-t_{\parallel}$ a t_{\perp} budou zmíněnými dvěma parametry, ostatní maticové elementy se nám podaří na tyto dva převést

$$\Delta U_{13}(0,0) = \int \mathrm{d}x \int \mathrm{d}y \,\psi_{Ap_1}(x,y) \Delta U(x,y) \psi_{Bp_1}(x,y) \stackrel{\text{def}}{=} -t_{\parallel} ,$$

$$\Delta U_{13}(0,-a) = \int \mathrm{d}x \int \mathrm{d}y \,\psi_{Ap_1}(x,y) \Delta U(x,y) \psi_{Bp_1}(x,y-a) \stackrel{\text{def}}{=} t_{\perp} .$$

¹Maticové elementy $\Delta U_{nn'}(\mathbf{0}) \approx \beta \, \delta_{nn'}$ můžeme zahrnout do ε_p .

V integrálu pro $\Delta U_{13}(-a, -a)$ užijeme vlastností symetrie funkcí v integrandu

$$\Delta U_{13}(-a, -a) = \int dx \int dy \,\psi_{Ap_1}(x, y) \Delta U(x, y) \psi_{Ap_1}(x + a, y + a) = -t_{\parallel}$$

Podobně najdeme $\Delta U_{13}(-a,0) = t_{\perp}$. Dále dostaneme $\Delta U_{31}(0,0) = U_{31}(a,a) = -t_{\parallel}, \ \Delta U_{31}(a,0) = \Delta U_{31}(0,a) = t_{\perp}$. a podobně pro další elementy: $\Delta U_{24}(0,-a) = U_{24}(-a,0) = \Delta U_{42}(0,a) = U_{42}(a,0) = -t_{\parallel}, \ \Delta U_{24}(0,0) = \Delta U_{42}(0,0) = \Delta U_{42}(0,0) = \Delta U_{42}(0,0) = \Delta U_{42}(a,a) = t_{\perp}$.

V předchozím jsme používali vlastností symetrie vyjádřených vzorci, maticové elementy lze také určit názorně na základě obrázku. Stačí si uvědomit, že $\Delta U(x, y)$ je zcela symetrické vůči operacím symetrie mřížky a ihned zjistíme, které maticové elementy jsou ekvivalentní a které jsou nulové

Po dosazení za maticové elementy do rovnice (66) již snadno získáme dva páry nezávislých rovnic. První pár pro pás z orbitalů 1 a 3:

$$\varepsilon_A c_1 + c_3 t_\perp \left(e^{-ik_x a} + e^{-ik_y a} \right) - c_3 t_\parallel \left(1 + e^{-i(k_x a + k_y a)} \right) = E_{\mathbf{k}} c_1$$
$$\varepsilon_B c_3 + c_1 t_\perp \left(e^{ik_x a} + e^{ik_y a} \right) - c_1 t_\parallel \left(1 + e^{i(k_x a + k_y a)} \right) = E_{\mathbf{k}} c_3$$

Po úpravě

$$(\varepsilon_A - E_k)c_1 + c_3 \mathrm{e}^{-\mathrm{i}k_x a/2} \mathrm{e}^{-\mathrm{i}k_y a/a} \left[2t_\perp \cos\left(\frac{k_x - k_y}{2}a\right) - 2t_\parallel \cos\left(\frac{k_x + k_y}{2}a\right) \right] = 0$$
$$c_3 \mathrm{e}^{\mathrm{i}k_x a/2} \mathrm{e}^{\mathrm{i}k_y a/2} \left[2t_\perp \cos\left(\frac{k_x - k_y}{2}a\right) - 2t_\parallel \cos\left(\frac{k_x + k_y}{2}a\right) \right] + (\varepsilon_B - E_k)c_3 = 0$$

Řešení:

$$E_{\mathbf{k}} = \frac{\varepsilon_A + \varepsilon_B}{2} \pm \frac{1}{2} \sqrt{(\varepsilon_A - \varepsilon_B)^2 + 4\left[2t_{\perp}\cos\left(\frac{k_x - k_y}{2}a\right) - 2t_{\parallel}\cos\left(\frac{k_x + k_y}{2}a\right)\right]^2}$$

A pro druhý pár rovnic z orbitalů 2 a 4:

$$\varepsilon_A c_2 - c_4 t_{\parallel} \left(e^{-ik_x a} + e^{-ik_y a} \right) + c_4 t_{\perp} \left(1 + e^{-i(k_x a + k_y a)} \right) = E_{\mathbf{k}} c_2$$
$$\varepsilon_B c_4 + c_2 t_{\parallel} \left(e^{ik_x a} + e^{ik_y a} \right) - c_2 t_{\perp} \left(1 + e^{i(k_x a + k_y a)} \right) = E_{\mathbf{k}} c_4$$
$$E_{\mathbf{k}} = \frac{\varepsilon_A + \varepsilon_B}{2} \pm \frac{1}{2} \sqrt{(\varepsilon_A - \varepsilon_B)^2 + 4 \left[2t_{\perp} \cos\left(\frac{k_x + k_y}{2}a\right) - 2t_{\parallel} \cos\left(\frac{k_x - k_y}{2}a\right) \right]^2}$$

4 Kvaziklasická aproximace

4.1 Efektivní hmotnost v prosté kubické mřížce

Spočtěte tenzor efektivní hmotnosti (M_{ij}) pro elektrony v prosté kubické mřížce v jednoduchém těsnovazebním pásu ve středu Brillouinovy zóny Γ ($\mathbf{k} = (0,0,0)$), ve středu stěny X ($\mathbf{k} = (1,0,0)$), ve středu hrany M ($\mathbf{k} = (1,1,0)$) a ve vrcholu Brillouinovy zóny L ($\mathbf{k} = (1,1,1)$). Diskutujte užitečnost aproximace efektivní hmotnosti v bodě M. (Pozn. Jednoduchý těsnovazební pás vznikne z s-orbitalů).

Řešení Efektivní hmotnost je definována rovnicí

$$\mathbf{M} = \hbar^2 \left(\frac{\partial^2 E(\mathbf{k})}{\partial k_i \partial k_j} \right)^{-1}$$

Energie elektronu v aproximaci metody těsné vazby je

$$E(\mathbf{k}) = -E_1(\cos k_x a + \cos k_y a + \cos k_z a)$$

se šířkou pásu $6E_1$. Derivace $E(\mathbf{k})$ jsou

$$\frac{\partial E}{\partial k_x} = E_1 a \sin k_x a$$
$$\frac{\partial E}{\partial k_y} = E_1 a \sin k_y a$$
$$\frac{\partial E}{\partial k_z} = E_1 a \sin k_z a$$
$$\frac{\partial^2 E}{\partial k_x^2} = E_1 a^2 \cos k_x a$$
$$\frac{\partial^2 E}{\partial k_y^2} = E_1 a^2 \cos k_y a$$
$$\frac{\partial^2 E}{\partial k_z^2} = E_1 a^2 \cos k_z a$$
$$\frac{\partial^2 E}{\partial k_x^2} = E_1 a^2 \cos k_z a$$
$$\frac{\partial^2 E}{\partial k_x \partial k_y} = \frac{\partial^2 E}{\partial k_x \partial k_z} = \frac{\partial^2 E}{\partial k_y \partial k_z} = 0 \dots$$

Tudíž tensor efektivní hmotnosti je

$$\mathbf{M} = \hbar^2 \begin{pmatrix} E_1 a^2 \cos k_x a & 0 & 0 \\ 0 & E_1 a^2 \cos k_y a & 0 \\ 0 & 0 & E_1 a^2 \cos k_z a \end{pmatrix}^{-1}$$

Body reciprokého prostoru, které nás zajímají jsou

a odtud dostaneme

• bod Γ :

$$\mathbf{M} = \frac{\hbar^2}{E_1 a^2} \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right)^{-1}$$

• bod X:

• bod M:

$$\mathbf{M} = \frac{\hbar^2}{E_1 a^2} \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right)^{-1}$$

-1

$$\mathbf{M} = \frac{\hbar^2}{E_1 a^2} \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{array} \right)$$

• bod L:

K čemu jsou tyto tenzory efektivní hmotnosti dobré? Ve většině případů jsou elektrony souztředěny na energie v blízkosti Fermiho energie, a proto se pohyb elektronu děje podél povrchu s konstantní energií. Pro téměř prázdné nebo téměř zaplněné plné pásy zůstává Fermiho plocha velmi blízko bodů Γ nebo L po řadě. Dokud elektrony zůstávají v blízkosti maxima či minima energiového povrchu, efektivní hmotnost může být použita pro výpočet fyzikálních veličin, jako např.

$$m' = [\det|M_{ij}|]^{1/3}, \quad m^* = [\det\frac{|M_{ij}|}{M_{zz}}]^{1/2}$$

Zejména se jedná o případ polovodičů, kde jsou elektrony a díry vždy blízko dna a vrcholu pásu.

Na druhé straně je tensor efektivní hmotnosti v bodě X je relevantní pouze v případě, když je pás zaplněn po střední hodnotu. Nicméně v okolí bodu X se řezy konstantní energie rozšíří po celé Brillouinově zóně (Podobně jako v okolí bodu X ve dvojrozměrném případě do poloviny zaplněného pásu). V důsledku toho se mohou elektrony vždy pohybovat od bodu X a efektivní hmotnost se bude měnit podél svého orbitu. Tento přístup činí tento koncept efektivní hmotnosti zbytečný pro libovolné zaplnění pásu. To je dobře ilustruváno cyklotronovou hmotností m^* , a výběrem magnetického pole ve směru $M_{zz} < 0$. Ze vzorce pak vyplývá imaginární hodnota m^* , zatímco cyklotronové orbity existují v jakémkoliv zaplnění pásu.

•

4.2 Oscilace v homogenním elektrostatickém poli

Elektrony vodivostního pásu odvozeného od s-orbitalù atomù v prosté kubické mřížce mají v přiblížení těsné vazby disperzní relaci

$$E(\mathbf{k}) = E_s - 2\alpha \left[\cos(k_x a) + \cos(k_y a) + \cos(k_z a) \right] .$$

Najděte časový průběh rychlosti a polohy elektronu v homogenním elektrickém poli $\vec{\mathcal{E}} = (\mathcal{E}_x, 0, 0)$, je-li toto pole zapnuto v čase t = 0, kdy se elektron nachází ve stavu s $\mathbf{k} = (0, 0, 0)$. Jaký je příspěvek elektronu do elektrické vodivosti materiálu?

Řešení

$$\frac{\partial \mathbf{k}}{\partial t} = \frac{1}{\hbar} \vec{F} = -\frac{e}{\hbar} \vec{\mathcal{E}}$$
$$\mathbf{v} = \frac{1}{\hbar} \frac{\partial E}{\partial \mathbf{k}}$$
$$k_x = -\frac{e\mathcal{E}_x}{\hbar} t + k_x (t=0) = -\frac{e\mathcal{E}_x}{\hbar} t$$
$$v_x = \frac{2\alpha a}{\hbar} \sin(k_x a)$$
$$v_x = -\frac{2\alpha a}{\hbar} \sin\left(\frac{e\mathcal{E}_x}{\hbar}t\right)$$
$$x(t) = x(0) + \int_0^t v_x(\tau) \mathrm{d}\tau = x(0) + \frac{2\alpha a}{e\mathcal{E}_x} \left[\cos\left(\frac{e\mathcal{E}_x a}{\hbar}t\right) - 1\right]$$

Příspěvek k vodivosti je evidentně nulový. Frekvence $\omega = ae\mathcal{E}_x/\hbar$. Experimentálně je obtížné pozorovat (předpověď 1929, experiment 1992). Obecně není dostatečná doba bez srážek.

5 Polovodiče

5.1 Statistika nositelů náboje v polovodiči typu N

V polovodiči je 10^{13} donorů v cm³, které mají ionizační energii $E_D = 1 \text{ meV}$ a efektivní hmotnost $m_{ef} = 0.01 m_e$. Žádné akceptorové atomy nejsou přítomny a polovodič je nedegenerovaný, tj. $E_g \gg k_B T$. Odhadněte koncentraci vodivostních elektronů při T = 4 K a hodnotu Hallovy konstanty.

5.2 PN přechod

Odvození statistiky nositelů náboje v PN přechodu. Šířka ochuzené vrstvy, difuzní potenciál, ideální voltampérová charakteristika. Literatura: Kittel Introduction to solid state physics

Aschcroft, Mermin: Solid state physics

Sze, Ng: Physics of semiconductor devices

Frank, Šnejdar: Principy a vlastnosti polovodičových součástek

Radomír Lenhard: Fyzika polovodičů, přechod PN, Brno 2013.

Simulace rozložení na PN přechodu: http://pages.physics.cornell.edu/sss/ program poisson.