
Problems in Statistical Physics and Thermodynamics

1. Calculation of equation of state

Helmholtz free energy of a gas is given by

F(V,T ) =−1

3
C ·V ·T 4,

where C is a constant. Calculate equation of state of a given gas.

Solution: We shall start from the definition of Helmholtz free energy

F(V,T ) = E −T S,

from which

dF =−pdV −SdT.

Because this is an exact differential, (
∂F

∂V

)

T

=−p

should hold, and, consequently
1

3
C ·T 4 = p,

which is the equation of state we were looking for.

2. Gamma function

Gamma function is defined by

Γ(n) :=

∞∫

0

dt exp(−t)tn−1.

(a) Prove that

Γ(n+1) = nΓ(n),

(b) evaluate Γ(n), n ∈N,

(c) evaluate

Γ

(

n+
1

2

)

, n ∈ N.

Solution: We will start with 2a, because we will use the formula later. From the definition, we shall

express Γ(n+1) and manipulate the expression using integration by parts

Γ(n+1) =

∞∫

0

dt exp(−t)tn = −tn exp(−t)|∞0
︸ ︷︷ ︸

0

+n

∞∫

0

dt tn−1 exp(−t) = nΓ(n).

To calculate 2b, we shall start with Γ(1):

Γ(1) =

∞∫

0

dt exp(−t) = −exp(−t)|∞0 = 1.

Using expression from 2a, we calculate values of gamma function for other natural numbers

Γ(2) = Γ(1+1) = 1 ·Γ(1) = 1,

Γ(3) = 2 ·Γ(2) = 1 ·2,
Γ(4) = 3 ·Γ(3) = 1 ·2 ·3 = 6,

Γ(5) = 4 ·Γ(4) = 1 ·2 ·3 ·4 = 24;
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we can obtain formula for general n:

Γ(n+1) = n · (n−1) · · · · ·3 ·2 ·1 = n!.

We will work out the formula 2c in a same way: we will start with Γ(1/2):

Γ

(
1

2

)

=

∞∫

0

dt exp(−t)t−
1
2 = 2

∞∫

0

dsexp
(
−s2

)
=

√
π,

where we have introduced a substitution t = s2 in the last integral. We continue with evaluation of values

of gamma function for other n:

Γ

(
3

2

)

= Γ

(
1

2
+1

)

=
1

2
Γ

(
1

2

)

=
1

2

√
π ,

Γ

(
5

2

)

=
3

2
Γ

(
3

2

)

=
1

2
· 3

2

√
π =

3

4

√
π,

Γ

(
7

2

)

=
5

2
Γ

(
5

2

)

=
1

2
· 3

2
· 5

2

√
π =

15

8

√
π ,

Γ

(
9

2

)

=
7

2
Γ

(
7

2

)

=
1

2
· 3

2
· 5

2
· 7

2

√
π =

105

16

√
π;

for a general n

Γ

(

n+
1

2

)

=
2n−1

2
· 2n−3

2
· · · · · 7

2
· 5

2
· 3

2
· 1

2

√
π =

(2n−1)!!

2n

√
π.

3. Stirling’s formula

Using the gamma function, approximate ln(n!) for large n.

Solution:

We will use formula Γ(n+1) = n! from the previous problem. We will rearrange the Gamma function

Γ(n+1) =

∞∫

0

dt exp(−t)tn =

∞∫

0

dt exp(−t) · exp[n ln(t)] =

∞∫

0

dt exp[n ln(t)− t].

After a substitution t = n+ x

∞∫

0

dt exp[n ln(t)− t] =

∞∫

−n

dx exp[n ln(n+ x)−n− x]

≈
∞∫

−n

dx exp

[

n ln(n)−n− x2

2n

]

= exp[n ln(n)−n]

∞∫

−n

dx exp

(

− x2

2n

)

.

Because the Gaussian function significantly differs from zero just in an interval with width much smaller

than n, we can approximate the lower bound of integral by −∞. Then we can easily integrate the Gaussian

function

exp[n ln(n)−n]

∞∫

−n

dx exp

(

− x2

2n

)

=

+∞∫

−∞

dx exp

(

− x2

2n

)

=
√

2πnexp[n ln(n)−n].

4. Multidimensional calculations

Determine volume and surface area of n-dimensional sphere.

Solution:

There are two ways how to solve this. One can either calculate the Jacobian matrix of the transformation
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to n-dimensional spherical coordinates or to try some other way. In 3D case, the sphere is described as a

set of points that fulfill

B3(R) : x2
1 + x2

2 + x2
3 ≤ R2, (1)

with a boundary described by

S2(R) : x2
1 + x2

2 + x2
3 = R2. (2)

The general form in a higher dimension d:

Bd(R) : x2
1 + x2

2 + · · ·+ x2
d ≤ R2, (3)

and the boundary

Sd−1(R) : x2
1 + x2

2 + · · ·+ x2
d = R2. (4)

We define a volume in a general from; in 1D the volume corresponds to the length of a line, in 2D it

correspond to area of circle, etc.,

Vol
(
S1(R)

)
= 2πR, (5)

Vol
(
S2(R)

)
= 4πR2. (6)

Since the unit of volume corresponds to unit of length raised to a power of d, we can write the volume in

terms of unit sphere volume,

Vol
(

Sd−1(R)
)

= Rd−1Vol
(

Sd−1
)

. (7)

I a special case of d = 2 a d = 3 we have:

Vol
(
S1
)
= 2π, (8)

Vol
(
S2
)
= 4π. (9)

So, we have to find the volume of unit sphere. Let us assume space R
d with coordinates x1, x2, . . . ,xd let

r be the radial coordinate,

r2 = x2
1 + x2

2 + · · ·+ x2
n. (10)

Let us calculate an integral

Id =
∫

Rd
dx1 dx2 . . .dxd exp

(
−r2

)
. (11)

First method: we divide an integral into d parts each of which is integrated separately, namely

Id =
d

∏
i=1

+∞∫

−∞

dxie
−x2

i =
(√

π
)d

= π
d
2 . (12)

Second method: let us divide R
d into thin spherical shells. The volume given by r is Sd−1(r) sphere and

the volume of shell between r and r+dr is given by Sd−1(r) multiplied by dr. As a result,

Id =

∞∫

0

drVol
(

Sd−1(r)
)

exp
(
−r2

)
= Vol

(

Sd−1
)

∞∫

0

dr rd−1 exp
(
−r2

)
(13)

=
1

2
Vol
(

Sd−1
)

∞∫

0

dt exp(−t) t
d
2
−1, (14)

where we used (7) and performed a substitution t = r2. The last integral can be written in terms of gamma

function,

Id =
1

2
Vol
(

Sd−1
)

Γ

(
d

2

)

. (15)
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This integral should be also equal to Id = π
d
2 , as we have already calculated. As a result, the unit sphere

volume is equal to

Vol
(

Sd−1
)

=
2π

d
2

Γ
(

d
2

) . (16)

We can easily determine Vol
(
Bd
)
:

Vol
(

Bd
)

=

1∫

0

dr Vol
(

Sd−1(r)
)

= Vol
(

Sd−1
)

1∫

0

dr rd−1 = Vol
(

Sd−1
) rd

d

∣
∣
∣
∣

1

0

=
Vol
(
Sd−1

)

d
, (17)

therefore

Vol
(

Bd
)

=
2π

d
2

dΓ
(

d
2

) =
π

d
2

d
2
Γ
(

d
2

) =
π

d
2

Γ
(
1+ d

2

) . (18)

5. Occupation numbers of hydrogen energy levels

Let us assume that the hydrogen atom exists in a level with principal quantum number n = 3. Assuming

that the level occupation numbers are given by microcanonical distribution, calculate a probability that

the atom exists in states with the same orbital quantum number l.

Solution: We shall first determine the number of states for each state described by a given l. For n= 3 the

possible values of orbital quantum number are l = {0,1,2}. Each state with a given l is split according

to a given magnetic quantum number m = {−l,−l +1, . . . , l −1, l}. Furthermore, each of these states is

split according to spin quantum number s =±1/2. Now the number of possible states with given l is :

• l = 0: m = {0}, s = {±1/2}, this gives two states,

• l = 1: m = {−1,0,+1}, s = {±1/2}, this gives six states,

• l = 2: m = {−2,−1,0,+1,+2}, s = {±1/2}, what gives ten states.

The probability is given by a formula

wi =
# states with l = i

# all possible states
,

from which we can easily find

w0 =
1

9
, w1 =

1

3
, w2 =

5

9
.

6. Expression for entropy

Entropy of an isolated system is given by

S = kB lnΩ, (19)

where Ω is the number of microstates. For a closed system

S =−kB ∑
n

wn lnwn. (20)

Show that these formulae give the same result for an isolated system.

Assume that the system can be divided into a physical object A and thermostat A′, which form an isolated

system. Calculate the entropy of a) the whole isolated system A+A′ and b) sum of entropies of A and A′

and show that they yield the same result.

Solution: For an isolated system, according to the postulate of a priori equal probabilities wn = 1/Ω.

Consequently

S =−kB ∑
n

wn lnwn =−kB

Ω

∑
n=1

1

Ω
ln

(
1

Ω

)

= kB lnΩ
Ω

∑
n=1

1

Ω
= kB lnΩ.
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Let assume the system composed of two subsystems A and A′. Energy of the isolated system is given by

the sum of energies of these subsystems, E0 = E +E ′ = const. Let us now calculate the entropy in both

cases. I the case a), Ω(E0 −En) state of A′ system correspond to each n state of A system. Taking the

logarithm of the number of states and expanding to the first order in En

kB ln[Ω(E0 −En)]≈ kB lnΩ(E0)−
∂

∂E
kB lnΩ(E)En = kB lnΩ(E0)−

∂S

∂E
En = kB lnΩ(E0)−

En

T
, (21)

after exponentiation we arrive at

Ω(E0 −En)≈ Ω(E0)exp

(

− En

kBT

)

. (22)

The total entropy of the isolated system is then

S0 = kB ln

[

∑
n

Ω(E0)exp

(

− En

kBT

)]

= kB lnΩ(E0)+ kB ln∑
n

exp

(

− En

kBT

)

= kB lnΩ(E0)+ kB lnZ.

(23)

In the case b) we have to sum up the entropies of both subsystems

S0 = S+S′ =−kB ∑
n

wn lnwn + kB lnΩ(E0 −E) =

− kB ∑
n

1

Z
exp

(

− En

kBT

)(

− lnZ− En

kBT

)

+ kB lnΩ(E0)−
∂kB lnΩ(E0)

∂E0

E =

kB lnZ+
1

T
∑
n

1

Z
exp

(

− En

kBT

)

En + kB lnΩ(E0)−
E

T
= kB lnZ +

E

T
+ kB lnΩ(E0)−

E

T
=

kB lnΩ(E0)+ kB lnZ. (24)

This gives the same formula at the end.

7. Heat capacity

Show that cV is given by the fluctuation of energy,

cV =
1

kBT 2

〈
∆E2

〉
.

Solution: Mean energy is given by

E = ∑
n

wnEn,

En is constant for V = const., therefore we can rewrite the heat capacity as

cV =

(
∂E

∂T

)

V

=∑
n

En

(
∂wn

∂T

)

V

.

The probability corresponding to each state is

wn = exp

(
F −En

kBT

)

,

from which we obtain using differentiation

(
∂wn

∂T

)

V

=
∂

∂T

(
F −En

kBT

)

V

exp

(
F −En

kBT

)

=
T
(

∂F
∂T

)

V
−F +En

kBT 2
exp

(
F −En

kBT

)

.

Now we can apply thermodynamics relation for Helmholtz free energy

F = E −TS, dF =−pdV −SdT,
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giving us
(

∂F

∂T

)

V

=−S,

and

E = F +TS;

inserting this to the formula for derivative of wn with respect to temperature

(
∂wn

∂T

)

V

=
En −E

kBT 2
exp

(
F −En

kBT

)

=
En −E

kBT 2
wn.

The heat capacity takes the form of

cV =∑
n

Enwn

En −E

kBT 2
=

1

kBT 2

(

∑
n

E2
n wn −E ∑

n

Enwn

)

=
1

kBT 2

(〈
E2
〉
−E2

)
,

from which we derive the final relationship

cV =
1

kBT 2

〈
∆E2

〉
.

8. Fraction of nitrogen molecules in individual states

Nitrogen atom nucleus 7N14 has a nuclear spin I = 1. Let us assume that that diatomic molecule N2 excite

just rotational states at normal temperatures, but not the vibrational ones. Let us neglect the dynamics of

electrons. Determine fraction of „ortho“ and „para“ molecules in a gas composed of nitrogen molecules.

(„Ortho“ – symmetric spin state, „Para“ – antisymmetric spin state). How the fraction of molecules in

individual states behaves when the temperature of gas approaches zero?

Solution: 7N14 nucleus has a bosonic spin of I = 1; the total wave function of system of two nuclei

should be symmetric. The rotational quantum number J should be odd number for ortho-state to ensure

symmetry of the total wave function. In a para state, J should be even number. Rotational energy of

nitrogen molecule is

EJ =
h̄2

2H
J(J+1), J ∈N0,

where H is angular momentum. The ratio of population of individual states is

#population of para-nitrogen

#population of ortho-nitrogen
=

∑odd J(2J +1)exp
[

− h̄2

2HkBT
J(J+1)

]

∑even J(2J +1)exp
[

− h̄2

2HkBT
J(J+1)

] · I+1

I
,

where I is nitrogen nuclear spin. For

h̄2

HkBT
≪ 1

we can replace sums by integrals obtaining

∑
sudé J

(2J +1)exp

[

− h̄2

2HkBT
J(J+1)

]

=

∞

∑
m=0

(4m+1)exp

[

− h̄2

2HkBT
2m(2m+1)

]

≈
∞∫

0

dm(4m+1)exp

[

− h̄2

2HkBT
2m(2m+1)

]

=

=

∞∫

0

dx exp

[

− h̄2

HkBT
x

]

=
HkBT

h̄2
. (25)
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The second integral can be evaluated in the same way:

∑
odd J

(2J +1)exp

[

− h̄2

2HkBT
J(J+1)

]

=

∞

∑
m=0

(4m+3)exp

[

− h̄2

2HkBT
(2m+1)(2m+2)

]

=

∞∫

0

dm(4m+3)exp

[

− h̄2

2HkBT
(2m+1)(2m+2)

]

=

= exp

( −h̄2

HkBT

) ∞∫

0

dm(4m+3)exp

[

− h̄2

HkBT
(2m2 +3m)

]

=

= exp

( −h̄2

HkBT

) ∞∫

0

dyexp

[

− h̄2

HkBT
y

]

=
HkBT

h̄2
exp

( −h̄2

HkBT

)

. (26)

This after the substitution gives

#para-nitrogen population

#ortho-nitrogen population
=

I+1

I
exp

(
h̄2

HkBT

)

≈ I+1

I
;

because I = 1 the ratio is
#para-nitrogen population

#ortho-nitrogen population
=

2

1
. (27)

To calculate the ratio for the case T → 0, we will use

h̄2

HkBT
≫ 1;

in this case the exponential function approaches zero, consequently, we will use just the first term of each

sum,

∑
even J

(2J +1)exp

[

− h̄2

2HkBT
J(J+1)

]

=
∞

∑
m=0

(4m+1)exp

[

− h̄2

2HkBT
2m(2m+1)

]

≈ 1,

∑
odd J

(2J+1)exp

[

− h̄2

2HkBT
J(J +1)

]

=
∞

∑
m=0

(4m+3)exp

[

− h̄2

2HkBT
(2m+1)(2m+2)

]

≈ 3exp

(

− h̄2

HkBT

)

.

The population ratio of individual molecules is then

#para-nitrogen population

#ortho-nitrogen population
=

I +1

3I
exp

(
h̄2

HkBT

)

→ ∞;

this implies that all nitrogen molecules appear in para-state for temperatures tending to zero.

9. Wien’s displacement law

Derive Wien’s displacement law from the Planck’s law.

Solution: Planck’s law reads

B(ν ,T ) =
8πν2

c3

hν

exp
(

hν
kBT

)

−1
. (28)

Wien’s displacement law is written in terms of wavelengths, consequently, we will transform (28) into

wavelength space using

B(ν ,T )dν = B(λ (ν),T )

∣
∣
∣
∣

∂ν(λ )

∂λ

∣
∣
∣
∣

︸ ︷︷ ︸

B(λ ,T )

dλ ;

the transformation yields

B(λ ,T ) =
8πch

λ 5

1

exp
(

hc
kBT λ

)

−1
. (29)
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Now we can determine the maximum of the function. Differentiating with respect to wavelength gives

−5+
hc

kBT λ

1

1− exp
(

− hc
kBT λ

) = 0.

We denote

xmax =
hc

kBT λmax

,

where subscript „max“ denotes a point, where the function has its maximum. This is given by the solution

of equation
xmax

1− exp(−xmax)
= 5.

From this the wavelength corresponding to the maximum is

λmax =
b

T
, (30)

where

b =
hc

kBxmax

.

10. Stefan–Boltzmann law

Derive the Stefan–Boltzmann law for the amount of energy radiated by a black body per unit area and

per unit of time.

Solution: The specific intensity is defined as

δE = I(ν ,n)cos δ ·dΩ ·dS ·dt ·dν . (31)

Therefore, the specific intensity is given by the amount of radiative energy that passes through a surface

area dS in solid angle dΩ in time dt in frequency range dν . Here δ is an angle between n and dS. During

the time dt the surface intercepts radiation from a volume

dV = dS · cos δ · c ·dt.

The radiation has energy density ε(ν) and comes from all directions. Therefore from dΩ comes

cε(ν)cos(δ ) · dΩ

4π
dν ·dS ·dt,

which is equalt to δE above. Moreover, in equilibrium I(ν ,n) = B(ν) and therefore

B(ν) =
c

4π
ε(ν).

The total energy emited by the unit surface element per unit of time and frequency is

F(ν) =
δE

dSdt dν
=
∫∫

Ω+

dΩ
c

4π
ε(ν)cosδ =

c

4π
ε(ν)

2π∫

0

dϕ

π
2∫

0

dδ sin(δ )cos(δ )

︸ ︷︷ ︸

2π· 1
2

=
c

4
ε(ν).

Inserting the energy density

F(ν) =
c

4

8πν2

c3

hν

exp
(

hν
kBT

)

−1
=

2πν2

c2

hν

exp
(

hν
kBT

)

−1
,

after integrating over all frequencies

F = σT 4. (32)
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11. Rayleigh–Jeans law

Derive Rayleigh–Jeans law using the equipartition theorem.

Solution: Rayleigh–Jeans law describes the equilibrium electromagnetic radiation in a closed cavity.

According to the equipartition theorem, this corresponds to the system of oscillators with energy

Ev = 2 · 1

2
kBT = kBT.

Energy of a system of oscillators is given by the sum of energies of individual oscillators. We can appro-

ximate the summation by integration. From the solution for a particle in a box we have

ki =
2πni

Li

,

then the number of states in intervals ∆ni is given by

∆nx∆ny∆nz = Lx ·Ly ·Lz
︸ ︷︷ ︸

V

∆kx∆ky∆kz

(2π)3
.

The total energy of all particles can be written as

E =∑
k

Ek ≈ 2

∫

R3

d3k

(2π)3
V Ek =V

2π∫

0

dϕ

π∫

0

dθ

∞∫

0

dk′
k′2

(2π)3
2kBT =V

∞∫

0

dk 2kBT
k2

(2π)3
4π,

where we perform a substitution k = 2πν/c, yielding

E ≈V

∞∫

0

dν 2kBT ·4π
ν2

c3
, (33)

from which

εν ≈ 8πν2

c3
kBT. (34)

12. Influence of Sun on Earth

Let us assume that both Sun and Earth radiate as black bodies in empty space. Temperature of Sun is

TS = 6000K. Let us assume that the temperature on Earth is the same everywhere. The radius of Earth is

RE = 6 ·108 cm and the Earth-Sun distance is d = 1.5 ·1011 m.

(a) Estimate temperature of Earth.

(b) Determine the radiative force of Sun on Earth.

(c) Compare the results with interplanetary chondrites of spherical shape. Chondrites can efficiently

transfer heat and can be regarded as black bodies. Their radius is d = 0.1cm and let us assume that

they move at the same distance as our Earth, that is d.

Solution:

(a) The total radiative flux coming from our Sun is

F = 4πR2
s σT 4

⊙;

the radiative flux per unit of surface at the distance d (Earth) is

F

S
=

4πR2
s σT 4

⊙
4πd2

,

therefore the Earth intercepts

F⊕ =
R2

s σT 4
⊙

d2
πR2

⊕.
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Because we assume that the Earth is in a state of thermodynamic equilibrium, it emits as a black

body,

F⊕ = 4πR4
⊕σT 4

⊕,

therefore
R2

s σT 4
⊙

d2
πR2

⊕ = 4πR4
⊕σT 4

⊕,

T⊕ =

√

R⊙
2d

T⊙ = 290K. (35)

(b) Because the radius of Earth is much smaller than its distance from Sun, we can estimate the force

directly from

F =
F⊕
c

=

R2
s σT 4

⊙
d2 πR2

⊕
c

= 6×108 N.

(c) In this case we cane use the same equation as derived above,

T = 290K, F = 1.7×10−11 N.

13. Harmonic oscillator

Determine eigenvectors of linear harmonic oscillator in coordinate representation.

Solution: We will use creation and annihilation operators. Let us remind that â |0〉 = 0 |0〉. We will

determine the coordinate representation of this vector

〈q| â |0〉= 〈q|0 |0〉 .

Because the annihilation operator can be written in terms of x̂ and p̂x as

â =
1√
2
(q̂+ ip̂) ,

where the dimensionless operators are

q̂ =

√
mω

h̄
x̂, q̂ =

√

1

mh̄ω
p̂x.

We shall substitute in a previous equation obtaining

〈q| â |0〉=
〈

q

∣
∣
∣

1√
2
(q̂+ ip̂)

∣
∣
∣0
〉

=
1√
2
(〈q| q̂ |0〉+ i〈q| p̂ |0〉) .

The operator can act on the left state,

1√
2
(〈q| q̂ |0〉+ i〈q| p̂ |0〉) = 1√

2
q
〈
q
∣
∣0
〉
+

1√
2

d

dq

〈
q
∣
∣0
〉
=

1√
2

qh0(q)+
1√
2

d

dq
h0(q) = 0.

We obtain equation for the eigenfunction of a given state |0〉 as

qh0(q)+
d

dq
h0(q) = 0. (36)

Solution is

h0(x) =C exp
(

−mω

2h̄
x2
)

.

C constant can be determined from the norm of eigenvector

∫

dx [h0(x)]
2 = 1.

Then

C2 =

√
mω

π h̄
. (37)
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The final eigenfunction is

h0(x) =
4

√
mω

π h̄
exp

(

−mωx2

h̄

)

. (38)

To determine the coordinate representation of eigenstate with nonzero n, we shall use the identity â† |n〉=√
n+1 |n+1〉. Fro n = 1 we have

〈q| â† |0〉=
〈
q
∣
∣0
〉
,

then 〈

q

∣
∣
∣

1√
2
(q̂− ip̂)

∣
∣
∣1
〉

=
〈
q
∣
∣0
〉
.

We shall rewrite the left hand side

1√
2

q
〈
q
∣
∣0
〉
+

1√
2

d

dq

〈
q
∣
∣0
〉
=
〈
q
∣
∣1
〉
,

from which

h1(q) =
1√
2

(

qh0(q)+
d

dq
h0(q)

)

. (39)

The eigenfunction hn(q) can be written in terms of recursion formula

hn(q) =
1√
2

[

qhn−1(q)+
d

dq
hn−1(q)

]

. (40)

14. System of harmonic oscillators

Determine thermodynamic properties of the system of N distinguishable classical harmonic oscillators

with frequency ω .

Solution: The energy of a system of harmonic oscillators is

E =
N

∑
n=1

(
p2

n

2m
+

1

2
mω2q2

n

)

. (41)

We will calculate the statistical sum first,

Z =
1

hN

∫

R2N
dNq ·dN p · exp

[

−
N

∑
n=1

(
p2

n

2mkBT
+

mω2q2
n

2kBT

)]

=

1

hN

∫

R2N
dN p ·dNq ·

N

∏
n=1

exp

(
p2

n

2mkBT
+

mω2q2
n

2kBT

)

=

1

hN

N

∏
n=1

∫

R

dpn ·dqn · exp

(
p2

n

2mkBT
+

mω2q2
n

2kBT

)

=

1

hN

[∫ ∞

0
dp · exp

(
p2

2mkBT

)]N




∞∫

0

dq exp

(
mω2q2

2kBT

)




N

=

1

hN

(√

2mkBT π · 2πkBT

mω2

)N

=

(
2πkBT

hω

)N

=

(
kBT

h̄ω

)N

. (42)

Helmholtz free energy can be determined from

F =−kBT ln(Z) =−kBT ln

(
kBT

h̄ω

)N

=−NkBT ln

(
kBT

h̄ω

)

. (43)

The pressure and entropy are

p =−
(

∂F

∂V

)

T

= 0, (44)
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S =−
(

∂F

∂T

)

V

= NkB

[

ln

(
kBT

h̄ω

)

+1

]

. (45)

Energy of the system is

E = F +T S = NkBT.

15. Density distribution in an atmosphere

Determine the density distribution in a gas column with a cross-section A in homogeneous gravitational

field. Let us assume that the gas is composed from indistinguishable particles with mass m.

Solution: We will start with calculation of the canonical partition function, which can be written as

Z =
1

N!(2π h̄)3

∫

R3N×Ω

d3N p ·d3Nq · exp

[

−∑
n

(
p2

n

2mkBT
+

mgq

kBT

)]

,

where Ω = {[x,y,z]; x ∈ [−L,L], y ∈ [−L,L], z ∈ [0,∞),L ∈R
+}. One-particle partition function is

Z =
1

(2π h̄)3





∫

R

dp · exp

(

− p2

2mkBT

)∫

Ω

dq · exp

(

−mgq

kBT

)


 ;

the first integral leads to Gaussian function,

∫

R

dp · exp

(

− p2

2mkBT

)

=
√

(2πmkBT )3.

The second integral gives

∫

Ω

dq · exp

(

−mgq

kBT

)

=

L∫

−L

dx

L∫

−L

dy

︸ ︷︷ ︸

A

∞∫

0

dz exp

(

−mgz

kBT

)

︸ ︷︷ ︸
kBT

mg

= A
kBT

mg
.

Consequently,

Z =
1

(2π h̄)3
(2πmkBT )

3
2 A

kBT

mg
. (46)

The probability of finding the particle in a phase space d3 p ·d3q is given by

dwn =
1

Z

d3 p ·d3q

(2π h̄)3
exp

(

− p2

2mkBT

)

exp

(

−mgq

kBT

)

=

mg

(2πmkBT )
3
2 AkBT

exp

(

− p2

2mkBT

)

exp

(

−mgq

kBT

)

d3 p ·d3q.

Our aim is to obtain the probability density in real space q, therefore we shall integrate wn over the

momentum space,
∫

p

dwn =
mg

AkBT
exp

(

−mgq3

kBT

)

︸ ︷︷ ︸

P

·d3q,

where P denotes the probability density of finding the particle at the position q. The particle number

density is

n =
Nmg

AkBT
exp

(

−mgq3

kBT

)

. (47)

The mass density is

ρ(z) = ρ(0) · exp

(

−mgq3

kBT

)

. (48)
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16. Heat capacity of a gas I

Let us study a gas composed of diatomic molecules. We shall calculate heat capacity per molecule. We

shall account just vibrational motion of molecules with energy given by

En = h̄ω

(

n+
1

2

)

. (49)

Calculate the partition function, determine the Helmholtz free energy, and the heat capacity. Determine

the approximate behaviour at low and high temperatures.

Solution: The partition function is

Z =
∞

∑
n=0

exp

(

−−En

kBT

)

=
∞

∑
n=0

exp

[

− h̄ω
(
n+ 1

2

)

kBT

]

= exp

(

− h̄ω

2kBT

) ∞

∑
n=0

exp

(

− h̄ω

kBT
n

)

. (50)

Using the sum of a geometric sequence we derive

Z =
exp
(

− h̄ω
2kBT

)

1− exp
(

− h̄ω
kBT

) =
2

2
[

exp
(

h̄ω
2kBT

)

− exp
(

− h̄ω
2kBT

)] =
1

2sinh
(

h̄ω
2kBT

) . (51)

From the partition function we determine the Helmholtz free energy

F =−kBT ln(Z) = kBT ln

[

2sinh

(
h̄ω

2kBT

)]

.

We will estimate the energy first,

E = F +T S = F −T

(
∂F

∂T

)

V

.

After substitution and differentiation

E = kBT ln

[

2sinh

(
h̄ω

2kBT

)]

− kBT ln

[

2sinh

(
h̄ω

2kBT

)]

+
h̄ω

2
cotanh

(
h̄ω

2kBT

)

=

h̄ω

2
cotanh

(
h̄ω

2kBT

)

.

From this for the heat capacity follows

cV =

(
∂E

∂T

)

V

=

(
h̄ω

2T

)2
1

kB sinh2
(

h̄ω
2kBT

) . (52)

The limiting behaviour at low and high temperatures is

• low-temperature approximation: we will approximate the sinh function using exponentials

cV =

(
∂E

∂T

)

V

=

(
h̄ω

T

)2
1

kB

[

exp
(

h̄ω
2kBT

)

− exp
(

− h̄ω
2kBT

)]2
.

The first term dominates, therefore

cV ≈ 1

kB

(
h̄ω

T

)2

exp

(

− h̄ω

2kBT

)

. (53)

• high-temperature approximation: We perform first-order Taylor expansion of sinh, from which

cV ≈
(

h̄ω

T

)2
1

kB

(
h̄ω
kBT

)2
= kB. (54)
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17. Heat capacity of a gas II

Let us study a gas composed from diatomic molecules. Calculate heat capacity per mole of a given gas.

You may account just rotational movement of the molecules with energy given by

E j,m =
h̄2 j( j+1)

2I
, (55)

where I is molecular moment of inertia. The partition function cannot be calculated analytically, therefore

express this quantity in the limit of high and low temperatures.

Solution: The partition function can be written as

Z = ∑
j

g j exp

(

− E j

kBT

)

, (56)

where g j is the degeneracy factor of a given energy level. After substitution (55) we derive

Z =
∞

∑
j=0

(2 j+1)exp

(

− h̄2 j( j+1)

2IkBT

)

. (57)

The sum cannot be evaluated analytically, therefore we express the quantity in the limit of high and low

temperatures.the degeneracy factor,

• high-temperature limit: in this case

h̄2

2IkBT
≪ 1,

therefore (57) is in fact left Riemann sum. Therefore, we can approximate

∞

∑
j=0

(2 j+1)exp

(

− h̄2 j( j+1)

2IkBT

)

≈
∞∫

0

d j (2 j+1)exp

(

− h̄2 j( j+1)

2IkBT

)

=

∞∫

0

dz exp

(

− h̄2z

2IkBT

)

=
2IkBT

h̄2
.

From this the Helmholtz free energy is

F =−kBT ln

(
2IkBT

h̄2

)

,

energy

E = kBT,

and heat capacity

cV = kB. (58)

• low-temperature limit: for low temperatures

h̄2

2IkBT
≫ 1;

the exponential tends quickly to zero, and we can account just limited number of summands. Let us

take just tow; in this case the partition function can be approximated as

∞

∑
j=0

(2 j+1)exp

(

− h̄2 j( j+1)

2IkBT

)

≈ 1+3exp

(

− h̄2

IkBT

)

.

We shall proceed as previously estimating the Helmholtz free energy, energy, and heat capacity. The

energy is

E =
3h̄2

I

1

3+ exp
(

h̄2

IkBT

) ,

and heat capacity is

cV =
3h̄4

kBT 2I2

1
[

3exp
(

− h̄2

2kBTI

)

+ exp
(

h̄2

2kBTI

)]2
. (59)
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18. Unit testing

Show that pressure and energy density share the same unit.

Solution: we shall proceed from definition

[p] =
[F]

[S]
=

kg ·m · s−2

m2
= kg ·m−1 · s−2,

[e] =
[E]

[V ]
=

kg ·m2 · s−2·
m3

= kg ·m−1 · s−2.

19. Relativistic particles

Calculate density of states of relativistic particles and find the limiting formulae for classical and ultra-

relativistic particles.

Solution: The density of states is given by

ρ(E) =
gV

πd

1

2d
Vol
(

Sd−1
) [k(E)]d−1

∣
∣dE

dk

∣
∣

, (60)

where g is the degeneracy factor, d is the dimension of space, and Vol
(
Sd−1

)
surface area of d − 1

dimensional sphere. In our case d = 3. Dispersion relation E(k) is given by

E =
√

m2c4 + h̄2k2c2,

from which

k =

√
E2 −m2c4

h̄c
.

We substitute in 60) obtaining

ρ(E) =
4πgV

(2π h̄)3

1

c3
E
√

E2 −m2c4. (61)

• Classical limit: Energy is given by

Ecl ≈ E −mc2 =
√

m2c4 + h̄2k2c2 −mc2 = mc2

√

1+
h̄2k2

m2c2
−mc2 ≈

mc2

(

1+
1

2

h̄2k2

m2c2

)

−mc2 =
h̄2k2

2m
. (62)

• Ultra-relativistic limit – in this case E ≫ mc2 and we can neglect the second term in square root

ρ(E) =
4πgV

(2π h̄)3

1

c3
E2.

20. Maxwell–Boltzmann distribution

Show that it is possible to derive Maxwell–Boltzmann distribution of velocities from the grand-canonical

distribution.

Solution: The number of bosons in energy interval (E,E +dE) is

dN =
ρ(E)dE

exp
(

E−µ
kBT

)

+1
.

In a classical case

exp

(

−E −µ

kBT

)

≪ 1,

therefore we can neglect one in the denominator. After the substitution of ρ(E) we arrive at

dN =
4πgV

(2π h̄)3

√
2m3E exp

(
E −µ

kBT

)

dE.
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The expression can be transformed into velocity space

dE =
∂E

∂v
dv = mvdv,

using classical expression for kinetic energy E = 0.5 ·mv2

dw =
4πgV

(2π h̄)3

√
2m3

√
m

2
exp

(
0.5mv2 −µ

kBT

)

mv2dv =
4πgV

(2π h̄)3
m3v2 exp

(

− v2

2mkBT

)

exp

(

− µ

kBT

)

dv.

The chemical potential can be derived from the equation for one particle

1 = N =
gV

(2π h̄)3
(2πmkBT )

3
2 F3

2

(
µ

kBT

)

=
gV

(2π h̄)3
(2πmkBT )

3
2

1

Γ
(

3
2

)

∞∫

0

dx
x

1
2

exp
(

x− µ
kBT

)

+1
.

The exponential is significantly higher than one, therefore we can approximate

∞∫

0

dxx
1
2 exp

(

−x+
µ

kBT

)

≈ exp

(
µ

kBT

) ∞∫

0

dxx
1
2 exp(−x) = exp

(
µ

kBT

)

Γ

(
3

2

)

.

We substitute in the previous formula

gV

(2π h̄)3
exp

(
µ

kBT

)

= (2πmkBT )−
3
2 .

This gives

dw = 4π

(
m

2πkBT

) 3
2

v2 exp

(
v2

2kBT

)

dv. (63)

21. Derivation of the Planck’s law

Show that the Planck’s law can be derived from grandcanonical distribution of particles with µ = 0.

Solution: The number of bosons in energy interval is

dN =
ρ(E)dE

exp
(

E−µ
kBT

)

−1
.

For photons µ = 0 holds and their energy is equal to E = hν . Transforming to frequencies, we derive the

energy density

EdN =
8πv2

c3

hν

exp
(

hν
kBT

)

−1
. (64)

22. Bosonic a Fermionic integral

Prove that

If(m) =

∞∫

0

dx · xm−1

exp(x)+1
=
(
1−21−m

)
ζ (m) ·Γ(m), (65)

and

Ib(m) =

∞∫

0

dx · xm−1

exp(x)−1
= ζ (m) ·Γ(m), (66)

where ζ (m) is the Riemann function

ζ (m) =
∞

∑
k=1

1

km
.
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Solution: We can manipulate If(m) to

∞∫

0

dx
xm−1

exp(x)+1
=

∞∫

0

dxxm−1 exp(−x)
1

1+ exp(−x)
;

the fraction can be expanded as
1

1± x
= 1∓ x+ x2 ∓ . . . , (67)

which gives

∞∫

0

dxxm−1 exp(−x)
1

1+ exp(−x)
=

∞∫

0

dxxm−1 exp(−x)
∞

∑
k=0

(−1)k exp(−kx) =

∞

∑
k=0

∞∫

0

dx(−1)k exp[−(1+ k)]xm−1.

In sum we substitute k′ = k+1, take out terms that do not depend on variable x, and perform a substitution

y = k′x

∞

∑
k′=0

∞∫

0

dx(−1)k′ exp[−(1+k′)]xm−1 =
∞

∑
k′=1

∞∫

0

dx(−1)k′−1 exp(−xk′)xm−1 =
∞

∑
k′=1

(−1)k−1

k′m

∞∫

0

dy exp(−y)ym−1.

Because the integral does not depend on k′, the sum can be evaluated separately. We can separate positive

and negative contributions to the sum, which gives

∞

∑
k′=1

(−1)k−1

(k′)m
=

∞

∑
l=1

1

(2l −1)m
−

∞

∑
l=1

1

(2l)m
.

This can be manipulated in the following way

∞

∑
l=1

1

(2l −1)m
−

∞

∑
l=1

1

(2l)m
=

1

1m
+

1

3m
+

1

5m
+ · · ·+ 1

(2l −1)m
+ . . .− 1

2m
− 1

4m
− 1

6m
− . . .− 1

(2l)m
−·· ·=

1

1m
+

1

2m
+

1

3m
+

1

4m
+ · · ·+ 1

km
−2

(
1

2m
+

1

4m
+ · · ·+ 1

(2l)m
+ . . .

)

=
∞

∑
k=1

1

km
−2

∞

∑
l=1

1

(2l)m
=

∞

∑
k=1

1

km
−21−m

∞

∑
l=1

1

lm
=
(
1−21−m

)

∑
k=1

1

km
. (68)

The function is then

∞

∑
k′=1

(−1)k−1

k′m

∞∫

0

dy exp(−y)ym−1 =
(
1−21−m

)

∑
k=1

1

km

∞∫

0

dy exp(−y)ym−1 =(1−21−m)ζ (m)Γ(m). (69)

The equality can be proven analogously – we expand according to (67)

Ib(m) =

∞∫

0

dx · xm−1

exp(x)−1
=

∞

∑
k=0

∞∫

0

dxxm−1 exp[−x(1+ k)] =
∞

∑
k=1

∞∫

0

dxxm−1 exp(−xk) =

∞

∑
k=1

1

km

∞∫

0

dyym−1 exp(−y) = ζ (m)Γ(m). (70)
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23. Properties of functions

We shall define

Bn(y) =
1

Γ(n)

∞∫

0

dx
xn−1

exp(x− y)−1
, (71)

and

Fn(y) =
1

Γ(n)

∞∫

0

dx
xn−1

exp(x− y)+1
. (72)

Prove that
dBn+1(y)

dy
= Bn(y),

and
dFn+1(y)

dy
= Fn(y).

Solution: We will start with

dBn+1(y)

dy
=

d

dy




1

Γ(n+1)

∞∫

0

dx
xn

exp(x− y)−1



=
1

Γ(n+1)

∞∫

0

dxxn d

dy

1

exp(x− y)−1
.

Because the following identity holds

d

dy

1

exp(x− y)−1
=− d

dx

1

exp(x− y)−1
,

we can substitute into the integral and integrate by parts

− 1

Γ(n+1)

∞∫

0

dxxn d

dx

1

exp(x− y)−1
=

1

Γ(n+1)







[

− xn

exp(x− y)−1

]∞

0
︸ ︷︷ ︸

0

+

∞∫

0

dx
n · xn−1

exp(x− y)−1







.

Using Γ(n+1) = nΓ(n) we derive

dBn+1(y)

dy

d

dy
=

1

Γ(n)

∞∫

0

dx
xn−1

exp(x− y)−1
= Bn(y). (73)

The fermionic relations can be proven analogously.

24. Bose–Einstein condensate in 2D?

Prove that in there is no Bose–Einstein condensate in d = 2.

Solution: We shall estimate the density of states in 2d:

ρ(E) =
2πgSm

(2π h̄)2
.

Landau potential is

Ω =−
∞∫

0

dE





∞∫

0

dE ′ρ(E ′)




1

exp
(

E−µ
kBT

)

−1
,

where
∞∫

0

dE ′ρ(E ′) =
2πgSmE

(2π h̄)2
.
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The potential Ω is equal to

Ω =
2πgSm

(2π h̄)2

∞∫

0

dE
E

exp
(

E−µ
kBT

)

−1
.

Number of particles is in the 2D case equal to (taking into account µ → 0)

N =

∞∫

0

dE
ρ(E)

exp
(

E−µ
kBT

)

−1
=

2πgmS

(2π h̄)2
kBT

∞∫

0

dx
1

exp(x)−1
= .

2πgmS

(2π h̄)2
kBT ζ (1)Γ(1).

Because ζ (1) → ∞, any number of particles can appear in the state with E = 0, and there is no Bose-

Einstein condensate.

25. Electron-positron gas

At temperatures kBT ≈ mec2 electron-positron pairs are created. Determine equilibrium number of e−

and e+. Solution: We shall start with.

∑
i

γiµi = 0. (74)

From the equation that describes the reaction follows that the number of electrons and positrons is the

same, therefore

µ−+µ+ = 0 = 2µ ,

that is, the chemical potential is equal zero. For ultra-relativistic fermions

dNE =
4πgV

(2π h̄)3

1

c3

E2dE

exp
(

E−µ
kBT

)

+1
,

therefore the number of particles is

NE =
4πgV

(2π h̄)3

1

c3

∫

dE
E2

exp
(

E−µ
kBT

)

+1
=

4πgV

(2π h̄)3

(kBT )3

c3
Γ(3)F3

(
µ

kBT

)

.

For the case µ = 0 we derive

F3

(
µ

kBT

)

=
(
1−2−2

)
ζ (3) =

3

4
·ζ (3).

Number of particles is

N+ = N− =
3πgV

4(π h̄)3

(kBT )3

c3
ζ (3).

For g = 2 in particular

N+ = N− =
3V

2π2

(
kBT

h̄c

)3

ζ (3). (75)

26. Number of particles of bosonic gas

From the Landau potential of nonrelativistic bosonic gas

Ω =−kBT
gV

(2π h̄)3
(2πmkBT )

3
2 B 5

2

(
µ

kBT

)

, (76)

determine number of particles N.

Solution: The number of particles is given by

N =−
(

∂Ω

∂ µ

)

T,V

,
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substituting from (76) we obtain

N =−kBT
gV

(2π h̄)3
(2πmkBT )

3
2

∂

∂ µ
B 5

2

(
µ

kBT

)

.

From the previous problem can use the identity

dBn+1(y)

dy
= Bn(y),

from which

dBn+1

(
µ

kBT

)

dµ
=

1

kBT
Bn

(
µ

kBT

)

.

The number of particles is then

N =
gV

(2π h̄)3
(2πmkBT )

3
2 B 3

2

(
µ

kBT

)

. (77)

27. Adiabatic process equation for photon gas

Determine the adiabatic process equation for photon gas in terms of p and V .

Solution: Helmholtz free energy of photon gas is

F =− 4

3c
σT 4V,

the following relations hold
(

∂F

∂V

)

T

=−p,

(
∂F

∂T

)

V

=−S.

From these equations the entropy is

S =
16

3
σT 3V,

and the temperature is

T =
4

√

3cp

4σ
,

after the substitution

S =
4

5
4

3
1
4

c
3
4 p

3
4 σ

1
4 V = const..

After using more suitable constant, we derive p
3
4 V = const., what can be manipulated into the form

pV
4
3 = const. (78)

28. Fermi gas degeneration

Rewrite the degeneracy condition of Fermi gas kBT ≪ εF in terms of wavelength of the de Broglie wave

corresponding to the thermal motion and Fermi wavelength.

Solution: We substitute into the formula for λT

λT =

√

2π h̄2

mkBT
≫

√

2π h̄2

mεF

.

The Fermi wavelength is

λF =
2π h̄

pF

=
2π h̄√
2mε

=

√

4π2h̄

2mε
,

The inequality can be rewritten as

λT =

√

2π h̄2

mkBT
≫

√

2π h̄2

mεF

≈ λF.

From this follows

λT ≫ λF. (79)
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29. Heat capacity III

Determine the heat capacity cV of fermionic gas and prove the validity of classical limit for cV/N.

Solution: The energy of classical fermionic gas is

E =
3

2

gV

λ 3
T

kBT F5
2

(
µ

kBT

)

, (80)

and number of particles is

N =
gV

λ 3
T

F3
2

(
µ

kBT

)

, (81)

where

λT =

√

2π h̄2

mkBT
. (82)

From this the energy could be written as

E =
3

2
NkBT

F5
2

(
µ

kBT

)

F3
2

(
µ

kBT

) .

We denote

Fn

(
µ

kBT

)

= Fn.

Heat capacity is

cV =

(
∂E

∂T

)

N,V

=
3

2
NkB

F5
2

F3
2

+
3

2
NkBT

∂F5
2

∂T
F3

2
−F5

2

∂F3
2

∂T
(

F3
2

)2
,

where the differentiation of Fn with respect to T is

(
∂Fn

∂T

)

V,N

=
∂

∂T

(
µ

kBT

)

F ′
n =

[(
∂ µ

∂T

)

V,N

1

kBT
− µ

kBT 2

]

Fn−1.

Substituting into the formula for cV

cV =
3

2
NkB

F5
2

F3
2

+
3

2
N

[(
∂ µ

∂T

)

V,N

− µ

T

]



1−

F5
2
F1

2
(

F3
2

)2




 .

The number of particles does not depend on temperature,

(
∂N

∂T

)

V,N

=
3

2
F3

2
+

[

1

kB

(
∂ µ

∂T

)

V,N

− µ

kBT

]

F1
2
= 0.

From this the temperature derivative of chemical potential is

(
∂ µ

∂T

)

V,N

=
µ

T
− 3

2
kB

F3
2

F1
2

. (83)

After substitution

cV =
3

2
N




1−

F5
2
F1

2
(

F3
2

)2






(

−3

2
kB

F3
2

F1
2

)

+
3

2
NkB

F5
2

F3
2

=
3

2
NkB







F5
2

F3
2

− 3

2
N

F3
2

F1
2




1−

F5
2
F1

2
(

F3
2

)2












.
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In a classical case we can approximate Fn by

Fn ≈ exp

(
µ

kBT

)

, (84)

then all ratios of F functions are equal to one and we derive the classical limit

cV ≈ 3

2
NkB. (85)

Another approach: We shall calculate cV,N first. In

cV,µ = T

(
∂S

∂T

)

V,µ

,

we express entropy as S = S(N(µ ,V,T ),V,T ), therefore

T

(
∂S

∂T

)

V,µ

= T

(
∂S(N(µ ,V,T ),V,T )

∂T

)

V,µ

= T

(
∂S

∂N

)

V,µ

(
∂N

∂T

)

V,µ

+T

(
∂S

∂T

)

V,N

.

We shall use Maxwell’s relation that follows from the Helmholtz free energy

dF =−SdT − pdV +µdN,

from which (
∂S

∂N

)

V,T

=−
(

∂ µ

∂T

)

N,V

.

Because the number of particles is constant

dN =

(
∂N

∂ µ

)

T,V

+

(
∂N

∂T

)

µ ,V

= 0,

we derive (
∂ µ

∂T

)

N,V

=−
(

∂ µ

∂N

)

T,V

(
∂N

∂T

)

µ ,V

.

We substitute partial derivatives into cV,µ

cV,µ = T

(
∂N

∂ µ

)−1

T,V

(
∂N

∂T

)2

µ ,V

+T

(
∂S

∂T

)

V,N
︸ ︷︷ ︸

cV,N

.

This gives for the heat capacity

cV,N = cV,µ −T

(
∂N
∂T

)2

µ ,V
(

∂N
∂ µ

)

T,V

. (86)

Now we can substitute results from the statistical physics for fermionic gas. Landau potential is

Ω =−gV

λ 3
T

kBT F5
2

(
µ

kBT

)

. (87)

The entropy is from (87)

S =−
(

∂Ω

∂T

)

V,µ

=
−gV kB

λ 3
T

(
5

2
F5

2
− µ

kBT
F3

2

)

.

From this the heat capacity cV,µ is

cV,µ = T

(
∂S

∂T

)

V,µ

=−gV kB

λ 3
T

(
15

4
F5

2
−3

µ

kBT
F3

2
+

µ2

k2
BT 2

F1
2

)

.
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We calculate derivative from (81)

(
∂N

∂T

)

V,µ

=
gV

λ 3
T

(
3

2T
F3

2
− µ

kBT 2
F1

2

)

.

Finally,
(

∂N

∂ µ

)

V,T

=
gV

λ 3
T

1

kBT
F1

2
.

We substitute this into (86)

cV,N =
gV kB

λ 3
T





(
15

4
F5

2
−3

µ

kBT
F3

2
+

µ2

k2
BT 2

F1
2

)

−T 2




9

4T 2

F2
3
2

F1
2

− 3µ

kBT 3
F3

2
+

µ2

k2
BT 4

F1
2







 .

We divide by kBN and substitute (81)

cV,N

kBN
=

15

4

F5
2

F3
2

−3
µ

kBT
+

µ2

k2
BT 2

F1
2

F3
2

− 9

4

F3
2

F1
2

+
3µ

kbT
− µ2

k2
BT 2

F1
2

F3
2

.

In a classical case one can approximate Fn by (84), therefore

cV,N

kBN
=

15

4
−3

µ

kBT
+

µ2

k2
BT 2

− 9

4
+3

µ

kBT
− µ2

k2
BT 2

.

All terms except 3/2 cancel out and we finally arrive at

cV,N

kBN
=

3

2
, (88)

what is the same result as in previous case.

30. Classical limit

Prove the validity of the classical limit

E =
3

2
NkBT,

Solution: We use (80) and (81) once again. We approximate Fn as (84). Then the energy is

E =
3

2

gV

λ 3
T

kBT F5
2

(
µ

kBT

)

≈ 3

2

gV

λ 3
T

kBT F5
2

exp

(
µ

kBT

)

,

and analogously for the number of particles

N ≈ gV

λ 3
T

exp

(
µ

kBT

)

.

This gives for E ·N/N,

E =
3

2
kBT N. (89)

31. Relativistic fully degenerate fermionic gas

Calculate:

(a) density of states,

(b) Fermi energy, Fermi momentum,

(c) number of particles,

(d) energy,

(e) Landau potential,

(f) equation of state
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for relativistic (in case 31f ultra-relativistic) fully degenerated fermionic gas. Evaluate number of par-

ticles, energy, and the Landau potential in terms of Fermi energy.

Solution: The assumption of fully degenerated fermionic gas means for temperature T → 0. In this case

lim
T→0+

1

exp
(

E−µ
kBT

)

+1
=







1 E < µ
1
2

E = µ

0 E > µ .

(a) Density of states can be derived from

n(p)dp =
V

(2π h̄)3
gdp,

in this case

n(p)dp =
V

π2h̄3
p2dp.

(b) Because fully degenerated fermionic gas populates levels up to state with Fermi energy or momen-

tum pF, we obtain after integration of density of states

N =
V

π2h̄3

p3
F

3
.

From this the Fermi momentum follows as

pF = (3π2)
1
3

(
N

V

) 1
3

h̄.

The Fermi energy is

εF =
√

p2
Fc2 +m2

0c4.

(c) We will express the density of states in terms of energy,

n(ε)dε =
V

π2h̄3

√
ε2 −m2c4

c3
εdε .

After substitution ε → mc2t we obtain

n(t)dt =
V
(
mc2

)3

π2h̄3c3

√

t2 −1tdt.

The number of particles can be obtained by integration with respect to t from 1 to εF/mc2 (which

corresponds to from mc2 to εF before substitution) and by multiplying by the above term,

N =
V
(
mc2
)3

π2h̄3c3

εF
mc2∫

1

dtt
√

t2 −1,

what gives

N =
V

3π2h̄3c3

(
ε2

F −m2c4
) 3

2 .

(d) The energy is given by

U =

∞∫

mc2

dN E =
V

π2h̄3

εF∫

mc2

dε ε2

√
ε2 −m2c4

c3
=

V
(
mc2
)4

π2h̄3c3

εF
mc2∫

1

dt
(
t2 −1

) 1
2 t2.
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The integral can be evaluated using substitution t = cosh(x), which, after some manipulation gives

V
(
mc2
)4

π2h̄3c3

εF
mc2∫

1

dt
(
t2 −1

) 1
2 t2 =

V
(
mc2

)4

8π2h̄3c3

∣
∣
∣t
(
2t2 −1

)√

t2 −1− ln
(

t +
√

t2 −1
)∣
∣
∣

t=
εF

mc2

t=1
.

The result can be cast in the form of

U =
V
(
mc2

)4

8π2h̄3c3




εF

mc2

(

2
ε2

F

(mc2)2
−1

)√

ε2
F

(mc2)2
−1− ln




εF

mc2
+

√

ε2
F

(mc2)2
−1







 .

(e) We can proceed analogously as in previous case to determine the Landau potential Ω. We will

evaluate

Ω =−V
(
mc2
)4

3π2h̄3c3

εF
mc2∫

1

dt
(
t2 −1

) 3
2 .

We integrate as in previous problem obtaining

Ω =−V
(
mc2
)4

8π2h̄3c3




εF

mc2

(

2

3

ε2
F

(mc2)2
−1

)√

ε2
F

(mc2)2
−1+ ln




εF

mc2
+

√

ε2
F

(mc2)2
−1







 .

(f) We shall rewrite the formulae obtained above in the case of ultra-relativistic gas. Number of par-

ticles is

N =
V
(
mc2

)3

3π2h̄3

( εF

mc2

)3

,

Landau potential is

Ω =−V
(
mc2

)4

12π2h̄3

( εF

mc2

)4

,

and energy

U =
V
(
mc2
)4

4π2h̄3

( εF

mc2

)4

.

From the identity Ω =−PV follows

P =

(
mc2
)4

12π2h̄3

( εF

mc2

)4

,

or, in terms of number of particles,

P =
3

1
3

4

(
N

V

) 4
3

π
2
3 h̄.

This gives P ∝ ρ
4
3 .

32. Fluctuations

Determine fluctuation of number of particles in the case of grandcanonical distribution
(

∆N2 =
〈
N2
〉
−〈N〉2

)

.

Evaluate in the case of nonrelativistic bosonic and fermionic gas.

Solution: We shall start manipulating the formula for 〈N〉

〈N〉= ∑
n,N

Nwn,N = ∑
n,N

N
exp
(

−En,N−µN

kBT

)

Ξ
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Now we differentiate the exponential with respect to the chemical potential

∂ exp
(

−En,N−µN

kBT

)

∂ µ
=

N

kBT
exp

(

−En,N −µN

kBT

)

.

Then

∑
n,N

N
exp
(

−En,N−µN

kBT

)

Ξ
=

kBT

Ξ ∑
n,N

∂

∂ µ
exp

(

−En,N −µN

kBT

)

,

the differentiation can be taken out of the sum,

kBT

Ξ

∂

∂ µ ∑
n,N

exp

(

−En,N −µN

kBT

)

=
kBT

Ξ

∂Ξ

∂ µ
.

We proceed analogously to evaluate
〈
N2
〉

〈
N2
〉
= ∑

n,N

N2wn,N = ∑
n,N

N2
exp
(

−En,N−µN

kBT

)

Ξ
.

Then

∑
n,N

N2
exp
(

−En,N−µN

kBT

)

Ξ
=

kBT

Ξ ∑
n,N

N
∂

∂ µ
exp

(

−En,N −µN

kBT

)

,

the differentiation can be taken out of the sum and we can expand Ξ

kBT

Ξ

∂

∂ µ ∑
n,N

N exp

(

−En,N −µN

kBT

)
Ξ

Ξ
=

kBT

Ξ

∂

∂ µ
(〈N〉Ξ) =

kBT

Ξ

∂ 〈N〉
∂ µ

Ξ+
kBT

Ξ
〈N〉 ∂Ξ

∂ µ
.

Because we have already determined 〈N〉, we can rewrite

kBT
∂ 〈N〉
∂ µ

+
kBT

Ξ
〈N〉 ∂Ξ

∂ µ
= kBT

∂ 〈N〉
∂ µ

+ 〈N〉2 .

From this follows
〈
N2
〉
−〈N〉2 = kBT

∂ 〈N〉
∂ µ

.

We apply this to the case of bosonic gas; the number of particles is

〈N〉= gV

λ 3
T

B 3
2

(
µ

kBT

)

,

then

(∆N)2 =
gV

λ 3
T

B 1
2

(
µ

kBT

)

.

This can be written as

(∆N)2

N2
=

1

N

B 1
2

(
µ

kBT

)

B 3
2

(
µ

kBT

) .

A similar equation can be written also for fermionic gas except the fact that we shall replace B by F .

Therefore, the resulting formula is

(∆N)2

N2
=

1

N

F1
2

(
µ

kBT

)

F3
2

(
µ

kBT

) .
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33. Virial theorem

Derive the virial theorem from the classical mechanics.

Solution: The virial theorem can be derived for the movement of particles in central force field. Let us

study

G = ∑
i

pi · ri,

where we sum over all particles of the system. Total derivative is

dG

dt
= ∑

i

ṙi ·pi +∑
i

ṗi · ri. (90)

We can manipulate the first term on the right hand side in the following way

∑
i

ṙi ·pi = ∑
i

miṙi · ṙi = ∑
i

miv
2
i = 2T.

The second term can be rewritten as

∑
i

ṗi · ri =∑
i

Fi · ri.

Equation (90) then takes the form of

d

dt
∑

i

p·ri = 2T +∑
i

Fi · ri. (91)

Taking the mean value by integrating from to τ and divide by τ

1

τ

τ∫

0

dt
dG

dT
≡ d〈G〉

dt
= 2〈T 〉+

〈

∑
i

Fi · ri

〉

.

Left hand side can be rewritten as

1

τ
[G(τ)−G(0)] = 2〈T 〉+

〈

∑
i

Fi · ri

〉

. (92)

Left hand side tends to zero for periodic motion or for spatially confined system (in this case also G is

bounded from above), therefore for large τ we obtain

〈T 〉=−1

2

〈

∑
i

Fi · ri

〉

. (93)

We can rewrite the right hand term. The force acting on a given particle is given by the mutual interaction

of particles and by pressure,

−1

2

〈

∑
i

Fi · ri

〉

=−1

2

(

−
〈

∑
i

ri ·∇Π

〉

−P

〈∮

S
dA n · r

〉)

.

The diversion: Euler’s homogeneous function theorem

A function f of N variable is homogeneous of degree k if

f (tx1, tx2, · · · , txN) = tk f (x1,x2, · · · ,xN) .

The Euler’s theorem states that the sum of product of the partial derivatives of homogeneous function

and the variables is equal to the given function multiplied by the degree,

N

∑
n=1

xn

∂ f (x1,x2, · · · ,xN)

∂xn

= k f (x1,x2, · · · ,xN) . (94)
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End of the diversion.

Let us assume that the potential energy Π is a homogeneous function of coordinates of degree n. In this

case

−1

2

(

−
〈

∑
i

ri ·∇Π

〉

−P

〈∮

S
dA n · r

〉)

=
1

2
(n〈Π〉−3PV) .

We substitute this to the right hand side of (93), what gives the virial theorem in the form of

2〈T 〉−n〈Π〉−3PV = 0. (95)

34. Application of the virial theorem

Determine the equation of state using the virial theorem.

Solution: The mean kinetic energy is from the equipartition theorem equal to

〈T 〉= 3

2
kBT.

We shall evaluate the right hand side term of (93). From the definition of the perfect gas follows that the

mutual interaction of particle is rare in comparison with interaction with walls of the vessel. This is why

we can replace summation with integral over the gas surface. The differential of the force is

dFi =−PndA,

or
1

2
∑

i

Fi · ri =−P

2

∫

dAn · r,

where P is a pressure due to the particle flux, n is vector of the normal and dA is surface element. This

can be rewritten using the divergence theorem as

∫

dAn · r =
∫

dV ∇ · r = 3V.

We substitute the expression for kinetic energy and potential into (93)

3

2
NkBT =

3

2
PV, (96)

from which follows

NkBT = PV, (97)

This is the state equation. The same result can be derived from (95).

35. Application of the virial theorem II

Studied system contains N weakly interacting particle and its temperature is high enough to use classical

mechanics. Each particle has mass of m and oscillates around the equilibrium position. Determine the

heat capacity for the following cases:

(a) The return force is proportional to deviation x from the equilibrium position.

(b) The return force is proportional to x3.

Calculate without evaluating the corresponding integrals.

Solution: We will use (95) without surface forces, that is with P = 0.

(a) Because the force is proportional to r, the potential is proportional to Π ∝ r2. Consequently, the

potential is a homogeneous function of second order. Therefore, the virial theorem is

2〈T 〉−2〈Π〉= 0,

and

〈T 〉= 〈Π〉 .
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We insert this result into the law of conservation of energy U = 〈T 〉+ 〈Π〉

U = 2〈T 〉= 3NkBT,

from which

U = 3NkBT.

(b) In this case Π ∝ r4, therefore

2〈T 〉−4〈Π〉= 0,

from which

U =
9

4
NkBT.

36. Lattice vibrations

Determine the heat capacity due to the lattice vibrations for

(a) Debye model,

(b) Einstein model

of the lattice.

Solution: The energy of vibrations is

u =
1

V

∑i Ei exp(−βEi)

∑i exp(−βEi)
. (98)

Let us assume harmonic lattice composed of N ions, which can be regarded as a system of 3N oscillators.

The contribution of ordinary mode with frequency ωs(k) to the energy is quantized,

En =

(

nks +
1

2

)

h̄ωs(k), (99)

where nks ∈ 0,1,2, · · ·. The total energy is given by a sum of energies of individual modes,

E = ∑
ks

(

nks +
1

2

)

h̄ωs(k).

Let us define f

f =
1

V
ln

(

∑
i

exp(−βEi)

)

.

We can easily prove that

u =− ∂ f

∂β
.

Substituting for En, we obtain

f =
1

V
ln

{

∑
nks

exp

[

−β ∑
ks

h̄ωs(k)

(

nks +
1

2

)]}

=
1

V
ln

{

∏
ks

∑
nks

exp

[

−β h̄ωs(k)

(

nks +
1

2

)]}

=
1

V
ln






∏
ks

exp
[

−β h̄ωs(k)
2

]

1− exp [−β h̄ωs(k)]






=

1

V
∑
ks

{[

−β h̄ωs(k)

2

]

− ln [1− exp(−β h̄ωs(k))]

}

.

The energy is given by the expression above

u =− 1

V
∑
ks

[

− h̄ωs(k)

2
− h̄ωs(k)exp(−β h̄ωs(k))

1− exp(−β h̄ωs(k))

]

=
1

V
∑
ks

h̄ωs(k)

[
1

2
+

1

exp(β h̄ωs(k))−1

]

.

This can be rewritten as

u =
1

V
∑
ks

h̄ωs(k)

(

nks +
1

2

)

, (100)
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where

nks =
1

exp(β h̄ωs(k))−1
.

From the comparison with (99) follows that nks excitational number of ordinary mode ks at temperature

T . The classical energy of lattice is

u = ueq +
1

V
∑
ks

1

2
h̄ωs(k)+

1

V
∑
ks

h̄ωs(k)

exp(β h̄ωs(k))−1
.

The specific heat capacity is then

cV =
1

V
∑
ks

∂

∂T

h̄ωs(k)

exp(β h̄ωs(k))−1
. (101)

(a) Within Debye model we assume

ωs(k) = cs(k
0)k.

Sum in (101) can be replaced by integral (across the first Brillouin zone)

cV =
∂

∂T
∑

s

∫
dk

(2π)3

h̄ωs(k)

exp(β h̄ωs(k))−1
.

This integral can be replaced by an integral across the sphere with radius kD chosen in such a way

that it contains exactly N allowed vectors, where N is the number of ions in the lattice. Volume of

k-space corresponding to one wavevector is (2π)3/V , what requires volume of k-space to fill the

volume (2π)3N/V to fill 4πk3
D/3, so kD is

n =
k3

D

6π2
.

We substitute

cV = ∑
s

∂

∂T

∫
dk

(2π)3

h̄csk

exp(β h̄csk)−1
= ∑

s

∂

∂T

2π∫

0

dΩ

kD∫

0

dk

(2π)3

h̄csk
3

exp(β h̄csk)−1

and perform a substitution

x =
h̄csk

kBT
,

obtaining

∑
s

∂

∂T

2π∫

0

dΩ

kD∫

0

dk

(2π)3

h̄csk
3

exp(β h̄csk)−1
=

1

8π3

(
kBT

h̄

)3

∑
s

∫

dΩ
1

c3
s (Ω)

h̄cskD
kBT∫

0

dx
x4 exp(x)

(exp(x)−1)2
.

We denote
1

c3
=

1

4π ∑
s

∫

dΩ
1

c3
s

(102)

and for kD holds

ωD = kDc,

for Debye temperature ΘD

kBΘD = h̄ωD = h̄ckD.

After substitution,

cv = 9nkB

(
T

ΘD

)3

ΘD
T∫

0

dx
x4 exp(x)

(exp(x)−1)2
. (103)
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The derived equation depends just on ΘD. Debye temperature can be derived using low-temperature

limit. At low temperatures, the heat capacity is

cV =
2π2

5
kB

(
kBT

h̄c

)3

,

where we substitute equation for Debye temperature,

kBΘD = h̄ckD = h̄c
3
√

6π2n,

after the substitution of h̄c/kB

cv =
12π4

5
nkB

(
T

ΘD

)3

.

(b) Einstein model is more suitable for optical branch and assumes that

ωs(k) = ωE.

The heat capacity can be derived from (101), where we substitute the dispersion relation

cV =
∂

∂β

1

V
h̄ωEN

1

exp
(

h̄ωE

kBT

)

−1
= nkB

(
h̄ωE

kBT

)2 exp
(

h̄ωE

kBT

)

[

exp
(

h̄ωE

kBT

)

−1
]2
.

37. Free particle I

Determine the mean coordinate in the case of 1D movement of free particle confined in the region x ∈
[0,L], the density matrix operator is

ρ(x,x′,β ) =
1

L
exp

(

−π(x− x′)2

λ 2
T

)

. (104)

Solution: The mean value can be determined from

〈x̂〉= Tr(ρ̂ x̂) .

The trace is

Tr(ρ̂ x̂) =

L∫

0

dx′
〈
x′ |ρ̂ x̂|x′

〉
=

L∫

0

dx′
∞∫

−∞

dx
〈
x′ |ρ̂|x

〉〈
x |x̂|x′

〉
,

The first matrix element correspond to the density matrix, and the second element is

〈
x |x̂|x′

〉
= x
〈
x
∣
∣x′
〉
= xδ (x− x′).

We obtain

〈x̂〉=
L∫

0

dx′
∞∫

−∞

dx
1

L
exp

(

−π(x− x′)2

λ 2
T

)

xδ (x− x′) =
1

L

L∫

0

dx′ x′ =
L

2
.

38. Free particle II

Determine matrix elements of the density operator of free particle in the momentum representation.

Solution: Density operator is

ρ̂ =
exp
(
−β Ĥ

)

Tr
(
−β Ĥ

) . (105)

We shall start with the partition function. Free particle Hamiltonian is Ĥ = p̂2/(2m):

Z(T,V,1) = Trexp
(
−β Ĥ

)
= ∑

p

〈
φp

∣
∣exp

(
−β Ĥ

)∣
∣φp

〉
= ∑

p

exp

(

−βp2

2m

)

.
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We can approximate the sum by an integral

Z(T,V,1) =
V

(2π)3

∫

dpexp

(

−βp2

2m

)

=
V

(2π)3

(
2mπ

β h̄2

) 3
2

=
V

λ 3
.

From this the matrix elements of the density operator are

〈
φp′ |ρ̂|φp

〉
=

λ 3

V
exp

(−βp2

2m

)

δpp′ .

39. Free particle III

Determine the mean value of the Hamiltonian of a free particle using a direct calculation in the momen-

tum representation from
〈

Ĥ

〉

= Tr
(

ρ̂Ĥ

)

. (106)

Solution: We will write the trace as

Tr
(

ρ̂Ĥ

)

= ∑
p

〈
p
∣
∣ρ̂Ĥ

∣
∣p
〉
= ∑

p,p′

〈
p |ρ̂|p′〉〈p

∣
∣Ĥ
∣
∣p
〉
= ∑

p,p′

[
λ 3

V
exp

(−βp2

2m

)

δpp′

](
p2

2m
δpp′

)

.

We approximate the summation by an integral and rewrite the integral in the spherical coordinates

1

h̄2

h̄2

2m

λ 3

V

V

(2π)3

∫

dpp2 exp

(−βp2

2m

)

=
1

2m
λ 2 2

(2π)2

∞∫

0

dk k4 exp

(−β p2

2m

)

.

After the substitution we have

〈
Ĥ
〉
=

h̄2λ 3

m

1

(2π)2

1

2

(
2m

β h̄2

) 5
2

∞∫

0

dxx
3
2 exp(−x).

From this follows
〈
Ĥ
〉
=

3

2
kBT.

40. Free particle IV

Calculate the mean value of the Hamiltonian of a free particle from the partition function (in a framework

of quantum physics)

Z =
V

λ 3
T

. (107)

Solution: The mean value of the Hamiltonian is

〈H〉= Tr
[
exp
(
−β Ĥ

)
Ĥ
]

Tr
[
exp
(
−β Ĥ

)] =− ∂

∂β
ln
[
Tr
(
exp
(
−β Ĥ

))]
=− ∂

∂β
ln(Z),

now we can substitute

− ∂

∂β
ln(Z) = 3

∂

∂β
λT = 3

1

2

∂

∂β
(lnβ ) =

3

2

1

β
=

3

2
kBT.

41. Two fermions

Calculate the matrix elements of density operator and the partition function for two noninteracting fermi-

ons.

Solution: The wave function should be antisymmetric with respect to interchange of particles, therefore

|p1, p2〉=
1√
2
(|p1, p2〉− |p2, p1〉) .
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The matrix elements of density operator are according to (105)

〈
p′1, p′2

∣
∣ ρ̂ |p1, p2〉=

1

2Z

(〈
p′1, p′2

∣
∣−
〈

p′2, p′1
∣
∣
)

exp

(

− p̂2
1 + p̂2

2

2mkBT

)

(|p1, p2〉− |p2, p1〉)

=
1

2Z
exp

(

−p2
1 +p2

2

2mkBT

)
(〈

p′1, p′2
∣
∣ p1, p2

〉
−
〈

p′1, p′2
∣
∣ p2, p1

〉
−
〈

p′2, p′1
∣
∣ p1, p2

〉
+
〈

p′2, p′1
∣
∣ p2, p1

〉)

1

2Z
exp

(

−p2
1 +p2

2

2mkBT

)
[
δ
(
p′

1 −p1

)
δ
(
p′

2 −p2

)
−δ

(
p′

1 −p2

)
δ
(
p′

2 −p1

)
−

δ
(
p′

2 −p1

)
δ
(
p′

1 −p2

)
+δ

(
p′

2 −p2

)
δ
(
p′

1 −p1

)]

=
1

Z
exp

(

−p2
1 +p2

2

2mkBT

)
[
δ
(
p′

1 −p1

)
δ
(
p′

2 −p2

)
−δ

(
p′

1 −p2

)
δ
(
p′

2 −p1

)]
.

The partition function is

Z = Tr
[
exp
(
−β Ĥ

)]
=

1

2
∑

p1,p2

(〈p1, p2|− 〈p2, p1|)exp

(

− p̂2
1 + p̂2

2

2mkBT

)

(|p1, p2〉− |p2, p1〉)

=
1

2
∑

p1,p2

exp

(

−p2
1 +p2

2

2mkBT

)

(2−2〈p1, p2| p2, p1〉) =
1

2
∑

p1,p2

exp

(

−p2
1 +p2

2

2mkBT

)

[2−2δ (p1 −p2)]

=
1

2
∑

p1,p2

exp

(

−p2
1 +p2

2

2mkBT

)

− 1

2
∑
p

exp

(

− p2

2mkBT

)

Approximating the sum by the integral

1

2

V 2

(2π h̄)6

∫

dp1dp2 exp

(

−p2
1 +p2

2

2mkBT

)

− 1

2

V

(2π h̄)3

∫

dp exp

(

− p

2mkBT

)

=
1

2

V 2

(2π h̄)6
(2πmkBT )3 − 1

2

V

(2π h̄)3
(2πmkBT )

3
2 . (108)

This can be rewritten as

λ =

√

2π h̄2

mkBT
,

and finally

Z =
1

2

V 2

λ 6

(

1− 1

2
3
2

λ 3

V

)

.

42. White dwarf

We will study a star made of electron degenerate gas.

(a) Denoting the number of nucleons N estimate the number of electrons (assume 12C a 16O composi-

tion).

(b) Determine energy per electron assuming

i. relativistic gas,

ii. nonrelativistic gas.

(c) Determine energy per nucleon.

(d) Find the minimum energy as a function of radius and show that in ultra-relativistic case the mini-

mum appears for R → 0.

(e) Determine the limiting mass for ultra-relativistic case for zero total energy.

Solution:

(a) Carbon contains six electrons a twelve nucleons. Oxygen has eight electrons and sixteen nucleons.

Consequently, the number of electrons is half the number of nucleons in both cases.

33



(b) In the case of nonrelativistic gas we obtain (see problem 31)

E =
p5

F

10meπ2h̄3
, N =

V p3
F

3π2h̄3
.

Dividing these results
E

N
=

3

10me

(
N

V
3π2h̄3

)

,

we substitute volume of a sphere

E

N
=

3

10me

(
9

4
π h̄3

) 2
3 N

2
3

e

R2
.

For ultra-relativistic case

E =
V
(
mc2

)4

4π2h̄3

( εF

mc2

)4

.

N =
V
(
mc2

)3

3π2h̄3

( εF

mc2

)3

.

Energy per particle can be derived in a similar way as in previous case

E

N
=

3

4
mec2 =

3

4
mec2

(
Ne

V
3π2 h̄3

(mec2)3

) 1
3

=
3

4
mec2

(
9

4
π

) 1
3 h̄

mec2

N
1
3

e

R
.

(c) Gravitational potential energy is

EG =−Gm2

R
.

Mass is

m = Nu,

then
EG

N
=−GNu2

R
.

(d) The total energy is given by a sum of kinetic and potential energy.

E

Ne

=
Ek

Ne

+
EG

Ne

=
3

10me

(
9

4
π h̄3

) 2
3 N

2
3

e

R2
− 4GNeu2

R
.

The necessary condition of extreme is

dE

dR
= 0 =

3

5me

(
9

4
π h̄3

) 2
3 N

2
3

e

R3
− 4GNeu2

R2
,

which gives

R =
3h̄2

20meGu2

(
9

4
π

) 2
3

N
− 1

3
e ,

from which follows

R ∼ N− 1
3 .

The energy in extremely relativistic case is

E

Ne

=
Ek

Ne

+
EG

Ne

=
3

4
mec2 =

3

4
mec2

(
Ne

V
3π2 h̄3

(mec2)3

) 1
3

− 4GNeu2

R
.

From this follows that the derivative with respect to radius is proportional to R−2 and minimum

energy appears for R → 0, when E →−∞.
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(e) For Ne > NCr and E = 0 we obtain from the formula above

Ncr =

(
3hc

16G

) 3
2 3

2

√
π

1

u3
,

and the critical mass is

mcr = 2Ncru =

(
3hc

16G

) 3
2 3

√
π

u2
.

43. Equation for the chemical potential

Determine the equation for the chemical potential for a matter in spherically symmetric gravitational

field. Assume that

µ + kuϕ = µ ′+mc2 + kuϕ = konst.,

where k is number of nucleons per electrons and u is the nucleon mass. Explain the equation. You can

neglect the pressure of nondegenerate matter and electron mass.

Solution: From the instructions follows that

ϕ =
konst.

ku
− µ

ku
,

or

ϕ =
konst.

ku
− µ ′

ku
− mc2

ku
.

For spherically symmetric case
1

r2

∂

∂ r

(

r2 ∂ϕ

∂ r

)

= 4πGρ .

We substitute ϕ from previous equation. Only the chemical potential depends on radius. After substitution

and some manipulation we arrive at

1

r2

∂

∂ r

(

r2 ∂ µ

∂ r

)

=−4πGk2u2n.

We can obtain the same equation after substitution of equation with µ ′.

44. Equation for chemical potential in integral form

Integrate the equation for chemical potential assuming

dµ

dr

∣
∣
∣
∣
r=0

= 0,

where R is radius of a star. Express the result using total mass of the star.

Solution: We shall start with the equation from the previous problem multiplied by r2

∂

∂ r

(

r2 ∂ µ

∂ r

)

=−4πGk2u2nr2.

After integration
R∫

0

dr
∂

∂ r

(

r2 ∂ µ

∂ r

)

=−
R∫

0

dr 4πGk2u2nr2.

The left hand side contains total differentiation and we obtain

R∫

0

dr
∂

∂ r

(

r2 ∂ µ

∂ r

)

= r2 ∂ µ

∂ r

∣
∣
∣
∣
r=R

− r2 ∂ µ

∂ r

∣
∣
∣
∣
r=0

= r2 ∂ µ

∂ r

∣
∣
∣
∣
r=R

.

Right hand side gives

−
R∫

0

dr 4πGk2u2nr2 =−4πGku

R∫

0

dr kunr2 =−4πGkunM.

35



We obtain

r2 ∂ µ

∂ r

∣
∣
∣
∣
r=R

=−4πGkunM.

45. Nondimensional form of equation for chemical potential

Rewrite the equation for chemical potential in nondimensional variables

ξ =
r

R
, µ(r) =

1√
λR

f (ξ ),

where

λ =
4

3

k2

π

6u2

(h̄c)3
,

and determine the boundary conditions.

Solution: Number density is

n =
µ3

(h̄c)33π2
,

after the substitution
1

r2

∂

∂ r

(

r2 ∂ µ

∂ r

)

=−4πGk2u2µ3

(h̄c)33π3
=−λ µ3,

and some manipulation gives
1

ξ 2

∂

∂ξ

(

ξ 2 ∂ f

∂ξ

)

=− f 3.

46. Equation of continuity

Derive equation of continuity from the Boltzmann transport equation. Assume that the force is indepen-

dent of momentum.

Solution: Boltzmann transport equation is

∂ f

∂ t
+v ·∇r f +

F

m
·∇p f =

(
∂ f

∂ t

)

coll.

Integrating over momentum

m

∫

Γ

dp
∂ f

∂ t
+m

∫

Γ

dpv ·∇r f +

∫

Γ

dpF ·∇p f = m
∂

∂ t

∫

Γ

dp f +m∇r ·
∫

Γ

dpv f +mF

∫

Γ

dp∇p f .

We use Stokes theorem to manipulate the third term

∫

Γ

dp∇p f =

∫

∂Γ

dSp f = 0,

assuming that f tends to zero faster than p2. From

f (r, t) = m ·n(r, t) = m

∫

Γ

dp
f (r,p, t)

(2π h̄)3
.

Mean velocity is

u(r, t) = 〈v〉=

∫

Γ
dpv f

∫

Γ
dp f

=

∫

Γ
dpv f

(2π h̄)3mn(r, t)
.

After the substitution we derive

m
∂n

∂ t
+m∇r · (nu) = 0.

Equivalently,
∂ρ

∂ t
+∇r · (ρu) = 0.
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47. Thermal transpiration

Determine the heat flux from the Boltzmann transport equation due to temperature gradient

α =−dT

dy
, T = T0 −αy. (109)

Solution: The hydrostatic equilibrium holds due to the subsonic motion

p = n0kBT0 = nkB(T0 −αy),

from which

n = n0

T0

T0 −αy
.

In the Boltzmann transport equation

∂ f

∂ t
+v ·∇r f +

F

m
·∇p f =

(
∂ f

∂ t

)

coll.

,

we shall assume the stationary state. We further assume F = 0 and
(

∂ f

∂ t

)

coll.

=− f − f0

τ
,

where f0 is equilibrium distribution function, which is assumed to take the form of

f0 = n

(
2π h̄2

mkBT

) 3
2

exp

(

− p2

2mkBT

)

= n0

(
2π h̄2

mkB

) 3
2 T0

(T0 −αy)
5
2

exp

(

− p2

2mkB(T0 −αy)

)

.

This simplifies the Boltzmann transport equation substantially

v ·∇r f =
f − f0

τ
,

where we shall approximate the gradient of f by the gradient of f0. This gives form f

f = f0 − τv ·∇r f0 = f0 − τvy

∂ f0

∂y
.

We substitute into the distribution function,

f = f0 +ατvy

T0

2(T0 −αy)
7
2

[
p2

mkB(T0 −αy)
−5

]

n0

(
2π h̄2

mkB

) 3
2

exp

(

− p2

2mkB(T0 −αy)

)

.

Finally, we can focus on the heat transport flux, which is

qy =
∫

d3 p

(2π h̄)3

p2

2m
vy f .

Because f0 is an eve function, the integral is equal to zero. Within an approximation T0 −αy ≈ T0 the

heat flux is

qy =
ατ

2T0

1

2m
n0

(
2π h̄2

mkBT0

) 3
2 ∫ d3 p

(2π h̄)3
p2v2

y

(
p2

mkBT0

−5

)

exp

(

− p2

2mkBT0

)

.

We shall introduce the spherical coordinates with north pole unusually in the direction of y axis, that is

vy = vcos(θ)

1

m2

1

(2π h̄)3

2π∫

0

dϕ

π∫

0

dθ

∞∫

0

dp

(
p2

mkBT0

−5

)

p6 cos2 θ sin θ exp

(

− p2

2mkBT0

)

=
1

m2

1

(2π h̄)3
·2π ·

[

−1

3
cos3 δ

]π

0

·




1

mkBT0

1

2
(2mkBT0)

9
2

∞∫

0

dt t
7
2 exp(−t)− 5

2
(2mkBT0)

7
2

∞∫

0

dt t
5
2 exp(−t)





=
5

2
α

n0k2
BT0β

m
.
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We derive for the hear transfer

q =−κ
dT

dr
= κα ,

where

κ =
5

2

n0k2
BT0β

m
.

48. Greenhouse effect

Consider a greenhouse formed by placing a horizontal sheet of glas above the ground. The glass is

transparent to radiation with wavelengths below 4 µm, but absorbs a fraction ε of radiation at longer

wavelengths. Suppose a downward flux I of solar radiation. Assume that both earth and glass radiati ac-

cording to the Stefan-Boltzmann law. Determine the change of earth temperature due to presence of glass.

Solution The ground warms up to a temperature Tg and emits long-wavelength radiation with upward

flux given by

U = σT 4
g .

Part of this flux is absorbed by the glass and reflected back. Equilibrium is reached when the upward

fluxes balance the downward fluxes, that is,

I = (1− ε)U +B =U −B,

where B is a flux emitted by the glass. Solving for B gives B = εU/2 and

σT 4
g =U =

I

1− ε
2

, Tg =

(

I

σ
(
1− ε

2

)

)1/4

Therefore, Tg is higher by up to 19% (for ε = 1) higher than it would be in the absence of glass (for

ε = 0).
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