Homework problems \#5

1. Computer problem: a) Make a function that calculates numerically an integral

$$
F_{3 / 2}(y)=\frac{1}{\Gamma(3 / 2)} \int_{0}^{\infty} \frac{x^{1 / 2}}{e^{x-y}+1} \mathrm{~d} x
$$

Calculate $F_{3 / 2}(0)$. b) Using an appropriate numerical metod find $\tilde{\mu}_{x}$ that fulfills

$$
F_{3 / 2}\left(\tilde{\mu}_{x}\right)=x \equiv \frac{N \lambda_{T}^{3}}{g V}
$$

for a given x. Calcullate $\tilde{\mu}_{80}, \tilde{\mu}_{10}$ a $\tilde{\mu}_{0.1}$. c) Plot a graph of function

$$
N\left(\varepsilon, \tilde{\mu}_{x}\right)=\frac{1}{e^{\varepsilon-\tilde{\mu}_{x}}+1}
$$

for determined values $\tilde{\mu}_{100}, \tilde{\mu}_{1}$, and $\tilde{\mu}_{0.01}$.
2. Evaluate the mean value of free particle hamiltonian from quantum mechanical partition function

$$
\begin{equation*}
Z=\frac{V}{\lambda_{\mathrm{T}}^{3}} \tag{1}
\end{equation*}
$$

Calculate in momentum representation.
3. Density matrix of left-handed and right-handed polarized light in a basis of vectors of linearly polarized light is

$$
\hat{\rho}_{\mathrm{L}}=\left(\begin{array}{cc}
1 / 2 & i / 2 \tag{2}\\
-i / 2 & 1 / 2
\end{array}\right), \quad \hat{\rho}_{\mathrm{R}}=\left(\begin{array}{cc}
1 / 2 & -i / 2 \\
i / 2 & 1 / 2
\end{array}\right)
$$

Using $\hat{\rho}_{\mathrm{L}}$ and $\hat{\rho}_{\mathrm{R}}$ determine the density matrix of unpolarized light $\hat{\rho}_{\mathrm{n}}$ and calculate $\hat{\rho}_{\mathrm{L}}^{2}, \hat{\rho}_{\mathrm{R}}^{2}$ a $\hat{\rho}_{\mathrm{n}}^{2}$. Which matrices correspond to a pure state?
4. Density matrix of a harmonic oscillator with a hamiltonian

$$
\hat{H}=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2}
$$

has in a position space form of

$$
\rho\left(x, x^{\prime}, T\right)=\sqrt{\frac{m \omega}{\pi \hbar} \tanh \left(\frac{\hbar \omega}{2 k T}\right)} \exp \left\{-\frac{m \omega}{2 \hbar \sinh \left(\frac{\hbar \omega}{k T}\right)}\left[\left(x^{2}+x^{\prime 2}\right) \cosh \left(\frac{\hbar \omega}{k T}\right)-2 x x^{\prime}\right]\right\}
$$

(a) Calculate the mean value of energy $E=\langle\hat{H}\rangle$.
(b) Show that for $T \rightarrow \infty$ the equipartition theorem holds for the mean value of energy.
5. Approximately calculate the heat capacity at the constant volume for a gas with interatomic potencial $U(r)$ (the unknownd integral can be denoted appropriatelly). Particles can be considered as point masses.
6. The approximate solution of the Boltzmann equation in a presence of temperature gradient $T=T_{0}+\alpha y$ is

$$
\begin{equation*}
f=f_{0}+\alpha \tau v_{y} \frac{T_{0}}{2\left(T_{0}-\alpha y\right)^{7 / 2}}\left(\frac{p^{2}}{m k\left(T_{0}-\alpha y\right)}-5\right) n_{0}\left(\frac{2 \pi \hbar^{2}}{m k}\right)^{3 / 2} e^{-\frac{p^{2}}{2 m k\left(T_{0}-\alpha y\right)}} \tag{3}
\end{equation*}
$$

where f_{0} is equilibrium velocity distribution. Calculate a mean value of momentum flux $\left\langle m v_{y}\right| v_{y}| \rangle$; in a velocity distribution you can approximate $T_{0}-\alpha y \approx T_{0}$. The nonzero momentum flux causes, for example, the motion of a light mill.

The solution should be submitted not later than on May 26th.

