Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: dvojná sonda

Obsah

1	Symetrická dvojná sonda na plovoucím potenciálu	2
2	$ \begin{array}{lll} \tilde{\mathbf{C}} \textbf{innost dvojné sondy} \\ 2.1 & A) \ V_d = 0; \ \ldots \ $	2 2 3 3
3	Teorie dvojné sondy	4
4	 Výpočet parametrů plazmatu z naměřených VAC dvojné sondy 4.1 Výpočet elektronové teploty z poměru elektronových proudů	5 5 6 7
5	Experimentální aparatura a způsob měření	8

Úvod

Diagnostika plazmatu pomocí elektrostatických sond nám umožňuje určit některé z jeho důležitých parametrů. Jednou z možných konstrukcí Langmuirovy sondy je tzv. dvojná sonda skládající se ze dvou elektrod stejných rozměrů. Může byt tvořena například dvojicí jednoduchých válcových sond. Jejich vzdálenost by měla být dostatečná, aby se nepřekrývali jejich stěnové vrstvy a zároveň neměla být v různých regionech plazmatu.

v porovnání s jednoduchou sondou má několik výhod. Jelikož je celej systém plovoucí, voltampérová charakteristika vždy obsahuje strmou oblast v okolí nulového napětí. Saturovaný iontový proud limituje proud obvodem, díky čemu sonda méně narušuje samotné plazma.

1 Symetrická dvojná sonda na plovoucím potenciálu

Dvojnou symetrickou sondou rozumíme dvě stejné sondy, umístěné v ekvipotenciální ploše plazmatu. Žádná z těchto sond není spojena s elektrodou, ustavují se tedy bez vnějšího pole na plovoucím potenciálu $V_{\rm fl}$. Studium plazmatu pomocí dvojné sondy provádíme tak, že měříme cirkulační proud $i_{\rm d}$ okruhem sond při vloženém malém napětí $V_{\rm d}$ mezi sondy. Schématické znázornění dvojné sondy je znázorněno na obr. 1. Použití dvojné sondy je zvláště výhodné pro studium vysokofrekvenčního plazmatu, případně rozpadajícího se plazmatu.

Obrázek 1: Schématické znázornění dvojné sondy

2 Činnost dvojné sondy

Pro pochopení činnosti dvojné sondy provedeme rozbor chování systému při různém napětí $V_{\rm d}$. Předpokládejme pro jednoduchost, že sondy mají stejné plochy, že neexistují kontaktní potenciály a že se obě sondy nacházejí v místě o stejném potenciálu plazmatu $V_{\rm p}$. Poznamenejme dále, že v praxi je splněna podmínka, že napětí mezi sondami $V_{\rm d}$ neovlivňuje iontový proud systému.

2.1 A) $V_{\rm d} = 0$:

Každá sonda v tomto případě sbírá stejný proud iontů i elektronů a obě sondy se nacházejí na témže plovoucím potenciálu $V_{\rm fl}$. Proud vnějším okruhem sond $i_{\rm d}$ musí být nulový, neboť neexistuje žádná elektromotorická síla ve vnějším okruhu. Nacházíme se v bodě 0 sondové charakteristiky dvojné sondy, viz obr. 2. Rozložení potenciálu sond je patrné na obr. 3a.

Obrázek 2: Charakteristika ideální dvojné rovinné sondy

2.2 B) $V_{\rm d} < 0$, malé záporné napětí:

Potenciál sond vzhledem k plazmatu se musí ustálit na takové hodnotě, že základní podmínky pro proudy na systém sond budou zachovány. Musí platit $\sum i_{\rm p} + \sum i_{\rm e} = 0$. Jediné možné rozložení potenciálu sond je znázorněno na obr. 3b. Potenciál sondy 1 se blíží k potenciálu plazmatu a sbírá více elektronů. Potenciál sondy 2 bude nižší než plovoucí potenciál, proud elektronů na sondu 2 klesá. Přebytečné elektrony sondy 1 přetečou vnějším okruhem a kompenzují úbytek elektronového proudu sondy 2. Součet elektronového i iontového proudu na systém sond bude tedy nulový a systém se nachází v bodě B voltampérové charakteristiky (VAC).

Obrázek 3: Rozložení potenciálu v systému dvojné sondy

2.3 C) $V_{\rm d} \ll 0$, velké záporné napětí:

Sonda 1 přebírá celý tok elektronů systému, zatímco sonda 2 je nyní silně negativní vzhledem k potenciálu plazmatu, a tudíž žádné elektrony ji nedostihnou. Polovina elektronů dopadajících na sondu 1 teče nyní vnějším okruhem do sondy 2. Systém se nachází v bodě C VAC viz obr. 2, rozložení potenciálu je patrno na obr. 3c. Další zvyšování záporné hodnoty $V_{\rm d}$ nemůže způsobit další změny sondového proudu, neboť sonda 1 vždy sbírá dostatek elektronů, aby vyrovnala veškerý proud iontů na obě elektrody. V důsledku toho

vzrůstá-li dále $V_{\rm d}$, sonda 1 zůstává blízko potenciálu plazmatu a sonda 2 přechází do stále zápornějších hodnot. Iontový proud sondy 2 je nasycený a proud vnějším okruhem $i_{\rm d}$ zůstává tedy konstantní. Jsme v oblasti X-Y VAC.

Celkový iontový proud je dán součtem nasyceného proudu k sondě 1 i_{p1} a sondě 2 i_{p2} v bodech X a Y VAC.

Elektronový proud na sondu 2 je dán rozdílem celkového proudu vnějším okruhem a iontového proudu i_{p2} na tuto sondu, jak je znázorněno na obr. 2.

3 Teorie dvojné sondy

Zobecněný potenciálový diagram systému dvojné sondy je znázorněn na obr. 4. Zde V_1

Obrázek 4: Obecný potenciálový diagram dvojné sondy

a V_2 jsou potenciály sondy 1 a 2 vzhledem k plazmatu, V_c je kontaktní potenciál, případně malá diference v potenciálu plazmatu v místě sond. Podle Kirhoffova zákona musí být výsledný proud v sondovém obvodu sumou proudů cez první a druhou sondu a platí:

$$\sum i_{\rm p} = i_{\rm p1} + i_{\rm p2} = i_{\rm e1} + i_{\rm e2} = 0 \tag{1}$$

Dosadíme-li odpovídající výrazy pro elektronový proud sondy z Boltzmannových relací, dostáváme

$$\sum i_{\rm p} = S_1 \, j_{01} \, \exp -\frac{e \, V_1}{k \, T_{\rm e}} + S_2 \, j_{02} \, \exp -\frac{e \, V_2}{k \, T_{\rm e}}.\tag{2}$$

Z potenciálového diagramu na obr. 4 plyne:

$$V_1 + V_c = V_2 + V_d \Rightarrow V_1 = V_2 + V_d - V_c$$
 (3)

Dosadíme-li do 2, dostaneme

$$\ln\left[\frac{\sum i_{\rm p}}{i_{\rm e2}} - 1\right] = -\frac{e\,V_{\rm d}}{k\,T_e} + \ln\sigma,\tag{4}$$

kde

$$\sigma = \frac{S_1 \, j_{01}}{S_2 \, j_{02}} \, \exp \frac{e \, V_{\rm c}}{k \, T_{\rm e}}.$$

Zde j_{01} a j_{02} jsou hustoty elektronových proudů na sondy při potenciálu sondy rovném potenciálu plazmatu. Grafem závislosti ln $G = f(V_d)$, kde $G = \sum [i_p/i_{e2}] - 1$ musí být dle 4 přímka, jejíž směrnice je určována elektronovou teplotou T_e .

4 Výpočet parametrů plazmatu z naměřených VAC dvojné sondy

4.1 Výpočet elektronové teploty z poměru elektronových proudů

Vyhodnocení VAC dvojné sondy lze provádět analogicky jako u sondy jednoduché. Z naměřené sondové charakteristiky určíme podle obr. 5 oba proudy i_{p1} a i_{p2} a odečteme proud elektronový i_{e2} . Sestrojíme závislost $\ln G = f(V_d)$. Ze směrnice této přímky (pro případ Maxwellova rozdělení rychlostí) dostáváme opět elektronovou teplotu T_e pomocí vztahu 4. Koeficient σ závisí na velikostech obou sond. V případě, že je plazma u obou sond stejné a sondy mají mají stejnou velikost (povrch), je $\sigma = 0$.

Obrázek 5: Stanovení R_0 a G z naměřené VAC, proudy i_{p_1} a i_{p_2} uvedeny pro $V_d = 0$.

4.2 Výpočet elektronové teploty rezistanční metodou

Rovnici 4 můžeme přepsat do tvaru

$$i_{e2} = \frac{\sum i_{p}}{\sigma \exp\left[-\frac{e V_{d}}{k T_{e}}\right] + 1}.$$
(5)

Derivujeme-li i_{e2} podle V_d , dostáváme pro $V_d = 0$

$$\left. \frac{\mathrm{d}i_{\mathrm{e}2}}{\mathrm{d}V_{\mathrm{d}}} \right|_{V_{\mathrm{d}}=0} = \frac{\sum i_{\mathrm{p}}}{(\sigma+1)^2} \, \frac{\sigma \, e}{k \, T_{\mathrm{e}}}.\tag{6}$$

Nahradíme-li nyní $\frac{\mathrm{d}V_{\mathrm{d}}}{\mathrm{d}i_{\mathrm{e}2}}=\mathrm{d}V_{\mathrm{d}}\mathrm{d}i_{\mathrm{d}},$ dostáváme pro elektronovou teplotu

$$T_{\rm e} = \frac{e\,\sigma}{k\,(1+\sigma)^2} \left[\sum i_{\rm p} \frac{\mathrm{d}V_{\rm d}}{\mathrm{d}i_{\rm d}}\right] \bigg|_{V_{\rm d}=0}.\tag{7}$$

Kde σ můžeme vypočítat z rovnice 4

$$\sigma = \left[\frac{\sum i_{\rm p}}{i_{\rm e2}} - 1\right] \bigg|_{V_{\rm d}=0}.$$
(8)

Označme nyní pro zjednodušení

$$G = \frac{\sigma}{(1+\sigma)} = \frac{i_{e2}}{\sum i_{p}}$$
(9)

Nahradíme-li v rovnici 7 σ pomocíG,dostáváme

$$T_{\rm e} = \frac{e}{k} \left(G - G^2 \right) \left[\sum i_{\rm p} \frac{\mathrm{d}V_{\rm d}}{\mathrm{d}i_{\rm d}} \right] \bigg|_{V_{\rm d} = 0} = \frac{e}{k} \left(G - G^2 \right) R_0 \sum i_{\rm p}, \tag{10}$$

kde R_0 je tzv. ekvivalentní odpor dvojné sondy:

$$R_0 = \left[\frac{\mathrm{d}V_\mathrm{d}}{\mathrm{d}i_\mathrm{d}}\right]\Big|_{V_\mathrm{d}=0} \tag{11}$$

Rovnice 10 umožňuje pohodlné určení elektronové teploty přímo z VAC dvojné sondy. Pro její výpočet je nutné určit z VAC veličiny $R_0, \sum i_p$ a G. R_0 stanovíme ze strmosti střední části VAC v bodě $V_d = 0$.

Iontové proudy i_{p1} a i_{p2} pro případ $V_d = 0$ stanovíme tak, že prodloužíme úseky nasyceného proudu směrem k ose y a vzdálenost MN rozdělíme na pět dílů. Ve vzdálenosti rovné $\frac{1}{5}$ MN od osy y určíme bod α , který nám definuje hodnotu i_{p1} , případně i_{p2} při $V_d = 0$. Konstrukce bodu α je patrna z obrázku 5. Proud elektronů na sondu 2 je dán výrazem

$$i_{\rm e2} = |i_{\rm p2}| + i_{\rm d} \tag{12}$$

a odečteme ho přímo z VAC jak je patrno z obrázku 5. Pro výpočet $G\!:$

$$G = \left[\frac{i_{\rm e2}}{\sum i_{\rm p}}\right]\Big|_{V_{\rm d}=0} \tag{13}$$

je nutno dosadit $i_{\rm e2}$ v místě $V_{\rm d}=0$ a $\sum i_{\rm p}=i_{\rm p1}$ a $i_{\rm p2}$ v bodě $\alpha.$

4.3 Koncentrace elektronů v plazmatu

Vycházíme z Kirhoffova zákonu a snažíme se vyjadřit proud *I* ve smyčce. Citace: M.Y. Naz, A. Ghaffar: Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma. Progress In Electromagnetics Research, Vol. 114, 113-128, 2011.

$$\sum i_{\rm p} = i_{\rm p1} + i_{\rm p2} = i_{\rm e1} + i_{\rm e2} = 0 \tag{14}$$

$$I_{i0} + I_{e0} \exp\left[-\frac{e V_1}{k T_e}\right] + I_{i0} + I_{e0} \exp\left[-\frac{e V_2}{k T_e}\right] = 0$$
(15)

$$\left(1 - \exp\left[-\frac{e\,V_1}{k\,T_e}\right]\right) + \left(1 - \exp\left[-\frac{e\,V_2}{k\,T_e}\right]\right) = 0 \tag{16}$$

$$-I_{i0} = I_{e0}$$
 (17)

Proud ve smyčce je $I=I_{\rm p1}=I_{\rm p2}$ a platí:

$$I = I_{i0} \left(1 - \exp\left[-\frac{e V_1}{k T_e}\right] \right) = I_{i0} \left(1 - \exp\left[-\frac{e V_2}{k T_e}\right] \right)$$
(18)

Jelikož platí:

$$\tanh x = \frac{e^{2x} - 1}{e^{2x} + 1} \tag{19}$$

můžeme rovnici 18 přepsat jako:

$$I = I_{\rm i0} \tanh\left(-\frac{e\,V_{\rm d}}{k\,T_{\rm e}}\right) \tag{20}$$

kde $V_{\rm d} = V_2 - V_1$.

Diferenciací předcházející rovnice dostáváme:

$$\left. \frac{\mathrm{d}I}{\mathrm{d}V_{\mathrm{d}}} \right|_{V_{\mathrm{d}}=0} = \frac{e\,I_{\mathrm{i}0}}{2k\,T_{\mathrm{e}}}.\tag{21}$$

Ze sklonu VAC v místě V_d mužeme určit k T_e . Koncentraci elektronů můžeme následně určit z iontového saturačního proudu.

$$I_{\rm i0} = \alpha n_{\rm e} A_p v_{\rm B} \tag{22}$$

$$v_{\rm B} = \sqrt{k T_{\rm e}} \tag{23}$$

$$I_{\rm i0} = 0.61 n_{\rm e} A \sqrt{\frac{k \, T_{\rm e}}{M}} \tag{24}$$

kde M je hmotnost iontů.

4.4 Stanovení koncentrace iontů a elektronů v plazmatu pomocí dvojné sondy

Výpočet elektronové koncentrace $n_{\rm e}$ a koncentrace iontů $n_{\rm p}$ za předpokladu $n_{\rm e} = n_{\rm p}$ provádíme z nasyceného iontového proudu sondy. Při výpočtu koncentrace iontů je potíž v tom, že neznáme teplotu iontů $T_{\rm p}$. V případech, kdy teplota iontů je přibližně rovna teplotě neutrálního plynu (např. rozpadající se plazma), můžeme výpočet snadno provést užijeme-li vztahu pro hustotu iontového proudu na sondu

$$j_{\rm p} = n_{\rm p} \, e \, \langle v_{\rm e} \rangle. \tag{25}$$

Malé nepřesnosti ve stanovení $T_{\rm p}$ neovlivní příliš výpočet $n_{\rm p}$, neboť se v uvedeném vztahu vyskytuje $T_{\rm p}$ ve výrazu pro střední rychlost pod odmocninou. $\langle v_{\rm e} \rangle$ je střední driftová rychlost elektronů, v případě rozpadajícího se plazmatu je dána pouze tokem iontů z plazmatu do vrstvy obalující sondu. Tento tok závisí na tepelném pohybu iontů a je dán v případě Maxwellova rozdělení rychlostí výrazem $\langle v_{\rm e} \rangle = \frac{1}{4} \langle v_{\rm p} \rangle$, kde $\langle v_{\rm p} \rangle$ je střední rychlost iontů.

Pro koncentraci iontů dostáváme $n_p = \frac{4j_p}{e\langle v_p \rangle}$ a po dosazení za hustotu iontového proudu $j_p = \frac{i_p}{S}$ máme

$$n_{\rm p} = \frac{4\,i_{\rm p}}{S\,e\,\langle v_{\rm p}\rangle},\tag{26}$$

kde $\langle v_{\rm p} \rangle = \left(\frac{8 k T_{\rm p}}{\pi M}\right)^{1/2}$. $T_{\rm p}$ je teplota v kelvinech, M hmotnost iontů, $i_{\rm p}$ proud v ampérech. V případě rovinných sond můžeme dosadit za S přímo plochu sondy. U cylindrické sondy je plocha vrstvy větší než plocha sondy a závisí na potenciálu sondy. V tomto případě je třeba provést korekci při výpočtu $n_{\rm p}$.

5 Experimentální aparatura a způsob měření

Teplotu elektronů budeme určovat pomocí dvojné sondy. Dvojnou sondu zapojíme podle obr. 6. Naměříme sondovou charakteristiku pro tři hodnoty výbojového proudu 10 mA, 30 mA a 50 mA a vyznačíme do grafu. Elektronovou teplotu stanovíme metodou ekvivalentního odporu.

- Zapoj dvojnou sondu podle schématu na obr. 6.
- Výbojová trubice je vyčerpána na 3-5 Pa pomocí rotační olejové vývěvy.
- Budeme pracovat v kontinuálním režimu, nosní plyn je argon o průtoku 80 sccm.
- Tlak měříme pomocí piraniho manometru. Tlak v aparatuře by měl být 100 Pa.
- Zkontroluj obvod, zapni vysokonapěťový zdroj, nastav 500 V a zapal výboj.
- Proud vo výbojce kontrolujeme pomocí proudové stabilizace. Nastav hodnotu a naměř VAC pro 10 mA, 30 mA and 50 mA.
- Měření VAC realizujeme pomocí ampérmetru a voltmetru v obvodu dvojné sondy. Měření jsou odesílána na počítač.
- Naměř VAC pro tři výbojové proudy (10 mA, 30 mA and 50 mA).
- Urč velikost sond například pomocí fotografie a známých rozměrů výbojové trubice.
- Vypočítej elektronovou teplotu a elektronovou hustotu pomocí teorie z předcházející části.

Obrázek 6: Zapojení dvojné sondy

Reference

- [1] Tálský A., Janča J. Speciální praktikum z vysokofrekvenční elektroniky a fyziky plazmatu Přírodovědecká fakulta UJEP, Brno 1975.
- [2] Šmíd R. Návod k úloze Měření rozdělovací funkce energie elektronů pomocí vf kompenzované Langmuirovy sondy.

Obrázek 7: Experimentální uspořádání.