Vazby, struktury, povrchy

Prvky a periodický systém

Elektronová struktura

Kvantová čísla:
hlavní n = 1, 2, 3... : určuje hlavní část energie elektronu a průměrnou vzdálenost od jádra
vedlejší (azimutální) l = 0, 1, ..., n–1: celkový úhlový moment a tvar orbitalu
magentické m = – l, ..., 0, ..., l: určuje z-komponentu úhlového momentu a tedy orientaci orbitalu
spin ms = – 1/2, +1/2: určuje spin elektronu

Pauliho princip výlučnosti – žádné dva elektrony v elektronovém obalu

nemohou mít všechna kvantová čísla stejná

Princip obsazování orbitalů:

1s	2 e
2s 2p	8 e
3s 3p	8 e
4s 3d 4p	18 e
5s 4d 5p	18 e
6s 4f 5d 6p	32 e
7s 5f 6d 7p	32 e

Vazby a velikosti

Vazby: mezní typy vazeb – kovalentní, iontová, kovová, Van der Waalsova, vodíková – ve strukturách minerálů se většinou setkáváme s jejich kombinacemi

Velikosti stavebních částic minerálů

- U neutrálních atomů závisí jejich poloměr na atomovém čísle, tedy na počtu elektronů v elektronovém obalu atomu.
- U nabitých částic ionů závisí v hlavní míře na jejich náboji. Obecně platí, že čím vyšší je jejich kladný náboj, tím jsou menší – výrazné přitahování kladným nábojem protonů jádra; čím je vyšší záporný náboj, tím jsou větší – vzájemné odpuzování stejných nábojů elektronů.
- Relativní srovnání iontových poloměrů nejzastoupenějších prvků v zemské kůře (čísla udávají poloměr v pm – pikometrech – 10⁻⁹ m)

Velikosti

012

Základy výstavby struktur

Když se Robert Hook v roce 1665 zamýšlel nad podstatou pravidelných tvarů krystalů, došel k závěru, že je to důsledek pravidelného ukládání malých kulových částic:

"[…] A tak se domnívám, že kdybych měl čas a příležitost, mohl bych prokázat, že všechny tyto pravidelné útvary, jež jsou tak nápadně *rozmanité* a *zvláštní* a v takové míře zdobí a zkrášlují tak mnohá tělesa … mají s největší pravděpodobností původ ve třech nebo čtyřech polohách či postaveních *kulovitých částic* … A to jsem také názorně demonstroval se souborem kuliček a s několika málo dalšími velmi jednoduchými tělesy, takže mohu říci , že ani jediný pravidelný tvar, s nímž jsem se dosud setkal, není takový … abych ho nemohl napodobit pomocí souboru kuliček a jednoho nebo dvou dalších těles, k čemuž dokonce někdy téměř úplně postačí setřepat tyto částečky dobře dohromady."

Hook Robert (1665): *Micrographia, or Some physiological Description of Minute Bodies made by Magnifying glasses with observations and Inquiries thereupon.* Jo. Martyn and Ja. Allestry, London.

Uspořádání – 2 vrstvy

O4 5

O4 7a

O4 7b

Uspořádání – 2 vrstvy

В

A

O4 6

O4 8c

Uspořádání – 3 vrstvy

O4 9_10

O4 11

Uspořádání – 3 vrstvy

O4 11a

O4 12

Uspořádání

skupi- na	obecný vzorec*	valence O	Si vyvazuje	kat. vyváz.	poměr	minerál	vzorec
	SiO ₂	4	4	0	4:0	křemen	SiO ₂
tekto-	M ^I Si ₃ AIO ₈	16	12	4	3:1	albit	NaSi ₃ AlO ₈
fylo-	$M_3Si_4O_{10}(OH)_2$	22	16	6	2,7:1,3	mastek	$Mg_3Si_4O_{10}(OH)_2$
ino-	$M_2Si_2O_6$	12	8	4	2:1	diopsid	CaMgSi ₂ O ₆
neso-	M ₂ SiO ₄	8	4	4	1:1	olivín	(Fe,Mg) ₂ SiO ₄

$Olivín - (Mg, Fe)_2 SiO_4$

O4 13a

Mezi vrstvou A a B jsou střídavě obsazovány oktaedrické (Mg-Fe) a tetraedrické dutiny (Si).

$Olivín - (Mg, Fe)_2 SiO_4$

$Olivín - (Mg, Fe)_2 SiO_4$

O4 14

Pyroxeny – diopsid Ca(Mg, Fe)Si₂O₆

O4 15b

Mezi vrstvou A a B jsou obsazovány jen oktaedrické dutiny (Ca, Mg-Fe), mezi vrstvou B a C pouze tetraedrické dutiny (Si).

Pyroxeny – diopsid Ca(Mg, Fe)Si₂O₆

Mezi vrstvou A a B jsou obsazovány jen oktaedrické dutiny (Ca, Mg-Fe).

Mezi vrstvou B a C jsou obsazovány pouze tetraedrické dutiny (Si).

Pyroxeny – diopsid Ca(Mg, Fe)Si₂ O_6

O4 15a

Amfiboly – $NaCa_2(Mg, Fe, AI)_5(OH)_2(Si, AI)_8O_{22}$

O4 16a

Amfiboly – $NaCa_2(Mg, Fe, AI)_5(OH)_2(Si, AI)_8O_{22}$

O4 16b

Amfiboly – $NaCa_2(Mg, Fe, Al)_5(OH)_2(Si, Al)_8O_{22}$

O4 160

Fylosilikáty – mastek Mg₃(OH)₂Si₄O₁₀

04 17a

Mezi vrstvou A a B jsou obsazovány jen oktaedrické dutiny (Mg), mezi vrstvou B a C pouze tetraedrické dutiny (Si).

Fylosilikáty – mastek Mg₃(OH)₂Si₄O₁₀

O4 17b

Mezi vrstvou A a B jsou obsazovány všechny oktaedrické dutiny (Mg).

Mezi vrstvou B a C jsou obsazovány pouze tetraedrické dutiny (Si).

Fylosilikáty – mastek $Mg_3(OH)_2Si_4O_{10}$

O4 17c

Fylosilikáty – mastek $Mg_3(OH)_2Si_4O_{10}$

O4 17c

Fylosilikáty – pyrofillit Al₂(OH)₂Si₄O₁₀

Mezi vrstvou A a B jsou obsazeny 2/3 oktaedrických dutin (Al), mezi vrstvou B a C jsou obsazovány pouze tetraedrické dutiny (Si).

Fylosilikáty – pyrofillit Al₂(OH)₂Si₄O₁₀

 O_A

SiO₄

Mezi vrstvou A a B jsou obsazeny 2/3 oktaedrických dutin (Al), jedná se pak o dioktaedrické fylosilikáty.

Mezi vrstvou B a C jsou obsazovány pouze tetraedrické dutiny (Si).

Fylosilikáty – pyrofillit Al₂(OH)₂Si₄O₁₀

O4 18c

Fylosilikáty

kaolinit Al₄(OH)₈Si₄O₁₀ (dioktaedrický), serpentin Mg₆(OH)₈Si₄O₁₀ (trioktaedrický)

Fylosilikáty

pyrofilit Al₂(OH)₂Si₄O₁₀ (dioktaedrický), mastek Mg₃(OH)₂Si₄O₁₀ (trioktaedrický)

Fylosilikáty

O4 19

montmorillonit (Na, Ca)_x(Al, Mg)₂(OH)₂Si₄O₁₀ × n H₂O (dioktaedrický) vermiculit (Mg, Fe, Al)₃(OH)₂(Si, Al)₄O₁₀ × 4 H₂O (trioktaedrický) chlorit (Mg, Fe, Al)₆(OH)₈(Si, Al)₄O₁₀

T: O = 2: 1: 1

T : O = 2 : 1

T : O = 1 : 1

Tektosilikáty

Koordinační čísla

poměr r _{kat} /r _{O2}	koordinační číslo	koord. polyedr
1	12	středy hran krychle
0,73 – 1	8	hexaedr
0,41 –0,73	6	oktaedr
0,22 - 0,41	4	tetraedr
0,15 – 0,22	3	uprostřed trojúhelníka

- C⁴⁺ vždy obsazuje mezery mezi třemi kyslíky (karbonáty)
- Si⁴⁺ obsazuje pozice v tetraedrických dutinách (může být zastoupen také Al³⁺ alumosilikáty, výjimečně Ti⁴⁺ – pyroxeny, amfiboly)
- další ionty (Fe³⁺, Mg²⁺, Fe²⁺, Mn²⁺, Ca²⁺, Na⁺) obsazují oktaedrické dutiny v nejtěsnějším uspořádání kyslíků, přičemž se ve strukturách dobře zastupují (obsazují strukturně stejné pozice): Fe³⁺–Mg²⁺–Fe²⁺–Mn²⁺, Ca²⁺–Na⁺
- K⁺ obsazuje pozice kyslíků, stejně jako skupiny OH⁻

Povrchy v roztoku

elektrická dvojvrstva

náboj povrchu

záporný

zpc - zero point of charge IEP – isoelectric point

Povrchy v roztoku

iony v roztoku

iontová výměna

sorpce

Povrchy v roztoku

Koloidy – částice o rozměru 1–1 000 nm

Povrchy: hustota e – STEM

columns. FEI COMPANY, 2008.

12 nm

Povrchy: hustoty e – SE/TEM

Imaging a crystal surface with secondary electrons. a,b, Simultaneous acquisition of the SEM image using secondary electrons (a) and the ADF-STEM image using transmitted electrons (b) of $YBa_2Cu_3O_{7-x}$ superconductor (raw data) viewed along the [010] direction. Below are the corresponding fast Fourier transforms of the images. EELS measurements suggest that the area is about 52nm thick c,d, A magnified STEM (c) and SEM (d) image of the average of 55 unit-cells. Superimposed is the $YBa_2Cu_3O_{7-x}$ structure model (two unit-cells in the [010] projection). Note the dark vertical lines in the SEM image (marked by arrows) that are not evident in the STEM image. These locations correspond to the CuO chain planes with no oxygen between the Cu atoms.We expected better contrast of light atoms on a cleaved surface because the sample we show here was thinned by ion milling and its surface condition was not ideal. Nature Mat. 2532, 2009.

Povrchy: hustoty e – TEM

O4 26

Atomic-resolution cross-sectional HVEM and HAADF-STEM images of TiO₂ (110) surface observed from the [001] and [110] directions. (A and D) Schematic illustrations of a rutile TiO₂ structure viewed along the [001] (A) and [110] (D) directions. (B and E) The magnified HVEM images of the (110) surface viewed from the [001] (B) and [110] (E) directions. Comparing them with the simulated HVEM images in the insets, the dark image contrast corresponds to the position of atomic columns. These simulations were performed with a defocus value of –35 nm and a film thickness of 3 nm ([001] projection) and 7 nm ([110] projection). (C and F) Atomic-resolution HAADF-STEM images of the TiO₂ (110) surfaces after HVEM observations viewed from the [001] (C) and [110] (F) directions. In these images, bright contrast corresponds to the position of Ti-containing atomic columns. The HAADF image simulations shown as insets were performed with a defocus value of 0 nm and the same film thicknesses as the HVEM simulations. Science, 322, 571 (2008).

Sněhová vločka

04 28

Sněhová vločka

Sněhová vločka

O4 30

