Plasma and Dry Micro/Nanotechnologies 10. Plasma Enhanced Chemical Vapor Deposition

Lenka Zajíčková

Faculty of Science, Masaryk University, Brno & Central European Institute of Technology - CEITEC

lenkaz@physics.muni.cz

spring semester 2023

Central European Institute of Technology BRNO | CZECH REPUBLIC

Outline

• Plasma Enhanced Chemical Vapor Deposition

10.1 Introduction to PECVD 10.2 PECVD of Si-based Films

10.3 PECVD of Hard Carbon Films

10.4 Amine Plasma Polymers

10.5 Anhydride/Carboxyl PPs

10.6 Plasma Polymers in Immunosensing

10.7 Plasma Coating of Polymer Nanofibers

3

10.1 Introduction to PECVD

plasma enhanced chemical vapor deposition (PECVD)

- from gases and vapors
- very easy for organic materials and Si compounds (SiH₄, variety of volatile organosilicon compounds)
- for metals necessary to find sufficiently volatile compounds (organometallic)

physical vapor deposition (PVD), namely magnetron sputtering

- ► gasification of solid targets by ion sputtering ⇒ deposition
- simple method for metals
- a bit more complex for oxides, nitrides, carbides (reactive sputtering)

CVD Diagram

Low Pressure CVD (LPCVD) is often used in microelectronics or in applications requiring excellent control over impurities

PECVD Diagram

CVD method in which discharge is ignited in the gas mixture:

- collisions of energetic electrons with heavy gas particles
- production of highy reactive species
- more competing processes take place, deposition can be generally divided into thermal and plasma branches

CVD versus PECVD - example

radiation or electrostaticaly (charge accumulation)

Plasma Polymerization - subset of PECVD

Plasma polymerization is a subset of plasma enhanced CVD

It produces organic thin films with specific functional groups originating from the monomer structure.

Plasma polymers **do not have the typical structure of polymers** (impossible to find a repeated unit, structure is highly branched and cross-linked).

Yasuda scheme:

1st pathway (M•) - similar to a standard free radical polymerization mechanism, 2nd pathway (•M•) - difunctional mechanism, "polymer" can grow in multiple directions by multiple pathways off one species \Rightarrow a very rapid step-growth polymerization:

Different Types of Plasma Polymers

Organosilicon plasma polymers

Amine films

cyclopropylamine NH₂

diaminocyclohexane ethylenediamine

- interfacial adhesion.
- grafting of molecules with specific functionalities (reverse adhesion),
- improvement of cell colonization (tissue engineering),
- immobilization of biomolecules (biosensors, drug delivery systems).

- barrier and protective coatings
- hydrophilic/hydrophobic surface
- cross-linking improvement (stabilization) of organic functionalities by co-polymerization)

deposition from gas mixtures:

- NH₃/CH₄
- NH₃/C₂H₄

Carboxyl/ester/anhydride films

- H₂O / CO₂
- C₂H₄ / CO₂

Plasma Polymerization in Pulsed RF Discharges

Quest for retaining monomer structure in plasma polymers - too much energy in plasmas!

- decreasing power (some limits apply)
- excluding ion energy flux (higher pressures, atmospheric pressure namely)
- pulsed CCP discharges

pulse repetition frequency

$$f_{\rm puls} = 1/(t_{\rm on} + t_{\rm off})$$

duty cycle (DC) $DC = rac{t_{
m on}}{t_{
m on}+t_{
m off}} imes 100\%$

Simplification (1 parameter instead of 2): mean RF power $P_{aver} = P_{on} \times DC$

 \Rightarrow Macroscopic approach uses $P_{\rm aver}$

$$W/F = rac{P_{
m aver}}{Q} ~ [{
m J/cm^3}]$$

10.2 PECVD of materials with Si

O dielectric films for microelectronics

silicon nitride: (final protective passivation for integrated circuit) silicon oxide: (insulating film - el. separation) SiH_4+N_2O/NO/CO_2/O_2 T=200-400 °C

Si(OC₂H₅)₄ + O₂

 $Si(OC_2H_5)_4 + e^- \rightarrow Si(OC_2H_5)_3(OH) + C_2H_4 + e^ O_2 + e^- \rightarrow 2O + e^ O + Si(OC_2H_5)_3(OH) \rightarrow Si(OC_2H_5)_2(OH)_2 + C_2H_4O$ E sheath feature

Si

Silicon

PECVD of materials with Si

organosilicon glass (OSG)

 ○ semiconducting films for microelectronics
 epitaxial silicon: SiH₄+H₂ T=800 °C
 polycrystalline silicon: SiH₄/SiH₂Cl₂+H₂/Ar T=450-700 °C
 (gate electrode, connections in MOS i.c., solar energy pannels)

\bigcirc SiO_x and SiO_xC_yH_z for many other applications

scratch resistant films for plastics, anticorrosion films for metals, barrier films for packaging and pharmacy, biocompatible films

mixtures with organosilicons (TEOS, HMDSO, HMDSZ)

PECVD of films from HMDSO (hexamethyldisiloxane)

pulsing

PECVD of films from HMDSO/O₂ in CCP or ICP (13.56 MHz)

PECVD from HMDSO/O₂ in CCP and ICP (13.56 MHz)

5-100 % HMDSO in O₂

- · MACHANA BUTCH
- $ightarrow Q_{hmdso} = 4 \text{ sccm}, Q_{o2} = 0 80 \text{ sccm}$
- pressure 1 40 Pa
- rf power 100 450 W
- dc self-bias from –20 and <u>–335 V</u>

helical antenna in ICP mode:

- pressure 0.4 Pa
- rf power 300 W
- substrate at ground

PECVD of films from HMDSO/O₂ in CCP or ICP (13.56 MHz)

⇒ 0.4 Pa: SiO₂ structure, almost no impurities
 ⇒ 2.5 Pa: SiO₂ structure, OH groups and H₂O
 ⇒ 40 Pa: organosilicon films

PECVD of films from HMDSO/O₂ in CCP or ICP (13.56 MHz)

16/34

PECVD of films from HMDSO/O₂ in CCP or ICP (13.56 MHz)

10.3 PECVD of Hard Carbon Films

18/34

10.4 Amine Plasma Polymers

- ▶ in RF (13.56 MHz) capacitively coupled discharges
- continuous wave and pulsed modes
 - ► $t_{\rm on} = 660 \,\mu {
 m s}, \, t_{\rm off} = 1340 \,\mu {
 m s} \Rightarrow$
 - $f_{\rm puls} = 500 \, \text{Hz}, \, DC = 33 \, \%$

reactor R3, substrate at floating potential

- Ar 28 sccm, CPA 0.1–1.0 sccm
- pressure 120 Pa
- RF power 20–30 W
- electrode diameter 80 mm
- interelectrode distance 185 mm

\bigvee

in CPA/Ar mixtures

NH₂

reactor R2, substrate at RF electrode

- $Q(Ar) = 28 \operatorname{sccm}, Q(CPA) = 2.0 \operatorname{sccm}$
- pressure 50 Pa
- RF power 30–250 W
- electrode diameter 420 mm
- interelectrode distance 55 mm

Comparison of Floating (R3) \times RF Biased (R2) Substrate

A. Manakhov et al. Plasma Process. & Polym. 11 (2014) 532 & 14 (2017) 1600123

10.5 Anhydride/Carboxyl PPs

Co-polymerization of maleic anhydride (MA) with C_2H_2 in Ar dielectric barrier discharge (DBD) at atmospheric pressure

[COOH] by Chemical Derivatization and Water Stability

Increasing MA \Rightarrow \uparrow C1s peak at 289.1 eV, i.e. carboxyls (COOH) / esters (COOR). \Rightarrow important to quantify "true" concentration of COOH - derivatization with trifluoroethanol

A. Manakhov et al. Surf. Coat. Technol. 295 (2016) 37-45

10.6 Plasma Polymers in Immunosensing

Reactivity of primary amine and carboxyl groups

is important for

immobilization of biomolecules for immunosensing

Human serum albumin (HSA) chosen for the demonstration of immunosensing application:

gold electrode coated with CPA-PP, covalent attachment of antibody AL-01 by 3 coupling methods, the most robust being glutaraldehyde (GA)

Immunosensing - Two Principles, Same Material Needs

Different principles/transducers but same material is needed

- gold electrode coated with a functional film

Quartz crystal microbalance

$$\Delta f = 2.26 \times 10^{-6} f^2 \Delta m / A$$

f resonant frequency, *A* electrode area, Δm mass change

Surface plasmon resonance

Chemically Prepared Amine Films versus Plasma Polymers

Plasma polymerization - alternative to the conventional methods

Example of plasma polymerized cyclopropylamine optimized for sensing performace

Selected Films for Immunosensors

CPA/Ar mixtures, $Q_{\rm Ar} = 28$ sccm pulsed RF discharges: $t_{\rm on} = 660$ ms, $t_{\rm off} = 1340$ ms $\Rightarrow f_{\rm puls} = 500$ Hz, DC = 33 %

conditions	C	Ν	0	C-NH _x	NH_x	NH_3^+	[NH ₂]	$\Delta d/d$
	[at%]	[at%]	[at%]	[at%]	[at%]	[at%]	[at.%]	[%]
floating, $\downarrow W/F$	78.3	20.1	1.6	18.9	5.1	2.6	3.4	-53
floating, $\uparrow W/F$	79.5	19.0	1.5	22.8	6.4	0	1.5	-18
RF biased, $\uparrow W/F$	80.3	17.2	2.5	16.2	4.6	0	1.3	-2

 \Rightarrow difference in atomic composition relatively small but water stability quite different

- IR spectra reflect different film structure
- SIMS analyses reveal different degree of film cross-linking
- confirmed by different stability in water

Solving the Baseline Drift for CPA PPs

QCM immunosensing with CPA PPs:

- 1. 5% glutaraldehyde in PBS, 1 h at room temperature
- 2. 100 μg/ml AL-01 in PBS, 18 hours at 4 °C
- \Rightarrow baseline stable for both the CPA PPs (\uparrow W/F, floating & RF)

SPR immunotests with optimized PP-CPA (\uparrow W/F, floating) sensor: **immersed in PBS prior** to activation by GA and immobilization of antibody:

- Ionger immersion in PBS improved baseline stability while keeping sensor performace
- Ionger immersion in antibody/PBS also improves baseline stability but detection of antigen is not efficient

Sensitivity of CPA PPs

Is a perfect water stability of film thickness necessary for succesful immobilization of biomolecules and surpression of drifts?

sensor	reactor	W/F	$\Delta d/d$	$[NH_2]$	NH_x	C≡N
			[%]	[at.%]	[at.%]	[at.%]
а	R3, floating	high	18	1.5	6.4	11.8
b	R2, RF driven	high	2	1.3	4.6	8.2

Response of QCM sensors with films (a) and (b) to HSA (film thickness 40 nm):

E. Makhneva et al. Surf Coat. Technol. 290 (2016) 116

\Rightarrow Better response for the sensor (a)

Response of SPR sensor with film (a) - thickness 40 \mbox{nm}

Real Immunosensing with PP-CPA - QCM Detection of Salmonella

10.7 Plasma Coating of Polymer Nanofibers

- ... combination leading to novel nanomaterials
 - electrospinning of polymer nanofibers

+ plasma processing

Plasma coating of polymer micro/nanofibers can bring additional functionality for

smart textiles

tissue engineering

filtration of liquids/gases

drug delivery

battery separators

Nozzle-less electrospinning by Nanospider $^{\rm TM}$ from ELMARCO (Czech Rep.) and plasma processing of polymer nanofibers

water contact angle before

after

PP-Coated Nanofibers in Health Care

tissue eng. requires suitable scaffold

nanofibrous polymer mats are ideal also for wound dressing

[S.P. Miguel et al., Colloids & Surf. B 2018]

Electrospun polymer nano/microfibers

- can be prepared in the form of flexible foil
- from biodegradable polymers
- provide moist environment
- allow gas exchange
- avoid bacteria infiltration
- resembles the structure of extracellular matrix (ECM)

 deliver bioactive molecules - high surface area but a need of surface modifications creating reactive groups

Bonding of Antibiotics onto COOH PPs-coated Nanofibers

Plasma co-polymerization of maleic anhydride and C_2H_2 in atmospheric pressure plasma \Rightarrow films with anhydrides (6.3 % rel. to total C) spontaneously creating -COOH at air.

Two different approaches for gentamicin bonding were tested:

E. Permyakova et al. Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization, Materials & Design 153 (2018) 60.

32 / 34

Cells on PCL Mats with PPs

amine PP

 $P_{\rm av} = 10\,W$ (18% water soluble, N/C=0.22)

 $P_{\mathrm{av}} = 150 \,\mathrm{W}$

A. Manakhov et al. Materials & Design 132 (2017) 257–265

Cell-Type Specific Adhesion to Amine PPs

⇒ Adhered non-endothelial cells cannot be removed by trypsin P. Černochová et al. Sci. Reports 10 (2020) 9357

Optimization of Surfaces for Vascular Grafts

Vascular smooth muscle cells (VSMC) on polystyrene culture dishes (PS), polycaprolactone nanofibers (PCL) and amine-PP coated surfaces (CPA-10, 33, 150)

I. Nemcakova et al. Int. J. Mol. Sci. 2020

VSMCs can be utilized for reconstruction of the tunica media.

Morphology of VSMC cells on amine-PP coated PCL (optimized PP - CPA 33W)

PCL mats coated with CPA-33 PP:

excellent support for VSMC cultivation (desirable moderate proliferation rate, continuous proliferation of VSMCs during 7-day-long cultivation, no signs of immunogenicity).