Why do Star Clusters dissipate? Collisions

Virial Theorem: 2*El*

$$2Ek_{in} = -\Omega$$

Kinetic Energy:

$$2Ek_{in} = n \cdot m_i \cdot \overline{\nu}^2 = M \cdot \overline{\nu}^2$$

 \overline{v} ... mean velocity of the members relative to the cluster centre

Potential Energy:

$$\Omega = -\frac{1}{2} \cdot \frac{G \cdot M^2}{\overline{R}^2}$$
$$\overline{v}^2 = \frac{G \cdot M}{2\overline{R}^2}$$

yielding:

Escape Velocity:
$$\overline{v}_{\infty}^2 = 4 \cdot \overline{v}^2$$

Collisions: $t_{coll} \approx \frac{1}{\rho \cdot \sigma \cdot \Delta \overline{v}}$

Density ρ and cross section σ :

$$\rho = \frac{N}{\overline{R}^3} \quad \sigma = 4\pi \cdot R_*^2 \quad \Rightarrow t_{coll} = \frac{\overline{R}^3}{4\pi \cdot N \cdot R_*^2 \cdot \Delta \overline{\nu}}$$

Example of a typical Open Cluster:

 $N = 1000, \Delta \overline{v} = 10 \text{ km/s}, R_* = 2.5 \text{R}_{\odot}, \overline{R} = 5 \text{ pc}$

 $t_{coll} = 10^{25} \text{ s} \Rightarrow$ Collisions play no role

Even in the most inner core parts, collisions are highly improper, but could occur

Conclusions:

- 1. Binary and Multiple systems are not results of collisions in later stages but form already at the very beginning
- 2. Members do, in general, not escape due to collisions (swing-by effect), but their peculiar velocity component is part of the cluster formation or due to SNs

Why do Star Clusters dissipate? Crossing time - escaping Crossing Time: $t_{cross} = \frac{\overline{R}}{\Delta v}$ $\Delta \overline{v} = 10 \text{ km/s}, \overline{R} = 5 \text{ pc} \implies t_{cross} = 4.9 \cdot 10^8 \text{ yr}$

Members can escape from a Star Cluster on a relatively short time scale

Reason: Velocity dispersion caused by the cluster formation and SN events

Why do Star Clusters dissipate? Differential Galactic Rotation

Total Mass of the Milky Way: $M_{MW} = 2 \cdot 10^{11} M_{\odot}$

Gravitational acceleration of the complete star cluster g_{OCL} and the individual member g_* :

$$g_{OCL} = \frac{G \cdot M_{MW}}{R_{GC}^2} \quad g_* = \frac{G \cdot M_{OCL}}{(R_{GC} - r)^2}$$

 R_{GC} ... Distance of the star cluster's centre to the Galactic centre r ... Distance from star to the star cluster's centre

The difference of these two values, is the force, of which "the Milky Way" tries to pull away a star from the cluster

$$g_{MW,*} = \frac{2 \cdot G \cdot M_{MW} \cdot r}{R_{GC}^3} \text{ for } r \ll R_{GC}$$

On the other side we have the gravitational force of the star cluster. The stability radius r_s is defined as:

1,

$$\frac{2 \cdot G \cdot M_{MW} \cdot r}{R_{GC}^3} = \frac{G \cdot M_{OCL}}{r_s^2} \Rightarrow r_s = R_{GC} \cdot \left(\frac{M_{OCL}}{2M_{MW}}\right)^{1/3}$$
$$r_s = 10.9 \cdot \left(\frac{M_{OCL}}{1000}\right)^{1/3} \text{ for } R_{GC} = 8 \text{ kpc in units of } [M_{\odot}, \text{ pc}]$$

For 1000 M_{\odot} => Diameter 20 pc

Summary

- Star Cluster dissipate because of
 - 1. Differential Galactic Rotation
 - 2. Internal Velocity Dispersion
 - 3. Collisions in the first few Myrs
 - SN Explosions and corresponding Shock Waves
 - 5. (Collisions with "Field Stars")
- Explanations of the existence of Globular Clusters?
- Valid for all Spiral Galaxies