G7501 Fyzikální geochemie

7. Magmatické a metamorfní systémy

Josef Zeman

Magmatické systémy

Na rozdíl od povrchových procesů a vzniku sedimentárních hornin nemůžeme většinou magmatické procesy pozorovat přímo. Pouze ve výjimečných případech extrudujících nexplozivních procesů se na vznik magmatických hornin můžeme podívat blíže.

Magma

Magma se obvykle skládá z mobilní směsi suspendovaných pevných částic, taveniny a plynné fáze:

- počet fází závisí na třech intenzivních proměnných P, T a X
- dostatečně vysoká T homogenní tavenina
- obvykle převaha Si a O
- výjimečně dvě taveniny: karbonátová a silikátová (nemísitelné)

Magma

Atomová struktura a viskozita (bod tání SiO₂ 1 710 °C)

Magma

Role těkavých složek:

- H₂O, CO₂, H₂, HCl, N₂, HF, F₂, Cl₂, SO₂, H₂S, CO, O₂, NH₃, S₂, He, Ar
- kritický bod (voda: 21,8 MPa, 371 °C; CO₂: 7,3 MPa, 31 °C) fluidní stav
- těkavá fluida (v hloubkách pod 1 km mizí rozdíl mezi kapalným a plynným stavem): hustota < 2 g/cm³, specifický objem > 0,5 cm³/g
- tlak fluid

Rozpustnost těkavých složek v silikátových taveninách

tavenina s rozpuštěnými těkavými složkami ↔ tavenina + těkavé složky

 $V_{tavenina+fluida} < V_{tavenina} + V_{fluida}$

8 2.5 Miloconide bashingt 200°C - 8 and molecular H_2O (wt. %) 2.0 6 Water-undersaturated melt molecularity - 6 Phyotie 50°C 1.5 Depth (km) P (kbar) 4 1.0 -(OH)⁻ 1000°C -(HO)2 Water-saturated - 2 melt + water 0.5 (water oversaturated (OH)⁻ 600°C magma system) 0 0 2 0 4 6 2 8 6 4 0 Concentration of dissolved water (wt. %) Total concentration of dissolved water (wt. %)

10

 H_2O

H₂O

- rozpustnost přibližně úměrná $P_{H20}^{0,5} \rightarrow$ mechanismus
- $H_2O + O^{2-} = 2 OH^{-}$
- drasticky snižuje viskozitu

$$H_2O + O^{2-} = 2(OH)^{-}$$

in melt in melt

vyšší rozpustnost v méně polymerizovaných magmatech

Oddělení těkavých látek od taveniny

Při výstupu z pláště nebo kůry se stává magma nasycené těkavými složkami. Jejich nadbytek se odděluje do koexistující fluidní fáze – exoluce, var

- původně vodou nenasycené magma se stává přesycené v důsledku klesajícího celkového tlaku
- krystalizace bezvodých minerálů
 i za konstantního tlaku –
 přesycení fluidy retrográdní,
 sekundární var; může k němu
 docházet i při klesající teplotě!

Oddělení těkavých látek od taveniny

Oddělení fluidní fáze přispívá k dalšímu chlazení magmatického tělesa; chlazené může být tak rychlé, že vede k "zamrtznutí" systému. Ve fluidní fázi se koncentrují nekompatibilní prvky a ty se hromadí ve svrchní části magmatického krbu (Mt. Pinatubo, Filipíny, červen 1991 – 17 megatun SO₂ do atmosféry; celkem vyvrženo 5–10 km³ materiálu; síra pochází ze 40–90 km³ magmatu pod sopkou).

Oddělení těkavých látek od taveniny

Extrémní změna objemu

Při teplotě 25 °C 1 g H₂O

voda V = 10⁻³ l pára V = 24,79 l

zvětšení objemu 25tisíckrát (bude ještě záviset na p a T)

Rovnováhy krystaly-tavenina v magmatických systémech Fázové diagramy

Tavení čistých minerálů a polymorfismus

Fázové rovnováhy binárních systémů

Diopsid-anortit

Fázové rovnováhy binárních systémů

Forsterit-SiO₂

Detail: R – peritektikum; obrněné relikty

 $Mg_2SiO_4 + SiO_2 = 2MgSiO_3 + latent heat$ forsterite in melt enstatite

Krystalizace

Ideální rovnovážná krystalizace

 po celou dobu krystalizace zachovávána rovnováha mezi krystaly a taveninou

Ideální frakční krystalizace

Krystaly jsou okamžitě "izolovány" od taveniny:

- krystaly jsou odděleny od taveniny v důsledku rozdílné hustoty
- krystaly s taveninou nereagují v důsledku pomalé rychlosti vzájemné interakce
- povrchová vrstva je izolována od taveniny další přirůstající vrstvou

FRACTIONAL CRYSTALLIZATION

Složení reziduální taveniny

Krystalizace reálných bazaltových magmat

Zobecněný diagram krystalizace tholeitického bazaltu ("suchý" a "mokrý")

vliv tlaku a dalších složek

rovnovážná krystalizace

frakční krystalizace

An₁₇

An₂

"hypersolvus" granity

"subsolvus" granity

Ternární systém Kf-Ab-An

Fázové diagramy živců Ternární systém Kf-Ab-An

krystalizace

Fázové diagramy živců Ternární systém Kf-Ab-SiO₂

velikost krystalů a povrchové napětí (dodatková G^E funkce)

$$\begin{split} \Delta \bar{G}_{krystaly-tavenina} &= \bar{G}_{kryst} - \bar{G}_{tavenina} \\ \bar{G}_{mal \circ kr.} &= \bar{G}_{kryst} + \bar{G}_{povrch} \\ \bar{G}_{kryst} &= \frac{4}{3} \pi r^3 \bar{G}_{kryst} \\ \bar{G}_{povrch} &= 4 \pi r^2 \gamma \ (= \bar{G}^E) \\ \Delta \bar{G}_{krystaly-tavenina} &= \frac{4}{3} \pi r^3 (\bar{G}_{kryst} - \bar{G}_{tavenina}) + 4 \pi r^2 \gamma \end{split}$$

	100%				ro	změr	na pov	vrchu
					I	nm	%)
	90%					0,8		96,3%
	80%					1,4		68,8%
()	70%					2,8		37,6%
ő,	10%					5,6		19,5%
chı	60 %					11,2		9,9%
ovr	50%				1	28,0		4,0%
ē.	G0 70					56,0		2,0%
L O	40 %					280,0		0,4%
části	30 %					400,4		0,3%
	20 %	ł –						
	10 %							
	0 %			_	_			
	0)	50		100		150 200	
				rozměr (nm)				

μ malé krystaly ∆G^ε = velké krystaly krystaly ΔT_r tavenina T_r (malé) T_r (velké)

závislost na velikosti krystalů

rychlost tvorby zárodků

velikost podchlazení a rychlost difuze

difuze k povrchu

Interpretace textur

stejná stavba horniny může vznikat různou posloupností krystalizace

Krystalizace reálných bazaltových magmat

Makaopuhi bazalt 1963 Kilauea, Hawaii – Makaopuhi kráter

