
INTRODUCTION TO THE SERIES 

The aim of the Handbooks in Economics series is to produce Hanabooks for 
various branches of economics, each of which is a definitive source, reference, and 
teaching supplement for use by professional researchers and advanced graduate 
students. Each Handbook provides self-contained surveys of the current state of a 
branch of economics in the form of chapters prepared by leading specialists on 
various aspects of this branch of economics. These surveys summarize not only 
received results but also newer developments, from recent journal articles and 
discussion papers. Some original material is also included, but the main goal is to 
provide comprehensive and accessible surveys. The Handbooks are intended to 
provide not only useful reference volumes for professional collections but also 
possible supplementary readings for advanced courses for graduate students in 
economics. 
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PREFACE TO THE HANDBOOK 

The field of mathematical economics 

Mathematical economics includes various applications of mathematical concepts 
and techniques to economics, particularly economic theory. This branch of 
economics traces its origins back to the early nineteenth century, as noted in the 
historical introduction, but it has developed extremely rapidly in recent decades 
and is continuing to do so. Many economists have discovered that the language 
and tools of mathematics are extremely productive in the further development of 
economic theory. Simultaneously, many mathematicians have discovered that 
mathematical economic theory provides an important and interesting area of 
application of their mathematical skills and that economics has given rise to some 
important new mathematical problems, such as game theory. 

Purpose 

The Handbook of Mathematical Economics aims to provide a definitive source, 
reference, and teaching supplement for the field of mathematical economics. It 
surveys, as of the late 1970's, the state of the art of mathematical economics. 
Bearing in mind that this field is constantly developing, the Editors believe that 
now -is an opportune time to take stock, summarizing both received results and 
newer developments. Thus all authors were invited to review and to appraise the 
current status and recent developments in their presentations. In addition to its 
use as a reference, the Editors hope that this Handbook will assist researchers and 
students working in one branch of mathematical economics to become acquainted 
with other branches of this field. Each of the chapters can be read independently. 

Organization 

The Handbook includes 29 chapters on various topics in mathematical economics, 
arranged into five parts: Part 1 treats Mathematical Methods in Economics, 
including reviews of the concepts and techniques that have been most useful for 
the mathematical development of economic theory. Part 2 elaborates on Mathe­
matical Approaches to Microeconomic Theory, including consumer, producer, 
oligopoly, and duality theory. Part 3 treats Mathematical Approaches to Competi-
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tive Equilibrium, including such aspects of competitive equilibrium as existence, 
stability, uncertainty, the computation of equilibrium prices, and the core of an 
economy. Part 4 covers Mathematical Approaches to Welfare Economics, includ­
ing social choice theory, optimal taxation, and optimal economic growth. Part 5 
treats Mathematical Approaches to Economic Organization and Planning, including 
organization design and decentralization. 

Level 

All of the topics presented are treated at an advanced level, suitable for use by 
economists and mathematicians working in the field or by advanced graduate 
students in both economics and mathematics. 
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Chapter 22 

SOCIAL CHOICE THEORY* 

AMARTYA SEN 

All Souls College, Oxford 

1. Social welfare functions 

1. 1. Distant origins 

The origins of social choice theory can be traced to two rather distinct sources, 
and it so happens that the theory is nearly in a position to celebrate the 
bicentenary of each of its two origins. One source is the study of normative 
analysis in terms of personal welfare (extensively explored in modern welfare 
economics), and the origins of this, through utilitarianism, can certainly be traced 
at least to Jeremy Bentham (1789). The other is the mathematical theory of 
elections and committee decisions, which is comfortably traced to Borda (1781) 
and Condorcet (1785). The influences of these two different origins will become 
clear as the modern developments in social choice theory are reviewed. 

No approach to welfare economics has received as much support over the years 
as utilitarianism. If U;( · ) is the utility function of person i defined for each 
person i = 1 ,  . . .  , n ,  over the set X of alternative social states, then on the 
utilitarian approach any state x is at least as good as another y, denoted xRy, if 
and only if L:7_1U;(x) � L7_1U;(y). 

It is clear that utilitarianism uses cardinality and interpersonal comparability of 
personal utilities. Both these practices received severe reprimand in the 1930's,1 

*The first version of this paper was written during 1978-79. While the paper has been now revised, 
I have not tried to bring it "up to date" regarding more recent publications. (There ate some 
references to later publications, but most of these were in fact available in pre-print form earlier.) My 
greatest debt is to Kenneth Arrow, Michael Dummett and Peter Hammond for extremely helpful 
comments and suggestions on the earlier version of this paper. I have also benefited greatly from the 
comments of Brian Batry, Charles Blackorby, Julian Blau, Graciela Chichilnisky, Peter Coughlin, 
Bhaskar Dutta, Alan Feldman, Wulf Gaertner, Louis Gevers, Geoffrey Heal, Michael Intriligator, 
Jocelyn Kynch, Tapas Majumdar, John Muellbauer, Prasanta Pattanaik, Robert Pollak, Ariel 
Rubinstein, Maurice Salles, David Schmeidler, Matgatet Sjoberg, Steven Slutsky, Kotato Suzumura, 
and H. P. Young. 

1The most influential attack came from Robbins (1932). 

Handbook of Mathematical Economics, vol. Ill, edited by K.J. Arrow and M.D. Jntriligator 
© 1986, Elsevier Science Publishers B. V (North - Holland) 
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with the rebuke drawing sustenance from a single-minded concern with basing 
utility information on non-verbal behaviour only, dealing with choices in the 
absence of risk. It thus appeared that social welfare must be based, on just the 
n-tuple of ordinal, interpersonally non-comparable, individual utilities. This infor­
mational restriction would, of course, make the traditional utilitarian 
approach- and a great many other procedures- unworkable. 

This " informational crisis" is important to bear in mind in understanding the 
form that the origin of modem social choice theory took. In fact, with the binary 
relation of preference replacing the utility function as the primitive of consumer 
theory, it made sense to characterize the exercise as one of deriving a social 
preference ordering R from the n-tuple of individual orderings { R; } of social 
states. 

The other source, dealing primarily with election methods, had in any case the 
tradition of concentrating on the information given by an n-tuple of individual 
orderings - reliant on an informational framework that was much less ambitious 
than utilitarianism. Borda, Condorcet, Dodgson (Lewis Carroll), Nanson and 
others had pursued various results of voting, and had discussed the superiority of 
some voting systems over others. 2 Economists did not, however, take much notice 
of this literature, or of the problem studied in them, until the "informational 
crisis" sent them searching for other methods. 

The union produced modem social choice theory. The big bang that char­
acterized the beginning took the form of an " impossibility theorem", viz. Arrow's 
(1950, 1951) "General Possibility Theorem". It appeared that some conditions 
that look mild- and are indeed satisfied comfortably by utilitarianism when 
translated into its cardinal interpersonally comparable framework (see Section 
6) - cannot be fulfilled by any rule whatsoever that has to base the social ordering 
on n-tuples of individual orderings. This theorem, which had a profound impact 
on the way modem social choice theory developed, will be discussed in Section 2. 3 

1.2. The Bergson-Samuelson social welfare function 

The concept of a social welfare function was first introduced by Bergson (1938). 
This was defined in a very general form indeed: as a real-valued function W( · ), 
determining social welfare, " the value of which is understood to depend on all the 
variables that might be considered as affecting welfare" (p. 417). If the relevant 
information about the social states in set X can be obtained, then such a social 
welfare function- swf for short- might as well be thought to be a real-valued 

2 For an excellent account of the literature, see Black (1948, 1958). 
3Another important contribution to the early development of modem social choice theory was 

Kenneth May's axiomatization of the majority rule [see May (1952, 1953)]. 
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function defined on X. If the issue of numerical representation is not emphasized, 
this really amounts to an ordering R of X. 

While the idea of a social welfare function came from Bergson, the uses to 
which such a swf can be put were definitively investigated by Samuelson (1947). 
His exercises made use of many criteria that a swf may be required to satisfy. 4 
One of them is the old Pareto criterion. This can be defined in many forms, and 
since the differences will turn out to be of some significance, we might as well 
seize this opportunity of distinguishing between them (though not all these 
versions were, in fact, used by Samuelson). 

Let P and I be the asymmetric and symmetric factors of the social preference 
relation R ("at least as good as"), standing respectively for " strictly better than" 
and " indifferent to". And let the corresponding individual preference relation and 
its asymmetric and symmetric factors for any person i be R;, P; and I;, 
respectively. The different versions of the Pareto Principle may now be stated. 
The following are all defined with the universal quantifier Vx, y E X  ("for all x, y 
in X"): 

Condition P (weak Pareto principle) 
(Vi: xP; y) = xPy. 

Condition po (Pareto indifferent rule) 
(Vi :  xi; y) = xiy. 

Condition P * (strong Pareto principle) 
(Vi :  xR ; y ) = xRy. And if to the antecedent is added 3 i: xP; y, then the 
consequence is xPy. 

It is obvious that Condition P* implies both Conditions P and P0, but is not 
implied by them even jointly. 

If a swf satisfies Condition P*, we shall call it a Pareto-inclusive swf. It may be 
remarked that, given the form in which Bergson defined a swf, it may or may not 
be possible to check whether it is Pareto-inclusive or not, since there is no 
obligation to specify the individual preferences in defining a Bergson W( · ). 
However, from the motivating discussion of Bergson (1938, 1948) and more so 
from the operations chosen by Samuelson to demonstrate the use of such a swf, it 
appears that the intention is to take note of individual preferences at least to the 
extent of being Pareto-inclusive.5 

4For excellent examples of application and use of Bergson-Samuelson and social welfare functions, 
see Dasgupta and Heal (1979), Atkinson and Stiglitz (1981), and Dasgupta (1982). 

5 In using utility for such social criteria (Pareto optimality, equality, justice, etc.), one source of 
ambiguity is the possibility of defining them either in terms of ex post utilities, or in terms of ex ante 
utilities. On this see Starr (1973). Also Hammond (1983). 
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Sometimes a Bergson-Samuelson social welfare function is described as " indi­
vidualistic". There is an ambiguity in this expression which is worth clarifying 
since it has been the source of some confusion. A swf can be individualistic in the 
sense of reflecting the preferences of all the individuals in the society taken 
together when such preferences do not conflict, in ranking any .pair of social states. 
In this sense, an individualistic swf is simply a Pareto-inclusive swf. There is a 
second interpretation, which makes social welfare W a function of th'e vector of 
individual utilities u irrespective of the non-utility characteristic of the social 
states from which the utilities emanate: W = W(u); see Samuelson (1947, pp. 
228-229, 246), Graaff (1957, pp. 48-54), and Bergson (1948, p. 418), among 
others. This is a version of a condition of "neutrality" (sometimes called 
"welfarism"), which relates closely to Arrow's result (Section 2.1), and which will 
be further examined in Sections 6 and 9. In effect, it asserts the neutrality of the 
social ranking towards non-utility features, which can then affect the social 
ranking only through their influence on individual utilities, or preferences. It is 
easily checked that neither does Pareto-inclusiveness imply this condition of 
neutrality, nor the converse, and these two interpretations of individualism are, 
thus, completely independent of each other. 

Finally, none of the conditions that Samuelson imposed on a swf for his 
exercises happened to specify how the social ordering might alter if different 
n-tuples of individual orderings were considered. If any n-tuple of individual 
preference orderings is called a "profile", then his exercises - and those consid­
ered by Bergson-were all "single profile" problems (see Section 9). 

1.3. The Arrow social welfare function 

Arrow (1951) defined a social welfare function -henceforth SWF (to be dis­
tinguished from the Bergson-Samuelson swf) - as a functional relation specifying 
one social ordering R for any given n-tuple of individual orderings { R;  } ,  one 
ordering for each person, 

R = f({R; } ) .  (1 .1) 

Note that if a Bergson-Samuelson swf is defined as a social ordering R, then 
an Arrow SWF is a function the value of which would be a Bergson-Samuelson 
swf. Arrow's exercise, in this sense, is concerned with the way of arriving at a 
Bergson-Samuelson swf. Alternatively, if the Bergson-Samuelson swf is taken as 
a function W( · ), defined over a particular profile of individual ordinal utilities, 
then a Bergson-Samuelson swf fits into the form (1.1). The Arrow exercise can, 
then, be seen as a way of extending the set of single-profile formulations into one 
consistent multiple-profile function, specifying correspondences between the re­
spective values of R (or parts thereof) for different n-tuples { R ; } .  
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Arrow proceeded to impose a variety of conditions that a reasonable SWF 
could be expected to satisfy. One of them deals specifically with the multiple-pro­
file characteristics of a SWF: the independence of irrelevant alternatives. For 
stating this condition, Arrow used the notion of a choice function for the society, 
C( · ) , which was defined with respect to the binary relation R, satisfying what is 
sometimes called the " Condorcet condition" [Condorcet (1785)].6 For all subsets 
S of X, 

C( S )  = [xix E S & 'ily E S :  xRy ]. (1 .2) 

Condition I (independence of irrelevant alternatives) 
For any two n-tuples { R;} and { R�} in the domain of f, and for any S � X, with 
the choice functions C(·) ,  and C'( · )  corresponding to /({R;}) and /({R�}), 
respectively, 

['iii :  ('ilx, yES: xR; y <=> xR� y)) = C(S )  = C'( S ) .  

This condition requires that as long as individual preferences remain the same 
over a subset S of X, the social choice from that subset should also remain the 
same. 

The property of independence can also be considered in purely relational terms 
as well, without invoking a choice function at alU 

Condition 11 (pairwise relational independence) 
The restriction of the social preference relation over any pair { x, y} is a function 
of the n-tuple of restrictions of individual preferences over that pair, 

( 1 .3) 

6The " Condorcet condition" is sometimes defined specifically for the majority relation only, which 
relates to Condorcet's (1785) own original concern. On these issues, see Black (1958), Fishburn 
(1973a), and Young (1977). 

7 Given the binary specification of the choice function for society, as in (1.2), it is easily checked that 
this relational independence condition 12 is exactly equivalent to Arrow's choice-functional indepen­
dence condition I. In the proofs that will be presented in Section 2.1, Condition 12 will be used, 
because it simplifies matters, and makes Arrow's theorem entirely relation-theoretic. However, 
Conditions I and 12 are not generally equivalent. When the choice function for the society cannot be 
represented by a binary relation (to be investigated in Section 4 below), Condition I can be used 
without implying Condition 12, and vice versa. Indeed, in a purely relation-theoretic framework with 
the use of Condition 12, it need not even be assumed that a choice function for the society exists. 
Similarly, in a purely choice-oriented framework, the relation-theoretic notions (including Condition 
12 ) can be entirely dispensed with. Finally, it is possible to define the binary relation of social 
preference just in terms of choices over pairs, i.e. xRy if and only if x E C({ x, y }), which will make 
Condition 12 strictly weaker than Arrow's choice-functional independence condition I. This avenue, 
which will be explored in Section 4.2, will be useful in interpreting some recent results on collective 
rationality, and in demonstrating that Arrow had proved a more general result than he had claimed. 
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2. Arrow's impossibility theorem 

2. 1. The general possibility theorem 

Amartya Sen 

Arrow's General Possibility Theorem asserts the inconsistency of some mild-look­
ing conditions imposed on social welfare functions, viz. Conditions P and I as 
defined in the last section and the following two additional ones. 8 ' 

Condition U (unrestricted domain) 
The domain of the SWF, i.e. /(·) defined by (1.1), includes all (logically) possible 
n-tuples of individual orderings of X. 

Condition D (non-dictatorship) 
There is no individual i such that for all preference n-tuples in the domain of 
/(·), for each ordered pair x, y E X, xP; y = x Py. 

Denoting the set of individuals in the society as H, and the cardinality of the set 
X of social states as #X, the General Possibility Theorem can be stated thus. 

General possibility theorem (GPT) 
If H is finite and #Xz. 3, then there is no SWF satisfying Conditions U, I, P 
and D. 

This result has been the prime mover in getting the discipline of social choice 
theory started, and though recently the focus has somewhat shifted from impossi­
bility theorems to other issues, there is no doubt that Arrow's formulation of the 
social choice problem in presenting the GPT laid the foundations of social choice 
theory. In seeking a demonstration of the GPT, Condition 12 can be used rather 
than Condition I to get a fully relation-theoretic statement, which can be used 
with or without the further assumption of binary choice. 

Pair relational general possibility theorem (GPT* )  
If H is finite and #Xz 3 ,  then there is no SWF satisfying Conditions U, I2, P 
and D. 

In establishing the General Possibility Theorem, it is convenient to go via two 
lemmas that are of interest in themselves. We shall call a set G of persons a 
"group" G (but -beware -no "group theory" is involved!). We define a group G 
of persons "decisive" over the ordered pair { x, y } ,  denoted Dc(x, y), if and only 
if xPy whenever xP; y for all i in G. Group G is "almost decisive" over that 

8This version of the GPT was presented in the 2nd edition of Arrow's book [Arrow (1963, pp. 
96-100)]. An error in Arrow's (1950, 1951) original presentation was noted and rectified by Blau 
(1957). 
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ordered pa ir ,  denoted DG(x, y), if and only if xPy whenever xP;y for all i in G 
and y P; x for all i not in G, i.e. for all i in H - G. Obv iously dec is iveness impl ies 
almost dec is iveness , but in general not v ice versa. 

The first lemma appl ies not merely to SWFs , but to a broader class o f  
trans format ions from ind iv idual pre ferences to soc ial pre ferences , rela xing the 
requ irement o f  full trans it iv ity o f  soc ial pre ference relat ion R. 

Transitivity 
R is trans it ive on X if and only if 'Vx, y, z EX, (xRy & yRz) = xRz. 

Quasi-transitivity 
R is quas i-trans it ive on X if and only if 'Vx, y, z EX, (xPy & yPz) = xPz. 

A cyclicity 
R is acycl ic on X if and only if there is no cycle o f  str ict pre ference : that is , no 
subset (x1, x2, • • •  , xk) o f  X such that x1Px2, x2Px3, . . •  , xk_1Pxk, and xkPx1. 

Obv iously , in th is framework , trans it ivity impl ies quas i-trans it iv ity , but not vice 
versa , and quas i-trans it iv ity impl ies acycl ic ity but not v ice versa. Where the l ine 
o f  "collect ive rat ional ity " is to be drawn depends partly on what use is to be 
made o f  the soc ial pre ference relat ion R. Wh ile we have for the moment kept 
as ide the quest ion o f  whether or not to base soc ial cho ice ent irely on a b inary 
relat ion - as g iven by (1.2) - it is relevant to note that for a re fle xive and complete 
pre ference relat ion , acycl ic ity is the necessary and sufficient cond it ion for t he 
cho ice set C(S) ,  as defined by (1 .2), to be non-empty for every non-empty , fin ite 
subset S o f  X.9 We may call a cho ice funct ion that has a non -empty C(S) for 
every non -empty , fin ite S� X, a "fin itely complete cho ice funct ion ". 

If it is requ ired that the b inary relat ion o f  soc ial pre ference should prov ide a 
m in imally su ffic ient bas is for a fin itely complete cho ice funct ion , then it is natural 
to confine the range o f  the funct ion f( ·) to pre ference relat ions that are re fle xive , 
complete and acyclic. Such a funct ion w ill be called a social decision function 
SDF .  I f  the range is further restr icted to re fle xive , complete and quasi-transitive 
pre ference relat ions , then f( ·) w ill be called a quasi-transitive social decision 
function QSDF (a trans ferred ep ithet to be sure , but it need not cause any 
con fus ion). If the range is further restr icted to pre ference relat ions that are 
re fle xive ,  complete and transitive, then we are back to the case o f  Arrow's soc ial 
wel fare funct ions SWF. It is tr iv ial that a SWF is a QSDF , and a QSDF is a SDF ,  
but in general not vice versa. 

9For infinite sets, acyclicity would require supplementation by other conditions. for guaranteeing the 
existence of a best element. This supplementation has been investigated in different ways. See 
Herzberger (1973), Smith (1974), Bergstrom (1975), Suzumura (1976a), Birchenhall (1977), Mukherji 
(1977), and Walker (1977). See also Aizerman, Zavalishin and Piatnitsky (1976), and Aizerman and 
Malishevski (1980). 
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Field expansion lemma . . . . . . . . 
Fo r any quas i-t rans it ive soc ial dec is iOn funct iOn (QSDF) s atis fy mg Cond it iOns U, 
12 and P, w ith #X� 3 ,  if any g ro up is almost dec is ive ove r any o rde red p air o f  
soc ial st ates , then it is dec is ive ove r eve ry o rde red p air o f  soc ial st ates , 

[3x ,y EX: DG(x, y )] � ['v'a, b EX: DG(a , b)] . 

To see cle arly how th is wo rks , it m ay be use ful to cons ide r the c ase o f  fo ur 
d ist inct st ates x, y, a and b. Let the p re fe rence o rde ring -in st rict dec re as ing 
o rde r-o f  every i in G be a, x, y, b and let everyone not in G str ictly p re fe r  a to 
x, y to b, and y to x, le av ing the o rde ring o f  a and b completely unspec ified . By 
the we ak P areto pr inc iple aPx and yPb. F urthe r, s ince DG(x, y), cle arly xPy. 
Th us ,  by q uas i-t rans it iv ity , aP b. By Cond it ion 12, th is m ust depend only on the 
ind iv id ual o rde rings o f  a and b, o f  wh ich -in fact - only the o rde rings o f  those in 
G h ave been spec ified. Hence DG( a, b). 

By v irt ue o f  the F ield Exp ans ion Lemm a, the re is no d iffe rence between a 
g ro up be ing almost dec is ive ove r some o rde red p air and be ing dec is ive ove r eve ry 
o rde red p air. Let s uch a g ro up be c alled a dec is ive g ro up .  

Group contraction lemma 
Fo r any soc ial wel fare funct ion (SWF) s at is fy ing Cond it ions U, 12 and P ,  w ith 
#X � 3, if any g ro up G, w ith #G > 1, is dec is ive , then so is some p rope r s ubset o f  
th at g ro up. 

To p rove th is ,  p art it ion a dec is ive g ro up G into two non -empty p rope r s ubsets 
G1 and G2, respect ively . Let the p re fe rence o rder ings o f  the three g ro ups be the 
follow ing in st rict descend ing o rde r, ove r some t riple { x, y, z } :  G1:x, y, z ;  
G2: y ,  z ,  x ;  H- G :  z ,  x, y. By the dec is iveness o f  G ,  it follows th at y P z .  C le arly , 
e ithe r xPz, o r  zRx, by the completeness o f  R.  Hence it follows from yPz th at 
xP z o r  y P x, by the t rans it iv ity o f  R. Hence e ithe r G1 is almost dec is ive ove r 
{ x, z } ,  o r  G2 is almost dec is ive ove r { y, x } .  By the F ield Exp ans ion Lemm a, 
e ithe r G1 o r  G2 is , th us ,  dec is ive . 

Now Arrow 's Gene ral Poss ib il ity Theo rem (GPT) . 

Proof of GPT * 
By the we ak Pareto p rinc iple , the g ro up o f  all pe rsons H is dec is ive . By the 
Gro up Cont ract ion Lemm a, we c an go on pe rs istently el im in at ing some membe rs 
in e ach cont ract ion , st ill le av ing the rest dec is ive. Since H is fin ite ,  th is wo uld le ad 
ult im ately to some ind iv id ual be ing a d ict ato r. 

Proof of GPT 
By (2), Cond it ion I impl ies 12• Hence GPT * ent ail s  GPT . 
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2.2. Variants 

In the original version of the General Possibility Theorem, Arrow (1950, 1951) 
had not used the Pareto principle, and had used instead a pair of conditions 
which he had called "citizens' sovereignty" and "positive association". The 
former is a requirement of "non-imposition", asserting that social preference 
should not be imposed from outside irrespective of the preferences of the 
members of the community, while the latter is, in fact, a weak condition of 
" monotonicity" [see Murakami (1968)], requiring non-negative response of social 
preference to individual preferences. Let R = /({ R; }) and R' = /({ RD). 

Condition NI (non-imposition) 
For no pair of social states { x, y }  it is true that xRy for every possible n-tuple 
{ R ; }  in the domain of/(·). 

Condition M (weak monotonicity) 
For any two n-tuples { R;}  and { R� } ,  for a given social state x, if for all 
individuals i, for all states y, xi; y => xR �  y, and xP; y = xP;' y, and for all states 
a and b both distinct from x, aR; b � aR� b, then xPy = xP'y. 

The original version of the impossibility theorem [Arrow (1950, 1951)] was 
concerned with showing the irreconcilability of Conditions U, I, M, NI and D for 
any SWF. In fact, for a SWF, Conditions U, I, M and NI together imply the weak 
Pareto principle, and thus the earlier version would be a corollary of the GPT 
presented in Arrow (1963), and thus of the GPT*. 

There was, however, another difference in the original presentation of Arrow 
(1950, 1951). A weaker domain condition was used, requiring only that the 
domain of f( · ) must include all n-tuples of individual orderings consistent with 
ordering a particular triple { x, y, z }  in any way whatsoever (but not necessarily 
ordering the whole X in any way). This proved insufficient for the impossibility 
result, and required strengthening as Blau (1957) showed, and hence the domain 
requirement was tightened to Condition U.10 An alternative way of obtaining the 
impossibility is found in leaving the domain condition in its weaker form, while 
strengthening the non-dictatorship condition by ruling out local dictators over the 
specified triple { x, y, z }  on which individual preferences could be freely varied 
according to the weaker version of the domain condition.11 

10The logical problem was absent in one of the earlier versions of Arrow's theorem [viz. Arrow 
(1952)], which did not, however, go into " field expansion" beyond a triple. Blau's contributions (1957, 
1971, 1972, 1976) have brought out the "neutrality" implications of Arrow's framework for social 
choice by clarifying the full " field expansion" consequences of that framework. 

11See Murakami (1961, 1968) and Pattanaik (1971). 
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A great many other variations in the theme of Arrow's impossibility theorem 
have been explored in the literature. Some of the variations will come up in the 
discussion of specific issues in later sections, and here I shall confine myself to a 
few remarks only. Recently Kelly (1978) has provided an excellent account of the 
main lines of development since Arrow's pioneering contribution.12 

First, some versions of the result use neither the Pareto principle nor any 
condition of non-negative responsiveness. Consider the following requirement, 
which rules out "reverse dictators". 
Non-suppression (NS) 
There is no individual i such that for every preference n-tuple in the domain of 
f( · ), for each ordered pair x, y E X, x P; y = y P x. 

Conditions U, I, NI, NS and D are inconsistent for a social welfare function 
(see Wilson (1972b) and Binmore (1975); for related results, see Murakami (1968), 
Hansson (1969a, 1969b), Wilson (1972a), Fishburn (1974a), Binmore (1976), 
Monjardet (1979), and Kim and Roush (1980a)]. In fact, given unrestricted 
domain and independence of irrelevant alternatives, the possibilities that are open 
are (i) dictatorship, (ii) reverse dictatorship, and (iii) collective impotence. Either 
one person's strict preferences are fully reflected in social rankings of all pairs 
(positively or negatively), or not even everyone put together can influence social 
preference over some pair. The weak Pareto principle eliminates collective im­
potence as well as reverse dictatorship, leaving us only with the possibility of 
dictatorship (as in the version of the GPT presented in the last subsection). 

Second, when the set of individuals is infinitely large, Arrow's conditions are 
mutually consistent, even though the permitted decision procedures are not very 
attractive [see Fishburn (1970b), Hansson (1972, 1976), Kirman and Sondermann 
(1972), Brown (1974), Schmitz (1977), and Armstrong (1980)]. There is, however, 
no "approximate" consistency for "very large" communities, and the impossibil­
ity result continues to hold exactly for all finite communities no matter how large, 
so that the practical relevance of the consistency possibility may not be very great. 
Furthermore, the Field Expansion Lemma and the Group Contraction Lemma 
both continue to hold for infinitely large communities and decisive sets can be 
endlessly curtailed, effectively disenfranchising nearly everybody [leading to such 
"limit" concepts as the existence of "invisible dictators", to use Kirman and 
Sondermann's (1972) description]. 

Third, McManus (1975, 1978, 1982, 1983) has investigated important issues of 
inter-taste consistency and inter-profile welfare comparisons, continuity condi-

12 See also Murakami (1968), Pattanaik (1971), Fishburn (1973a), Brams (1976), and Plott (1976). 
There is also an important Russian book, viz. Mirkin (1974), with an English translation (1979). On 
closely related matters, see also Blin (1973), Brams (1976), Gottinger and Leinfellner (1978), Pattanaik 
(1978), Laffont (1979), Mueller (1979), Feldman (1980a), Kim and Roush (1980a), Moulin (1983), 
Suzumura (1983a), and Peleg (1984). 
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tions imposed on social welfare evaluation, and related matters [see also Inada 
(1964a) on an earlier study with a bearing on these issues]. He has provided both 
impossibility results and positive possibility theorems involving various combina­
tions of these conditions. He has also provided reasons for not requiring the 
"independence" conditions, making positive possibilities that much easier. 

Fourth, Chichilnisky (1976, 1980a, 1982a, 1982b) has established a set of 
important impossibility results without the use of the " independence" condition. 
For a class of social aggregation problems satisfying unanimity (a weak version of 
the Pareto principle) and anonymity, she shows the absence of continuous rules of 
transforming n-tuples of individual preferences into social preferences. Continuity 
too is a condition of " inter-profile consistency", but of a very different sort from 
" independence". She has investigated various general properties of individual and 
social choice [Chichilnisky (1979, 1980a, 1980b, 1981, 1983)], and also explored 
the possibilities of generalizing her original impossibility results by systematic 
relaxation of specific restrictions, such as non-satiation, preference ordinality, etc. 
[Chichilnisky (1980c, 1982a, 1983)]. 

Fifth, the formulation of social choice problems can be broadened by bringing 
in lotteries on alternatives [see Zeckhauser (1969), Shepsle (1970), Niemi and 
Weisberg (1972), Fishburn (1972b, 1973a, 1975b), Intriligator (1973, 1979), Nitzan 
(1975), Barbera (1979), Kalai and Megiddo (1980), Machina and Parks (1981), 
Coughlin and Nitzan (1981, 1983), and Heiner and Pattanaik (1983)]. This opens 
up new possibilities. If the problem is reformulated as demanding a lottery over 
social preferences (rather than over the alternatives to be chosen), based on 
n-tuples of individual orderings of social states, then Arrow-like impossibilities 
re-emerge in the form of arbitrary distribution of power (the exclusion of which 
would appear to be reasonable); see Barbera and Sonnenschein (1978), 
Bandyopadhyay, Deb and Pattanaik (1979), McLenan (1980), and Heiner and 
Pattanaik (1983). 

Sixth, another variation that has been recently investigated is the eschewal of 
the assumption of completeness of the social preference. Arrow's impossibility 
result can be adapted for such an extended framework with only a little loss of 
power [Barthelemy (1983) and Weymark (1983)]. These analyses are, in fact, 
closely related to results dealing with admitting social intransitivity (see Section 3 
below), since intransitivity can be given the particular form of dropping complete­
ness. 

Finally, many variations of the way of setting up the problem of social choice 
will be examined in some detail in the following sections : admitting non-transitive 
social preference (Section 3); admitting non-binary social choice (Section 4); 
seeking the acceptable rather than the best (Section 5); enriching the input of 
utility information (Section 6); restricting the domain of social choice procedures 
(Section 8); and weakening the independence condition and enriching the use of 
non-utility information (Section 9). While the focus very often will not be on the 
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specific issue of avoiding Arrow's impossibility result, the implications of these 
different approaches for that problem will be, inter alia, clarified. 

3. Non-transitive social preference 

3. 1. Quasi -transitivity 

There has been speculation for some time as to whether the impossibility results 
of the type pioneered by Arrow could be avoided by weakening the requirement 
of collective rationality. There have been broadly two approaches to this question. 
One retains the Arrovian focus on a social preference relation R, but weakens the 
consistency requirement of R from the full dose of transitivity to milder condi­
tions. The other dispenses with the notion of social preference as such and 
formulates the problem in choice functional terms. In this section the use of 
the first approach is discussed, while the second approach will be taken up in 
Section 4. 

In establishing Arrow's theorem, two lemmas were used in the last section. The 
Field Expansion Lemma requires no more than quasi-transitivity of social prefer­
ence, while the Group Contraction Lemma cannot be derived from quasi-transi­
tivity alone, and was, in fact, established by using full transitivity of social 
preference. The latter result is crucial to deriving dictatorship from Arrow's 
Conditions U, P and I (or 12), and if that result is nullified by relaxing the 
requirement of consistency of social preference to quasi-transitivity only, the 
Arrow impossibility result will fail to hold. On the other hand, quasi-transitivity is 
more than sufficient for generating a finitely complete choice function from a 
reflexive and complete social preference relation. Thus the avoidance of the 
Arrow impossibility result can be shown to exist strictly within the limits of 
Arrow's search for a preference-based social choice procedure satisfying Condi­
tions U, P, I and D [see Sen (1969, 1970a) and Schick (1969)]. A simple example 
of such a procedure is a social decision function that yields the "Pareto-extension 
rule", with x being socially preferred to y if and only if everyone prefers x to y, 
while x and y being socially "indifferent" if either they are Pareto-indifferent or 
Pareto-non-comparable [Sen (1969); for an axiomatic examination of the Pareto­
extension rule, see Pollak (1979)]. The unattractiveness of such a social decision 
procedure (despite its providing a formal route to escape the Arrow impossibility) 
led to the question as to whether or not the Arrow conditions were in an 
important sense "too weak" rather than "too strong" [Sen (1969)]. 

The Pareto-extension rule gives everyone a "  veto", and if anyone prefers x to y 
strictly, he can guarantee that x is socially at least as good as y. Allan Gibbard 
showed in an unpublished paper [discussed in Sen (1970a)] that the existence of a 
veto is a necessary result of resolving the Arrow problem through weakening the 
transitivity of social preference to quasi-transitivity. Define a person i as "semi-
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decisive" over some ordered pair { x, y }  if xPi y implies xRy. A person has a 
veto if and only if he is semi-decisive over every ordered pair. A SDF is called 
oligarchic if and only if there is a unique group G of persons such that G is 
decisive and every member of G has a veto. 

Quasi -transitive oligarchy theorem 
If H is finite and #X:?. 3, then any QSDF satisfying Conditions U, P and 12 
must be oligarchic. 

Just like the Field Expansion Lemma, which continues to hold, it is possible to 
establish a " Veto-Field Expansion Lemma" asserting that any person who is 
almost semi-decisive over some ordered pair must be semi-decisive over all 
ordered pairs, i.e. must have a veto. (Almost-semi-decisiveness of i over x, y is 
defined as the requirement that x Pi y and, for all j =F i, y Pi x must together 
imply xRy.) Now take a smallest decisive group G of persons, which must exist 
by the weak Pareto principle and the finiteness of H. Split G into any unit set { i }  
consisting of one person i and the rest G - { i } .  Assume the following preference 
orderings (shown in strict descending order) over a triple x, y, z :  G - { i}: x, y, z; 
{ i}: y, z, x ;  and H - G: z, x, y. By the decisiveness of G, we have yPz. By 'a 
being a smallest decisive group, G- { i }  cannot be decisive. But if xP z, then it 
will be almost decisive over this ordered pair, and thus by the Field Expansion 
Lemma, must be decisive. So zRx. If we now have xPy, this together with yPz 
and z Rx will contradict quasi-transitivity. Hence y Rx. But then i is  almost 
semi-decisive over some ordered pair, and thus by the Veto-Field Expansion 
Lemma has a veto. This can be shown for every member of G. The proof is 
completed by noting that no group other than a superset of G can be decisive 
since every member of G has a veto.U 

The replacement of transitivity by quasi-transitivity has translated the possibil­
ity of dictatorship to oligarchy with veto powers, and while the existence of 
vetoers may be less unattractive than that of a dictator, it is unappetizing enough 
not to provide a grand resolution of the Arrow problem. 

In fact, even the dictatorship result reappears if the conditions imposed are 
supplemented by the requirement of "positive responsiveness"- a stricter version 
of the weak monotonicity condition (M) defined earlier. Positive responsiveness is 
defined below in a framework that incorporates independence of irrelevant 
alternatives. Denote R = /({ Rd), and R' = /({ Rj }). 

Condition P R (positive responsiveness) 
For any x, y E X, if for all i, (xPi y = xP/y & xli y = xRj y), and for some i, 
(xli y & xP /  y) or (yPi x & xRj y), then xRy � xP ' y. 

13This theorem was first established by Gibbard, and in different ways by Schwartz (1972), 
Mas-Colell and Sonnenschein (1972), and Guha (1972). Guha noted a hierarchy of oligarchies with a 
stricter version of the Pareto principle such that indifference by an oligarchic group would lead to a 
fresh oligarchy among the rest. 
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Quasi- transitive positive -responsive dictatorship theorem 
If H is finit e and #X c. 3, then there is no QSDF satisfying Conditions U, 12, P, 
D and PR. 

This theorem, established by Mas-Colell and Sonnenschein (1972), shows that 
transitivity can b e  weakened to quasi-transitivity of social preference if a strict er 
version of the monotonicity requirement is imposed. 

3.2. Acyc/icity 

Quasi-transitivity may also be  thought to b e  too demanding a condition, esp e­
cially since acyclicity-a  weaker r equirement than quasi-transitivity- is sufficient 
for g enerating a finit ely complet e choice function based on the binary relation of 
social preference. Mas-Colell and Sonnenschein (1972) have a veto-result with 
acyclicity as such. (It can, in fact, b e  shown that the result goes through even with 
the w eaker condition of " tripl e acyclicity", i. e. no cycl es over tripl es.14) 

Triple -acyclic positive -responsive vetoer theorem 
For H finit e, #H � 4, and #X� 3, any S DF (even with the r equirem ent of 
acyclicity r elaxed to tripl e acyclicity) satisfying Conditions U, 12, P and PR, must 
yi eld someone with veto. 

An alt ernative way of generating the vetoer r esult is to use the weaker monotonic­
ity condition M (essentially, non-negative r esponsiveness) , but marry it with a 
requirem ent of neutrality towards the nature of social stat es. Combining neutral­
ity with indep endence (in the form of 12) and monotonicity (in the w eak form) 
yi elds the following : 

Condition NIM (neutrality, indep endence cum monotonicity) 
For any x, y, a, b E  X, if for all i, xP; y = aP (  b, and xi; y = aR� b, then 
x Py = aP'b. 

The following theorem was established by Blau and Deb (1977). 

Acyclic neutral monotonicity vetoer theorem 
If #X� #H, with a finite H, then any S DF satisfying Conditions U and NIM 
must yi eld someone with a veto. 15 

14 See Blair, Bordes, Kelly and Suzumura (1976). 
15 See also Schwartz (1974). The cycle involved in the proof is that of the (n -I)-majority rule. On 

related matters, see Dummett and Farquharsen (1961), Murakami (1968), Craven (1971), Pattanaik 
(1971), Fishburn (1973a), Ferejohn and Grether (1974), Deb (1976), Blau and Brown (1978), 
Nakamura (1978), Peleg (1978, 1979b), and Suzumura (1983a). 



Ch. 22: Social Choice Theory 1087 

To establish this, suppose- to the contrary- there is no vetoer. So there is no 
one who is s emi-decisive over all pairs. By the neutrality and monotonicity 
properti es of NIM, there  is thus no one who is almost s emi-decisive over any pair. 
(If someone were, then by monotonicity he  wil l b e  s emi-decisive over that pair, 
and by n eutrality a vetoer.) So everyone loses over any pair if unanimously 
opposed by others. With this in mind, consider the following n-tuple of prefer­
enc e  orderings (in d escending order) over a subset { x1, x2 , • . .  , xn } of X, for the n 
individuals 1, . . .  , n .  

Clearly, x1Px2, x2Px3 , • • •  , xn_ 1Pxn, and xnPx1• This violation of acyclicity 
shows the falsity of the contrary hypothesis. 

Thus, even acyclicity does not help very much in delivering us from the Arrow 
problem. A w eaker consistency condition combined with other properti es l eads to 
a w eakening- rather than elimination- of the dictatorship r esult, in the form of 
the existence of vetoers. And acyclicity is necessary for binary choice using the 
Condorcet condition. 

R ec ently, Blair and Pollak (1982, 1983) and Kelsey (1982, 1983a, 1983b) have 
established various ext ensions of these  impossibility results. Blair and Pollak have 
shown in particular that even without neutrality, some of the sting of the veto 
power remains in the form of an individual b eing semi-decisive over (m - n + 1) 
( m - 1) pairs of stat es, where m and n are resp ectively the numbers of stat es and 
individuals. Given the individuals, when larger and larger s ets of stat es-without 
bound -are considered, the proportion of pairs over which the individual is 
s emi-decisive approaches unity [Blair and Pollak (1982)]. Kelsey (1982, 1983a, 
1983b) has established similar- though weaker-arbitrariness of power (s emi­
decisive or a n ti-s emi-decisive) over a large proportion of pairs of stat es- ap ­
proaching! as more and more stat es are considered-without neutrality and even 
without the Pareto principl e. 

3. 3. Semi - transitivity, interval order and generalizations 

I turn now to a somewhat different question. From quasi-transitivity to move to 
acyclicity is an act of w eakening. What about the act of strengthening in going 
from just quasi-transitivity to s emi-orders (and similar st ructures) without moving 
all the way to full transitivity? Would the Arrow impossibility r esult hold with full 
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force in such " intermediate" ground? The answer seems to be: yes, in a lot of that 
intermediate ground, and some areas outside it. 

A semi-order satisfies the two following properties:16 

Semitransitivity 
F or any x, y, z, a E X, if xPy and yPz, then xPa or aPz. 

Interval order property 
For any x, y, a, b E  X, if xPy and aPb, then xPb or aPy. 

Each of these properties implies quasi-transitivity for a complete R. Arrow's 
impossibility result can be established with either of these less demanding 
properties, and with still weaker structures, and recently Blair and Pollak (1979) 
and Blau (1979) have provided elegant proofs of these- and further-extensions. 
[For earlier contributions to this question, see Blau (1959), Schwartz (1974), 
Brown (1975b), and Wilson (1975).] 

General possibility theorem for semi-transitivity 
If H is finite and #X"2!. 4, then there is no S DF satisfying Conditions U, I2 , P 
and D, and yielding semi-transitive social preference. 

In establishing this theorem, it may be first noted that since semi-transitivity 
implies quasi-transitivity, the Field Expansion Lemma still holds. The Group 
Contraction Lemma can also be re-established. Let G be a decisive group, which 
is partitioned i nto two non-empty subsets G1 and G2 • The following preference 
orderings are postulated: 

x , y, z , a , 

a , x, y, z ,  

H - G : z , a , x, y. 

By the decisiveness of G, xPy and yPz. By the semi-transitivity of R, xPa or 
aP  z .  In the first case, G1 is almost decisive over { x, a } ;  in the second case, G2 is 
almost decisive over { a, z } .  By the Field Expansion Lemma, therefore, some 
proper subset of G is, thus, decisive. This establishes the Group Contraction 
Lemma. The rest of the proof is the same as with the GPT, presented in Section 2. 

General possibility theorem for interval order property 
If H is finite and #X";;!! 4, then there is no S DF satisfying Conditions U, I 2, P 
and D, and yielding social interval orders. 

16 For discussions of the properties of semi-orders, see Luce (1956), Scott and Suppes (1958), 
Fishburn (1970a, 1975a), Chipman et al. (1971), Jamison and Lau (1973, 1977), Sjoberg (1975), and 
Schwartz (1976). 
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In this case the following preference orderings are consider ed :  

x, y, a , b ,  
a , b , x , y ,  
y, a , b , x .  
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By the d ecisiveness of G, xPy and a Pb. By the interval order property, xPb or 
aPy. In the first case G1 is decisive; in the second, G2 . The r est of the proof is 
unaltered. 

Since a s emi-order is both semi-transitive and an int erval order, cl early it is, 
a fortiori, adequate to sustain the Arrow impossibility r esult fully. While for an 
ordering even one strict preference " filters through" one indifference PI = P and 
IP = P, i. e. (xPy & yix) = xPz and (xiy & yPz) = xPz, for a s emi-order it is 
only the combined force of two strict preferences that is guaranteed to filter 
through one indifference, i. e. P 2I = P, IP 2 = P, and PIP = P. Generalizing, l et 
s-and- t-order only guarantee p•IP1 = P. The Arrow impossibility result translates 
intact to this case in general, provided #X;;::: s + t + 2. Since an s-and- t-order 
need not b e  quasi-transitive, it is first established that for a SDF satisfying 
Conditions U, I 2 and P, and yielding an s-and- t-order must l ead to quasi-transi­
tivity of social preference. Then the proof can follow a variant of the Group 
Contraction Lemma for s-and- t-order (in the same way as the proofs for 
s emi-transitivity and int erval orders), and then the final r esult, much like GPT* 
and GPT. 

In the case of orderings, originally studi ed by Arrow, s + t is 1, and it works 
for #X:?. 3 .  In case of s emi-orders, s + t is 2, and it works for #X:?. 4. In the 
general finite case, s and t can b e  any positive int eger or zero, and it works if 
#X;;::: s + t + 2. For an infinite X, the range of the SDF may b e  confined to the 
doubly infinite union of sets of all s-and- t-orders. 

3. 4. Prefilters, filters and ultrafilters 

Let a b e  the class of d ecisive s ets of individuals - a subset of the power set of H. 
Since this is considered pair by pair and since no distinction is made b etween 
decisiveness over one pair and that over another, the structure studi ed has 
features of indep endence and neutrality. Consider the following properti es :  

( 1 )  H E a, 
(2) [ G E a & G � J)  = J E a, 
(3) [ G1 , G2 , . • .  , Gk E a for k finite) =n 1G1 * /0, 
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(4) 

(5) 

[ G, J E .Q) => G n J E .Q, 

[ G  fl. .Q] => H - G E .Q_l7 

A martya Sen 

.Q is a prefilter if and only if it satisfies (1 ), (2) and (3). It is a filter if and only 
if it, additionally, also satisfies ( 4). 18 It is an ultrafilter if and only if it satisfies all 
thes e  conditions, i. e. (1) to (5). 

Brown (1973, 1974, 1975a), Hansson (1972, 1976) and others have studi ed the 
properti es of the class of decisive groups as a function of the r egularity properti es 
of individual and social preferences. 19 Consider the transformation function f: 
{ R ; } --+ R .  Each R; and each R are taken to b e  reflexive and complete and, in 
addition, they are required to satisfy some regularity condition of consist ency (the 
same for R ;  as for R). It has b een shown that for f( · ) satisfying Conditions U, P 
and I :  

(I) acyclicity impli es that .Q is a prefilt er; 

(II) quasi-transitivity implies that !1 is a filt er; 

(III) s emi-order properties imply that .Q is an ultrafilter; 

(IV) transitivity implies that .Q is an ultrafilter. 20 

Thes e  r esults can be  used to d erive the various dictatorship and veto results 
studied in the earlier subsections. In particular, in Arrow's cas e of full transitivity, 
!1 is an ultrafilter. If non-dictatorship were  to hold, then each unit s et of p ersons 
must b e  non-decisive, and thus by (5) in the community with n p eople, all s ets 
with n - 1  p eople would be decisive. But this class of decisive sets has an empty 
int ers ection, thereby contradicting (3), and also ( 4). The proof ext ends r eadily to 
s emi-orders, given result (III). 

In the case of acyclicity, !] is a prefilter, and by virtue of (3), there  is a group of 
p ersons - Brown calls it a "coll egium" -such that every m emb er of it b elongs to 
every d ecisive s et of p ersons.2 1 With quasi-transitivity .Q is a filt er, and by (4) the 
collegium would b e  decisive and thus define the oligarchy. 

17These relations can be seen as features of "simple games"; see von Neumann and Morgenstern 
(1947), Guilbaud (1952), Monjardet (1967, 1979, 1983), Bloomfield (1971, 1976), Wilson (1971, 1972a), 
Nakamura (1975, 1978, 1979), Salles (1976), and Peleg (1978, 1983, 1984). 

18 In fact, given the other conditions, (3) will now be automatically fulfilled. 
19See also Ferejohn (1977), Jain (1977a), and Monjardet (1979, 1983). 
20See Brown (1973, 1974, 1975a, 1975b), Hansson (1976), Blau (1979), and Blair and Pollak (1979). 

See also Chichilnisky (1982b ). 
21 Ferejohn (1977) points out that this does not in itself imply that every member of the collegium 

has a veto, since the social decisions induced by the prefilter may have to be supplemented by other 
procedures when some members of the collegium are indifferent. The gap can, however, be closed by 
further use of the neutrality property. 
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4. Non-binary social choice 

4. 1. Cycles and transitive closures 

1091 

Arrow formulated the problem of social choice in relational t erms with the social 
welfare function d et ermining a binary relation of social preference- in fact, an 
ordering. It  has oft en b een taken for granted that Arrow's impossibility r esult 
relates crucially to having a binary choice function for the soci ety, i. e. on the 
choice function satisfying the so-called Condorcet condition (1.2) presented in 
S ection 1. I t  will b e  argued pres ently that this is not the case (s ee Section 4.2), but 
for the moment l et us not dispute this and examine inst ead what types of escape 
routes can emerge if a non-binary formulation of social choice is chosen. 

In a great many contributions in recent years a non-binary formulation of the 
social choice problem has been preferred [s ee, particularly, Hansson (1969a), 
Schwartz (1970, 1972), Fishburn (1971, 1973a, 1974a), Campbell (1972, 1976), 
Plott (1972, 1973, 1976), Bordes (1976)].22 And it has b een found that the 
non-binary formulation can cope better with at l east some of the problems that 
aris e with strict preference cycles. Whether this l eads to an escap e from Arrow's 
impossibility problem is, thus, an int eresting issue. 

Take the classic example of the "paradox of voting", with three p ersons having 
the following strict orders : (1) x, y, z, (2) y, z, x, and (3) z, x, y. The majority 
rul e23 l eads to xPy, yPz, and zPx, a strict preference cycle. Faced with the 
choice over { x, y, z }, it is t empting to conclude that there  is "nothing in it", and 
any stat e is as good as any other. This converts a set with strict preference cycle 
into an indifference class. This can be  done through several alternative procedures 
using transitive closures, and here we concentrat e on two, which we may call, 
resp ectively, W eak Closure Maximality and Strong Closure Maximality. Whil e 
the two m ethods l ead to the same result in this simple case, they differ in other 
choice situations, as w e  shall presently discuss. But before d efining these  proce­
dures, it is us eful to r emind ourselves of the definitions of " transitive closure" and 
" maximality". 

If B is a binary relation, then its transitive closure B* is defined in the 
following way: xB* y if and only if there is a sequence z1Bz2 , z2Bz3, • • •  , zk_ 1Bzk, 
with z1 = x, and zk = y.24 If B is a binary relation, then the maximal subset of a 
s et S is the undominated subset of S with respect to the asymmetric factors BA 

22See also the formulation of the social choice problem as simple games in Monjardet (1967, 1979, 
1983), Wilson (1971), Bloomfield (1971), Nakamura (1975, 1978), Peleg (1978, 1979b, 1983, 1984), 
Salles (1976), Salles and Wendell (1978), and others. 

23The majority relation R is defined thus: xRy if and only if the number for whom xR; y holds is 
at least as large as the number holding yR; x. The strict majority relation P is the asymmetric factor 
of R .  

24B* i s  often called " the ancentral" of B [see Quine (1940) and Herzberger (1973)], a term that 
goes back to Whitehead and Russell and the concept at least to Frege. 
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of B, xBA y being defined as xBy and not y B x, 

M(S, B ) = [x lx ES & not 3 y ES :  yBA x) . (4 .1) 

The choice C(S) from any subset S is identified in the following way under the 
two procedures, respectively (R* is the transitive closure of R, and P* that of P, 
the asymmetric factor of R }: 
Weak closure maximality: 

Strong closure maximality: 

C(S)  = M(S, R*). 

C(S) = M(S, P*). 

To illustrate with the case of the paradox of voting, over { x, y, z }, the weak 
transitive closure R* of the majority relation makes aR* b hold for every pair 
a, b E  { x, y, z } ,  and also the strong transitive closure P* makes aP* b hold for 
every pair a, b E  { x, y, z } .  Thus neither aR*A b nor aP*A b hold for any 
a, b E  { x, y, z } .  Hence C({ x, y, z }) = { x, y, z }  for both the weak and strong 
closure methods in this special case. 

But the two methods are not in general equivalent, consider the following 
binary relation with P being- as before- the asymmetric factor of R: xPy, yPz, 
zRx, and xRz. Clearly the transitive closure of R defines the following relations : 
aR*  b for all a, b E  { x, y, z } ,  while the transitive closure of P defines : xP* y, 
xP *  z, and yP* z. Hence M(S, R*) = { x, y, z }, while M(S, P*) = { x } . Indeed, 
in general, M(S, P*)  � M(S,R*).25 

These closure methods have been directly used or indirectly entailed in several 
contributions to the resolution of the Arrow dilemma through non-binary choice 
procedures, in particular, Schwartz (1970, 1972), Bloomfield (1971), Campbell 
(1972, 1976, 1980), and Bordes (1976).26 It can be seen that the Schwartz rule 
amounts to the uniform use of strong closure maximality for all social choices. In 
contrast, Bloomfield (1971), Campbell (1972, 1976), and Bordes (1976) use Weak 
Closure Maximality for social choice. 27 

In what sense do these solutions resolve the Arrow paradox? Instead of 
demanding a social welfare function it is possible to demand a "social choice 
function", 28 g(S, { R ; }) which specifies a non-empty subset g(S, { R ; }) � S, for 
every non-empty, finite S � X. This is essentially equivalent to making the value 
of the function f( { R ; }) a finitely complete choice function C( · ) for the society, 
and not -as with social welfare functions or social decision functions -a social 

25Deb (1977, proposition 1). 
26 In fact, Campbell used a version of the Weak Maximality Closure which is consistent with binary 

choice at the expense of weakening the independence condition. The trade-off between binary choice 
and independence is examined in Section 9. 

27Deb has helpfully analysed the relations between these two closure methods. 
28See Fishburn (l973a). 
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preference r elation R, 

C( · ) =/( { R ; } ) .  (4 .2) 

For such a function f( · ), which we may call a functional coll ective choice rul e, 
FCCR, the Arrow conditions can b e  readily translat ed in s everal distinct ways. 
The translation that has been typically used (the limitations of which will b e  
discuss ed later), takes the form of restricting choices over pairs only. 

Condition (; (unrestrict ed domain) 
The domain of f( · ) includes all logically possible n-tuples of individual orderings 
of X. 

Condition P (pair-choice Pareto principl e) 
For all x, y E X, ('Vi: xPi y) = { x }  = C({x, y }). 

Condition b (pair-choice non-dictatorship) 
There is no individual i such that for all n-tuples in the domain of f( · ), for each 
ordered pair x, y E X, xPi y = { x }  = C({ x, y }). 

The non-dictatorship condition can, in fact, b e  strengthened to a non-vetoer 
condition, and further ext ended to a condition of full "anonymity". 

Condition A (anonymity) 
If { R J  is a p ermutation of { R� } ,  then /({ RJ) = /({ Rj }). 

These conditions can now be  combined with Arrow's indep endence of irrel evant 
alt ernatives (Condition I), which was already d efined in choice-functional t erms. 
To tighten up the r eal possibility result further, the conditions of "positive 
r esponsiven ess" (PR) and "neutrality, independence cum monotonicity" (NIM) 
�e similarly translat ed from relational to choice-functional terms, PR and 
NIM, constraining choices over pairs corresponding to the binary relations. 

Choice -functional positive possibility theorem 
For #H � 2, there  is a FCCR satisfying Conditions 0, I, P, :b, A, and NIM. 29 

The theorem is established by considering a particular example, e.g. the 
procedure g enerated by Weak Closure Maximality or by Strong Closure Maxi­
mality, applied to the majority rule relation R.  The same operations can also be  
appli ed to other Pareto-inclusive, non-dictatorial; non-acyclic r elations, of which 
ther e  are pl enty. 

29The case of #H = 1 is not covered for the simple reason that in a one-person community the 
Pareto principle conflicts with non-dictatorship, which-I hope-would give food for thought to this 
lonely individual. 
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The satisfaction of thes e  conditions are obvious enough, with the possibl e 
exc eption of Condition I. In order to satisfy that condition, it is important to 
d efine the transitive closure R* of R over the subset S from which the choice is 
b eing made, i. e. in the definition of R* given above, all the elements z1, z2 , . . .  , zk 
must b elong to S. To avoid ambiguity R*  used for the choice over S, derived 
from preferences over S, may b e  denoted R�, and the W eak and Strong Closure 
Maximality procedures can be  cl early s een as consisting in identifying M(S, R�) 
and M(S, Ps*), respectively. It is obvious that Condition I will be fulfill ed. But 
since R� and Ps* will vary with S even as far as the restrictions over some given 
T � S is concerned, the choice function covering different subsets will not in 
g en eral b e  r epresentable by one binary relation. For example, in the case of the 
" paradox of voting", either procedure appli ed to the majority relation will 
identify the following choices :  C({x, y, z }) = {x, y, z } ,  C({x, y }) = {x } ,  
C({ y, z }) =  { y } , C({ z, x }) =  { z } . This choice function is, of course, d efiantly 
non-binary. 30 

Since the above theorem is not too chall enging the conditions may b e  tightened 
by d emanding other conditions as well, and all the advocates of this class of 
solutions have offered other desirable conditions that the chosen rules will satisfy. 
Whether thes e  good qualities are adequate for what may b e  call ed a satisfactory 
r esolution of the Arrow problem will b e  discuss ed in S ection 4.3, but b efore that 
an interpretative analysis of the nature of the Arrow problem from the non­
binary p ersp ective should b e  useful. 

4.2. The unimportance of binariness in Arrow's impossibility 

Consider the distinction between (i) using the social aggregation procedure to 
yi eld a binary relation of social preference, and (ii) using that binary relation of 
social preference to determine the choice function. Arrow (1950, 1951,  1963) did, 
in fact, endorse both, but while (ii) does play a crucial motivational part in the 
Arrow exercis e (since he identified the m eaning of the social preference r elation in 
t erms of the choice function), it has no rol e whatsoever in the genesis of ·the 
impossibility r esult. Indeed, the choice-theoretic int erpretation of the social 
prefer ence r elation remains, strictly speaking, a separate issue that need not b e  
brought into the impossibility theorem at all once the ind ep endence condition has 
b een r ed efined to pairwis e relational indep endence (Condition I 2 ), l eading to 
GPT* (s ee S ection 2.1). 

It is no l ess important to recognize that choice-theoretic int erpretations of the 
Arrow result can themselves take s everal different forms. P erhaps the simplest is 

300n the factorization of necessary and sufficient conditions for binariness- or "normality" or 
"basic binariness"-of a choice function, see Sen (1971) and Herzberger (1973). 



Ch. 22: Social Choice Theory 1095 

to give the social preference relation R the interpretation of being the " base 
relation" R c  of the choice function C( · ), defined for choices over pairs only, 

'ilx, y E X: xR cY if and only if x E C( { x,  y }  ) . (4.3) 

Using this interpretation of R has the effect of not telling us anything whatsoever 
about how choices should be made from sets larger than pairs. In the choice-func­
tional formulation of /( · ) given in (4.2), all we need do is to replace the 
requirement of C( · ) being finitely complete by the requirement that C( · ) be 
complete over all pairs, and that for all x, y, z E X, if x E C({x, y }) and 
y E C( { y, z }), then x E C( { x, z }). Such a FCCR cannot satisfy Conditions 0, P, 
:b, and the condition of independence I weakened to I� to apply to choice over 
pairs only. (The restriction of R over a pair { x, y }  is denoted Rl {x, y l .) 

Condition Ii: (pairwise choice independence) 
For any pair of social states x, y E X, C({ x, y }) = f{x, y ) ({ R ; l {x , y )  }). 

Base -relational general possibility theorem 
If H is finite and #X � 3, then there is no FCCR satisfying Conditions 0, I � , P 
and :b, with Rc transitive. 

The important point here is not the assertion that this theorem is valid, which it 
is, but that this is indeed Arrow's own theorem with an interpretational twist. The 
same proof suffices. 

Recently, binariness of choice has been subjected to severe criticism, and 
Fishburn (1971), among others, has forcefully argued that " social choice from 
among more than two feasible alternatives should not be based on social choice 
from two alternative subsets" (p. 133). This contrasts sharply with Arrow's (1951) 
view that "one of the consequences of the assumptions of rational choice is that 
the choice in any environment can be determined by a knowledge of the choices 
in two-element environments" (p. 16). This is, of course, a question of much 
interest on its own, but Arrow's impossibility theorem does not depend on the 
answer to this question, and can be established without making any statement 
whatsoever on how choices over sets larger than pairs be made. 

This recognition raises one immediate question: how can such procedures as 
the use of Weak Closure Maximality or Strong Closure Maximality provide any 
escape from the Arrow impossibility since these procedures doctor choices only 
over subsets larger than pairs? If the Arrow result is about choice over pairs and 
the escape routes under examination leave that completely untouched, then how 
can escape conceivably take place? In fact, the escape routes must be seen not as 
methods of avoiding Arrow's impossibility problem with its concentration on 
choices over pairs, but as methods of softening its implications for choices over 



1096 A martya Sen 

sets larger than pairs. The distinction can be brought out by considering the 
contrast between two issues raised by pairwise inconsistency of choice. Suppose x 
is chosen in the choice over the pair { x, y } ,  and y in the choice over the pair 
{ y, z } ,  but in choosing over the pair { x, z } ,  x is rejected and z chosen. This can 
be regarded as unsatisfactory for two rather different reasons. First, the choices 
over the pairs themselves may appear to be contrary, even uncanny. (Cf. "be­
tween Bermuda and Honolulu, I will choose Bermuda; between, Honolulu and 
Pago Pago, it must be Honolulu; and between Pago Pago and Bermuda, I think 
Pago Pago".) Second, it augurs badly for the choice over the triple { x, y, z } .  

The escape routes under examination are concerned exclusively with the second 
issue. This is no mean task, and thus the methods used deserve to be examined 
seriously as choice procedures for larger sets; this will be done in the next 
subsection. But this leaves the first issue completely untouched. 

Before turning to questions of choice over more than two-alternative sets, a 
possible source of misunderstanding should be cleared up. In an important paper, 
Blau (1971) has shown that in Arrow's framework for social choice, what he calls 
"binary" independence is exactly equivalent to "m-ary" independence for any 
m < #X, and that all these independence conditions are equivalent to Arrow's 
demanding condition.31 Doesn't this indicate, it might be asked, that to focus on 
pairwise choice independence I� is equivalent to focussing on Arrow's own 
Condition I dealing also with choices over larger sets? Does it, then, make any 
difference at all whether we look at choices over pairs only, or over larger sets of 
social states? 

To sort out this ambiguity it is useful to distinguish between what we may call 
"m-ary relational independence" and "m-ary choice independence". 
Condition I m (m-ary relational independence) 
For any S � X  such that #S = m, for/(·) given by (1.1), Rj8 = F<{ R ; i 8 }). 

Condition I/!' (m-ary choice independence) 
For any S � X  such that #S = m, for/( · )  given by (4.2), C(S) = /8({ R; I 8 }). 

Blau (1971) simply observed that for Arrow's social welfare function, i.e. given 
(1 .1), what he called "binary" independence (i.e. our pairwise relational indepen­
dence I 2 ) implies "m-ary" relational independence, and proceeded to prove the 
converse- a  deep result - that "m-ary" relational independence for any m < #X 
also implies "binary" (i.e. pairwise relational) independence. This is a relational 
theorem- important on its own -but establishes nothing whatever about the 
correspondence between pairwise choice independence and the class of m-ary 
choice independence, unless choice is defined in binary terms, e.g. in the form of 
the Condorcet condition (1.2). So once the binary property of choice is eschewed, 

31See also Murakami (1968), Fishburn (1974a), Binmore (1975), and d'Aspremont and Gevers 
(1977) . 
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i.e. (1.2) denied and (1.1) replaced by (4.2), the equivalence result of Blau becomes 
unavailable. Thus, I�  can be asserted without commitment to I(!  for m > 2, and 
vice versa. Base-relational GPT stands as a theorem about the impossibility of 
consistent social choice over pairs without affirming or denying that social choice 
be binary. 

4.3. Consistency of social choice 

A FCCR generates a choice function C( · ). To be able to choose from any 
non-empty finite subset S of X, C( · ) is taken to be finitely complete. In addition, 
conditions of "consistency" of choice would have to be considered. Consistency 
conditions of choice used in the literature can be classified or factorized into 
requirements of two essentially different types, viz. contraction consistency and 
expansion consistency [Sen (1970a, 1977a)]. The former deals with requirements 
of the kind that insist that something chosen from a set must- under certain 
conditions to be specified- continue to be chosen when the menu offered is 
contracted. The latter, on the other hand, insists that something chosen from a set 
must - under circumstances to be specified-continue to be chosen when the menu 
offered is expanded. 

The most used contraction consistency condition is called Property a (also 
called the " Chernoff condition"), while the natural complement of that condition 
is a requirement of expansion consistency which is called Property y [Sen (1971)]. 
The set of definitions that follows are specified for all x, y E X  and all S, T � X.  

Property a (standard contraction consistency) 
[x E C(S) & x E T � S) = x E C(T). 

Property y (standard expansion consistency) 
[x E C(S) for all S1 in any class of subsets of X] = x E C(U 1S). 

The two together make the choice function essentially binary in the sense that 
its informational content can be exactly captured by a binary relation R defined 
on X. The " Condorcet condition" defined in Section 1.3 had specified how a 
choice function may be constructed from a binary relation R, and this is restated 
below with C(S, R) standing for the choice set of S as constructed from the 
relation R, 

C(S,  R ) = [x Jx E S & 'v'y E S :  xRy ] .  (1 .2' ) 

Consider now the opposite problem of constructing a binary relation of prefer-
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ence from a choice function. 32 There are at least two distinct natural claimants to 
this role, viz. the "revealed preference relation" Rc given by choices over all 
subsets of X containing the pair that is being ranked in any particular case, and 
the " base relation" Rc given by the choice exactly over that pair, already defined 
in (4.3). 

Revealed preference relation 
xRc y if and only if 3S: [x E C(S) & y E S]. 

Base relation 
xRc  y if and only if x E C({ x, y }). 

It is obvious that x R c y = x R c y, but in general not vice versa, and that 
Property a does imply the converse, i.e. guarantees Rc = Rc-

A choice function C( · ) is "binary" (or "normal", or "rationalizable") if and 
only if the revealed preference relation Rc generated by it is adequate to generate 
back the choice function C( · ) itself [using (1 .2')]. C( · ) is " basic binary" if and 
only if the base relation Rc generated by it can generate back C( · ) through 
(1.2'). 

Binariness of a choice function 
C(S )  = C(S, Rc) for all S � X.  

Basic binariness of a choice function 
C(S )  = C(S, Rc) for all S � X.  

Binariness lemma 
A finitely complete choice function is binary if and only if it is basic binary, and 
also, if and only if it satisfies Properties a and y. 33 

There are some alternative conditions of expansion consistency. A few are 
considered here. 

Property /3 
[x, y E C(S) & S � T] = [ y E C(T) = x E C(T)]. 

32 The word "preference" has some ambiguity in the individual context, since it can have at least 
two primitive meanings, viz. the reflection of choice behaviour and the reflection of well-being (or 
utility). To identify the two would provide a very limited model of behaviour [see Sen (1977c) and 
Schick (1978)]. A similar problem may arise for the concept of "social preference" as well, since it can 
be defined either in terms of characterisation of social choice or the concept of social welfare. Here the 
first meaning is taken as the primitive. 

33 See Sen (1971) and Herzberger (1973). As Kanger (1975) points out, binariness in this sense is a 
very limited interpretation of "choice based on preference", and more generally the chosen elements 
from a set A can be made to depend on a binary relation Pv that depends on the specification of a 
"background" set V. Binariness, as defined here, corresponds to taking V = A .  Kanger (1975) provides 
a rich analysis of the more general case of "choice based on preference". 
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If both x and y are chosen in S, a subset of T, then one of them (say, y) can't 
be chosen in T without the other (i.e. x) being also chosen. This condition can be 
strengthened to Property p+ by relaxing the antecedent in such a way that x 
being chosen in S in the presence of y (whether or not y is chosen in S) should 
entail the same consequent, i.e. y mustn't be chosen in T without x being also 
chosen. 

Property {1 + 
[x E C(S) & y E S �  T] = [y E C(T) = x E C(T)]. 

And Property {1 can be weakened through replacing the consequent by de­
manding only that y be not chosen exclusively in T, whether or not x is among 
the chosen elements of T. 

Property l> 
[x, y E C(S )  & S � T] = { y }  * C(T). 

Finally, a weakening of Property a to Weak a requires only that a state x 
chosen from any set S and belonging to a subset T of S must be chosen from T if 
it is not rejected in the choice over any other subset of S. 

Property weak a 
[x E T � S & for all Y � S such that Y * T: x E C(Y)] = x E C(T). 

The following lemmas, among others, are useful in establishing possibility 
results for social choice. 

Sundry choice -functional lemmas 
For any finitely complete choice function C( · ): 

(1) [a & {1] � [ c( 0 ) is binary and Rc = Rc is transitive] ; 

(2) [ a  & y & l>] = [ C( · ) is'binary and R c  = R c  is quasi-transitive] ; 

(3) p+ = [ {1 & y & l> ] ;  

( 4) p+  � R c  is transitive ; 

(5) [Weak a & f3 ] = Rc is transitive ; 

(6) [Weak a & l> ]  = Rc is quasi-transitive; 

(7) a =  R c  is acyclic, i.e. there is no strict Pccycle ; 

(8) Weak a =  Rc is triple-acyclic, i .e. there is no strict P ccycle over any triple. 
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Since (1 )-( 4) and (7) have been proved elsewhere34 and have been widely used, 
I shall concentrate here on establishing (5), (6) and (8). First, consider (5) and 
take xRc y and y Rc z, but the contrary supposition, i.e. not xRc 2:. Since C( · ) is 
finitely complete, { z }  = C({ x, z }). If z E C({ x, y, z }), then by Weak a, clearly 
{ y, z }  = C({ y, z }), and thus by /3, y E C({x, y, z }). Then by Weak a, { x, y }  = 
C({ x, y }), and thus by /3, x E C({ x, y, z }) . So by Weak a, x E C({ x, z }), which 
is a contradiction. So z $ C({ x, y, z }), and therefore, either x or y,or both are in 
C({x, y, z }). These possibilities in turn lead to the same contradiction with 
{ z }  = C({ x, z }), as shown above. Hence xRc z. 

Taking up (6) next, consider xPcY & yPc z. If, contrary to the quasi-transitiv­
ity of R0 not xPcz, then zRcx. If now z E C({x, y, z }), then by Weak a, 
z E C({ y, z }), which is a contradiction of yPcz. Hence z $ C({x, y, z }). The 
hypothesis that y E C({ x, y, z }) would imply, by Weak a, y E C({ x, y }), which 
is a contradiction of xPcY· So by the finite completeness of C( · ), we must have 
{ x }  = C({ x, y, z }), and by Weak a, also x E C({x, z }). So xic z, and thus by 
Property 8, z E C({ x, y, z }) or y E C({x, y, z }), which has already been proved 
impossible. Thus xPcz. 

Finally (8). Suppose not. Consider a cycle over the triple { x, y, z } :  xPc y, 
y P c z, and z P c x. Note that x cannot belong to C( { x, y, z }), since this would 
contradict x $ C({ z, x }) given Weak a and x E C({ x, y }). For similar reasons, 
nor can y or z. Since C( · )  is finitely complete, the contrary supposition is, 
therefore, unsustainable, and hence Weak a does imply triple acyclicity of the 
base relation. 

These lemmas permit us to translate the theorems obtained earlier into corre­
sponding choice-functional results. 

Choice -functional general possibility theorem (CFGPT) 
If H is finite and #X� 3, then there is no FCCR satisfying Conditions 0, 1�, P 
and D, and generating choice functions satisfying Weak a and /3. 

In view of lemma (6) above, this reduces to the "Base-Relational General 
Possibility Theorem" discussed in Section 4.2. An immediate corollary is that no 
FCCR satisfies these conditions and generates choice functions fulfilling a and /3. 

34For proofs of (1) and (2), see Sen (1971); of (3) and (4}, Bordes (1976); and of (7}, Blair, Bordes, 
Kelly and Suzumura (1976). For related results, see Arrow (1959), Chipman, Hurwicz, Richter and 
Sonnenschein (1971), Hansson (1969a), Sen (1969, 1970a, 1971, 1977a), Schwartz (1970, 1972, 1974, 
1976), Batra and Pattanaik (1972b}, Henberger (1973), Fishburn (1973a, 1974b, 1974c), Aizerman, 
Zavalishin and Piatnitsky (1976}, Blair, Bordes, Kelly and Suzumura (1976}, Bordes (1976, 1979}, 
Parks (1976b), Richelson (1977, 1978), Suzumura (1976a, 1983a), Ferejohn and Grether (1977a, 
1977b), Kelly (1978}, Sertel and Van der Bellen (1979, 1980), Aizerman and Malishevski (1980), 
Grether and Plott (1982), and Matsumoto (1982}, among other contributions. 
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While this corollary is very often taken to be the choice-functional " translation" 
of Arrow's result, it follows from the discussion in the last subsection that this 
interpretation is unduly restrictive, and CFGPT is a finer version. 

If attention is shifted from the base relation Rc to the revealed preference 
relation R0 then the picture is much more "positive". 

Choice -functional positive possibility theorem with transitive social preference 
For #H � 2, there is a FCCR satisfying Conditions U, I, P, :b, A and NIM, 
generating choice functions that meet expansion consistency properties 8, y, {3 
and [J +, and inducing transitive revealed preference relations Rc. 

An example used for the "Choice-Functional Positive Possibility Theorem" 
(presented in Section 4.1) will do for this also. Bordes (1976) has demonstrated 
that his procedure of basing choice on Weak Closure Maximality applied to the 
majority relation satisfies [J+, and thus by lemma (4) above, must yield a 
transitive R 0  and by lemma (3) above, must fulfill Properties 8, y and {3 also. 

But even weak doses of contraction consistency creates problems when added 
to some expansion consistency, and also when used on its own. 

Choice -functional oligarchy theorem 
If H is finite and #X� 3, then any FCCR satisfying Conditions 0, I�  and P, 
and generating choice functions satisfying Weak a and 8 must be oligarchic. 

This follows directly from lemma (6) above and Gibbard's oligarchy theorem 
(presented in Section 3.1, called "Quasi-transitive Oligarchy Theorem"), given the 
re-interpretation outlined in the last subsection. 

Choice -functional positive -responsive dictatorship theorem 
If H is finite and #X� 3, then there is no FCCR satisfying Conditions 0, I� ,  P, 
:b and PR, and yielding choice functions that fulfill Weak a and 8. 

This follows from Mas-Colell and Sonnenschein's (1972) "Quasi-transitive 
Positive-Responsive Dictatorship Theorem" (presented in Section 3.1), in view of 
lemma (6) above, given the base relation interpretation. It is more general than 
the Choice-Functional General Possibility Theorem (CFGPT) established above 
in using a weaker condition of expansion consistency of social choice ( 8 rather 
than {J), but is � general in having to use the additional requirement of positive 
responsiveness PR. 

Similarly, using the "Acyclic Positive-Responsive Vetoer Theorem" [Mas-Colell 
and Sonnenschein (1972)], its " triple-acyclic" extension, and the "Acyclic Neutral 
Monotonic Vetoer Theorem" [Blau and Deb (1977)], the following results can be 
immediately derived from lemmas (6), (7) and (8) above, through the " base 
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I · " · t t. f the relational framework (outlined in the last subsec-
re atwn mterpre a 10n o 

tion).35 

Choice -Junctional vetoer theorems . . , 2 , . • 
F fi ·1 H a FCCR satisfying ConditiOns U, Ic and P, must have a vetoer, If. 

or a ru e , _ 

either #X � 4, the FCCR must satisfy PR, and the choice function must fulfill 

or 
Weak a; 
#X > #H, 
fulfill a. 

-
the FCCR must satisfy NIM, and the choice function must 

Similar translations can be made for the results on "prefilters, filters and 
ultrafilters" obtained by Brown (1973, 1974, 1975a), Hansson (1972, 1976), 
Monjardet (1979, 1983), and others. 

These results bring out a contrast between the respective effects of contraction 
and expansion consistency. The former raises rather serious problems, even when 
used on its own without any expansion consistency requirement, whereas the 
latter seems typically satisfiable unless coupled with some contraction con­
sistency. Property p+  is a strong condition of expansion consistency (subsuming 
the other conditions /3, y and 8, all operating in that direction), but it causes in 
the present context no problem at all. Property a, however, has a wrecking 
impact, and so has even Weak a. 

One reason for the contrast lies in the way the regularity conditions are defined 
in this framework. The Pareto principle, the non-dictatorship condition, positive 
responsiveness, neutrality, independence cum monotonicity, and veto conditions, 
are all defined in terms of pairwise relations, which translate in a natural way into 
conditions on choice over pairs. Inconsistencies thus generated over pairs rule out 
consistent choice over larger sets when contraction consistency is insisted on. But 
expansion consistency does not carry over these inconsistencies to larger sets, 
since it can be met by arbitrarily enlarging the choice set. 36 Thus the contrast is, 
to a great extent, presentational. 

If this interpretation of the contrast is accepted, it is natural to expect that the 
impossibility results can be regenerated in a non-binary framework without being 
dependent on contraction consistency if the regularity conditions are defined not 

35See Sen (1977a). These theorems can, of course, also be derived independently of the earlier 
relational results. See Blair, Bordes, Kelly and Suzumura (1976) and Kelly (1978). See also Ferejohn 
and Grether (1977b), Bordes (1979), Suzumura (1983a), Grether and Plott (1982), and Matsumoto 
(1982) . 

36 It is worth noting in this context that "contraction consistency" conditions are various require­
ments of retaining the inclusion of elements in the choice set as the menu is contracted, and are 
equivalent to the corresponding conditions on retaining the exclusion of elements from the choice set 
as the menu is expanded. Similarly, expansion consistency conditions are requirements of the inclusion 
of chosen elements as the menu is expanded and of the exclusion of unchosen elements as the menu is 
contracted [see Sen (1977a, pp. 65-68)]. 
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for choices over pairs but for choices over subsets of any size. For example, the 
weak Pareto principle can be redefined in the following non-pair-choice form. 

Condition P (general-choice Pareto principle) 
For all x, y E X, [Vi: xP; y] => ['v'S k X: x E S =>  y $. C(S)]. 

It is easily checked that this Condition P conflicts directly with such rules as 
Weak Closure Maximality and Strong Closure Maximality based on the majority 
relation, through which escape from preference cycles have been often sought (see 
Section 4.1). Consider the following set of strict preference orderings of three 
persons over four states [suggested by Ferejohn and Grether (1977a)]: (1) x, y, z, w, 
(2) y, z, w, x, (3) z, w, x, y. This leads to the majority relation strict cycle, xPy, 
yPz, zPw, wPx. Either of the two "closure" methods would now suggest 
{ x, y, z, w }  = C({.x;_, y, z, w }). But w is Pareto inferior to z, and its choice thus 
violates Condition P.37 

Through this procedure of defining the regularity conditions that deal directly 
with choices other than pairs, inconsistencies can be precipitated without relying 
on contraction consistency. While only a few such results have been formally 
derived, 38 it is quite clear that pair-choice inconsistencies can quite generally be 
translated in a natural way into choices over larger sets of social states. 

It was argued in the last subsection that binariness of choice was unimportant 
for the impossibility results, and that it was sufficient to concentrate on choices 
over pairs only (without saying anything about choices over sets larger than 
pairs). The last analysis shows that while that is indeed the case, it is also possible 
to obtain - alternatively-the impossibility results by redefining all the conditions 
in terms of choices over sets larger than pairs without saying anything about 
choices over pairs as such. This can be done in a variety of different ways [see 
Fishburn (1974a), Matsumoto (1982), Grether and Plott (1982), and Sen (1982)]. 
The impossibility results following from Arrow's work are robust enough to 
surface in widely different formulations of the problem of consistency of social 
choice. 

4.4. Path independence 

Among the various justifications considered by Arrow for the condition of 
transitivity of social preference is the argument that it " will insure" the "indepen-

37As Suzumura (1983a) has noted, this particular case can be effectively dealt with by using the 
transitive closure over the Pareto optimal subset of the set of states, but there are other difficulties that 
are less easy to deal with in the "general-choice" interpretation of the Arrow conditions. 

38See Hansson (1969a, 1973), Sen (1970a, section 6.3), Batra and Pattanaik (1972b), Fishburn 
(1973a, 1974a), Ferejohn and Grether (1974, 1977a, 1977b), Binmore (1975), Bandopadhyay (1983), 
and Suzumura (1983a). 
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dence of the final choice from the path to it" [Arrow (1963, p. 120)]. It is clear, 
however, that binariness of social choice with a tra11;sitive social preference 
relation is an overly strong condition for path independtnce, as Plott (1973) has 
noted. He has provided a characterization of path independence, and there have 
been a number of important contributions on possibility results using some 
variant or other of path independence as the condition of consistency of social 
choice. 

The commonest characterisation of path independence is the following, defined 
for any class of subsets S1 � X: 

Property PI (path independence) 
C(U 1S1) = C(U 1C(S)). 

This implies that no matter how a set is split up for "divide and choose", the 
final outcome must be the same. 

Weaker conditions of path independence have also been studied by Parks 
(1971), Plott (1973), Schwartz (1974, 1976), Suzumura (1976a), and Ferejohn and 
Grether (1977a, 1977b), among others. Here two complementary conditions are 
noted, which together make up Property PI. 

Property PI* (upper path independence) 
C(U 1S1) � C(U 1C(S)). 

Property *PI (lower path independence) 
C(U 1S) :2 C(U 1C(S)). 

Obviously, PI = (PI* & *PI). 

Many interesting results have been derived using some version or other of path 
independence. 39 A few of these are noted here, mainly aimed at their use in 
possibility results of the Arrow type. 

Path independence lemma 
For any finitely complete choice function C( · ) : 

(1) PI* = a =  [Rc = Rc acyclic) ; 

(2) PI = [ Rc = Rc is quasi-transitive] ; 

(3) [Binariness of choice function & Rc quasi-transitive] = [PI & y] ;  

39See Plott (1973), Parks (1971, 1976b), Schwartz (1974), Blair (1975), Blair, Bordes, Kelly and 
Suzumura (1976), Bordes (1976, 1979), Suzumura (1976b, 1983a), Ferejohn and Grether (1977a, 
1977b), Kelly (1978), Schofield (1978), Kalai and Megiddo (1980), Machina and Parks (1981), and 
Matsumoto (1982). 
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(4) *PI and {3 are independent of each other; 

(5) {3 +  = *PI. 

1 105 

The following results follow from these lemmas and from results presented in 
the last subsection. 

Path -independent positive possibility theorem 
For #H � 2, there is a FCCR satisfying Conditions 0, I, P and b, and also 
generating path-independent choice functions. 

Path - independent dictatorship theorem 
For a finite H and #X � 3, there is no FCCR satisfying Conditions 0, I2: , P, b 
and PR, and generating path-independent choice functions. 

Path -independent oligarchy theorem 
For a finite H and #X � 3, there is no non-oligarchic FCCR satisfying Condi­
tions 0, I2 and P, and generating path-independent choice functions. 

Upper path -independent vetoer theorems 
For a finite H, a FCCR satisfying Conditions 0, I2: and P, and generating upper 
path-independent choice functions (fulfilling PI* ), must have a vetoer, if: 
either #H � 4, #X � 3, and the FCCR must satisfy PR; 
or #X � #H and the FCCR must satisfy NIM. 

Lower path - independent possibility theorem with transitive social preference 
For #H � 2, there is a FCCR satisfying Conditions 0, I, P, b, A and NIM, and 
generating lower path-independent choice functions (fulfilling *PI), and inducing 
transitive revealed preference relation Rc. 

There is some ray of hope in the last, which is an extension of theorems noted 
by Bordes (1976) and Ferejohn and Grether (1977a), and is established by the use 
of the "closure" methods. Choices based on Weak Closure Maximality applied to 
the majority relation satisfy /3+, and thus reveal a transitive social preference 
(without the choice function being binary), and the choices over pairs permit the 
fulfillment of such pair-choice conditions as P, b and NIM. Ferejohn and 
Grether (1977a) have argued forcefully in favour of the view that lower path 
independence, which they call " Weak Path Independence", is the proper reflec­
tion of Arrow's (1963, p. 120) justification for path independence. They note, 
however, that such choice prqcedures can go against the general-choice version of 
the Pareto principle (called P in the last subsection). Indeed, the possibility of 
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generating impossibility results ?Y redefining. the regu�arity conditions f?r choices 

over sets larger than pairs remams real (as dtscussed m the last subsectwn). 

Finally, upper path independence PI*, which is equivalent to the contraction 

consistency condition a [see Path Independence Lemma (1)40], will immediately 
translate the inconsistencies of choices over pairs into inconsistencies for choices 
over larger sets. This range of issues was extensively discussed in the last 
subsection. 

5. Efficiency and fairness 

5. 1. Good quality? 

While the exercises outlined so far deal with the problem of social choice in rather 
comprehensive terms, there are some approaches that aim to do no more than 
separate out a subset of the set X of social states for special commendation. The 
specified subset is seen as good, but there is no claim that they represent the 
" best" alternatives, all equally choosable. There is no attempt to give an answer 
to the overall problem of social choice, and the exercise is quite different from the 
specification of a social preference over X (as with social welfare functions or 
social decision functions), as well as from the identification of a choice function 
specifying in each non-empty finite subset S of X, the optimal subset C(S)  of S 
(as with social choice functions or FCCRs generating finitely complete choice 
functions). This general approach, which we may call the "good quality" ap­
proach, has been extensively used in the context of such concepts as Pareto 
optimality, the core, equitability and fairness. 

Is this, in any sense, a " superior" approach? In presenting his analysis of 
"fairness" based on "equity" and "efficiency", Varian (1974) makes the following 
critical comment on "standard" social choice theory. 

" Social decision theory views the specification of the social welfare function 
as a problem in aggregating individual preferences. Its chief results are of the 
form 'There are no reasonable ways to aggregate individual preferences.' 
. . .  Social decision theory asks for too much out of the process in that it asks 
for an entire ordering of the various social states (allocations in this case). 
The original question asked only for a 'good' allocation; there was no 
requirement to rank all allocations. The fairness criterion in fact limits itself 
to answering the original question. It is limited in that it gives no indication 

40This important result was first established by Parks (1971) in an unpublished paper, and analysed 
and further studied by Plott (1973). See also Blair (1975). 
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of the merits of two nonfair allocations, but by restricting itself in this way it 
allows for a reasonable solution to the original problem." (pp. 64-65)41 

While Varian addresses his criticisms to the search for a social ordering -and thus 
to social welfare functions only- the reasoning applies equally well to social 
decision functions and social choice functions, for they too seek a complete 
solution of the problem of social decision (or of social choice). 

Efficiency provides a classic example of a "Good Quality" approach. Some 
binary relation of dominance D is used, e.g. in the case of " technical efficiency" 
the vector dominance of output (with inputs taken as negative outputs), and the 
maximal set with respect to that dominance relation is declared as "efficient". 
Taking the dominance relation D in the "weak" (reflexive) form, let DA be its 
asymmetric factor, 

E(S) = [x jx E S & for noy E S : yDAx j . (5 .1) 

Since the dominance relation D is a quasi-ordering (weak partial ordering), the 
maximal set E(S) is not to be interpreted as a choice set of "best" elements. A 
complete social ranking R of which the dominance relation D is a sub-relation 
can order the efficient points in any way whatsoever.42 

While " technical efficiency" is a common concept in the resource allocation 
literature, in welfare economics the more common notion of efficiency is that of 
so-called Pareto optimality, where the dominance relation D is that of weak 
dominance of utility ranking, or weak unanimity of individual preference: xDy 
if and only if 'Vi: xR; y.43 It is sometimes referred to - more sensibly- also as 
" Pareto efficiency" or "economic efficiency". Often- merciless to the reader - also 
as "efficiency". 

The notion of " the core", which is thoroughly studied elsewhere in this 
Handbook, extends the approach of Pareto efficiency in one particular direction, 
viz. that of equilibrium (of all groups as well as of individuals).44 A different 
extension, with a clearer ethical relevance, relates to supplementing Pareto 
efficiency, which pays no attention to the equity of distributions, with explicit 

41Another important line of criticism of the formulation of the choice problem in social choice 
theory deals with the way the " menu" is specified. Braybrooke (1978) emphasizes the limitation of a 
fixed menu which gives no room for " issue processing and transformation of issues". The question 
relates also to the long-standing debate on the relevance of log-rolling in the formulation of social 
choice problems, the importance of which has been emphasized by Buchanan and Tullock (1962) and 
extensively discussed in the literature on political processes. For a defence of the formulation used in 
social choice theory, see Arrow (1963, pp. 108-109) and Wilson (1969, 1971). 

42 See Arrow (1963, pp. 64-68), extending a result of Szpilrajn (1930). 
43For a powerful use of Pareto optimality as the basis for public decisions, see Buchanan and 

Tullock (1962). 
44For motivational discussions, see Hahn (1973) and Dasgupta and Heal (1979). 
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criteria of equitability, yielding tests of "fairness". This approach is looked at in 
the next subsection. 

5.2. Envy, equity and fairness 

If no individual prefers the bundle of good enjoyed by another person to his own, 
then that allocation is called equitable. If an allocation is both Pareto optimal and 
equitable, then it is called fair. 45 This concept, introduced in the modern 
literature by Foley (1967), has been extensively explored recently.46 Much of the 
literature has been concerned with problems of existence and consistency. 

Some rather negative conclusions have been established even with the " stan­
dard" assumptions of production and exchange- convex production possibilities, 
convex preferences, self-seeking choice, no externalities.47 In economies with 
production, fair allocations need not exist [see Pazner and Schmeidler (1974) and 
Varian (1974)]. Pareto optimal equilibrium conditions may require that the more 
productive should work harder and be paid more. And the leisure-loving more 
productive may, in this situation, envy the unhurried less productive, while the 
income-loving less productive may envy the opulent more productive. Further­
more, without production, i.e. in a purely exchange economy, fair allocations may 
not exist if individual preferences are not all convex. 

Even with convex preferences and even in the context of pure exchange, 
equitable endowment allocations can lead to non-equitable competitive equilibria 
through trade which happens to be profitable for all [see Feldman and Kirman 
(1974) and Goldman and Sussangkarn (1978)]. It is possible to construct exam­
ples in which the diversity of tastes guarantees that none of the parties envies the 
commodity basket of any other before trade, but after a mutually advantageous 
trade, at least one person envies the basket that another ends up with. Pareto 
improvements may, thus, conflict with the preservation of equitability, and this 
type of conflict between equity and Pareto efficiency may arise with great 
generality. 

45There seems to be some non-uniformity of terminology in the literature. Sometimes " fair" is 
defined simply as "equitable", e.g. in Pazner and Schmeidler (1974) and Feldman and Kirman (1974). 

46See Kolm (1969, 1972), Schmeidler and Yaari (1970), Schmeidler and Vind (1972), Pazner and 
Schmeidler (1972, 1974, 1978), Feldman and Kirman (1974), Varian (1974, 1975, 1976a, 1976b), 
Daniel (1975), Crawford (1977, 1979), Gardenfors (1975), Allingham (1976), Pazner (1977), Svensson 
(1977, 1 980), Goldman and Sussangkarn (1978), Archibald and Donaldson (1979), Crawford and 
Heller (1979), Feldman and Weiman (1979), Sobel (1979), Champsaur and Laroque (1981), and 
Suzumura (1983a), among others. 

47Note that the concept of "envy" used in these models is one of "preferring" the position of 
another, and not- as in another interpretation of envy- "  suffering from" the superior position of 
another. It is only in the former sense that envy can be present without "externality"! 
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Partly under the influence of such negative results, but also for their own 
interest, other rival concepts of fairness have also been explored. In the case of 
" wealth fairness", the concept of equity is reduced to non-envy of the "complete" 
position of any other person including his commodity bundle, his leisure, as well 
as his production. This criterion is formulated in such a way that "if it is 
impossible for agent i to produce what j produces", then the equity condition is 
" vacuously satisfied for these two agents" [Varian (1974, p. 73)]. Fair allocations, 
in this sense, do exist under standard assumptions, but the criterion may appear 
to be morally quite arbitrary, and many would share Pazner's (1977) inability " to 
see any possible moral justification for this concept in the case of innate (or, more 
generally, exogenous) productivity differentials" (p. 459). 

Another concept is "income-fairness" where the object of envy is another 
person's income, not his commodity bundle.48 This leads to the requirement that, 
at efficiency prices corresponding to the allocation, · there must be equalisation of 
potential income, i.e. equalisation of the value of each person's commodity-cum­
leisure bundle [see Pazner and Schmeidler (1972) and Varian (1974, 1975, 1976a), 
Feldman and Weiman (1979)].49 While income-fair allocations do not involve 
logical problems of existence under standard assumptions, it is remarkably 
exacting in terms of its institutional implications. 5° 

Other variants of the concept of fairness make the criteria typically a good deal 
less exacting, but in the process also make the "good quality" rather ad hoc. An 
"egalitarian-equivalent" allocation is one in which the distribution of personal 
utilities could have been generated by an equal division of some - not necessarily 
feasible -vector of goods [see Pazner and Schmeidler (1978) and Crawford (1979), 
among others]. Egalitarian-equivalence is consistent with Pareto efficiency even in 
situations in which fair allocations may not exist (e.g. with production under 
standard assumptions, or in a pure exchange economy with some non-convexity 
of preference). But the use of equal distribution of some purely hypothetical 
commodity vector to identify a good quality of an actual distribution may appear 
to be quite arbitrary. It also goes thoroughly against the rationale of Arrow's 
condition of " independence of irrelevant alternatives". 5 1 One may have to pay 
dearly for one's dislike of some particular good of little importance in the actual 
basket if it looms large in some hypothetical basket. 

48It may be argued that the envy of someone's income may be a more cogent basis of judging 
relative advantage than the envy of someone's commodity bundle. Cf. the old story of the father-son 
conversation: " Dad, I wish I had the money to buy an elephant." "Why, son, what will you do with 
an elephant?" "Don't be daft-why should I buy an elephant with that money?" 

49See also Archibald and Donaldson's (1979) criterion of economic equality in terms of identical 
sets of bundles to choose from (what they call " identical choice sets", not to be confused with "choice 
sets" as defined here). 

50Sufficiency conditions for envy-equitable, Pareto-optimal allocations under competitive equi­
librium have been investigated by Champsaur and Laroque (1981). 

51 For various motivations underlying the independence condition, see Arrow (1951, 1963), Ray 
(1973), Mayston (1974, 1975), and Plott (1976). 



1110 Amartya Sen 

As a final example, consider Daniel's (1975) criterion of a "just" allocation as 
one satisfying (i) Pareto optimality, and (ii) being "balanced" in the sense that 
" the number of people who envy a person is equal to the number of people that 
he envies" (p. 102). Daniel establishes the existence of such "just" allocations 
under standard assumptions, but it is not altogether clear whether being "bal­
anced", in this sense, can be described as a "good" quality. A situation in which 
everyone envies everybody else - hardly a "nice" society-is clearly ·� balanced". 

There are other variants of the fairness criteria- many of these have been 
critically surveyed by Pazner (1977) - but the tension between avoiding extremely 
exacting requirements and eschewing arbitrary discrimination is widely observed. 
This raises some general questions about the extent to which these procedures 
have been able to provide a more satisfactory approach to social decisions than 
traditional social choice theory has offered. This issue is taken up in the next 
subsection. 

5. 3. Good quality approaches vs. traditional social choice formulations 

There is little doubt that the "good quality" approaches have provided a 
worthwhile field for investigation. The ambitiousness of the traditional social 
choice formulations in seeking a social ordering, or a finitely. complete choice 
function (specifying the optimal subsets for each choice problem), causes not a 
little problem, and here the Good Quality approaches have some potential 
advantage. On the other hand, it is difficult to agree on a particular quality as 
especially good (irrespective of other qualities), and partitioning the set of 
possibilities into good and bad subsets based on any of these qualities suffers 
from some arbitrariness. 

As it happens the more comprehensive good qualities, taking into account 
consideration of both Pareto efficiency and equitability, have also raised serious 
problems of existence of good subsets (e.g., satisfying "fairness" based on the 
requirement of Pareto optimality of equitable allocations without envy). Even 
when "existence" has been guaranteed in principle, the practical relevance of the 
partitioning has been constrained by the fact that one side of the partition has 
been occupied only by allocations that are truly demanding (e.g. Pareto-efficient 
equal distributions of income -no less!). While Varian (1974) may be right to 
criticise traditional social choice approaches by arguing that " there was no 
requirement to rank all allocations", still an approach that "gives no indications 
of the merits of two nonfair allocations" (p. 65) may not take us a great distance 
when fair allocations don't exist, or require conditions so exacting that they are 
unlikely to be practically achievable in the near future. The traditional social 
choice approach, in contrast, can offer more, since it discriminates more -even 
between the bad and the worse ! 



Ch. 22: Social Choice Theory 1111 

The chief contribution of the "fairness" literature has rested elsewhere. First, it 
has shown the relevance of informational parameters that the traditional social 
choice approaches have tended to ignore in the single-minded concern with 
individual orderings of complete social states. Comparisons of different persons' 
positions within a state have been brought into the calculation, enlarging the 
informational basis of social judgments. 52 

Second, in raising rather concrete questions regarding states of affairs, the 
fairness literature has pushed social choice theory in the direction of more 
structure. Criteria such as " unrestricted domain", or " independence", or "non­
dictatorship", are very general requirements of good social choice procedures, 
while requirements of "fairness" or "equity" make the demands more specific. 
There is some obvious gain in this extension. 

6. Social welfare functionals 

6. 1. Invariance requirements: Measurability and comparability of utilities 

The informational base of the traditional social choice approaches can be 
enriched by making the social preference relation R,  or choice function C( · ), not 
a function of the n-tuple of individual orderings { R ; } ,  but the n-tuple of 
individual utility functions { U;( · )} .  Such formulations are, of course, not new, 
and indeed the classical utilitarian characterization of social welfare (in the works 
of, say, Edgeworth, Marshall, Pigou, or Ramsey) is only a special case of such a 
form. 53 However, the difficulty with this way of formalizing the functional 
relations arises from the fact that given the measurability and comparability 
assumptions of individual utilities, the utility function has to be represented not 
by one n-tuple of individual utilities, but by a set of n-tuples of individual utilities 
which are informationally identical (for the given assumptions of measurability 
and comparability). This problem is met in the approach of social welfare 
functiona/s through imposing a class of invariance requirements [Sen (1970a, 
chapters 7-9, 1974, 1977a) and Roberts (1977, 1980b)], which demand the same 
outcome for each of the n-tuples of utility functions that could reflect the same 
underlying reality. 

A social welfare functional SWFL specifies exactly one social ordering R over 
the set X of social states for any given n-tuple { U;( · )} of personal utility 
functions, each defined over X, one for each person i = 1 ,  . . .  , n .  The in variance 

52As Varian (1974) has argued, " [traditional] social decision theory does not put enough into the 
aggregating process" (p.65). See also Svensson (1977). 

53Harsanyi's (1955) well-known axiomatic derivation of utilitarianism also uses a general form of 
this kind. See also Kolm's (1969, 1972) extensive studies of justice and equity. 
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requirement takes the general form of specifying that for any two n-tuples in the 
same comparability-set I, reflecting the assumptions of measurability and inter­
personal comparability of individual utilities, the social ordering generated must 
be the same, 

R = F( { u; } ) .  (6.1) 

Invariance requirement 
For any two n-tuples {u; }  and {u;* }  belonging to the same comparability-set I, 
F({ U; } )  = F({ u;* }). 

The specification of the measurability-comparability assumptions takes the 
form of characterizing I. Depending on the assumption of measurability, each 
person i has a family L; of (essentially equivalent) utility functions: each a 
positive, monotonic transformation of any other in the family in case of ordinal­
ity; each a positive, affine transformation of any other in the family in case of 
cardinality; each a positive, homogeneous linear transformation of any other in 
the family in case of ratio-scale measure; etc. The Cartesian product of the 
n-tuple of families of utility functions { L; } is the measurability-set L = f17=1L;, 
specifying all possible n-tuples of individual utility functions consistent with the 
measurability assumption. 

If there is no interpersonal comparability at all, then there is no further 
restriction, and I = L. If, however, interpersonal comparability of any type is 
permitted, then I c L. 54 For example, with full comparability, if a transforma­
tion t/; (  · ) permitted by the measurability assumption is applied to one person's 
utility function in moving from one n-tuple { u; }  to another { u; * }, then the same 
transformation t/;(  · ) must have been applied to everyone's utility function as a 
necessary and sufficient condition for { u; }  and { u; * }  to belong to the same 
comparability-set I. Some distinguished cases of measurability-comparability 
assumptions are considered below [see Sen (1970a, 1974), Hammond (1976a, 
1977b), Maskin (1978, 1979b), d'Aspremont and Gevers (1977), Deschamps and 
Gevers (1978), Gevers (1979), Blackorby and Donaldson (1979), and Roberts 
(1980a, 1980b)]. 

Alternative measurability-comparability frameworks 
For any utility n-tuple { u; * }  belonging to I, it is required that I must consist of 
exactly all n-tuples { u;}  such that for some n-tuple of transformations { 1/J ; }  

54For various interpretations of interpersonal comparisons, see Vickrey (1945), Little (1950), 
Harsanyi (1955), Arrow (1963), Suppes (1966), Sen (1970a, 1973, 1979a), Jeffrey (1971), Rawls (1971), 
Waldner (1972), Hammond (1977a), and Borglin (1982). 
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satisfying the following alternative restrictions, U; = 1/;;(U;*) for all i: 

ordinal non-comparability (ONC): each 1/;; is a positive, monotonic transforma­
tion; 

cardinal non -comparability (CNC): each 1[;; is a positive affine transformation, 
1[;;( - )  = a; +  b; · ( · ), with b; > 0; 

ratio-scale non-comparability (RNC): each 1/;; is a positive, homogeneous linear 
transformation, 1[; ;( · )  = b; · ( · ), with b; > 0; 

ordinal /eve! comparability (OLC): 55 for all i, 1[;;( - )  = 1[;( · ), a positive, monotonic 
transformation; 

cardinal full comparability (CFC): for all i, 1[;;( ·) = 1[;( · ), a positive, affine trans­
formation, 1[; (  · ) = a +  b · ( · ), with b > 0;  

ratio -scale full comparability (RFC): for all i ,  1[;;( - )  = 1[;( · ) ,  a positive, homoge­
neous, linear transformation, 1[; ( · )  = b · ( · ), with b > 0; 56 

cardinal unit comparability (CUC): each 1/;; is a positive, affine transformation, 
1[; ; ( - ) = a; + b · ( · ), with b > 0, the same for all i; 

cardinal level comparability (CLC): each 1/;; is a positive, affine transformation, 
1/;;( · ) = a; +  b;( · ), with b; > 0, and there is a positive, monotonic transformation 
cp(  · ) such that U;(x) = cp(U;*(x)), for all x E X, for all i; 

cardinal unit and level comparability (CULC): 57 each 1/;; is a positive, affine 
transformation, 1[; ;( · ) = a; + b · ( · ), with b > 0, the same for all i, and there is a 
positive, monotonic transformation cp( · )  such that U;(x) = cp(U;*(x)), for all 
x E X, for all i.58 

The invariance restriction applied to these respective cases will be denoted as 
ON, CN, RN, OL, CF, RF, CU, CL, and CUL, respectively. For example, ON is 
the invariance restriction for the case of ordinal non-comparability ONC. Note 
also that the less the precision of information, the wider the set I, and the more 

55This can, in fact, be called "ordinal full comparability" as well, since ordinal intrapersonal 
comparisons can be fully extended here to interpersonal comparisons. 

56Utility values have to be confined to being non-negative in this case, to avoid perversity; see 
footnote 74 in Section 6.7 below. 

57This is a somewhat wider class of I than under cardinal full comparability, thereby inducing a 
more demanding invariance restriction than under the latter, and represents less usable information 
than with cardinal full comparability. The difference will depend on X and the actual utility 
configurations. Gevers' (1979) case of "almost co-cardinal" (ACC* )  corresponds to CULC except for 
requiring that the common monotonic </>( ·) function should apply not necessarily to the whole of X 
but to each pair of utility vectors separately. ACC * is in this sense still more demanding than CULC, 
requiring invariance over a wider class, and thus represents less informational availability. 

58 Other cases can be correspondingly specified, e.g. ratio-scale level comparability. 
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demanding is the invariance restriction. With less information more signals are 
indistinguishable. 

It will be convenient later to consider comparability cases that are not fully 
specified, e.g. levels being comparable whether or not anything else is. Let I(L) 
and I(U)  be comparability sets with ordinal level comparability and cardinal 
unit comparability respectively. 

Level-plus comparability (L +c) is defined at I �  I(L), and unit-pll!s compara­
bility (U+ C)  as I �  I(U), respectively, in each case. The invariance restriction 
applied to these measurability-comparability frameworks will be denoted as L + 
and u+, respectively. 

6.2. Arrow's impossibility result and richer utility information 

For a SWFL the Arrow conditions can be readily redefined. 

Condition [J 
The domain of F( · ) includes all logically possible n-tuples of utility functions 
{ U;} ,  defined over X. 

Condition j 2 
For any pair of social states x, y E X, Rl { x, y }  = p{x, y } ({�(x), �(y)}), so that 
if u;(a)  = u;*(a) for all i, for a =  x, y, then xF({� })y if and only if xF({ �* })y. 

Condition P 
For any pair x, y E X, [Vi: �(x) > �(y)] = xPy. 

Condition b 
There is no individual i such that for all x, y E X and for all { � }  in the domain 
of F( · ), u;(x) > �(y) = xPy. 

Since Arrow (1963) dealt with the case of ordinal non-comparability, the 
General Possibility Theorem translated to SWFLs yields the following: 

Arrow's theorem for SWFL 
For a finite H and #X � 3, there is no SWFL satisfying Conditions 0, P, P, D, 
and the invariance restriction ON. 

This is established by noting that with ON, a SWFL is, in fact, a SWF, and 
observing that in this case Conditions 0, P, P and D imply U, 12, P and D 
applied to the SWF to which the SWFL is reduced. 
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In fact, the impossibility result extends readily to the case of cardinal non­
comparability as well [Sen (1970a, theorem 8*2)]. 

Arrow's theorem extended to cardinal non-comparable utilities 
For a finite H and #X z. 3, there is no SWFL satisfying Conditions D, F, P, D, 
and the invariance restriction CN. 

This is established by taking any two n-tuples of utility functions { U; }  and 
{ U; * } such that each individual ranks the set X in the same way in the two cases. 
For every pair x, y E X, by exploiting the two degrees of freedom in an affine 
transformation, an n-tuple of positive, affine transformations { 1/;; } applied to 
{U; * }  yields u;'(z) = lf;;(u;*(z)) = U;(z), for z = x, y, for all i. By the indepen­
dence condition F, xF({ u; }) y if and only if xF( { U;' })y, and by CN, xF({ U;' })y 
if and only if xF({u;* })y. Since this holds pair by pair, clearly F({U; }) = 
F( { u; * } ), so the SWFL is, in fact, a SWF. The rest of the proof is the same as 
with Arrow's original theorem. 

A similar impossibility result can be obtained by replacing the pair-relational 
independence condition P by the m-ary relational independence condition }m, 
since Blau's (1971) result about the equivalence of pair-relational independence 
and m-ary relational independence for social welfare functions can be extended 
to social welfare functionals as well [see d'Aspremont and Gevers (1977)].59 

While cardinality without interpersonal comparability does not change matters 
as far as the Arrow impossibility result is concerned, 60 interpersonal comparabil­
ity without cardinality does, however, make a real difference. With ordinal level 
comparability, Conditions D, P, P and D are perfectly consistent, and an 
example of these conditions being fulfilled along with the invariance restriction 
OL is provided by the so-called Rawlsian " maximin" criterion (interpreted in 
terms of individual utilities). The stronger Pareto principle P*, which is violated 
by maximin, can also be satisfied, if we use the lexicographic version of the 
" maximin" rule [Sen (1970a) and Rawls (1971)], often called " leximin".61 Let 

59Kalai and Schmeidler (1977) have presented another impossibility result permitting cardinal 
utility with a weakened dictatorship condition, but involving some additional requirements, most 
notably continuity. For other impossibility results with cardinality, see Schwartz (1970), DeMeyer and 
Plott (1971), Fishburn (1972b), and Chichilnisky (1980c). 

60If, however, " independence" is not required, then various possibilities exist, notably the Nash 
bargaining solution. On "Nash social welfare functions", see Nash (1950), Luce and Raiffa (1957), Sen 
(1970a), Kalai and Smordinsky (1975), Harsanyi (1977b), Kaneko and Nakamura (1979), Kaneko 
(1980), Kim and Roush (1980a), Coughlin and Nitzan (1981), and Binmore (1981). 

61Strong Pareto principle (P*) :  "iix, y E X, ["iii :  x R; Y & 3i :  xP; y ] => xPy, and ["ii i: x l; y ] => x ly. 
For general discussions of the Rawlsian approach, see Rawls (1971, 1982), Sen (1970a, 1976b, 

1977b), Arrow (1973, 1977), Barry (1973), Phelps (1973, 1977), Dasgupta (1974), Daniels (1975), Barry 
and Rae (1975), and Yaari (1981), among others. See also the literature on axiomatic derivation of 
maximin and leximin, discussed below. 
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r( x)  be the r th worst-off person in state x; in case of more than one person 
having the same utility level, rank them in any arbitrary strict order. 

Leximin 
For any x, y E X, if there is k, 1 :$; k :$; n, such that Uk<x/x) > Uk(y)(y), and for 
all r < k, U,.(x) (x) = Ur(y) (y), then xPy. If, on the other hand, for all r, 1 :$; r :$; n ,  
u;.(x) (x)  = ur(y)(y), then xly. 

Leximin satisfies Conditions 0, P, P*, :b and OL (and obviously "level plus" 
L + in variance restrictions -with utility information richer than OL such as CL, 
CUL, CF, RF, etc.). It also satisfies several other conditions that have been 
proposed in the literature, such as Anonymity, Neutrality, Sepa.rability, Suppes's 
(1966) "grading principle of justice", and several "equity" criteria including 
Hammond's (1976a) demanding Axiom E. 

Condition A (anonymity) 
If { U; }  is a re-ordering (permutation) of { U; * } ,  then F( { U; }) = F( { U; * }  ). 

Condition N (neutrality) 
If /-t(  · )  is a permutation function applied to X, and �-t[R] is the ordering R 
modified by the same permutation /-t( · ), and if for all i, U;(x) = Cf;*(�-t(x)) for all 
x E X, then F({ Cf;* }) = �-t[F({Cf; })]. 

Condition SE (separability) 
If the set H of individuals partitions into two proper subsets H1 and Hz such that 
for all i in H1, Cf;(x) = Cf;*(x) for all x in X, and for all i in Hz, [f;(x) = Cf;(y) 
and Cf;*(x) = U;*(y), for all x, y in X, then F({ Cf; }) = F({Cf;* }). 

Condition S (Suppes principle) 
If p (  · )  is a permutation function applied to the set H of individuals, and if for 
any x, y E X, U;(x) � �(i)(y) for all i, then xRy. If additionally, for some i, 
Cf;(x) > Up(i) (y), then xPy. 

Condition HE (Hammond's equity axiom) 
For any x, y E X, if for some pair g, h E H, Ug(y) > Ug(x) > Uh(x) > Uh(y), and 
for all i =I= g, h ,  [f;(x) = Cf;(y), then xRy. 

Anonymity states that permuting the utility functions among the people does 
not affect the social ordering. Neutrality asserts that permuting the social states in 
individual orderings permutes the social states in the social ordering in exactly the 
same way. Separability says that if the utility numbers for all states remain 
unchanged for all non-indifferent individuals, then the social ordering should not 
change either. The Suppes principle extends the Pareto principle by using 
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dominance in an anonymous way. First, dealing with weak ranking, if each person 
in x is at least as well off as the corresponding person in y, then xRy. If, 
additionally, someone in x is strictly better off than the corresponding person in 
y, then xPy. Hammond's equity principle demands that if person h is worse off 
than person g in both x and in y and if h prefers x to y while g prefers y to x, 
with all other persons indifferent between x and y, then xRy. 

Both maximin and leximin can be seen as incorporating the dictatorship of a 
particular " rank", viz. the rank of being worst-off. While ordinal level compara­
bility provides an adequate informational base for escaping Arrow's impossibility, 
it is interesting to enquire whether the escape must take the form of rules that 
incorporate dictatorship of some rank (e.g. of the worst-off, the best-off, the k th 
worst-oft). Certainly the Arrow conditions imposed on a SWFL satisfying invari­
ance for ordinal level comparability push us in that direction, and all other 
possible rules - typically rather odd ones -can be weeded out by strengthening the 
condition of non-dictatorship to anonymity [see Gevers (1979) and Roberts 
(1980a)]. With anonymity, in the presence of the other conditions, "rank" 
remains an invariant and usable signal (personal identity does not), and the 
absence of cardinality and of comparability of units makes rank effectively the 
only such invariant signal. This permits the translation of the Arrow-type 
reasoning about personal decisiveness to a corresponding reasoning about rank 
decisiveness, moving from the decisiveness of all ranks put together (guaranteed 
by the weak Pareto principle) to the decisiveness of some particular rank (as 
under the " Group Contraction Lemma"). 

Rank dictatorship theorem 
For a finite H and #X 2. 3, a SWFL satisfying Conditions D, P, P, A, and the 
invariance restriction OL, must be rank-dictatorial, i.e. there will be a rank k such 
that for all x, y E X, Uk(x)(x) > Uk(y)(y) => xPy.62 

Leximin implies not only the dictatorship of the worst-off, but a whole 
hierarchy of dictatorial powers so that each rank has dictatorial power when the 
lower ranks are all "indifferent". Leximax defines the opposite hierarchy, with the 
best-off being the unconditional dictatorial rank, and the other ranks enjoying 
dictatorial powers conditional on the higher ranks being indifferent. The defini­
tion of leximax is the same as that of leximin but for the change that the 
condition refers to r > k in place of r < k. The rank dictatorship result can be 
modified to precipitate either leximin or leximax [see d' Aspremont and Gevers 
(1977)], by demanding separability and replacing the weak Pareto principle by the 
strong Pareto principle P* (corresponding to P*, as P does to P). 

62For this and related results, see Roberts (1977, 1980a, 1980b) and Gevers (1979). Also Deschamps 
and Gevers (1979). 
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Leximin -leximax theorem 
For a finite H and #X � 3, a SWFL satisfying Conditions 0, P, P*, A, SE, and 
the invariance restriction OL, must be leximin or leximax. 

6.3. Axiomatic derivation of leximin 

The Suppes principle, which like the Pareto principle builds on dominance of 
utilities (but does this in an anonymous way and is thus remarkably more 
extensive than the Pareto principle), can be stated in many different forms. Two 
weakenings are considered next, before proceeding to the interesting subject of 
the axiomatic derivation of the leximin rule. One weakening confines the "anony­
mous" comparisons to permutations between exactly two persons only, and the 
other concentrates on indifference only (correspondingly to the Pareto indif­
ference rule). 

Condition S1 (2-person Suppes principle) 
For any x, y E X, if for any two persons g, h E  H, either �(x) � �(y) for 
j = g, h ,  or Ug(x) � Uh(y) and Uh(x) � Ug(y), while for all i =I= g, h ,  D;(x) = D;(y ), 
then x Ry. If, furthermore, at least one of the two inequalities � holds strictly 
> , then xPy. 

Condition so (Suppes indifference rule) 
For any x, y E X, if for some permutation function p( · ) applied to the set H of 
individuals D;(x) = u;,(i)(y)  for all i, then xly. 

Condition S� (2-person Suppes indifference rule) 
For any x, y E X, if for two persons g, h E  H, Ug(x) = Uh(y) and Uh(x) = Ug(y), 
while for all i =l= g, h , D;(x) = D;(y), then xly. Also the Pareto indif­
ference rule holds. 

Hammond's equity condition can also be weakened to what d' Aspremont and 
Gevers (1977) have called "minimal equity", to derive leximin axiomatically. 

Condition ME (minimal equity) 
The SWFL is not the leximax principle. 

Finally, since the Blau (1971) result on the equivalence of pair-relational 
independence with m-ary relational independence holds (as has already been 
remarked), we might as well simply take the general relational independence. 
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Condition 1 (relational independence) 
For any subset S � X, if for all i, for all x E S, U;(x) = U; *(x), then F({ U; }  ) 1 8  = 
F({ U;* }) I 8-

Leximin has been neatly axiomatized by Hammond (1976a), Strasnick (1976, 
1978), and d'Aspremont and Gevers (1977), and further by Maskin (1979b), 
Deschamps and Gevers (1978, 1979), Roberts (1977, 1980a, 1980b), Arrow (1977), 
Sen (1977b), and Gevers (1979). The main results can be put in the form of a 
rather comprehensive theorem. In this theorem-and indeed throughout Section 
6 - it is assumed that #X 2 3 and that H is finite. 
Leximin derivation theorem 
A SWFL satisfying unrestricted domain U and independence of irrelevant 
alternatives i must be leximin if it satisfies invariance for level-plus comparability 
L +, and one of the following set of conditions :  

[1] P *, A, SE, ME and OL; 

[2] S, SE, ME and OL; 

[3] P *, A and HE; 

[4] P*, so and HE; 

[5] P, S� and HE; 

[6] S and HE; 

[7] S2 and HE. 

The last set, viz. [7], is taken up first. One way of establishing the result is 
through a reduction technique used in Sen (1976b, 1977b). It reduces the problem 
of getting leximin for n-person judgments to getting leximin for 2-person judge­
ments (with the rest indifferent).63 

First define leximin-k as the leximin principle applied to ranking any pair of 
states over which there are exactly k non-indifferent persons. One of the unap­
pealing features of leximin is that it permits the interest of one person (if 
relatively badly off) to override the interests of a great many others, possibly a 
billion of them. This possibility can be eliminated by confining the application of 
leximin to cases of a small number of non-indifferent persons. But it can be 
shown that such a programme of constraining leximin would be hopeless for a 

63Hammond (1979b) has shown that this 2-to-n person correspondence of principle applies not 
merely to leximin, but to a whole class of principles. This also yields an alternative way of deriving 
leximin from set [7] by establishing first S from S2 in the presence of U and i. Ulph (1978) has 
extended the correspondence. 
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SWFL satisfying unrestricted domain and independence because of the following 
result :  

Leximin from Inch to Ell 
For any SWFL satisfying Conditions D and i, leximin-2 implies leximin. 

The proof of this proposition, which will not be presented here, can build on 
showing first, that leximin-2 implies leximin-1 ,  and then that leximin-1, . . .  , lexi­
min-(r - 1) together imply leximin-r [Sen (1977b, theorem 8)]. In view of this 
result, the leximin derivation by route [7] can be done via the following lemma: 

Leximin-2 derivation 
A SWFL satisfying in variance for level-plus comparability L +, and fulfilling 
Conditions D, i, S2 and HE, must satisfy leximin-2. 

In proving this proposition, the " Paretian" comparisons subsumed by leximin-2 
cause no problems, since they are subsumed by S2 as well. So we need be 
concerned with only the non-Paretian comparisons. Take first the case of two 
rank-ties: U1(x) = U2(y), and U2(x) = U1(y). Again, directly from S2 , it follows 
that xly, which is what leximin-2 requires. Similarly, with exactly one rank-tie, 
say, U1(x) = U2(y), there is again an immediate application of S2 ranking x and 
y entirely by the ranking of U2(x) and U1(y), and this corresponds exactly to 
leximin-2. That leaves only the case of two non-indifferent, non-rank-ties. But 
again if the two inequalities point in the same direction, say U1(x) > U2(y) and 
U2(x)  > U1(y), the xPy by S2 , which is exactly what leximin-2 demands. Thus, 
the only case that is not immediate is one in which there are two inequalities 
pointing in opposite directions. 

Without loss of generality, consider U1(x) > U2(y) and U2(x) < U1(y). Noting 
that U2(x) =I= U2(y), since 2 is non-indifferent, again without loss of generality, 
take U2(x) > U2(y). To establish leximin-2, we have to show that xPy. Consider 
a third state z, and an n-tuple { ll; * }  such that ll;( a) = ll; *(a) for all i and 
a =  x, y; u;*(z) = ll;*(x) = ll;*(y) for all i =I= 1 ,2 ;  U1*(z) > U2*(z) > U2*(y); and 
ll;*(a) > U1*(z) for a =  x, y, and all i, other than the particular combination 
a =  y and i = 2. lt follows from Hammond's Equity Axiom HE, that zR*y. From 
the 2-person Suppes principle S2 , we have xP*  z. Hence by transitivity of R, 
xP*y. By independence xPy. This establishes leximin-2. 

Due to the above result, leximin in its full force follows from the same axioms 
in view of Leximin from Inch to Ell. 

Obtaining leximin from the alternative set [5] is similarly done, since in the 
presence of the other conditions, P* and S� imply S2• Sets [3], [4] and [6] are 
similarly covered since each of these sets implies S2 • None of these combinations 
of conditions relies on the measurability-comparability framework to be re­
stricted to ordinal level comparability. If that restriction is imposed, then leximin 
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can be axiomatized on the basis of the Leximin-leximax Theorem. This covers 
the combinations given by [1] and [2]. Anonymity and the strong Pareto principle 
follow from the Suppes relation S. Minimal Equity ME eliminates leximax. That 
leaves only leximin. 

6. 4. Strong neutrality and strong anonymity 

It was mentioned earlier that Leximin satisfies the conditions of neutrality and 
anonymity. In fact, it satisfies a stronger version of each condition. So do 
utilitarianism and many other procedures. Before proceeding further it is useful to 
consider these stronger versions of neutrality and anonymity. 

Condition SN (strong neutrality) 
For any two pairs of social states { x, y }  and {a ,  b } ,  and any two n-tuples of 
utility functions {Zf; }  and { Zf;* } , if for all i, lf;(x) = U;*(a) and lf;(y) = U;*(b), 
then xF({ lf; }) y  if and only if aF({U;* }) b. 

Condition SA (strong anonymity) 
If for any pair of utility n-tuple {U; }  and {Zf;* }, there is a permutation function 
p(  · ) over the set H of persons such that for some x, for all i, lf;(x) = U,(i)(x), 
and for all y * x, for all i, U;(y) = U;*(y), then F({ U; }) = F( { lf; * }  ). 

Strong neutrality implies neutrality N and independence P, and is indeed 
equivalent to the combination of the two. It permits neutrality to be applied pair 
by pair, and asserts that the utility information regarding any two social states is 
all that is needed for ranking that pair. Strong anonymity asks for invariance not 
merely when utility functions are permuted between the persons, but also when 
the utility values for any particular state x are permuted between the persons 
without doing anything to the utility values for other states. Clearly, such 
permutations can alter the list of preference orderings embedded in an n-tuple of 
utility functions, and ordering-based rules such as the Method of Majority 
Decision, while satisfying anonymity (and strong neutrality), do not in general 
fulfil strong anonymity. 

Given strong neutrality, social welfare W can be seen as a function of the 
individual utility vectors u, bringing us back to a classic formulation of the 
Bergson-Samuelson social welfare function,64 

W= W(u ) .  (6 .2) 

With strong anonymity added to this, the function W( ·) is symmetric. 

64See Samuelson (1947, pp. 228-229, 246), Bergson (1948, p. 418), and Graaff (1957, pp. 48-54). 
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For SWFLs satisfying unrestricted domain and independence of irrelevant 
alternatives, the Pareto indifference rule po implies strong neutrality, and the 
Suppes indifference rule so implies both strong neutrality and strong anonymity.65 

Strong neutrality theorem 
For any SWFL fulfilling Conditions U and I 2, po = SN. 

Strong anonymity theorem 
For any SWFL fulfilling Conditions U and I 2, so = (SN & SA). 

For proofs, see Sen (1977b). 

6.5. Utilitarianism: Harsanyi's theorems 

Harsanyi's (1955) axiomatic treatment of utilitarianism provided a classic contrast 
to the ordering-based social welfare judgments in Arrow's social welfare function 
and related structures. A richer base of utility information permitted Harsanyi to 
consider the class of weighted sum of individual utilities- a class that could not 
have been accommodated within social welfare functions, or for that matter in 
structures permitting only ordinal level comparability. 

Harsanyi (1955) established two - essentially independent - results about 
utilitarianism. One, which I shall call Harsanyi's " Impersonal Choice Utili­
tarianism", requires any individual's social welfare function-reflecting his ethical 
judgments - to be based on what his preferences about the social states would 
have been if he had an equal chance of being in the position of anyone in the 
society.66 With consistent choice the von Neumann-Morgenstem (1947) pos­
tulates are assumed to be fulfilled. Then the social welfare from a state can be 
seen as the " utility" of an as if lottery, having a probability 1/ n of being anyone 

65 Neutrality in a milder form - involving only strict (antisymmetric) individual orderings- played an 
important part in Arrow's (1951) impossibility theorem, and this was explicitly noted by Blau (1957). 
(See the Field Expansion Lemma in Section 2 above.) The first explicit version of the Strong 
Neutrality Theorem (applied to social decision functions with quasi-transitive social preference) was 
presented by Guha (1972) and Blau (1976). The theorem as presented here, dealing with the wider 
informational framework of SWFLs, is due to d'Aspremont and Gevers (1977). Roberts (1980b) 
provides an alternative derivation with the weak Pareto principle P rather than po through the use of a 
continuity axiom. The Strong Anonymity Theorem figures in various forms in Hammond (1976a, 
1 979b), d'Aspremont and Gevers (1977), Roberts (1977, 1980b), and Sen (1977b). 

66 On this way of characterizing social welfare, see also Vickrey (1945). For a critique of the moral 
acceptability of the approach, see Diamond (1967), and the controversy on that and related issues in 
Harsanyi (1975, 1977a) and Sen (1976b, 1977d). For other types of critiques, see McClennen (1978) 
and Blackorby, Donaldson and Weymark (1980). The broader ethical issue of " impersonal choice" as 
the basis of moral judgments- going well beyond the status of the utilitarian form - has been 
illuminatingly discussed by Harsanyi (1958) in his model of "ethics in terms of hypothetical 
imperatives". See also Harsanyi (1977b, 1979). 
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in that state. If W;(x ) is the utility of the "prize" i (i.e. of being person i, in state 
x)  in the von Neumann-Morgenstern scale, then clearly 

1 n 
W(x) = - L W;(x)  for all x E X. n ; � 1 

(6 .3) 

For a given population size, (6.3) is not essentially different from the straight­
forward utilitarian formula for social welfare. 

The other result, which I shall call Harsanyi's "Utility Sum Theorem" has less 
of a moral basis, but is analytically more assertive. If in a given situation, (a) the 
family of individual utility functions of each person i is cardinal, given by a class 
of positive affine transformations, (b) the social welfare function is also cardinal, 
given by a class of positive affine transformations, and (c) the Pareto indifference 
rule is assumed, i.e. u;(x) = u;(y) for all i must imply W(x) = W(y), then social 
welfare must be a linear weighted sum of individual utilities, 

n 

W(x) = L: a;u;(x)  for all x E X. (6 .4) 
i � l 

In recent discussion on utilitarianism, it is Impersonal Choice Utilitarianism, 
(6.3), that has received most attention [see, for example, Arrow (1973)]. This is a 
theorem about utilitarianism in a rather limited sense in that the von 
Neumann-Morgenstern cardinal scaling of utilities covers both W; and W within 
one integrated system of numbering, and the individual utility numbers W; do not 
have any independent meaning other than the value associated with each "prize", 
in predicting choices over lotteries. There is no independent concept of individual 
utilities of which social welfare is shown to be the sum, and as such the result 
asserts a good deal less than classical utilitarianism does. 

Consider, for example, the case in which a person's ethical judgments -and his 
" impersonal" choices - are based on maximizing the sum of independently mea­
sured, 67 ratio-scale comparable (RF) individual utilities (uniformly non-negative) 
raised to the power t (a constant), 

1 n 
w = - L ( u; (X ) r for all X. 68 

t i � 1  
(6.5) 

With t < 1 social welfare is strictly concave on (and thus non-utilitarian in terms 

67See Krantz, Luce, Suppes and Tversky (1971). 
68Mirrlees (1971) uses this formulation of social welfare [but see also Mirrlees (1982)]. This 

formulation is axiomatically analysed and discussed by Roberts (1977, 1980b), and Blackorby and 
Donaldson (1977, 1979). 
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of) the independently measured utilities U;. It would, however, appear to be 
utilitarian within the von Neumann-Morgenstern scaling system, since that 
scaling would allow W; = (njt)(U;(x))1, the whole scaling being unique up to 
positive affine transformations of these. Since the only role of W; 'is to predict the 
person's choices under uncertainty, this is a rather superficial form of utili­
tarianism. As it happens (6.5) permits a whole class of non-utilitarian rules (for all 
cases other than t = 1),69 and by making t go to minus infinity " Rawlsian" 
maximin or leximin can also be covered,70 for the independently scaled utilities. 

Harsanyi's Utility Sum Theorem does not, however, suffer from this problem, 
and is in this sense a good deal more assertive. But it is primarily a "representa­
tion theorem". It deals only with single-profile exercises and,does not claim that 
the constants a;  in (6.4) will remain the same when the individual utility functions 
change (i.e. when a family L; of positive affine transformations alters).71 Not 
only, therefore, does it not establish that all the a; must equal each other as under 
the utilitarian formula (indeed for the axioms specified they can even be negative), 
but it does not even require that the set of a; will be invariant with respect to 
changes in individual utility characteristics (as opposed to representational change 
within a given positive affine family). 

The upshot of this discussion is that there is need for an axiomatic derivation of 
utilitarianism despite Harsanyi's theorems. What is needed is an axiomatization 
that (1) permits independent formulation of individual utilities, and (2) which has 
the in variance property of having the set of a i determined independently of the 
utility functions to be aggregated (and in particular having a; = 1 ). Such axiomatic 
results have recently been presented, and will be taken up in the next subsection. 
But before closing the discussion on Harsanyi's framework, .it is worth asserting 
unequivocally that the failure to provide a fully-fledged axiomatic derivation of 
utilitarianism does not render Harsanyi's results useless. Indeed, far from it. The 
representation theorem is of much interest in itself, and Harsanyi's framework of 
impersonal choice has proved to be one of the most fruitful ones in social ethics. 

6.6. Utilitarianism: Axiomatic derivations 

Define a utilitarian SWFL as one which for any n-tuple of individual utility 
functions, for any x, y E X, declares xRy if and only if E7_ 1U;(x) � E7_1U;(y).72 
The following theorem, established by d'Aspremont and Gevers (1977, theorem 
3), uses the invariance requirement for cardinal unit comparability CU in 

69Note that ll; ( · ) and ( ll; ( · ))1 cannot belong to the same positive affine class unless of course t = 1 .  
7°Cf. Atkinson (1970), Arrow (1973), and Hammond (1975). 
71This issue has been illuminatingly discussed by Nader-Isfahani (1979). 
72Yaari (1978) defines " the utilitarian form" less restrictively, using a weighted-sum formula, with 

the weights being endogenously determined. One set of assumptions is shown to lead to the 
equivalence of Rawlsian and utilitarian SWFLs. Yaari, thus, provides an axiomatic (and also intuitive) 
analysis of a much wider class of rules than utilitarianism, as it is normally defined. 
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addition to other conditions to eliminate rules rival to utilitarianism. As in 
Sections 6.2-6.4, it is assumed that H is finite and #X :?. 3. 

Utilitarianism derived with unit comparability 
A SWFL satisfying Conditions 0, i, P*, A and CU must be utilitarian. 

It is first checked that a utilitarian SWFL must indeed satisfy these conditions. 
This is immediate for 0, i, P* and A. Regarding CU, it need only be noted that 
translating anyone's utility function by adding a constant (positive or negative) to 
it must leave all the differences [u;(x)- u;(y)] unaffected. And multiplying each 
u; by the same constant leaves the relative differences unchanged. So we need be 
concerned only with establishing that these conditions together do not permit any 
other kind of a SWFL. 

It follows from the Strong Neutrality Theorem that the SWFL in question must 
be strongly neutral. Since given unrestricted domain, independence and anonym­
ity, the Pareto indifference rule implies Suppes indifference rule, the SWFL must 
also be strongly anonymous by the Strong Anonymity Theorem. So in ranking 
any pair x, y E Y, we need be concerned only with the utility vectors for x and y, 
and we can permute the utility values among the individuals for any state without 
changing the social ranking. 

Take, first, a case in which the individual utility sums for x and y are equal; we 
have to show xly. Permute the utility numbers among the persons in each state 
separately in such a way that we have the utility order jn line with the individual 
numbers: Un( a) :?. Un� 1 (a) :?. · · · :?. U2( a) :?. U1 (a), for a =  x, y. Now deduct from 
each u;(a) the minimal of the two values { u;(x), u;(y)} . (Note that this is a 
permitted transformation under CU, being a translation of individual origins, 
which can be freely done.) After the deductions permute the individual utilities 
again in each state to get them in line with individual numbers : Un1(a) ',?. Un1- l(a) 
:?. · · · :?. Ul( a )  :?. Ul( a). This yields { u;1 } .  By repeating this process, for some r ,  
we shall get u;'(a) = 0,  for all i and for a =  x, y .  By the Pareto principle, xly for 
this utility n-tuple { u;' } ,  and by CU this must be the case for all { u;}  in I. 
Hence xly. 

If, instead, we started with the individual utility sum being larger for x than for 
y, then we would have reached u;'(y) :?. 0, for all i, with u;'(x) > 0 for some i. So 
by the strong Pareto principle, xPy. And this establishes that the SWFL is indeed 
utilitarian. 

Various other axiomatizations of utilitarianism have also been presented [see 
Deschamps and Gevers (1978, 1979), Maskin (1978), Blackorby and Donaldson 
(1977, 1979), Roberts (1980b), Myerson (1983), Blackorby, Donaldson and 
Weymark (1984)], without making the levels non-comparable as in d'Aspremont 
and Gevers' (1977) method.73 

73 For a very different route to the axiomatization of utilitarianism, see Ng (1975). See also 
Danielson (1974) and Mirrlees (1982). 



1126 Amartya Sen 

Maskin's axiomatisation supplements the imposed conditions by separability 
(Condition SE) and a requirement of continuity, to wit, that W( · )  in (6.2) be 
continuous. 

Utilitarianism derived with separability and continuity 
A SWFL satisfying Conditions 0, I, P* ,  A, SE, continuity, and the invariance 
requirement for cardinal full comparability CF, must be utilitarian. 

It follows from the application of Debreu's (1960) theorem on additive sep­
arability, that due to 0, i, P* and SE, it must be the case that there exist 
continuous functions v;( · )  such that xRy if and only if I:;_1v;(U';(x)) z 
I:;_1v;(U';(y)). By anonymity, for all i, v;( · ) = v(  · ). Maskin completes the proof 
by demonstrating (with the help of the invariance requirement CF, and continu­
ity, in addition to 0, i and P*) that v(  · ) must be a positive affine transformation. 
That establishes that the SWFL is utilitarian. 

Deschamps and Gevers (1978) have proved a theorem that provides another 
route to axiomatic derivation of utilitarianism-strictly speaking a slightly 
weakened version of it. A SWFL will be called " utilitarian-type" if it yields a 
utilitarian strict preference for all cases in which the utility sums to be compared 
are different; it may or may not declare two equal-utility-sum states as indifferent. 

Joint characterization theorem 
A SWFL satisfying Conditions 0, i, P *, A, SE, ME, and the invariance condition 
CF, must be either leximin or of the utilitarian-type. 

We know from the Leximin Derivation Theorem, in particular case [1] of it, 
that these conditions with the additional requirement of invariance for ordinal 
level comparability OL will lead to leximin. By broadening the utility informa­
tional framework to cardinal full comparability, the only additional rules that are 
admitted must be of the utilitarian-type. If now leximin is excluded by some 
axiom, and there are many "mild" axioms that will do this, the class of 
utilitarian-type rules would have been axiomatized. The advantage of this route 
lies in the fact that it demands neither continuity, which may not be accepted to 
be an intuitively "basic" social welfare property (though satisfied by utili­
tarianism in particular), nor the informational limitation of CU, which renders an 
important parameter (viz. comparative utility levels) unavailable for use. On the 
other hand, the Joint Characterization Theorem delivers a little bit less, viz. 
utilitarian-type rules rather than the utilitarian rule, and also this route requires 
some additional exclusion, notably something to knock out leximin. 

Myerson (1983) derives utilitarianism from Pareto optimality and a linearity 
condition, but - more importantly- shows that Pareto optimality, independence 
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and a concavity condition together ensure that the social welfare rule must be 
either utilitarian or egalitarian-a remarkable elimination of all other rules. 

6. 7. Other informational structures 

While ordinal non-comparability, cardinal non-comparability, ordinal level com­
parability, cardinal full comparability and cardinal unit comparability have been 
the informational assumptions that have been most used (as in the results 
discussed above), other alternative informational structures have also received 
some attention. Indeed, recently the various alternative possibilities have been 
fairly thoroughly investigated by Roberts (1977, 1980a, 1980b), Gevers (1979), 
Blackorby and Donaldson (1979), and Blackorby, Donaldson and Weymark 
(1984). 

While space will not permit a discussion of the different possibilities, the 
particular case of ratio-scale full comparability must be briefly mentioned. Using 
axioms similar to those used to arrive at utilitarianism for cardinal full compara­
bility, Roberts (1980b) has established that with ratio-scale full comparability, the 
SWFL must be of the more general class specified by (6.5) above, i.e. with 
constant elasticity (t) transforms of individual utilities being added to arrive at 
social welfare W. The value of t is unspecified. To obtain the special case of 
utilitarianism, viz. t = 1, would require some additional restriction, e.g. the 
invariance requirement for cardinal full comparability, which is a good deal more 
restrictive than ratio-scale full comparability. An alternative route towards 
utilitarianism has been pointed out by Blackorby and Donaldson (1979) by 
considering negative as well as positive utility values and demanding that social 
welfare be quasi-concave on individual utilities.74 

Another possibility that seems important is the case of " partial" compara­
bility and " partial" measurability. For example, if I(1) and I(O) are 
comparability sets respectively for cardinal unit comparability and cardinal 
non-comparability, then a case of "partial unit comparability" is one in which the 
comparability set I lies somewhere in between the two, i.e. I(1) � I �  I(O). The 
partial nature of the comparability assumption reflects a certain amount of 
" vagueness" about the way individual utility units can be compared with each 
other. It leads to quasi-orderings (reflexive, transitive, but not necessarily com­
plete) for such rules as utilitarianism-the quasi-ordering getting monotonically 

74 Note also that with some ratio-preserving transformations that are commonly used in economic 
exercises, the consideration of negative utilities would cause problems. As Blackorby and Donaldson 
(1979) note, in the negative utility orthant, the Atkinson (1970) measure of inequality based on means 
of order r would react perversely to a Lorenz curve improvement. In these cases, the argument for 
imposing boundary conditions on utility functions guaranteeing non-negativity may well be 
strong- indeed overwhelming. 
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extended as the fuzziness diminishes, and a defined "degree" of partial compara­
bility rises systematically from 0 to 1 [see Sen (1970a, chapter 7* ;  1970c)]. Other 
partial comparability cases can also be considered, e.g. partial level comparability. 
Measurability parameters can also be taken to be partial, e.g. partial cardinality. 75 

An important contrast between the results dealing with such "partial" frame­
works and the results of "pure" types reported earlier relates to the output of the 
aggregation exercise and correspondingly to the way the invariance requirement is 
defined. If the demand is for a complete social ordering, as with SWFLs, it is 
natural to require that if some rule leads to xRy for some n-tuple { u;}  in L, and 
to y P x for some other n-tuple { u; * }  in the same L, then that rule is to be 
rejected altogether. This is what the invariance requirement specified in Section 
6.1 - and used in most of the literature- does. This can be called "global" 
in variance requirement. The alternative-the " local" requirement- is less restric­
tive and works especially well for cases of partial comparability. It insists only on 
the social preference being a quasi-ordering, and in the case of an inconsistency 
over some pair- as in the example above - it leaves that pair unranked. Only 
those pairs that are consistently ranked by all { u; }  in L are then ranked in the 
social preference. The contrast between the two approaches can be illustrated by 
remarking that with utilitarianism and ordinal non-comparability, the global 
approach will record an inconsistency, while the local approach would simply 
assert the Pareto quasi-ordering.76 While the global approach has received a good 
deal more attention than the local one, there is much to be said for the wasteless 
use of available information that the local approach permits. 77 Since completeness 
of social ordering is a demanding requirement - as we have discussed earlier- a  
more thorough exploration of the local avenue might well be rewarding. 78 

7. Informational availability and manipulation 

7.1 .  Problem types 

Under the broad hat of "aggregation" in social choice theory rest problems of 
quite distinct types. Among various bases of classification, one concerns the 

75See Sen (1970a, chapter 7 * ;  1979a), Blackorby (1975), Fine (1975a), Basu (1979), and 
Bezembinder and van Acker (1979). There are some similarities with Levi's (1974) treatment of 
" indeterminate probabilities". 

76 The contrast was explored in Sen (1970a), where the global approach was the one used in 
Chapters 8 and 8* and the local approach in Chapters 7 and 7*.  

77It is also possible to relax the requirement of consistency of social preference from transitivity to 
quasi-transitivity or acyclicity, and to consider non-binary formulations of social choice, in line with 
the procedures considered in Sections 3 and 4. 

78Another important problem concerns combining an n-tuple of "extended orderings" (including 
each person's interpersonal comparisons). The problem was first investigated by Suppes (1966), and it 
has received attention from Sen (1970a, chapter 9 * ;  1977b), Hammond (1976a), Roberts (1977, 
1 980b), Kelly (1978, chapter 8), Mizutani (1978), Suzumura (1983a), Gaertner (1983), and others. 
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interpretation of individual preferences R; (or utilities U;). These could reflect a 
person's conception of his own well-being, or -alternatively-his idea of what is 
good for the society [see Harsanyi (1955), Suppes (1966), Sen (1977c)]. To assert 
the distinction is not to deny that a person's conception of his own well-being 
may well take note of the welfare of the others in the society, but still the 
questions " what is best for the society?" and "what is best for me?" are different 
ones, even though they are clearly interrelated. 

At the risk of oversimplification we may distinguish between an exercise of 
" interest-aggregation" -wherein different people's personal interests are aggre­
gated - and that of "judgment-aggregation" -wherein different persons' judg­
ments about what is good for the community are aggregated.79 The typical 
formulationcpf the problem of the "fair division" of a cake among a group of 
cake-loving individuals illustrates the former.80 On the other hand, Borda's 
famous method of aggregating different views on the "merits" of a candidate to 
membership of the Academy of Sciences (later denounced - effectively-by a new 
member called Napoleon Bonaparte) was clearly addressed to the problem of 
aggregation of judgments. 

In an interest-aggregation exercise, the informational base of the individual 
orderings of the social states is particularly limiting, and it can be sensibly 
supplemented by additional information about rankings of different persons' 
positions in a given state (see Section 5) or by straightforward interpersonal 
comparisons of well-being and of gains and losses from change (see Section 6). 
This is the typical framework for economic planning [see, for example, 
Dobb (1955), Malinvaud and Bacharach (1967), Chakravarty (1969), Arrow and 
Kurz (1970), Heal (1973), Dasgupta and Heal (1979), Dasgupta (1982), and 
Majumdar (1983)]. Even when one person does the personal exercise of finding 
out what his "ethical preferences" should be [see Harsanyi (1955)], he may have 
to go well beyond just the n-tuple of individual orderings, bringing in interper­
sonal comparisons of utility, perhaps placing himself in the position of others [see 
Vickrey (1945), Harsanyi (1955), Rawls (1958), Suppes (1966), and Arrow (1963, 
pp. 14-15)]. 81 On the other hand, in judgment-aggregation exercises, especially in 
such institutional contexts as committee decisions, or elections, it may be very 
difficult to have room for anything other than mechanically recording people's 
preference rankings (or declared preference rankings). There the exercise may 
have to make do with the n-tuple of individual orderings only. If this - admittedly 
oversimplified - dichotomy is accepted, then it may well be the case that the 

79The distinction is explored in Sen (1977a). There could, of course, be mixed cases in which the 
aggregation exercise takes into account both judgments and interests of the people involved; for an 
example, see Graaff (1977). See also Bose (1975). 

80See Luce and Raiffa (1957, section 14.9) for a discussion of fair mechanisms for cake division. A 
different type of norm and a different class of ideas on fairness can be found in various concepts of 
" exf.loitation", on which see Roemer (1982). 

8 Recent contributions include Kern (1978) and Leinfellner (1978), among others. 
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Arrovian informational format is more relevant for some exercises - typically 
aggregation of judgments -while the richer informational structures analysed in 
Sections 5 and 6 are more relevant for others - typically aggregation of interests. 

Even when the Arrovian informational base of n-tuples of individual orderings 
is taken as appropriate, and institutional mechanisms are geared to this informa­
tional format, there remains the important problem of getting hold of the " true" 
orderings of social states by the individuals. 82 If the procedure for coll�cting this 
information is some type of voting mechanism, then the problem of guaranteeing 
" sincere voting" arises. This problem of "strategy-proof" voting procedures has 
been much investigated recently, and in the rest of this section this question is 
examined. 

7.2. Manipulability and dominant strategies 

That the characterisation of social choice in terms of social welfare functions 
abstracts from the "game aspects" of the problem was noted by Arrow (1951), 
conjecturing that "once a machinery for making social choices from individual 
tastes is established, individuals will find it profitable, from a rational point of 
view, to misrepresent their tastes by their actions" (p. 7). 83 A firmer conjecture 
about the potential manipulability of social choice mechanisms -with a persua­
sive defence- was presented by Vickrey (1960).84 And Dummett and Farquharson 
(1961) made a universalized conjecture: "It seems unlikely that there is any 
voting procedure in which it can never be advantageous for any voter to vote 
' strategically', i.e., non-sincerely" (p. 34, italics added).85 The recent investigation 
of the manipulability of voting mechanisms - starting with the contributions of 
Murakami (1968), Gibbard (1973), Pattanaik (1973) and Satterthwaite (1975) - has 
essentially confirmed these pessimistic conjectures. 

A voting scheme picks one social state x from a given set X of social states for 
any logically possible n-tuple of reported preference orderings (or ballots, for 
short) of X. A voting scheme is "manipulable" (not " strategy-proof") if and only 
if for some n-tuple of true individual preference orderings, there is at least one 
person k who can improve the outcome for himself by reporting a preference 

82 Much insight has been gained recently by experimental studies of behaviour and response [see 
Plott (1979), V. L. Smith (1979), Ordeshook (1980), and other recent contributions]. 

83 For an early conjecture of the manipulability result, see Hoag and Hallett (1926, pp. 396-397). I 
am indebted to Duff Spafford for this interesting reference. 

84 Majumdar (1956) presented reasons for expecting widespread manipulability of " issues", i.e. the 
possibility of gain from sponsoring unfavoured alternatives for strategic reasons. This type of 
manipulability has not yet been analysed as much as it seems to deserve. See, however, Luce and 
Raiffa (1957, section 14.8) and Pattanaik (1978, chapter 9), and on related problems of agenda 
manipulation, Campbell (1979) and Plott and Levine (1978). 

85 See also Farquharson (1956, 1969). 
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ordering different from his true one when others report true preferences. More 
formally, a voting scheme V( { R ; }) = x is manipulable if and only if for some 
{ R ; } ,  some k, and some Rj, V({ Ri })PkV({ R ; }) when Rj = R; for all i * k. A 
voting scheme is dictatorial if and o� if there is a person i . such that whichever 
element of the range of V( · ) he ranks highest in his ballot is invariably the 
element that is chosen by the voting mechanism. 

Gibbard-Satterthwaite manipulability theorem 
Every non-dictatorial voting scheme with at least three distinct outcomes is 
manipulable. 

Gibbard (1973) establishes this theorem as a corollary of another one dealing 
with "game forms" in general, of which voting schemes are special cases. A game 
form does not restrict the strategies to be chosen by the individuals to the 
orderings of social states, i.e. to ballots, and each person i 's strategy set S; can be 
any set of signals. A game form specifies an outcome x from a given set Y for 
every n-tuple of strategy choice (s1, . . .  , sn) with s; E S; for all i (that is, a game 
form is a mapping from the Cartesian product of strategy sets of individuals to 
the set Y of outcomes). A voting scheme is a game form such that the strategy set 
S; of each person is a set of declared orderings (ballots) of a set X of social states 
including the set Y of outcomes. A game form is " straightforward"86 if for each 
person i and for any preference ordering of the outcomes that he might have, he 
has a dominant strategy, i.e. a best strategy with respect to his ordering of the 
outcomes irrespective of what the strategies of others might be. A game form is 
dictatorial if there is a person k such that for every outcome x, there is a strategy 
sk(x) for k such that if k chooses sk(x), then the outcome must be x, no matter 
what others choose. (It is readily checked that a dictatorial voting scheme must be 
a dictatorial game form.) Gibbard's theorem about game forms in general - rather 
than about voting schemes in particular- is the following: 

Gibbard's non-dominance theorem about game forms 
No non-dictatorial game form with at least three possible outcomes can be 
straightforward, i.e. in every non-dictatorial game form, there is at least one 
person who does not have a dominant strategy for some preference ordering of 
the outcomes. 

The existence of dominant strategies for everyone for every possible preference 
n-tuple would, of course, be a pretty demanding requirement, so the Non-domi­
nance Theorem is not really counter-intuitive. But, as Gibbard notes, the Manipu-

86 This concept, like many others in this part of the literature, was introduced by Farquharson (1956, 
1969). One of the other notions introduced by Farquharson, viz. " sophisticated voting" (based on 
successive elimination of dominated strategies), has been very fruitfully investigated recently by Brams 
(1975), Pattanaik (1978), Moulin (1979, 1983), and others. 
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lability Theorem follows immediately from this Non-dominance Theorem. If the 
voting scheme were non-manipulable, then everyone must have a dominant 
strategy, viz. recording his true preference irrespective of what others do. Since 
Gibbard establishes -most elegantly- the Non-dominance Theorem, he obtains 
the Manipulability Theorem directly from it. 87 

The analytical connection between the Gibbard-Satterthwaite theorem and the 
Arrow theorem has been widely noted. It is possible to define social preference R 
with respect to a voting scheme such that for a voting scheme to be strategy-proof, 
that social preference relation R has to be determined by an Arrovian social 
welfare function satisfying pair-relational independence 12• The demand for a 
non-manipulable, non-dictatorial voting scheme with at least three outcomes can 
then be translated as the demand for a social welfare function satisfying Arrow's 
conditions U, P, I and D. Since the latter demand cannot be met, neither can the 
former.88 

This close correspondence between impossibility results on the existence of 
reasonable social decision procedures and impossibility results about manipula­
bility of voting schemes applies also to extensions and variations of the Arrow 
impossibility result. This has been investigated for cases involving many varia­
tions, such as non-transitive social preferences, non-binary social choice, prob­
abilistic social preference, cardinal individual utilities, infinite set of voters, 
restricted domain of social welfare functions, etc., and a number of striking 
correspondence results have been established. 89 

7.3. Manipulability with multiple outcomes and with counterthreats 

The Gibbard-Satterthwaite Manipulability Theorem is constrained by two rather 
limiting features of the chosen characterization of manipulability. First, the voting 
schemes (and more generally the game forms) are characterized as having a 
unique outcome x for any combination of ballots (more generally, strategies). 
Second, the formulation of the optimum choice of strategy does not give any 
room to strategic responses by others and considerations of "counterthreats" are 
not brought in. 

87For other proofs of the Gibbard-Satterthwaite manipulability theorem, and related matters, see 
Satterthwaite (1975), Gardenfors (1976), Jain (1977b), Pattanaik (1978, chapter 5), �chmeidler and 
Sonnenschein (1978), Batteau and Blin (1979), Chichilnisky and Heal (1979), Dasgupta, Hammond 
and Maskin (1979), Barbera (1980b), Batteau, Blin and Monjardet (1981), Moulin (1983), and Peleg 
(1984). 

88See Gibbard (1973), Satterthwaite (1975), Schmeidler and Sonnenschein (1978), and Pattanaik 
(1978). In fact, the correspondence applies not merely to voting schemes but also to the more general 
case of game forms, and Gibbard established. his Non-dominance Theorem by using the Arrow 
imrsossibility result. 

9The literature is quite vast. For good accounts of the main results, see Kelly (1978), Pattanaik 
(1978), Kim and Roush (1980a), Moulin (1983), and Peleg (1984). 
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Gibbard's (1973) investigation of manipulability was, in fact, paralleled con­
temporaneously by a similar qploration by Pattanaik (1973), who did not 
however insist that the voting scheme must yield a unique outcome x, but rather 
that it could specify a non-empty subset C(X), the choice set of X. Pattanaik's 
results were indeed much less negative-in fact, he established some positive 
possibility theorems requiring that voting schemes should be able to specify a 
subset C(X), rather than invariably a single state, and he used "maximin" 
behaviour in choosing over subsets of outcomes. 90 

Once non-unique outcomes are admitted, there is need for supplementing the 
voting mechanism by specification of (i) rules about how to break ties, and (ii) 
characterization of how the people involved would behave faced with uncertainty 
about the final outcome (from the subset specified by the voting mechanism). 
Gibbard (1977) has extended the manipulability result to the case of a pure 
lottery mechanism in selecting a Pareto efficient final outcome, and a behaviour 
pattern that relies entirely on expected utility maximization. A similar result 
about the impossibility of a non-dictatorial and non-manipulable mechanism can 
also be arrived at by a much weaker requirement on behaviour under risk 
provided the mechanism satisfies a rather stringent condition of "positive re­
sponsiveness" of the subset C(X) to individual preferences [see Barbera (1977a)]. 91 

Since "positive responsiveness" of mechanisms as well as individual behaviour 
based entirely on expected utility maximization are both demanding assumptions, 
the investigation has been continued into cases with less stringent specification. A 
variety of impossibility results have emerged under alternative combinations of 
requirements, with specific attempts to make the restriction on behaviour as weak 
as possible [see especially Barbera (1977b), Pattanaik (1978), Macintyre and 
Pattanaik (1981), and Peleg (1982)]. The main message to emerge from all this 
literature is that while the original manipulability result does need substantial 
revision when the voting mechanism is not required to yield unique outcomes, the 
pessimism about finding non-dictatorial and non-manipulable mechanisms re­
mains well-grounded. 

The same general message emerges from the investigation of manipulability 
defined more stringently by taking into account counterthreats. Various alterna­
tive ways of characterizing behaviour in the presence of response of others has led 
to different formulations of "strategy-proofness",92 but in each case the pessi­
mism about non-manipulable and non-dictatorial voting mechanisms seems to 

90See also Gardenfors (1976, 1979), Gardner (1977), Kelly (1977), Pattanaik (1978), and Sengupta 
(1980a). 

91 See also Barbera and Sonnenschein (1978), Kelly (1978), Pattanaik (1978), Barbera (1979, 1980a), 
Feldman (1979, 1980b), Dutta (1980b), and Sengupta (1980a). 

92 See Pattahaik's (1978) distinctions between Types II, III and IV of strategy-proofness (Chapter 6). 
Type I is strategy-proofness or manipulability in the absence of any response, or counterthreats, by 
others. See also Pattanaik and Sengupta (1980). 
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re-emerge in the reformulated format [see, especially, Pattanaik (1976b, 1976c, 
1978)]. The impossibility of reasonable voting procedures that would be non­
manipulable seems to survive a good deal of variation in the requirement of 
reasonableness of such procedures and in the characterization of non-manipula­
bility. 93 

7. 4. Equilibrium, consistency and implementation 

The focus on "honest" revelation of preferences in the literature surveyed above 
has come under serious scrutiny in recent years. If the object of the exercise is 
effectiveness in the sense of getting an appropriate outcome (rather than having 
the moral glory of everyone being perfectly honest in reporting their preferences), 
then the thing to investigate is the existence of an effective mechanism rather than 
a strategyproof one. If, for example, a non-strategy-proof voting mechanism 
yields an equilibrium of dishonest behaviour that produces the same outcome as 
honest revelation of preferences would have, then the mechanism could well be 
regarded as successful in terms of effectiveness. 

Various alternative ways of characterizing an "equilibrium" have been consid­
ered. Obviously, there is no advantage in asking for a dominant strategy equi­
librium, for the Gibbard Non-dominance Theorem is exactly concerned with this 
case.94 Perhaps less obviously (but obviously enough), there is not much point in 
asking for a voting mechanism that yields truthful ballots as Nash equilibria. If 
such a mechanism were to exist, then everyone's honest strategy would be his best 
strategy given the honest strategy choice of others, and these latter could be any 
set of strategies at all. Thus a mechanism that guarantees that any n-tuple of 
honest strategies must be a Nash equilibrium, would also guarantee that honest 
strategies must be dominant strategies. Since the latter requirement would lead to 
impossibility, so would the former. 

Hence, in this framework, if the solution concept is based on Nash equilibrium, 
then one must admit dishonest strategies as well, and be content with Nash 
equilibria such that they yield the same outcome as the true preferences would. 

93 See also Sengupta (1978a). 
94 Gibbard's (1973) " Non-dominance Theorem" is, of course, not a result concerned with honesty as 

such. It translates into a theorem about manipulability only because with ballots as strategies, an 
honest strategy has to be a dominant one. For general game forms, truth may not require dominance 
in this sense. For example, in seeking implementation rules for optimum allocation of public goods the 
strategies in the Groves-Ledyard mechanism in the form of declaration of " the increment (or 
decrement) of each public good the consumer would like to add (or subtract) to the amount requested 
by others" [Groves and Ledyard (1977, p. 796)] must make the truthfulness of such strategies 
dependent on the declaration of others. The absence of non-dominant strategy equilibrium as 
identified by Gibbard's Non-dominance Theorem, in this more general context, implies nothing about 
an equilibrium of sincere strategies. See also, Green and Laffont (1979), Dasgupta, Hammond and 
Maskin (1979), Laffont and Maskin (1981), Chichilnisky and Heal (1981), for various aspects of 
incentive compatibility. 
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Peleg (1978) calls a voting mechanism to be "exactly consistent" if and only if 
" for each profile of true preferences of individuals, it possesses a Nash equi­
librium point which yields the same social choice as that corresponding to the 
profile of true preferences" (p. 153).95 It turns .out that a very wide class of voting 
mechanisms are exactly consistent in this sense, as demonstrated by Dutta and 
Pattanaik (1978). Voting mechanisms that are exactly consistent and furthermore 
not distorted by manipulation of preferences by coalitions are called by Peleg 
"exactly and strongly consistent". The score here is much more divided, and the 
existence of exactly and strongly consistent voting mechanisms depends on the 
minimal number of persons in a coalition that makes it a "winning" group, 
compared with the numbers of persons and social states [see Peleg (1978)].96 If 
there are at least as many states as there are persons, then at least one person 
must have a veto. 

It is possible to broaden the format of the problem by permitting the use of a 
game form G different from the function F used for making the normative 
judgment (e.g. the social welfare function or social choice function). The problem 
can then be formulated as that of finding a game form G such that for any 
preference situation, the best social state as judged by F would be yielded by G, 
as an equilibrium outcome [see Pattanaik (1978), Maskin (1978, 1979a), and 
Roberts (1979)]. The parallel literature on public goods and " revelation of 
preferences" has been concerned with variants of this type of formulation.97 

Gibbard (1978) has presented, in this type of format, an impossibility result 
which parallels Arrow's theorem. Gibbard permits the normative judgment to be 
based on richer information than Arrow-type social welfare functions, and indeed 
in effect takes a social welfare functional SWFt satisfying unrestricted domain, 
the weak Pareto principle and the absence of a "weak dictator" (i.e. non-existence 
of a vetoer), and yielding a social ordering of judgments. However, the game form 
used for implementation defines a " social choice function" SCF that -by virtue of 
the combination of two postulated axioms - is made to relate social choice over 
each pair to individual preferences over that pair. Thus, despite the cardinality of 
the individual utility function, a condition much like pair-choice independence 
(Condition I� ) holds for the implementation mechanism (not necessarily for the 
SWFL). Assuming that there are at least four distinct social states, Gibbard 

95 See also Dummett and Farquharson's (1961) characterization of " majority games". Exact con­
sistency is quite a mild requirement. There can be many Nash equilibria, only one of which might be 
" desirable" (in terms of true preferences), and most of which could be terrible. Contrast Hurwicz and 
Schmeidler's (1978) insistence on at least Pareto optimality of all Nash equilibria. 

96 See also Dutta and Pattanaik (1978), Pattanaik (1978), Maskin (1979a), Dutta (1980b, 1983), 
Pattanaik and Sengupta (1980), Peleg (1982), and Moulin (1983). 

97 Dasgupta, Hammond and Maskin (1979) have provided an extensive treatment of this class of 
problems. See also the literature cited there on the related problem of incentive compatibility, starting 
with the pioneering contribution of Hurwicz (1962). 



1136 Amartya Sen 

demonstrates that it is impossible for such a social choice function to guarantee 
that only those elements that are optimal with respect to the SWFL will be 
chosen. 

Note that the approach used here dissociates the discipline of social judgment 
from the act of marshalling individual utility information to pick what would be 
regarded as best points according to that procedure of social judgment. 98 The 
richer informational structures used in Section 6 - involving interperso1;1al com­
parisons - are in principle admissible for making social judgments, but in fact 
they can't be used in implementation because of the limitation of the signalling 
device of individual preferences pair by pair. These signals reflect individual 
choices " when players who are guided by their true utilities interact strategically" 
[Gibbard (1978, p. 158)]. Despite the different formulation of the exercise, the 
impossibility result turns out ultimately to be rather similar to Arrow's impossibil­
ity theorem in the version involving non-comparable cardinal utility (presented in 
Section 6.2). As Gibbard (1978, p. 163) puts it: 

" . . .  if we take the conditions needed for a cardinal version of the Arrow 
theorem (Sen, 1970 [1970a here], p. 129), there are only two differences. One 
is that Arrow's non-dictatorship condition is weaker than the condition of 
No Weak Dictator given here. The other, more crucial difference is that 
Arrow has a strengthened version of the condition of Optimality. Optimality 
here requires that all members of the choice set of the SCF be best feasible 
alternatives; Arrow requires in addition that all best feasible alternatives be 
included in the choice set." 

I end with some less discouraging remarks. First, various other types of 
" implementation" problems can be and have been considered, e.g. implementing 
social choice correspondences rather than specifically social choice functions, and 
some of these offer positive possibilities for both Nash equilibrium and strong 
equilibrium [see Moulin and Peleg (1982), Peleg (1982), and Moulin (1983)). 
Second, procedures such as " voting by veto" [Mueller (1978)], while unattractive 
in some respects, do offer scope for true revelation of preferences [Barbera and 
Dutta (1982)] as well as for exact and strong consistency [Dutta (1983)]; see also 
Moulin (1983). Third, domain restriction can play an important part in making 
manipulability less of a problem. Indeed, the requirement of unrestricted domain 
is very limiting in many economic contexts, e.g. when people can be relied upon 
to prefer more to less. [On implementational possibilities with domain restriction, 
see particularly Dasgupta, Hammond and Maskin (1979).] In the more traditional 
format in which strategies take the form of preference rankirigs, the necessary and 
sufficient conditions for strategy-proofness have been identified by Maskin (1976a), 

98A similar approach was used earlier by Campbell (1976), as Gibbard notes. 
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Kalai and Muller (1977), and Ritz (1981).99 In the format of "consistency", with 
strategies restricted to preference rankings, but with various different solution 
concepts (such as Nash equilibrium, the core, exact and strong consistency, etc.), 
Dutta (1980b), Peleg (1982) and others have provided extensive investigations of 
the domain restrictions that are adequate for the purpose at hand. 

Further, a consequence of combining unrestricted domain, �e weak Pareto 
principle and - in the particular context of implementation- independence, is to 
produce a "neutrality" result (see the Field Expansion Lemma in Section 2, and 
the Strong Neutrality Theorem in Section 6). This has the effect of ruling out any 
essential use of non-utility information for implementable social welfare judg­
ments. Since many public decision procedures are based on direct use of non-util­
ity information (e.g. in providing social security to the hungry, the ill, or the 
unemployed) rather than on expressed utility information (e.g. basing social 
security on expressions of disutility from hunger or joblessness), the informational 
base for practical decision-taking is indeed a good deal wider than is allowed by 
the implementation mechanisms characterized in these exercises. 

Finally, the assumption that each individual's choice depends exclusively on the 
pursuit of personal utility or preference in a strategic way, irrespective of other 
considerations, may not be very realistic [see Johansen (1976), Sen (1977c)]. 
Indeed, within the limits of such an assumption there is some difficulty in 
explaining why people are ready to take the trouble of voting at all in large 
elections.100 The assumption is particularly galling when the social choice exercise 
is taken to be one of aggregation of judgments about what is best for society, 
rather than of aggregation of personal interests. 

8. Domain restrictions 

8. 1 .  Restricted preferences and voting outcomes 

After establishing the impossibility theorem, Arrow (1951) had proceeded to 
suggest an escape route through a domain condition that is called " single-peaked 
preferences" [see also Black (1948)]. If individual preferences happen to be 
single-peaked and if the number of voters happens to be odd, then the method of 

99The famous Arrow-Black condition of "single-peaked preferences" turns out to be inadequate for 
strategy-proofness [see Blin and Satterthwaite (1976)]. See also Moulin (1980). 

HJO on various aspects of this complex problem, see Downs (1957), Barry (1965, 1970), Olson (1965), 
Tullock (1968), and Riker and Ordeshook (1968, 1973), among others. The possibility of a single voter 
affecting the outcome is related to the probability of " ties", and this probability is very low for large 
communities. Chamberlain and Rothschild (1981) show that in an election with 2 n  + 1  voters, the 
probability that any one voter casts the decisive ballot is of the order 1/n . 
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majority decision would yield transitive social preference [Arrow (1951, theorem 
4)]. Roughly speaking, single-peakedness requires that the set of social states can 
be so arranged on a line that the utility curve ("intensity of preference") of 
everyone would be unimodal - either monotonically rising, or monotonically 
falling, or rising up to a maximum and falling thereafter. Such a cm�dition looks 
plausible if everyone votes according to some one characteristic, e.g. how " left­
wing" the alternative is. If the states are lined up according to that characteristic 
(the more left on the line, the more left-wing the alternative), then the voters' 
preferences - under the postulated one-characteristic system of ranking - can be 
represented from left to right as rising uniformly (" the extreme right-wing 
hyenas"), falling uniformly (" the extreme left-wing creeps"), or rising up to the 
point of "optimum" left-wingness and falling thereafter (variants of "wishy-w11;shy 
centrists"). 

Since transitivity is a property of triples, it is immediate that the required 
conditions can be weakened-without losing the result -by demanding single­
peakedness over triples even if the set of all alternatives cannot be so arranged. 
Other extensions appear natural, e.g. having " single-caved preferences" [Vickrey 
(1960), Inada (1964b), and Ward (1965)]. Indeed, this type of condition leads to a 
generalized condition called " value restriction". To motivate this generalization, 
note that single-peakedness over a triple requires that if x, y, z is the order in 
which they are arranged, then for anyone i for whom xR; y, it must be the case 
that y P; z. But this condition is equivalent to demanding that for all i, not (xR; y 
and z R i y ), and it can be seen as simply restricting y from being a " worst" 
alternative in anyone's preference order over that triple. Value restriction requires 
that for any triple x, y, z, there is at least one alternative, say y, and at least one 
" value" (viz., "worst", "best" or "medium") such that in no one's preference 
ordering does that alternative have that value. Since individuals who are indiffer­
ent over all three alternatives in a triple do not sway the majority voting outcome, 
indifference over the triple need not be ruled out, and such people are called 
" unconcerned" over that triple. Let H(x, y, z )  be the set of people who are not 
unconcerned ("concerned") over that triple. 

Value restriction (VR) 
Individual preferences are value restricted over X if for every triple in X, there is 
an alternative, say x, such that the following condition holds, denoting the other 
two alternatives as y and z : [Vi E H(x, y, z) : xP; y or xP; z] or [Vi E H(x, y, z) :  
yP; x  or z P; x] or [Vi E H(x, y, z) :  (xP; y & xP; z) or (yP; x  & zPi x)]. 

Arrow's theorem about single-peaked preferences, suitably generalized, can 
cover all value restricted preferences [Sen (1966) and Majumdar (1969b)]. 
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Value restriction SWF theorem 
If individual preferences are value restricted over X and the number of concerned 
individuals for every triple is odd, then the majority rule is a SWF, yielding 
(transitive) orderings. 

Since the arbitrary condition of oddness of number is a bit of a peculiar 
restriction, the following result is rather less ad hoc [Sen (1969)]. 

Value restriction SDF theorem 
If individual preferences are value restricted, then the majority rule is a quasi­
transitive social decision function QSDF. 

As far as full transitivity is concerned, a sufficient condition is Extremal 
Restriction, requiring that if anyone i has an antisymmetric (strict) preference 
order over a triple, x P; y & y P; z, then no one j should partially oppose this by 
preferring z to x without having exactly the opposite preference of i (that is, 
either not z P1 x, or z lJ y & y lj x). 101 

Extremal restriction (ER) 
Individual preferences are extremal restricted over X, if for every triple x, y, z E X, 
(3 i : xP; y & yP; z) = ['Vj: zP1 x = (zP1 y & yP1x)]. 

Not only is ER sufficient for transitivity of majority decision, it is also 
necessary in an interesting sense. A domain restriction for some property of the 
range (e.g. that social preferences be all transitive) is necessary, in this sense, if 
every violation of the restriction leads to a list of preference orderings such that 
some assignment of these orderings over some number of individuals would lead 
to the violation of that property of the range (e.g. would lead to intransitive social 
preference). The following theorem was established by Sen and Pattanaik (1969), 
and an essentially equivalent result was proved by Inada (1969). 102 

Necessary and sufficient preference restriction for majority rule (SWF) 
The necessary and sufficient restriction of preferences for the majority rule to be a 
SWF (in particular, to yield transitive social preference relations) is extremal 
restriction. 

As far as the weaker demand of social decision functions are concerned, 
yielding acyclic social preference relations, the required restriction is less exacting. 

101 While ER was proposed in this form in Sen and Pattanaik (1969), Inada's (1969) "dichotomous 
preferences", "echoic preferences" and " antagonistic preferences" together cover exactly the same 
ground. 

102 See also Inada (1970), Kelly (1974a), Kaneko (1975), and Chichilnisky and Heal (1983). 
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It is necessary here to introduce a further condition, viz. one that demands that in 
every triple there is a limited agreement to the effect that some pair is weakly 
ranked by everyone in the same way. 

Limited agreement (LA) 
Individual preferences satisfy limited agreement over X if in every triple there is a 
pair, say (x, y ), such that for all i, xR; y. 

Necessary and sufficient preference restriction for majority rule (SDF) 
The necessary and sufficient restriction of preferences for the majority rule to be a 
SDF (in particular, to yield acyclic social preference relations) is that either 
extremal restriction, or value restriction, or limited agreement, be satisfied.103 

Inada (1970) showed that the necessary and sufficient restrictions for a majority 
rule QSDF are also exactly the same. 

With strict (antisymmetric) preferences, the necessary and sufficient condition 
in both cases is fulfilment of VR.104 

Necessary and sufficient conditions for voting rules other than majority deci­
sion, e.g. multi-stage majority decision rule, non-minority rule, semi-strict major­
ity rule, and other variants, have also received much attention, 105 but they will 
not be pursued here. 

A limitation of the "restricted preference" approach, on which the above 
results are based, may now be noted. The restrictions considered rule out certain 
types of preferences and impose no other condition about the number of people 
holding one type of preference or another.106 It is possible instead to investigate 
the domain conditions that have to be satisfied taking into account actual 
numbers of people holding different preference orderings. To this alternative 
approach, I turn in the next subsection. 

8.2. Number-specific domain conditions 

The credit for pioneering the approach of number-specific constraints should go 
to Nicholson (1965) and Tullock (1967). Tullock's sufficiency condition for 

103 Sen and Pattanaik (1969). See also Sen (1970a), Pattanaik (1971), Taylor (1971), and Fishburn 
(1972a, 1973a). 

104Sen and Pattanaik (1969), Sen (1970a), and Pattanaik (1971). 
105See Pattanaik (1971), Kelly (1971, 1974a, 1978), Davis, De Groot and Hinich (1972), Fishburn 

(1972a, 1973a),  Blin (1973), Sloss (1973), Kramer (1973, 1977), Ferejohn and Grether (1974), Kuga 
and Nagatani (1974), Saposnik (1974, 1975a, 1975b), Salles (1975, 1976), Blin and Satterthwaite 
(1976), Deb (1976), Plott (1976), Schofield (1977a, 1983a, 1983b), Slutsky (1977), Peleg (1978, 1984), 
Chichilnisky and Heal (1983), Kim and Roush (1980a), and Blair and Muller (1983). 

106In fact, the meaning of "necessity" is ambiguous in this context. For other characterizations, see 
Pattanaik (1971) and Kelly (1974a), among others. 



Ch. 22: Social Choice Theory 1141 

transitive majority rule has been subsequently generalized - most powerfully by 
Grandmont (1978) - and it may be useful to consider Tullock's characterization in 
some detail. Consider a real plane E2• For any voter i, let a;, a point in E2, 
represent his or her best alternative, all alternatives are ranked by i entirely on the 
basis of their distance from a;. The indifference curves for everyone are, thus, 
circles with centre a;, not necessarily the same for different individuals.107 Tullock 
assumes that the sets of a;, that is the "centres" (or best points), are symmetri­
cally distributed over a rectangle with centre a *. The majority relation must then 
be transitive. 

The Tullock conditions are suitable for generalization in many different ways. 
First, the uniform distribution over a rectangle can be replaced by other distribu­
tions with similar effect, e.g. uniform distribution on the boundary of a rectangle 
with centre a *, or on a disc (or on its boundary) with centre a*. Second, instead 
of a plane, an m-dimensional characterization can be chosen, and the result 
correspondingly generalised [see Davis, DeGroot and Hinich (1972)]. The im­
portant point about Tullock's example is that every line through a* cuts the 
distribution of voters (i.e. of a;) into two parts of equal measure, and every line 
that does such an equal division goes through a*. These properties have been 
generalized by Grandmont (1978). 

For Grandmont, preference ordering Ra is defined by a, belonging to an open 
convex subset A of En. The family of the preference relations (Ra) a E A  satisfy a 
weak continuity property H.1, viz. the set { a  E A I xRa y }  is closed in A. There 
is, in addition, the regularity condition H.2 that if a is a strictly convex 
combination of a' and a", then Ra must be " intermediate" between Ra' and 
R a"• in the sense that Ra' (resp. Ra,) must be a subrelation of Ra conditionally 
on Ra" (resp. Ra') holding over the relevant ordered pair.108 Finally, Grandmont 
assumes that the distribution of individual preferences represented by the distri­
bution of a; satisfies the property that there exists some a* in A such that every 
hyperplane through a* produces equal proportions of a; in the two closed half 
spaces, and every hyperplane with that equal division characteristic goes through 
a *  (condition M.1). 

1071! is tempting to think-and has been often suggested- that this is a generalization of Arrow's 
single-peaked preferences from a line to a plane. It is certainly true that both sets of conditions satisfy 
the condition that on any line from the most preferred point, the further away one goes the less one 
likes the alternative. On the other hand, while that is all that is required in the case of single-peaked 
preferences, with Tullock's condition two points at the same distance from the most preferred 
alternative must be indifferent, irrespective of the direction in which one moves (in the case of 
single-peaked preferences which permits movements in two opposite directions, no such requirement is 
imposed). Furthermore, the circular shape of indifference curves has to be supplemented by some 
assumption about uniform distribution of ai , to get Tullock's result. 

108That ls, for any x, y, given x Ra' y, (xRa" y => xRy) & (xPa" y => xPy), and given xRa" y, 
( x R a' y => x Ry)  & (xPa' y => xPy). Grandmont's own statement is somewhat different, but 
equivalent. 
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Grandmont's theorem on intermediate preferences 
Conditions H.1, H.2 and M.l imply that the majority preference relation must 
coincide with Ra•· 

As an immediate corollary, the transitivity of the majority relation follows from 
the transitivity of Ra., when individual preferences are taken to be transitive. 

In interpreting Grandmont's result, it should be noted that unlike in, Tullock's 
example (with circular indifference curves) the structure of individual preferences 
is given a great deal of latitude here, requiring only that the family of such 
preferences should satisfy a weak continuity property and the " intermediate 
preference" condition. On the other hand, condition M.l retains the demanding 
numerical requirement that every hyperplane through a*  would split the voters 
in two equal halves. However, Grandmont Shows that this condition can be 
relaxed substantially.109 

Another interesting feature of Grandmont's result is that it produces a distribu­
tion of voters such that all preference orders except Ra• in effect either cancel 
each other out in a majority contest, or reinforce Ra• by pulling in opposite 
directions. This idea of preference order combinations neutralizing each other, 
leaving an intermediate ordering ruling the roost, has been explored by other 
writers as well [e.g. by Nicholson (1965), Plott (1967), Saposnik (1975a), Slutsky 
(1977, 1979), Gaertner and Heinecke (1978), and Matthews (1978)]. Saposnik 
(1975a) shows the sufficiency (and under special conditions, also the necessity) of 
"cyclical balance" in which the same number of individual preferences belong to 
the "clockwise cycle" (xRyRz, yRzRx, zRxRy) as the number belonging to 
the "counter-clockwise cycle" (xRzRy, zRyRx, yRxRz). Gaertner and 
Heinecke (1978) have analysed "cyclically mixed preferences", which is a gener­
alization of Saposnik's notion of cyclical balance. They show that the majority 
decision relation is transitive if and only if it is cyclically mixed. 

Using a somewhat similar approach, Slutsky (1977) has provided a complete 
characterization of preference profiles that lead to consistent majority decision. 
The technique of analysis involves showing the equivalence of actual preference 
profiles to some hypothetical ones that are easier to analyse. The " transitive strict 
preference" (TSP) equivalence is constructed by replacing preferences with indif­
ference by a corresponding set of strict (i.e. antisymmetric) preferences. The 
profiles are reduced to the "equivalent irreducible society" by jettisoning groups 
of persons whose combined preferences would lead to indifference among all the 

109Grandmont also demonstrates that individual preferences being single-peaked or single-caved 
implies that the family will satisfy H.l and H.2, and furthermore with an odd number of voters a 
relaxed version of condition M.l (viz., his condition M) will also be fulfilled. Thus this provides an 
alternative way of proving Arrow's theorem about single-peaked preferences, and the corresponding 
theorem about single-caved preferences. 
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alternatives for that group under majority decisionY0 With these translations 
from actual to hypothetical preference profiles, in the "equivalent irreducible 
society", agreement among the members of a winning coalition dominates the 
social ranking and gives it the required consistency. 

These studies - and others -have substantially enriched our understanding of 
the consistency problems of majority rule and related decision procedures. 

Finally, two general comments on the number-specific approach to domain 
restriction may be worth making. First, even the domain conditions in the 
"exclusion" form of "restricted preference" can be given number-specific inter­
pretations, so that the line between the two approaches may be less sharply drawn 
than it may at first appear. For example, with single-peaked preferences and an 
odd number of concerned voters, when the median voter (in terms of the position 
of his " best" alternative) is identified, then it can be said that the number of 
people on "one side" of him is exactly equal to the number on the "other". Thus 
the single-peakedness characteristic can be translated into a condition requiring 
that such statements are well-defined (and true). Indeed, even Black's (1948) 
original theorem about single-peaked preferences took the form of asserting that 
the best alternative for the median voter will win [see also Black (1958, pp. 
16-17)].m 

Second, in order to make the exercise worthwhile, the number-specific condi­
tions must have some intuitive meaning that helps the interpretation of the nature 
of the preference configurations. Otherwise, there is the danger of merely translat­
ing the formal requirement of transitivity (or acyclicity) of the majority relation 
into a more elaborately stated -but equivalent -number-specific form. When 
N(x, y) is the number of people who prefer x to y, clearly a condition that 
asserts that for all x, y, z, [N(x, y) :2':: N(y, x) & N(y, z)  :2':: N(z, y)] = [N(x, z) :2':: 
N(z, x)], is a number-specific requirement for transitivity-irresistably necessary 
and sufficient, and obviously no less "general" than any other condition! The 
merit of the conditions proposed and the characterizations provided rests in their 
ability to capture patterns that have independent interest and interpretative value. 

8.3. Domain conditions for Arrovian social welfare functions 

While the majority rule is an interesting social choice procedures, it is by no 
means uniquely so. This leads to the interesting question as to what domain 

110 Gaertner and Heinecke (1978) undertake a similar " reduction". 
1 1 1 This, in fact, corresponds very closely to the form of Grandmont's Theorem on " intermediate 

preferences" discussed above, and it is for this reason that Grandmont (1978) could 
claim - correctly- that " the transitivity of the majority rule when preferences are single-peaked is 
indeed a particular case of the analysis of this paper" (p. 326). See also Fishburn (1972a), Denzau and 
Parks (1975), Saposnik (1975a), Hinich (1977), and Gaertner and Heinecke (1978). 
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conditions will be adequate when we are not confining our attention to majority 
rule only. In fact, the domain conditions for majority rule were arrived at in Sen 
and Pattanaik (1969) by arguments involving only certain characteristics of the 
majority nile, e.g. only strong neutrality and non-negative responsiveness in the 
case of value restriction. The method could be applied to various other types of 
choice procedures [see Pattanaik (1971)].112 Salles (1975) posed a more general 
problem- using a game-theoretic framework developed by Wilson (1972a) and 
Bloomfield (1971) -by asking for necessary and sufficient ·domain restrictions for 
a SWF satisfying certain general conditions, including independence and 
" Pareto-transitivity" (xRy and y unanimously preferred to z must together 
imply x P z ), and found the answer to be the fulfilment of either " value restric­
tion" or a rather demanding condition which he called "cyclical indifference".113 

A crucial question concerns the required domain restriction for a SWF satisfy­
ing Arrow's other conditions (viz., I, P and D), which can take the form of many 
rules other than majority decisions. For a particular class of restrictions, the 
necessary and sufficient conditions for this have recently been obtained by 
Maskin (1976a) and Kalai and Muller (1977)Y4 Let !?l x be the set of all 
orderings of X, the set of social states. The class of domain restrictions considered 
are characterized by specifying a subset !?l of !?l x' and restricting the domain of 
the SWF to !?l n, i.e. the SWF is required to specify a social ordering R for any 
n-tuple { R; }  with each R; E !?l.115 Maskin and Kalai and Muller concentrate on 
strict (antisymmetric) orderings only. 

The investigation is immensely simplified by a remarkable reduction result 
established by Maskin (1976a) and by Kalai and Muller (1977). It asserts that an 
n-person SWF (for any n � 2) satisfying I, P and D exists for a particular domain 
(in the class specified) if and only if such a 2-person SWF exists for that domain. 
This result permits an exact characterization, independently of n ,  of the permissi­
ble domain for SWFs satisfying Arrow's Conditions P, I and D [see Maskin 
(1976a, pp. 22-24) and Kalai and Muller (1977, pp. 462-463)], and this necessary 
and sufficient condition has been called "decomposability"Y6 

112 For various results related to domain conditions, see Craven (1971), Pattanaik (1971), Blin 
(1973), K. Fine (1973), Fishburn (1973a), Sloss (1973), Ferejohn and Grether (1974), Rosenthal (1975), 
Saposnik (1975b), Deb (1976), Kelly (1978), Salles and Wendell (1978), Slutsky (1979), Coughlin 
(1981), Brams and Fishburn (1983), and Chichilnisky and Heal (1983). 

1 13 Cyclical indifference requires that for any triple x, y, z, either all individual preferences are of the 
form a l; b & bP; c, or all of the form aP; b & bl; c, with a , b, c E  { x, y, z },  all distinct. See also 
Salles (1976). 

1 14See also Kalai and Ritz (1980). See also Kaneko (1975), Nakamura, (1978), Monjardet (1979), and 
Pelef (1982). 

11 Note that this restricts the permissible individual preferences rather than leaving them free but 
restricting permissible combinations of individual preferences. In this respect the Maskin-Kalai-Muller 
conditions are quite different from conditions such as "extremal restriction", " value restriction", or 
" single-peaked preferences", which - following Arrow's lead - investigate "similarity" (in a very broad 
sense) among the preferences of different individuals. 

1 16 See also Dasgupta, Hammond and Maskin (1979) and Kalai and Ritz (1980). 
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It appears that the domain restriction needed for a non-dictatorial and non­
manipulable voting mechanism (discussed in Section 7) is also exactly the same, 
viz. decomposability [see Kalai and Muller (1977, pp. 467-468) and Maskin 
(1976b)]. This identity helps to highlight the exact correspondence of the Arrow 
impossibility theorem about SWFs satisfying U, P, I and D and the Gibbard­
Satterthwaite impossibility theorem about strategy-proof, non-dictatorial voting 
mechanisms.117 

Having said that, however, it is worth mentioning that the domain restrictions 
have somewhat different roles in the two problems. In the context of Arrow's 
impossibility, the domain restriction is a statement about what actual preferences 
people can, in fact, have. If a similar restriction is applied in the context of all 
preferences in the manipulability exercise, then one is restricting not merely the 
preferences that people can actually have, but also the strategies that they are 
permitted to adopt. Even if a restriction (e.g. decomposability or value restriction) 
were reasonable as a description of actual preferences, it does not follow at all 
that such a restrictions would make sense in confining people's strategic choices 
of ballots (i.e. reported preferences). If the restriction of domain in the manipula­
bility exercise is applied to the true preferences without constraining the ballots in 
any way, then the relevant domain restrictions become a good deal more 
stringent.118 

8.4. Most unlikely? 

There is quite an extensive literature on the "probability" of transitivity of the 
majority relation and the existence of a majority winner.119 The calculations are 
typically based on assuming that every preference pattern is as likely as any other, 
and they tend to lead to most discouraging results, especially for societies with 
many people and -much more importantly- in choice situations with many 
alternative states. For large communities choosing over a large set of social states, 
the " probability" of a majority winner seems minute.120 But, it can be argued, 

1 17See also Blin and Satterthwaite (1976), Chichilnisky and Heal (1979, 1983), Kim and Roush 
(1980a), Satterthwaite and Sonnenschein (1981), Moulin (1983), and Peleg (1984). 

1 18 See Dutta (1977), Pattanaik (1978), Sengupta and Dutta (1979), and Pattanaik and Sengupta 
(1980). 

119See Guilbaud (1952), Riker (1961), Campbell and Tullock (1965, 1966), Williamson and Sargent 
(1967), Garman and Kamien (1968), Niemi and Weisberg (1968), DeMeyer and Plott (1970), Fishburn 
(1973a), Kelly (1974b, 1978), Gehrlein and Fishburn (1976, 1979), and Fishburn, Gehrlein and Maskin 
(1979). 

120 However, the probability that there is a majority winner is " substantially larger" than the 
probability that the majority preference relation be transitive. Indeed, the ratio of the latter to the 
former goes to zero rapidly as the number of voters is increased- a point that was established by 
Graaff (1965). 
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that this is an odd way of going about checking the actual probabilities, since 
individual preference n-tuples are results of social processes involving intercon­
nections, and preferences are not formed in real societies by an equal-chance 
lottery mechanism. Given such interconnections, the plausible preference n-tuples 
can quite possibly be more conducive to consistent majority decision. 

This is fair enough, but analyses of plausible preference patterns in many 
common circumstances have been hardly more encouraging. Krame,r (1973) 
established an important result by taking a case in which the set X of alternatives 
can be seen as points on a multi-dimensional real ,space (e.g. commodity space or 
policy space). If individual preferences are representable by quasi-concave dif­
ferentiable utility functions, even a very modest extent of heterogeneity of tastes 
would imply that value restriction (VR), limited agreement (LA) and extremal 
restriction (ER) will all be violated. Since these restrictions together constitute the 
necessary and sufficient conditions for a majority rule SDF in the approach of 
" restricted preferences" (see Section 8.1 ), the result seems damaging. In fact, 
similar problems can occur even without the assumption of quasi-concavity and 
even when the set X has no Euclidean metric properties at all, but has instead the 
structure of a differentiable manifold [see Chichilnisky (1976) and Schofield 
(1977a)]. Other decent burial grounds for majority rule have been found, and 
possibilities of total cycles involving all social states have been identified.121 

Pessimism reigns. But it is not altogether clear whether so much pessimism is 
appropriate. Consider the distinction between the interest-aggregation exercise 
and the judgment-aggregation exercise (discussed in Section 7.1 ). The assump­
tions about individual preferences made in models such as those of Kramer 
(1973) and others are reasonable enough for the interest-aggregation exercise; this 
is indeed how individual utility functions over private and public goods are 
typically characterized.122 But -as was argued earlier- for the interest-aggregation 
exercise the Arrow formulation of the problem may be informationally unduly 
restrictive, since it rules out the use of interpersonal comparisons of utility as well 
as the use of non-utility information except in very special circumstances.123 In 
particular, the majority rule may be a very odd way of doing resource allocation 

121 See McKelvey (1975, 1976, 1979), Schofield (1977, 1978, 1980, 1983a, 1983b), and Rubinstein 
(1979, 1980b). :The literature on majority decision on multi-dimensional space (with or without 
probabilistic voting, and with both "global" and " local" formulations) has developed vigorously in 
recent years, following Plott's (1967) pioneering formulation of the problem. For various distinct 
problems within this general approach, see Kramer (1973, 1977), Heal (1973, chapter 2), Kramer and 
Klevorick (1974), Nitzan (1975), Wagstaff (1976), Fishburn and Gehrlein (1977b), Hinich (1977), 
Kalai, Muller and Satterthwaite (1977), Slutsky (1977, 1979), Matthews (1979), Ordeshook (1980), 
Cohen and Matthews (1980), Coughlin (1981), and Couglin and Nitzan (1981), among others. 

122A classical burial ground for majority rule is the cake division problem with strictly monotonic 
preferences, wiili each preferring any division with more cake for himself. It is easy to show that with 
iliree or more people when all divisions are considered, extensive majority cycles will occur in this 
case. 

123 See Sen (1973, 1977b), Hammond (1976b), and Gevers (1979). 
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or economic planning,124 and richer informational structures may be needed (see 
Section 6). On the other hand, while the Arrow format might well be more 
appropriate for the exercise of aggregating judgments of different people as to 
what is good for society (e.g. whether "positive discrimination" should be 
pursued, whether tax systems should be more progressive, or whether multi­
national investments should be encouraged in developing countries), it is not at 
all clear that these preferences would have the characteristics on which the 
negative results were based. It is, therefore, possible to argue that while the 
negative results are of much analytical interest, they may not be altogether 
devasting either for the judgment-aggregation exercise, or for the exercise of 
aggregation of interests. 

9. Independence, neutrality and liberty 

9. 1. Independence and Bergson-Samuelson impossibilities 

In the preceding discussion various modifications of Arrow's social welfare 
functions SWF have been investigated, including- among other structures - social 
decision functions SDF (permitting non-transitive social preference), social choice 
functions SCF or functional collective choice rules FCCR (permitting non-binary 
social choice), and social welfare functionals SWFL (permitting the use of richer 
utility information). But the case of the Bergson-Samuelson social welfare 
function SWF, briefly outlined in Section 1, has not yet been further examined 
here. This lacuna is particularly important to fill since it has been repeatedly 
claimed that the Arrow impossibility theorem and related results do not affect the 
existence of Bergson-Samuelson social welfare functions in any way [see Little 
(1952) and Samuelson (1967a, 1967b, 1977)]. 

It has been pointed out that since the Bergson-Samuelson exercise is based on 
" individual tastes as being given", conditions of inter-profile consistency such as 
independence of irrelevant alternatives, are not to be imposed on the SWF in this 
case. And, it is argued, since the Arrow impossibility result is crucially dependent 
on the independence condition, the result can hardly affect the Ber�son­
Samuelson SWF. Indeed, "Arrow's work has no relevance to the traditional 
theory of welfare economics, which culminates in the Bergson-Samuelson formu­
lations" [Little (1952, pp. 423-425)]. "For Bergson, one and only one of 

124Under majority rule with self-seeking non-satiated preferences, social " improvements" can be 
persistently carried out by cutting the income of one person and dividing the loot among the rest (two 
or more), and this · " improving" process can go on until the fall-guy has no income left! See Sen 
(1977a). For examples of more standard economic and political problems, see Downs (1957), Frey 
(1978, 1983), and Usher (1981). 
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the . . .  possible patterns of individuals' orderings is needed" [Samuelson (1967 a, 
pp. 48-49)]. Hence, " it is not true, as many used to believe, that Professor 
Kenneth Arrow of Stanford has proved the ' impossibility of a social welfare 
function"' [Samuelson (1967b, p. vii)]_l25 In a formal sense that last statement, 
applied to Bergson-Samuelson SWF, is entirely correct, but it may be useful to 
examine why odd beliefs like this could flourish at such places as Stanford. 

For a SWF to be impossible some restrictions, obviously, would l;lave to be 
imposed on it. Until these are specified, " the impossibility of the traditional 
Bergson welfare function of economics", which Samuelson (1967a) rightly holds 
to be false (p. 42), is hardly worth commenting on. It does not appear to be 
Samuelson's intention to deny the need to fulfill the condition of unrestricted 
domain since the pattern of individuals' orderings "could be any one, but it is 
only one" (p. 49). Nor is the Pareto condition to be dispensed with since so many 
of the Bergson-Samuelson exercises seem to use this principle [see Samuelson 
(1947, chapter 8)]. Indeed, as Johansen (1970) pointed out in his illuminating 
examination of the relevance of Arrow's theorem for economic planning, "a 
Bergson welfare function is essentially nothing but such a social preference 
ordering which is positively associated with the individual preference orderings in 
the . . .  Paretian sense" (p. 42). If this is all that is required of a Bergson­
Samuelson SWF, then the question of its existence would be quite trivial since the 
Pareto quasi-ordering -like any other quasi-ordering-can be completed into an 
ordering. But this completion can be done in so many different ways, and the 
question would arise as to whether a "reasonable" Bergson-Samuelson SWF 
should not fulfill some additional conditions. Arrow (1951) presumably thought 
that independence and non-dictatorship would be such conditions, while Samuel­
son does not find independence reasonable in this context since he does not wish 
to impose any inter-profile consistency condition.126 

It appears, however, that the Bergson-Samuelson SWF has often been com­
bined with the requirement of " strong neutrality" within a given profile of 
individual preferences, and the so-called " individualistic" version of SWF makes 
social welfare a function of the vector of individual utilities: W = W( u ), viz. as in 
(6.2) presented in Section 6.4 [see Samuelson (1947, pp. 228-229, 246), Bergson 
(1948, p. 418), and Graaff (1957, pp. 48-54)]. But as was noted in establishing 

125Samuelson (1967a) denies that the Bergson-Samuelson SWF need not satisfy the independence 
condition: " my formulation builds it from the beginning into Axiom 1" (p. 47). But this appears to be 
the result of a misunderstanding, to wit: " if the ordering is transitive, it automatically satisfies the 
condition called ' independence of irrelevant alternatives' " (p. 43). Not at all so. 

126Note that even when independence is dropped from the Arrow framework, impossibility results 
can be generated by other types of inter-profile conditions. For a novel and interesting example of an 
impossibility theorem without the use of the independence condition, see Chichilnisky (1976, 1982a, 
1982b), who uses continuity as the inter-profile link. See also McManus (1975, 1978, 1982), and 
Ferejohn, Grether, Matthews and Packel (1980). 
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Arrow's impossibility theorem, one of the main uses of the independence condi­
tion (along with unrestricted domain and the Pareto principle) is precisely to 
precipitate a neutrality result (see Sections 2.1 and 6.4). In the " individualistic" 
case, it is handed on a plate. Even when the scope of the equation W = W( u) is 
restricted in a way consistent with the absence of inter-profile conditions, it still 
follows that if in a given profile x and y have exactly the same utility 
characteristics as a and b respectively (for x, y, a, b E  X), then the social order­
ing of x vis-a-vis y must be the same as the social orderings of a vis-a-vis b, for 
that given profile. Given the use of non-comparable ordinal utilities in the 
traditional Bergson-Samuelson framework, this limited neutrality condition can 
be formulated in this way. 

Condition SPN (single-profile neutrality) 
For any given n-tuple { R ; }  of individual preference orderings, for any x, y, a, b 
E X, not necessarily all distinct, if for all i, xR; Y = aR; b and yR;x = bR; a, 
then xf({ R ;  })y = af({ R ;  })b. 

What is the effect of imposing single-profile neutrality on a social welfare 
function f( · ) which is also required to satisfy weak Pareto principle P and have a 
domain with some diversity of preferences? It is that the social welfare function 
will be dictatorial in a " single-profile" sense, viz. there will be a person j such 
that all his strict preferences will be reflected in the social preference, for that 
profile. A variant of this result was first established by Parks (1976a), and others 
by Kemp and Ng (1976), Hammond (1976b), Pollak (1979), Roberts (1980c), and 
Rubinstein (1981). A "single-profile dictator" can, of course, have the same 
preference as everyone else. This won't then be a disturbing result and can indeed 
be a consequence of the Pareto Principle. Some of the authors establish their 
theorems with domains that have built-in "diversity" because of dealing with the 
space of income vectors, or of commodity distributions, or with directly-specified 
diversity. 127 

The proofs of these single-profile results go through easily enough - a good deal 
more easily than the proof of Arrow's impossibility theorem. Much of the effort in 
proving Arrow's theorem rests in establishing "neutrality", which is the main part 
of what we have called the Field Expansion Lemma (see Section 2.1), and this is 
simply given here by virtue of taking social welfare as a function of the vector of 
individual utilities (i.e. by assuming the social welfare function to be " indi­
vidualistic").128 The independence condition is used in Arrow's case to establish 

127See Rubinstein (1981) on the logical correspondence between single- and multiple-profile results. 
Note also that single-profile impossibility results do involve choosing a profile from the domain 
(unrestricted, or restricted to a permissible class). The fact that such a choice is involved must not be 
confused with the simultaneous use of several profiles (as in proving Arrow's multiple-profile 
impossibility theorem; see Section 2.1). 

l2R From the exchange between Kemp and Ng (1976, 1977) and Samuelson (1977), it would appear 
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this property, but since the property is given here, it does not have to be 
established. And since the end-product to be obtained is a single-profile dictator­
ship result (and not - as in Arrow's case - the much stronger multiple-profile 
dictatorship result), there is no further need for the inter-profile condition of 
independence. 

9.2. The Borda rule and the use of positional information 

With ordinal, non-comparable utilities, the single-profile neutrality condition took 
the coincidence of utility characteristics over two distinct pairs { x, y }  and { a, b }  
to imply that the society should rank { x ,  y }  in the same way as { a , b } .  In this 
description, no attention is paid as to whether or not there are 
other - "  irrelevant" - alternatives in between x and y, or in between a and b. 
One way of avoiding the impossibility result is to enrich the description by taking 
note of the position of other alternatives (including " intermediate" states between 
any pair) in each person's preference. Neutrality can be redefined to demand that 
x and y be ranked in the same way as a and b if they occupy the same position 
vis-a-vis each other and vis-a-vis other-"  irrelevant" -alternatives. Then the 
dictatorship consequence will be avoided.129 Indeed, this relaxation will yield 
enough freedom to demand the fulfillment also of some other appealing condi­
tions.130 The merits of rules that take note of such positional information, are not, 
of course, confined to avoiding Arrow's impossibility result.131 [Borda (1781), who 
put forward the first known formal rule based on such information, had presum­
ably not lost any sleep on Arrow's paradox.] 

The Borda rule can be seen as based on attaching a number to any alternative 
equal to the sum of its ranks in each person's preference ordering (e.g. in a 
3-person, 3-state world, if x is first in one person's ordering and third in the other 
two persons', then the "Borda count" for x is 3 + 1 + 1 = 5). The Borda rule ranks 
the states socially in the inverse order of these numbers. Recently, the Borda rule 

that it is not- indeed never was - Samuelson's intention to insist on neutrality. It is certainly the case 
that Samuelson (1947) made critical comments on this "extreme assumption" (pp. 223-224), and 
while this did not stop him from dealing extensively with cases in which this condition is fulfilled (pp. 
228-247), the traditions of economic theory do not, of course, permit one to deduce belief from 
extensive use. 

1290n issues raised by the case for relaxing independence, see Hansson (1973), Ray (1973), Mayston 
(1974, 1975, 1 980), Karni and Schmeidler (1976), Osborne (1976), Packard and Heiner (1977), Kelly 
(1978), and Pattanaik (1978), among others. 

130Indeed the eschewal of independence permits the use of a social welfare function based on 
Nash's (1950) solution of the bargaining problem; on this see Kaneko and Nakamura (1979) and 
Kaneko (1980). See also Luce and Railfa (1957), Sen (1970a), DeMeyer and Plott (1971), Yaari (1978), 
and Mayston (1982). 

1 31 See, for example, Moon (1976), Rubinstein (1980b), Nitzan and Rubinstein (1981), and Mays ton 
(1982). 
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has been nicely axiomatized involving a variable electorate [see Young 
(1974a, 1974b, 1975), and also Gardenfors (1973), Smith (1973), Fine and Fine 
(1974), Fishburn and Gehrlein (1976), Hansson and Sahlquist (1976), Gardner 
(1977), Farkas and Nitzan (1979), and Nitzan and Rubinstein (1981)]. 

Gardenfors (1973) and Fine and Fine (1974) have provided a thorough 
exploration of positional rules. These include " finite ranking rules", which are 
based on attaching weights according to the position occupied by an alternative in 
each person's ordering (the weights being non-decreasing function of ranks, 
applied in the same way to everyone's ordering, i.e. anonymously). The social 
ranking is made to reflect the ranking of the sum of weights on the different 
states. A special case of this is the Borda method. Another is utilitarianism with 
" utilities" taken to be reflected by positions. The intersection of all finite ranking 
rules yields a quasi-ordering exactly reflecting rank-dominance Rn, when xRD y, 
if and only if for some interpersonal permutation x occupies at least as high a 
position in each person's ordering as y does in the corresponding person's 
ordering, 132 The axiomatic structure of various positional rules analysed in recent 
contributions have enriched our understanding of the nature and operation of 
these important classes of decision procedures.133 

Positional discrimination can also be combined with the use of ordinal level­
comparable utilities, and the weights can be based on the rank of a " station" 
(x,  i ), i.e. that of being person i in state x, in an interpersonal order of the entire 
Cartes�an product of X and H. While the general format will be that of ranking 
social states according to the sum of weights on all stations involving that state, 
the interpersonal rank-order rule IROR corresponds exactly to the Borda rule, in 
making the weight on each station equal its rank number from bottom upwards.134 
If, for example, the ranking of nine stations involving three states and three 
persons is given by the following: (x, l), (y, 2), (z, 3), (x, 2), (y, 3), (z, l), (x, 3), 
(y, 1), (z ,2), then the majority rule will yield a preference cycle, the Borda rule 
will yield universal indifference, but IROR will yield the strict ordering xPy & 
y P z. While this coincides with the Rawlsian maximin (defined on utilities), a 
conflict between the two can be brought about by switching the positions of (x, 3) 
and (z, 2), which would leave the IROR ranking unchanged, but exactly reverse 
the Rawlsian ordering to z Py & y P x. It is perhaps worth mentioning that the 
" Rank-Dictatorship Theorem" (with Arrow-like conditions married to the invari­
ance restriction under ordinal level comparability OL), which was presented in 
Section 6.2, would not conflict with the possibility of interpersonal positional 
rules under OL because of the violation of the independence condition in these 
rules. 

1 32 Fishburn (1973a) has discussed such " permuted dominance" for strict orderings. Fine and Fine 
(1974) have provided extensive analysis- and axiomatic derivation - of rules of this type. 

133As a contrast, see also Brams and Fishburn's (1978, 1983) definitive exploration of "approval 
voting", which is a flexible voting procedure without use of positional data. 

134 Sen (1977b, section 5), Mizutani (1978), and Gaertner (1983). 
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In the last case, i.e. with interpersonal positional rules, the positional informa­
tion is used, as it were, to convert ordinal level comparability into some kind of a 
devised cardinal full comparability based on ranks in the extended ordering of 
X x H. In the case of ordinary positional rules, including the Borda rule, the 
positional information is used, as it were, to convert non-comparable ordinal 
utility information into assumed cardinal full comparability by building on the 
ranks in each person's ordering taken separately. It is the arbitquiness of 
translating rank values into numerical weights that is typically found to be the 
weakest aspect of both these classes of rules. Indeed Arrow's (1951) defence of the 
condition of independence rested partly on the need to avoid such arbitrariness. 

9.3. Independence versus collective rationality 

There are two ways of defining the Borda rule depending on whether the Borda 
counts are based on the ranks in the total set X, or in the set S from which the 
choice C(S )  is to be made, with S � X.  It can be easily checked that while the 
former, which may be called the "broad" Borda rule violates independence but 
yields a transitive social ordering, the latter, which may be called the "narrow" 
Borda rule, satisfies the independence condition but can yield non-binary choice 
functions. The "narrow" version has the merit of providing a social choice 
function - possibly non-binary- satisfying all of Arrow's conditions, viz. U, P, I 
and D. In this respect, the "narrow" Borda rule is a serious rival of social choice 
functions based on the transitive closures of the majority rule, investigated by 
Schwartz (1970, 1972), Bloomfield (1971), Campbell (1972, 1976), Bordes (1976), 
and Deb (1977), and discussed earlier in Section 4.1. 

Just as modifying the Borda rule from its usual broad version to its narrow 
variant takes one across the independence-binariness line, similarly changing the 
majority closure methods from their usual "narrow" formulations to the corre­
sponding broad variants will take one across the same line in the opposite 
direction. The broad version of the Weak Closure Method is defined by obtaining 
the transitive closure R� of the majority relation over the entire set X, and then 
identifying the choice set C(S) for any non-empty S � X  as the maximal set 
M(S, R�) of S.135 This process identifies a social welfare function in the sense of 
Arrow; R� is a (fully transitive) social ordering. It would, however, violate the 

135 Campbell (1976) presents, inter alia, the " broad" formulation of the Weak Closure Method as 
defining a "democratic preference function" satisfying the property of generating complete social 
orderings and fulfilling other requirements. Independence is violated, which, Campbell argues, 
" should be introduced, not as a normative restriction on the mapping of individual into social 
preference, but as a technical requirement the force of which is to ensure that a social preference 
function can be implemented by some iterative procedure" (p. 259). 
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independence of irrelevant alternatives, since the choice set C(S) will depend on 
individual preferences over the whole X, including X - S, and not merely over the 
subset S. (A similar possibility exists through using the broad version of the Strict 
Closure Maximality, based on PI.) 

The contrast between the narrow and broad versions of the familiar rules of 
Borda and the majority closures bring out the fact that the Arrow impossibility 
result is largely built on the tension between independence and collective rational­
ity over a large domain.U6 We can have independence or collective rationality 
(but not both) from these rules, depending on whether we choose the narrow or 
the broad version. There are other rules also of which narrow and broad versions 
could be contrasted with the same division between independent and non-binary 
procedures on one side and binary and non-independent procedures on the other. 
Indeed, all complete positional rules (including finite ranking rules) can be thus 
treated, as well as those variants of the majority rule that yield a complete but not 
necessarily transitive relation [e.g. Rmaj defined by Dummett and Farquharson 
(1961) and extensively studied by Pattanaik (1971)]. 

9. 4. Neutrality and the use of non-utility information 

It was argued earlier-in Section 6 - that an escape from the Arrow impossibility 
result could be found by enriching the information that could be used for social 
choice. The General Possibility Theorem builds on combining poor utility infor­
mation (in particular, no interpersonal comparisons) with an effective ban on the 
use of non-utility information (through the derived characteristic of neutrality). 
The same applies to the single-profile versions of the Arrow theorem, tailored for 
Bergson-Samuelson SWF (discussed in Section 9.1), in which poor utility infor­
mation was combined with a ban on any essential use of non-utility information 
through the neutrality property of the SWF in the form W = W(u). The informa­
tional enrichment that was explored in Section 6 concentrated on the improve­
ment of the utility information, a possibility that was suggested by Arrow (1963) 
himself, and the approach of SWFL with invariance restrictions [Sen (1970a)] was 
based on that foundation. It is easy to recognize that the enrichment of the utility 
information would have the same eliminating effect on the impossibility result in 
the single-profile framework as well, and neutrality can indeed be combined with 
interpersonally comparable utilities fulfilling the Arrow conditions on an ap­
propriately defined single-profile SWFL. 

An alternative way of avoiding the impossibility problem in either framework 
rests in relaxing neutrality and permitting the use of non-utility information, 

136See Hansson (1972), Fishburn (1974a), Binmore (1976), Hammond (1977b), and Sen (1977a). 
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instead of improving the utility information. Many acts of economic judgment for 
the society (e.g. planning exercises) are based on taking explicit note of non-utility 
information, e.g. data on hunger, or poverty, or inequality, or national income, or 
violation of acknowledged rights (such (lS personal liberty).137 What is less clear is 
whether these non-utility data are used to get indirectly at utility information, 138 
or whether selected non-utility data would have a status of its own even when 
utility information is as rich as it can be. Support for the latter position from 
diverse sources can be seen in Rawls's (1971) focus on "primary goods", the 
importance attached to description of work and social relations in such analyses 
as Marx's (1875, 1887) treatment of "exploitation" and "alienation", and in the 
wide use of principles like "equal pay for equal work" in recent normative 
discussions. The contrast will not be pursued further here; I have tried to do this 
elsewhere [Sen (1979b, 1979c)].139 

It is, however, worth clarifying a distinction that seems to be sometimes 
confused, partly because of the ambiguous use of the characteristic of a social 
welfare function being " individualistic". Individualism could mean 
neutrality- indeed strong neutrality, so that two pairs of states { x, y }  and { a, b }  
must be socially ranked in exactly the same way when the individual utility 
characteristics of x vis-a-vis y are exactly the same as those of a vis-a-vis b, 
respectively. Alternatively, it could mean that the Pareto Principle- indeed the 
Strong Pareto Principle- holds, and if x has at least as much utility as y in 
everyone's preference ordering, then x is socially at least as good as y, and if 
furthermore at least one of the individual inequalities is strict, then so is the social 
preference. 140 Some conceptualizations of the principle that " individuals' prefer­
ences are to 'count"' seem to cover both characteristics [see Samuelson (1947, pp. 
223-224, 228, 236) and Graaff (1957, pp. 9-10)], but it is easily checked that the 
two requirements are completely independent of each other. A strongly neutral 
social welfare function must satisfy the Pareto indifference rule P0, but need not 
fulfill the strong Pareto condition P *, or for that matter the weak Pareto 

137While the " ethical" measurement of inequality has been typically based on richer utility 
information [see Kolm (1969), Atkinson (1970), Sen (1973), Blackorby and Donaldson (1978)], the use 
of non-utility information has played a crucial role in the recent contributions to welfare-based 
national income comparisons and to the measurement of poverty [see Sen (1976c, 1976d, 1979d), 
Hamada and Takayama (1978), Blackorby and Donaldson (1978, 1980a, 1980b), Hammond (1978), 
Takayama (1979), Thon (1979), Kakwani (1980a, 1980b, 1981), Anand (1983), Chakravarty (1983a, 
1983b), Graaff (1983), Kundu and Smith (1983), Foster (1984)]. 

138The problem of " recovering" utility information from non-utility data (such as incomes) may be 
a very complex one in practice, because of variations of other parameters of the individual utility 
functions [see Lindbeck (1983)]. 

139See also Williams (1973), Nozick (1974), Scanlon (1975), Dworkin (1978), Roemer (1982), a-,d 
Sen and Williams (1982). 

140" Individualist" as an adjective seems misleading for both, since utility is scarcely the only 
expression of one's individuality. " Individual rights" are typically formulated taking explicit note of 
non-utility information, and can also conflict with the Pareto principle (to be discussed in the next 
subsection). 
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condition P of Arrow, since it need not be strictly monotonic (positively respon­
sive). Similarly, a Pareto-inclusive social welfare function may still use non-utility 
information for discrimination when the individual utility rankings do not coin­
cide over either pair { x, y }  or { a, b }, but the individual utility rankings -individ­
ually divergent as they are -happen to be exact reflections of each other (x 
vis-a-vis a, and y vis-a-vis b) in the two cases. 

It seems natural to argue that of the two interpretations of an " individualistic" 
social welfare function, neutrality is the more demanding. If social welfare is a 
function of the vector of individual utilities only, it seems difficult to argue that it 
need not be an increasing function. On the other hand, while the Pareto 
indifference rule or the strong Pareto principle does lead to strong neutrality in 
the presence of unrestricted domain and independence (see the Strong Neutrality 
Theorem in Section 6.4), both these additional conditions are quite demanding. In 
fact, traditionally the Pareto principle has appeared to be a very mild requirement 
indeed, but it is clear that it has remarkable cutting power in excluding various 
natural formulations of rights and liberties precisely because they make use of 
non-utility information. This problem is discussed in the next subsection. 

9.5. The impossibility of the Paretian liberal 

Various formulations of liberty have been based on identifying certain types of 
" self-regarding" choices as being in a person's "protected sphere", on which that 
person's wishes should rule, and this has provided a common theme of diverse 
libertarian writings from John Stuart Mill (1859) to Hayek (1960). For example, 
what a person wears, or what he or she reads, may in many circumstances be 
regarded as being in such a "protected" or "personal" sphere. When two social 
states x and y differ only in this respect, it may be argued that libertarianism 
should demand that the relevant person's preference over this pair must be 
reflected in the social preference. The requirements of liberty can be defined in a 
mild form by demanding that everyone has a non-empty protected sphere, and 
" minimal liberty" as a condition requires that at least two persons must have a 
non-empty protected sphere each [Sen (1970a, 1976a)]. Define a person as 
strongly decisive over { x, y } ,  if xP; y = xPy, and y P; x = y P x. 

Condition ML (minimal liberty) 
At least two persons are strongly decisive over one pair of social states each. 141 

141 Whether these conditions are reasonable must depend, among other things, on what the set X of 
social states consist of. If the variations between them involve only such " non-personal" differences as 
British forces vacating Ulster, or wheat being stockpiled by the United Nations, clearly both L and 
ML would be very unreasonable conditions, and in particular their non-fulfilment ·.vould not imply 
anything about the absence of libertarian decision procedures, as commonly understood. So the 
usefulness of conditions of this type depends inter alia on the nature and the richness of the set X. 
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The impossibility of the Paretian liberal 
There is no SDF satisfying unrestricted domain (U), the weak Pareto principle (P) 
and minimal liberty (ML). 

For there to be two persons strongly decisive over one pair each, there have to 
be at least three distinct social states. Consider first the case in which person 1 is 
strongly decisive over { x, y }, while 2 is over { y, z }, with one state (,viz. y)  in 
common. Consider the following individual orderings of the three states, viz. for 
1, zP1 x & xP1 y; for 2, yP2 z  & zP2 x; and for all i * 1 ,2, zP;x. By strong 
decisiveness of 1 and 2 over { x, y }  and { y, z }  respectively (i.e. by ML), it follows 
that xPy and yPz. But by the weak Pareto principle, zPx. Thus the social 
preference relation must violate acyclicity, and hence no SPF can satisfy these 
conditions. Now taking the case in which the two persons 1 and 2 are strongly 
decisive over { x, y }  and { a, b } ,  when all four are distinct states, consider the 
following strict orderings, in descending order: 

1 

b 
X 

2 

y 
a 

y b 
a x 

i * 1, 2 (partially specified) 

( � ) ( � )  

By ML, xPy & aPb, and by the weak Pareto principle, yPa & bPx. This strict 
preference cycle shows the impossibility of any SDF satisfying U, ML and P. 

It is an immediate corollary of this result that there is no social welfare function 
satisfying these conditions, since a SWF is also a SDF. 

There are several interesting features of this theorem that are worth noting. 
First, it is a single-profile impossibility result - established by considering one 
profile - and applies immediately to a Bergson-Samuelson SWF. In particular, it 
makes no use of the inter-profile condition of independence.142 

Second, it makes no use of the requirement of fransitivity (or of quasi-transitiv­
ity) of social preference, just of acyclicity. 

Third, it can be easily extended to social choice functions, or functional 
collective choice rules, by translating the pair-choice requirements to general 
choice constraints. Redefine a person being " strongly decisive" over x, y as the 
requirement that if xP; y, then y cannot be chosen in the presence of x, and if 
y P; x, then x cannot be chosen in the presence of y, and let this convert 

142 Note that both the Pareto principle and the libertarian ones have the characteristic of basing the 
ranking of a pair of states on individual preferences over that pair only, which can be seen, in some 
ways, as an " independence" property [see Blau (1975)]. But Arrow's independence condition is 
unnecessary for this result. Or any other condition of multiple-profile correspondence (except what 
results indirectly from the Pareto principle and minimal liberty). 



Ch. 22: Social Choice Theory 1157 

conditions L and ML into L and ML. Also, consider the Pareto principle in the 
general choice-functional forJ;ll P presented in Section 4.3. 

Choice-functional impossibility of the Paretian libertarian , 
There is no functional collective choice rule FCCR satisfying Conditions U, P 
and ML. 

While this translation is immediate [see Sen (1970a, pp. 81-82)], more complex 
choice functional variants of this result can be derived by making the conditions 
constrain choices over pairs only, but linking these choices with choices over 
larger sets by consistency conditions of social choice [see Batra and Pattanaik 
(1972b)]. 

Fourth, escape from this impossibility result can scarcely be found in enriching 
the utility information, unlike in the case of the Arrow impossibility result 
(Section 6). While some authors have considered the possibility that one's right to 
be able to do personal things without let or hindrance should be conditional on 
one's utility gain from this being large [see Ng (1971)], the libertarian approach is 
to assert these rights on grounds of the nature of the choice- that they are 
" personal" matters- and not on the basis of balancing the utility gains of the 
person concerned against the utility losses of the nosey.143 Liberty is, however, 
one value among many, and it is possible to constrain libertarian rights by 
making them conditional on not violating some elementary requirements of 
utility-based justice such as Suppes' (1966) "grading principle of justice". How­
ever, it has been demonstrated by Kelly (1976a) that conditioning the libertarian 
requirements in this way leaves the impossibility result virtually unaffected; see 
also Austen-Smith (1980), Wriglesworth (1982b), and Suzumura (1983a). 

Finally, the result is not based on ignoring non-utility information, as may 
arguably be the case with the Arrow result (see the Field Expansion Lemma in 
Section 2.1). Indeed, non-utility information is given an explicit role in the 
libertarian conditions. In fact, it can be argued that unlike in the case of the 
Arrow impossibility result, the basis of the impossibility of the Paretian libertarian 
rests not on inadequate information, but on inconsistent use of information. The 
Pareto principle insists on basing a class of social decisions exclusively on utility 
information, while the libertarian principles insist on giving crucial role to 
non-utility information in another class of social decisions, through the specifica­
tion of protected spheres.144 The impossibility result captures the tension between 
the two. 

143 Cf. John Stuart Mill (1859): " . . .  there is no parity between the feeling of a person for his own 
opinion, and the feeling of another who is offended at his holding it; no more than between the desire 
of a thief to take a purse, and the desire of the right owner to keep it. And a person's taste is as much 
his own peculiar concern as his opinion or his purse" (p. 140). See also Riley (1983) on Mill. 

144 For general studies of the analytics of a system of rights, see Kanger (1972) and Lindahl (1977). 
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9. 6. Rights and principles 

Various extensions of the impossibility of the Paretian libertarian have been 
discussed, and other issues in the normative theory of rights have been explored 
in this context. Batra and Pattanaik (1972b) have been concerned with rights of 
groups intermediate between individuals and the whole community, e.g. in a 
federal country the rights of members of a state to do certain locfll things 
irrespective of the wishes of people in other states. The " impossibility of Paretian 
federalism" can be readily established on the same lines as the impossibility of 
Paretian libertarianism so long as the groups involved are pairwise disjoint. The 
proofs are virtually the same. Even when the groups are not disjoint, impossibili­
ties can occur if the within-group decision mechanism is not unanimity but some 
other rule, e.g. the majority rule, unless the groups structure is severely restricted 
[see Stevens and Foster (1978) and Wriglesworth (1982a)]. 

Gibbard (1974) has noted that even in the absence of the Pareto principle an 
impossibility result could arise if individual rights are asserted not merely over a 
non-empty protected sphere but generally over pairs for which the states differ 
from each other in a respect "personal" to someone- other things given. A simple 
example brings out the nature of the conflict that is envisaged. In a 2-person 
community, let each person's right to wear a hat of any design be accepted, and 
the social preference is required to reflect a person's preference about his own hat 
other things given (in particular, given the other person's hat). Now assume that 
person 1 wants to wear a hat of the same design as the one worn by 2, while 
person 2 wants a hat of a different design from the one worn by 1. It is easy to see 
that an impossibility result can be constructed even without invoking the Pareto 
principle. To assert libertarian rights consistently, they would have to be for­
mulated differently, e.g. by restricting the rights to "coherent" domains [see 
Suzumura (1978)], or by making the rights conditional on "independent individ­
ual preferences" [see Gibbard (1974), Hammond (1981)].145 But even when the 
rights are internally consistent, the conflict with the Pareto principle can easily 
arise. (See the proof of the impossibility of the Paretian liberal, p. 1156.) 

Other extensions have been presented, including a probabilistic version of the 
impossibility of the Paretian libertarian [see Bandopadhyay, Deb and Pattanaik 
(1979)] and its use in various game-theoretic contexts [see Aldrich (1977a, 1977b), 
Miller (1977), Breyer and Gardner (1980), and Gardner (1980)]. 

Various ways of resolving the impossibility of the Paretian libertarian and 
related results have been proposed in the literature. Some methods involve 

145 0n this, see Ng (1971), Gibbard (1974), Farrell (1976), Sen (1976a), Kelly (1978), Suzumura 
(1978, 1983a), Hammond (1981), and Wriglesworth (1983a, 1983b). 
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constraining the libertarian rights, or the exercise thereof; for formal results as 
well as analyses of pros and cons of such procedures, see Gibbard 
(1974), Bernholz (1974), Blau (1975), Seidl (1975), Buchanan (1976), Campbell 
(1976), Kelly (1976a, 1976b, 1978), Ferejohn (1978), Karni (1978), Mueller (1979), 
Austen-Smith (1980), Breyer and Gardner (1980), Gardner (1980), Suzumura 
(1980, 1983a), Baigent (1981), Gaertner and Kruger (1981, 1983), Wriglesworth 
(1982b, 1983a, 1983b), and Basu (1984). Other ways involve constraining the 
Pareto principle, either by "amending" individual preferences, or by "counting" 
only a subrelation of a person's preference for the purpose of the Pareto 
judgment, taking note of the underlying motivation behind the preferences; for 
formal results, motivational analyses and assessment, see Sen (1970a, 1976a), 
Farrell (1976), Suzumura (1978, 1983a), Hammond (1981, 1982), Austen-Smith 
(1982), Rawls (1982), Wriglesworth (1982b, 1983a), and Coughlin (1983). Still 
others have explored domain restrictions that would avoid the impossibility in 
question [see Bergstrom (1970), Blau (1975), Fine (1975b), Seidl (1975), Breyer 
(1977), Breyer and Gigliotti (1980), and Nalebuff (1981)]. Some have argued in 
favour of limiting the scope of social choice theory through technical devices that 
would amount to a refusal to pronounce judgments on choices that are personal 
[see Ramachandra (1972) and Farrell (1976)]. Others have argued for incorporat­
ing rights not in the evaluation of states of affairs but as deontological constraints 
on action in an essentially non-consequentialist framework; for presentations and 
critiques of this approach, see Nozick (1973, 1974), Bernholz (1974, 1980), 
Rowley and Peacock (1975), Buchanan (1976), Aldrich (1977a, 1977b), Miller 
(1977), Perelli-Minetti (1977), Gardenfors (1981), Sugden (1981), and Chapman 
(1983). 

Constraints of space will not permit discussion of these various approaches 
here [see, however, Sen (1983)]. It should, however, be obvious that the interest of 
the " impossibility of the Paretian libertarian" and related results lies not so much 
in their value as paradoxes and brain-teasers, but as grounds for re-examining the 
usual formulations of individual and group rights and principles of decisions 
usually accepted, including such allegedly non-controversial rules as the Pareto 
principle. In the earlier sections of this paper I have tried to argue that a similar 
remark can be made about the much deeper impossibility result contained in 
Arrow's General Possibility Theorem. 

10. A concluding remark 

It was argued earlier in this paper that under the broad hat of social choice theory 
can be found quite a few different types of problems. Consider the following 
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examples of " social choice" problems: choosing procedures for committee deci­
sions; fixing electoral rules; choosing a constitution for a newly independent 
country; judging whether the government of a country has failed to serve the 
interests of the nation; choosing, methods of assessing fiscal policies; doing central 
planning based on interests of the community; making systematic social welfare 
judgments; constructing ethically significant indicators of national prosperity, 
poverty or inequality. There are indeed things in common between these ,exercises, 
but also fundamental differences. In a broad sense they are 'all "social choice" 
problems, and all deal with methods of marshalling information, particularly 
those relating to the people involved, to arrive at correct social judgments or 
acceptable group decisions. But the nature of the possible informational inputs 
vary, as do the required outputs of judgments or decisions or the required means 
of settlement. The balance of moral and pragmatic considerations also varies with 
the nature of the exercise. There are other differences, e.g. whether the procedures 
can permit the use of discretion in interpreting individual utilities (e.g. in making 
social welfare judgments) or must be rather mechanical (e.g. electoral procedures). 

The nature of the exercise affects the appropriate specification of the "social 
choice" format. This relates to distinctions between structures such as 
social welfare functions (Sections 1 and 2), social decision functions (Section 3), 
social choice functions or functional collective choice rules (Sections 4 and 7), 
or social welfare functionals (Section 6). It also affects the appropriateness of 
particular axioms within a given structure, e.g. whether the social welfare function 
should satisfy the independence condition (Sections 6, 7 and 9), or what types of 
interpersonal comparability-if any - should be used (Sections 5 and 6), or what 
domain conditions would make sense (Section 8). 

The relevance of the various results presented and discussed in different 
sections of this paper depends on the particular nature of the exercise to which 
application may be sought. It is important to bear this in mind in understanding 
the rather bewildering collection of results that three decades of social choice 
theory have produced. They do not all deal with the same type of exercise. 
Between them they cover vastly different types of problems with only a very 
general " social choice" character in common. Indeed, the richness of the subject 
owes much to this diversity. 
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A GENCY AND THE MARKET* 

KENNETH J. ARROW 
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A very widespread economic situation is that of the relation between a principal 
and an agent. Even in ordinary and in legal discourse, the principal-agent 
relation would be significant in scope and economic magnitude. But economic 
theory in recent years has recognized that analogous interactions are almost 
universal in the economy, at least as one significant component of almost all 
transactions. 

The common element is the presence of two individuals. One (the agent) is to 
choose an action among a number of alternative possibilities. The action affects 
the welfare of the other, the principal, as well as that of the agent's self. The 
principal, at least in the simplest cases, has the additional function of prescribing 
payoff rules, that is, of determining in advance of the choice of action, a rule 
which obliges him or her what fee to pay as a function of his or her observations 
on the results of the action. The problem acquires interest only when there is 
uncertainty at some point, and, in particular, when the information available to 
the two participants is unequal. The main but not only case in the literature is 
that where the agent's action is not directly observable by the principal and where 
in addition the outcome is affected but not completely determined by the agent's 
action. (If the latter were not ture, the principal could in effect infer the agent's 
action by observing the outcome.) In technical language, the outcome is a random 
variable whose distribution depends on the action taken. 

More generally, there may be many agents for a single principal. Each takes an 
action, and the output of the system is a random function of all the actions. The 
principal cannot observe the actions themselves but may make some observations, 
for example, of the output and possibly others. Again the principal sets in 

* Reprinted, with permission of the Harvard Business School Press, from " The Economics of 
Agency" in Agency: The Structure of Business, edited by John W. Pratt and Richard Zeckhauser. 
Copyright 198� by the President and Fellows of Harvard College. The author wishes to express his 
gratitude to John W. Pratt, John G. Riley, and Richard Zeckhauser, whose comments have materially 
improved the exposition of this paper. 
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advance a schedule stating the fees to be paid to the individual agents as a 
function of the observations made by the principaL 

A similar but not identical principal-agent relation occurs when the agent 
makes an observation not shared with the principal and bases hisjher action on 
that observation. The action itself may be observable, but the principal does not 
know whether or not it is the most appropriate. 

The principal-agent theory is in the standard economic tradition. Both prin­
cipal and agent are assumed to be making their decisions optimally in view of 
their constraints. Intended transactions are realized. The function of this theory 
has the dual aspect usual in economic theory; it can be interpreted both 
normatively and descriptively. It can be interpreted as advice in the construction 
of contracts to guide and influence principal-agent relations in the real world, in 
short, as a foundation for social engineering. It can also be interpreted as an 
attempt to explain observed phenomena in the empirical economic world, particu­
larly exchange relations which are observed but not explained by more standard 
economic theory. 

Before specifying the model more completely, it is useful to give a few examples 
of each of the two kinds of principal-agent problems. As will be seen, many 
situations that are not classified under that heading in ordinary discourse can be 
considered as such. I will call the two types of principal-agent problems hidden 
action and hidden information, respectively. In the literature, they are frequently 
referred to as moral hazard and adverse selection. These terms have been 
borrowed from the practice and theory of insurance and are really applicable only 
to special cases. 

The most typical hidden action is the effort of the agent. Effort is a disutility to 
the agent, but it is at the same time a value to the principal in the sense that it 
increases the random outcome (technically, the distribution of the outcome to a 
higher effort stochastically dominates that to a lower effort, i.e. the probability of 
achieving any given level outcome, or better is higher with higher effort). The 
physician-patient relation is a notorious case. Here, the patient is the principal, 
and the physician is the agent. The very basis of the relation is the superior 
knowledge of the physician. Hence, the patient cannot check to see if the actions 
of physician are as diligent as they could be. 

A second non-obvious example that of torts. One individual takes an action 
which results in damage to another, for example, one automobile hitting another. 
The care which the first driver takes cannot easily be observed, but the outcome is 
very visible indeed. Although it may seem an odd use of language, one has to 
consider the damager as the agent and the one damaged as the principaL Again, 
in pollution control, society may be regarded as the principal, and the polluter, 
whose actions cannot be fully monitored, as the agent. 

An example of very special economic importance is the relation between 
stockholders and management. The stockholders are principals, who certainly 
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cannot observe in detail whether or not the management, their agent, is making 
appropriate decisions. A very similar relation formally, though in a different 
context, is that of sharecropping; the landlord, the principal here, prefers a 
relation which supplies incentives for better production as against a straight wage 
payment, since the landlord cannot directly observe the tenant's diligence; on the 
other hand, the tenant, too poor to bear excessive risks, wants to avoid a fixed 
rent, which would maximize incentives but would expose him or her to all the 
risks of weather and price. Fire insurance dulls incentives for care and even 
creates incentives for arson; this is the origin of the term, "moral hazard". Health 
insurance creates similar problems, though with less moral overtones; payment of 
medical fees by the insurer reduces risks to the insured but creates an incentive to 
excessive medical care, more than the patient would have if he or she had to pay 
the entire price. The employment relation, in general, is one in which effort and 
ability acquired through training and self-improvement are hard to observe. This 
has led to a theory which explains the existence of firms as a device for measuring 
effort. 

These have been examples of the hidden-action type of principal-agent rela­
tion. There is another class, sometimes discussed under different headings, the 
hidden-knowledge type. Here the agents differ from the principal in having made 
some observation which the principal has not made. The agents use (and should 
use) this observation in making their decisions; however, the principal cannot 
check whether or not the agents have used their information wisely from the 
principal's viewpoint. A case much studied from different points of view in the 
economic liter�ture is that of a decentralized socialist economy. The knowledge of 
productivity cannot be centralized. Hence, the individual productive units have 
information about the possibilities of production not available to the central 
planning unit. The question arises, how this information can be tapped. The 
productive units may well have incentives not to reveal their full potentiality, 
because it will be easier to operate with less taxing requirements. A similar 
problem occurs in decentralization within a firm. This branch of the literature has 
acquired the name of " incentive compatibility". 

The original problem of "adverse selection" is drawn from insurance of several 
kinds, of which life insurance is typical. The population being insured is heteroge­
neous from the viewpoint of probability of risk, say of death. In some cases, at 
least, the insured have better knowledge of this probability than the insurance 
company which is unable to differentiate. If the same premium is charged to 
everyone, then the high-risk individuals will purchase more insurance and the 
low-risk ones less. This will lead to an inefficient allocation: of risk-bearing 
[Rothschild and Stiglitz (1975)]. Public utilities, such as telephones, also face 
heterogeneous populations, though again, as in insurance, the utility provider 
cannot know to which class the purchaser belongs. Nevertheless, as has been 
pointed out in recent literature, some differentiation can be made by offering 
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alternative rate schedules and letting the customers choose which to follow. In 
these cases, the insurance company or the public utility is the principal, the 
customer, with more knowledge not available to the principal, is the agent [Spence 
(1977), Roberts (1979), and Maskin and Riley (1983)]. 

To illustrate the theoretical issues for the hidden-knowledge model, consider a 
monopolistic public utility facing two types of customers, labelled H and L for 
high and low demanders, respectively. Assume the absence of income etrects. Let 
�(x) be the money equivalent of amount x of the public utility for type t 
( t  = H, L) so that �(0) = 0, and characterize high and low demand by the 
condition that UH.(x) > U{(x) for all x. It is assumed that the characteristics of 
the product preclude resale. 

The public utility knows the proportion of high demanders but not the identity 
of these individuals. It offers a total payment schedule, T(x), a function of the 
amount purchased. Assuming a constant marginal cost of production, c, the 
monopolists' markup for x units is 

M(x ) = T(x) - cx. 

For convenience, let v;(x) = u;(x)- ex, the consumer's surplus over social cost. 
Since VH:(x)  > V{(x), all x, there is a difference in willingness to pay which the 
monopolist can exploit. 

Since individuals are free to refrain from purchase, no offer by the company 
can yield a negative consumer's surplus. The monopolist can try to extract all 
consumer's surplus by ali-or-none offers. Let x1 maximize v;(x). If the monopo­
list can identify the types of the consumers, it will offer buyers of'type t x1 units 
and charge a markup of M1 = v;(x1). 

In the absence of identification, this scheme breaks down. If the monopolist 
offers the consumer a choice of these two offers, the high demanders will always 
choose (xL, ML). Since VH:(x) > V{(x), it follows that VH(xd > VL(xd = ML, 
so that type H individuals get a positive consumer's surplus by choosing the offer 
appropriate to type L individuals and only zero by the alternative choice. To 
induce type H individuals to buy xH, the markup demanded must be reduced so 
that they are no worse off than they would be choosing (xu M L), i.e. the markup 
demanded must satisfy the condition 

vH(xH ) - M� = vH (xL ) - ML . (c) 
This can be accomplished without identification by choosing M(x) = ML for 
X �  xL, and M(x) = M� for X >  xv 

This allocation is Pareto efficient, since all consumers are paying marginal cost. 
The monopolist is extracting all surplus from the low demanders but not from the 
high demanders. However, the allocation does not yield maximum profits to the 
monopolist. To do so requires creation of inefficiency. The amount to be bought 
by the low demanders will be reduced by a small amount. This will reduce the 
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surplus to be extracted from them. On the other hand, the constraint imposed on 
extraction of surplus from the high demanders to prevent them from switching to 
the offer intended for the low demanders will become less binding. It turns out 
that the loss is second-order in the reduction in purchase amount while the gain is 
first-order. In symbols, let the amount to be purchased by type L consumers be 
reduced from xL to xL - dx. This is enforced by locating the discontinuous 
increase in markup at that point. The markup must be reduced correspondingly; 
choose Mt = VL(xL - dx). Since VL is maximized, at xu it must be that the 
difference Mt - ML is of the second order in dx. 

To induce the type H consumers to choose xH rather than (xL - dx, Mt), the 
markup to them must be set so that 

By comparison with (C), it is seen that 

Mtf. - M'h = (Mt - ML) +  [vH(xL ) -vH(xL - dx )] . 

The first term on the right is, as stated, of the second order in dx. But, since 
V'(xd > 0, the second term is positive and of the first order. Hence, for dx 
sufficiently small, the loss in markup from the type L consumers is of the second 
order, the gain in markup from the type H consumers is of the first order, and 
there is a net gain. This is true no matter what the proportions of the two types of 
consumers are, though of course the optimal policy of the monopoly depends on 
them. The optimal monopoly policy can be enforced without identification of the 
types of consumers by letting M(x) = Mt for x ;;;;; xL - dx, and M(x) = Mtf. for 
x > xL - dx. 

Constraints such as (C), which ensure that the different types are induced to 
accept the allocations allotted to them, are referred to as self-selection constraints. 
The example illustrates a very general principle in hidden-knowledge models; the 
optimal incentive schedule typically requires distortions (deviations from first-best 
Pareto-optimal) at all but one point. 

Two further illustrations of hidden knowledge in economic decision-making are 
as diverse as auctions with private information [Vickrey (1961), Maskin and Riley 
(1984), and Milgrom and Weber (1982)] and optimal income taxation [Mirrlees 
(1971)]. Consider bidding for oil leasing when the bidders are each permitted to 
engage in exploratory drilling and other geophysical studies. Each then has an 
observation unknown to the others and to the seller, most usually the government 
in the United States today. The problem is to design auction rules to achieve some 
objective. Much of the current literature is devoted to maximizing the seller's 
revenues, rather than social welfare in some broader sense. The problem of 
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optimal income taxation is that any income tax creates a distortion of the choice 
between labor and leisure. This deficiency could in principle be overcome 
completely if the social price of leisure (i.e. the productivity or wage rate of the 
individual) were observable. But in general, this information is available to the 
taxpayer but not to the government. In one case the geophysical estimates of oil 
field size, in the other case individual wage rates are private information and 
therefore hidden knowledge to the principal. 

The above discussion of hidden-knowledge principal-agent problems has con­
centrated on the case of a single principal. Further complications arise when 
principals compete for agents [Spence (1973), Rothschild and Stiglitz (1975), and 
Riley (1975)]. To take the opposite extreme, suppose there are a large number of 
potential principals who will enter the market to exploit any profitable alterna­
tive. Consider, for example, an insurance market with a large number of compet­
ing insurance comp�s, each of which, because of risk pooling, is approximately 
risk-neutral. As argued earlier, any premium per dollar of coverage will be more 
attractive to those with higher loss probabilities; insurance companies will then 
have an incentive to sort risk classes by offering lower premiums per dollar 
coverage to those willing to accept higher deductibles. However, in contrast to the 
monopoly case, each insurance company must now take into account the effect of 
other available alternatives on the type of individuals attracted to its own 
offerings. To use Spence's terminology, it is not enough that low risk classes are 
able to " signal" their differences by accepting larger deductibles; such signals 
must also be competitively viable. 

The issue of what kind of signalling survives competitive pressures turns out to 
be a delicate one. In general, there does not exist a Walrasian (or Nash) 
equilibrium with the property that no principal has an incentive to introduce new 
profitable alternatives. However, recent work by Wilson (1977) and Riley (1979) 
has argued that equilibrium can be sustained if principals rationally anticipate 
certain responses to their behavior. 

Let me now tum to a simple formulation of the hidden-action model. The agent 
(for the moment, assume there is only one) chooses an action a. The result of 
his/her choice is an outcome x, which is a random variable whose distribution 
depends on a. The principal has chosen beforehand a fee function s( x) to be paid 
to the agent. For the simplest case, assume that the outcome x is income, i.e. a 
transferable and measurable quantity. Then the net receipts of the principal will 
be x - s( x ). The principal and agent are both, in general, risk averters. Hence, 
each values whatever income he or she receives by a utility function with 
diminishing marginal utility. Let U be the utility function of the principal, V that 
of the agent. Further, let W( a) be the disutility the agent attaches to action a. It 
will be assumed separable from the utility of income, i.e. the maiginal utility of 
income is independent of the action taken (the amount of effort). Note that the 
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action is taken before the realization of the uncertainty and is therefore not 
uncertain to the agent, though it is unknown to the principal. 

Since, even for a given action, the outcome x is uncertain, both principal and 
agent are motivated to maximize the expected value of utility. Given the prin­
cipal's choice of fee function s(x), the agent wishes to maximize the expected 
value of V[s(x)]- W(a). In effect, therefore, the principal can predict the action 
taken for any given fee schedule. The choice of fee schedules is, however, 
restricted by competition for agents. The agent has alternative uses for his or her 
time. Hence, the utility achievable by the agent with the principal under consider­
ation must be at least equal to that achievable in other activities. The fee schedule 
chosen by the principal must then satisfy this constraint. (The literature has 
usually referred to this condition as that of " individual rationality", a term first 
used by J. von Neumann and 0. Morgenstern, but this name is easily misinterpre­
ted. The term, participation constraint, has come into use recently and seems more 
appropriate.) 

It is interesting to note that the principal-agent relation defined as here by a 
fee function is a significant departure from the usual arm's length fixed-price 
relation among economic agents postulated in economic theory. The principal 
does not buy the agent's services at a fixed price set by the competitive market nor 
does the principal simply buy output from the agent. The relation is not even 
describable by a contingent contract, in which payments and services rendered 
are agreed-on functions of an exogenous random variable; the principal observes 
the outcome but cannot analyze it into its two components, the agent's action and 
the exogenous uncertainty. Even though the underlying principles are impeccably 
neoclassical, in that each party is acting in its self-interest and is subject to the 
influence of the market, the variable to be determined is not a price but a 
complicated functional relationship. 

The principal-agent problem combines two inextricable elements. One is 
simple risk-sharing; even if there were no problem of differential information, 
there would be some sharing of the outcome if both parties are risk-averse. 
Indeed, if the agent were risk-neutral, the principal-agent problem would admit 
of a trivial solution; the agent would bear all the risks, and then the differential 
information would not matter. That is, the principal would retain a fixed amount 
for him/herself and pay all the remainder to the agent, who therefore has no 
dilution of incentives [Shavell (1979)]. In the terminology used above, the fee 
function would equal the outcome less a fixed amount, s(x) = x - c, where the 
constant c is determined by the participation constraint. Thus a landlord renting 
land to a tenant farmer would simply charge a fixed rent independent of output, 
which in general depends on both the tenant's effort, unobservable to the 
landlord, and the vagaries of the weather. However, this solution ceases to be 
optimal as soon as the agent is risk-averse. Since all individuals are averse to 
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sufficiently large risks, the sijllple solution of preserving incentives by assigning all 
risks to the agent fails as soon as the risks are large compared with the agent's 
wealth. The president of a large corporation can hardly be held responsible for its 
income fluctuations. 

In the general case of a risk-averse agent, the fee will be a function of the 
outcome, in order to supply incentives, but the risk will be shared. If the ability of 
the agent to affect outcomes approaches either zero or infinity, then the ,efficiency 
level which could be achieved under full iaformation to the principal can be 
approached with an optimally chosen fee function. More generally, there is a 
trade-off between incentives and efficiency of the system considering both prin­
cipal and agent [Shaven (1979)]. 

For an application, consider the case of insurance with moral hazard. There 
will be some insurance written, but it will not be complete. In the terminology of 
the insurance industry, there will be coinsurance, that is, the insured will bear 
some of the losses against which the insurance is written. Coinsurance is customary 
in health insurance policies, where the insured has considerable control over the 
amount of health expenditures. Similarly, in a system of legal liability for torts, in 
the absence of insurance, the payment should increase with the amount of 
damages inflicted, to provide incentive for avoiding the inflicting of damages, but 
by an amount less than the increase in damages, so that there is a sharing of the 
unavoidable risks. 

More recent literature has stressed the possibility of monitoring. By this is 
meant that the principal has information in addition to the outcome, an observa­
tion y. If y conveys any information about the unobserved action a, beyond that 
revealed by x (techriically, if x is not a sufficient statistic for the pair x, y with 
respect to a ), then one can always improve by making the fee depend upon y as 
well as x. In the case of torts, the information used in a negligence standard 
represents additional knowledge beyond the outcome, though the last is all that is 
required for a strict liability standard. It turns out that if the liable party (the 
agent in this interpretation) is risk-neutral, then strict liability is optimal. But 
otherwise an appropriate negligence standard is an improvement [Shavell (1979) 
and Holstrom (1979)]. Harris and Raviv (1978, 1979) have argued that the custom 
of paying lawyers (in most circumstances) by time as well as by a contingent fee 
illustrates monitoring. If this idea were applied to health insurance, it would 
suggest that an improvement could be achieved by making insurance payments 
depend on some measure of the amount of medical services, such as frequency of 
visits. 

It has been shown that if the monitoring information is essentially an imperfect 
measure of the action taken, i.e. y = a + u, where u is a random variable with 
mean zero, then an optimal fee policy takes the form of paying a very low figure, 
independent of outcome, if the measured action is sufficiently low, and paying 
according to a more complicated schedule otherwise. 
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The whole discussion, to this point, has concentrated on a single agent and a 
single time period. New possibilities for incentives arise when there are many 
agents for a single principal or repeated relations between agent and principal. 
The many-agent case offers new opportunities for inference of hidden actions (or 
of hidden information) if the uncertainty of) the relation between the action (or 
the agent's observation) is the same for all the agents. In that situation, an 
estimate of the uncertainty can be obtained by comparison of the performances of 
the different agents, and therefore the individual actions can be approximately 
identified. One can meaningfully compare the performance of each agent with the 
average, for example, or use the ordinal ranking of the agents' outcomes as a basis 
for fees [Holmstrom (1982)]. 

A different and as yet only slightly explored problem can arise in the case of 
many agents with a single principal. Suppose the principal cannot observe the 
outcome of each individual but only the output of the group of agents as a whole. 
This is obviously an important case in production carried out jointly, with many 
complementary workers. Even in the case of certainty in the relation between 
actions and collective outcomes, there are difficulties. Holmstrom (1982) has 
considered the problem of a team, whose output depends on the unobservable 
actions of all members. Each team member has a disutility for his or her action. 
Assume for simplicity that utility is linear in the output. Then one can speak of a 
social optimum, that vector of actions which maximizes total output minus the 
sum of disutilities for actions. The question is, can the team devise some incentive 
scheme which will induce the members to perform the socially optimal actions. 
This will necessarily be a game, since the reward to each is a function of the 
output and therefore of the actions of all. When there is no uncertainty, an 
incentive scheme can be devised with the desired outcome in mind. Let a; be the 
action to be chosen by individual i, x( a1, . . .  , an) the production function which 
gives the output of the team as a function of the actions of all members, and 
W;(a;) the disutility of individual i as a function of his or her action. Then the 
socially optimal set of actions is that which maximizes x (a1, • . .  , an)-Lw;(a;). 
Call the actions so defined, a{, . . .  , a�, and let x* = x(a{, . . .  , a�) be the output at 
this optimum. Choose any set of lump-sum rewards, b1, . . .  , bn , which add up to 
x *, subject to the condition that b; > w;(ai) for each i. Then set up the following 
game: Individual i chooses a;. If the result of all these actions is to produce an 
output which is less than optimal, no one receives anything. If the total output, 
x (a1, • . .  , a11) is greater than or equal to x*, then individual i receives b;. It is easy 
to see that a Nash equilibrium of the game is for each individual to choose the 
appropriate action, a[;  that is, for each individual i, choosing a[ is optimal given 
the payoffs, providing each other individual j chooses ar But the proposed game 
is hardly satisfactory. It involves in effect collective punishment. More analyti­
cally, there are many Nash equilibria, of which (a{, . . .  , a�) is only one. If some 
individuals shirk a little, it pays the others to work somewhat harder to achieve 
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the same output. Hence, the scheme does not enforce the optimal outcome, 
though it permits it. 

When there are repeated relations between a principal and an agent, there are 
new opportunities for incentives. Experience rating in insurance illustrates the 
situation; the premium rate charged today depends on past outcomes. In effect, 
the information on which the fee function is based is greatly enriched. Radner 
(1981) has demonstrated the possibilities for achieving almost fully · optimal 
outcomes in hidden-action situations. Suppose the principal has a desired level of 
action, a* ,  that the agent is to implement. In any one trial, the action is hidden, 
in that the outcome differs from the action by a random variable, i.e. x 1 = a 1 + u �' 

where the random variables u are identically and independently distributed, with 
mean zero. If the agent is in fact performing the desired action a*, then the 
distribution of the x 's is known. Hence, if enough are observed, the principal 
should be able to detect statistically whether or not the agent is performing 
actions below the desired level. Specifically, the principal can keep track of the 
cumulative sum of the outcomes. If it ever falls below a known function of time, 
then the principal can assume that the performance of the agent is below that 
desired. More exactly, the prinpipal imposes a very severe penalty if there is some 
time T such that 

T 
L X1 < Ta* - k loglog T. 

t = l 

For properly chosen k, the probability of imposing a penalty when the agent is in 
fact carrying out the desired action can be made very low, while the probability of 
eventually imposing the penalty if the agent is shirking is one. 

I have sketched some of the leading ideas in the rapidly-burgeoning literature 
on the economic theory of the principal-agent relation. We may step back a bit 
from the pure theory and ask in a general way to what extent our understanding 
of economic processes has been enhanced. On the positive side, there is little 
question that a good many economic relations inexplicable in previously standard 
analysis can now be understood. Contractual relations are frequently a good deal 
more complicated than the simple models of exchange of commodities and 
services at fixed prices would suggest. Sharecropping, incentive compensation to 
executives and other employees, the role of dismissal as an incentive, coinsurance, 
and other aspects of insurance all find a place in this literature not found in, 
standard economic analysis. 

But it is perhaps more useful to consider the extent to which the principal­
agent relation in actuality differs from that in the models developed to date. Most 
importantly, the theory tends to lead to very complex fee functions. It turns out to 
be difficult to establish even what would appear to be common-sense properties of 
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monotonicity and the like. We do not find such complex relations in reality. 
Principal-agent theory gives a good reason for the existence of sharecrop con­
tracts, but it is a very poor guide to their actual content. Indeed, as John Stuart 
Mill pointed out long ago, the terms tend to be regulated by custom. They are 
remarkably uniform from farm to farm and from region to region. Principal­
agent theory would suggest that the way the produce is divided between landlord 
and tenant would depend on the probability distribution of weather and other 
exogenous uncertainties and on the relation between effort and output, both of 
which certainly vary from one region to another; the latter has varied over time as 
well. Similarly, the coinsurance provisions in health insurance policies are much 
simpler than could possibly be accounted for by principal-agent theory. 

In some cases where principal-agent theory seems clearly applicable, there is 
very little trace in reality. In many respects, the physician-patient relation 
exemplifies the principal-agent relation almost perfectly. The principal (the 
patient) is certainly unable to monitor the efforts of the agent (the physician). The 
relation between effort and outcome is random, but presumably there is some 
connection. Yet the fee schedule is in no way related to outcome. (It is true that 
liability for malpractice serves in a way as a modification of the fee schedule in 
the direction indicated by principal-agent theory; but it is not applicable to what 
might be termed run-of-the-mill shirking, and it requires very special kinds of 
evidence.) In general, indeed, compensation of professionals has only mild traces 
of the complex fee schedules implied by theory. 

Even when there are compensation systems that seem closer in form to the 
theoretical, there are significant differences. Consider the incentive compensation 
schemes for corporate executives. They invariably have a large discretionary 
component. What is the purpose of this? Why should the incentive payment not 
be based entirely on observable magnitudes, profits, rates of return, and the like? 

These difficulties can be explained within the terms of the principal-agent logic 
but in a way that points beyond the usual bounds of economic analysis. One basic 
problem is the cost of specifying complex relations. There is a large, though not 
easily defined, cost to a contract which specifies payments which depend on many 
variables. There is a cost to the very statement of the contract, a cost to 
understanding it and its implications, and a cost to verifying which terms apply in 
a given situation. Hence, there is a pressure for simple contracts, the more so 
since in fact any of our models are much too simple to capture all the aspects of a 
relation which those in it would deem relevant. 

A second aspect of reality is the variety of means of monitoring and the 
difficulty of defining exactly what they are. The world is full of performance 
evaluations based on some kind of direct observations. These evaluations may not 
always be objective, reproducible observations of the kind used in our theories 
(perhaps the only kind about which it is possible to construct a theory). Execu­
tives are judged by their superiors and students by professors on criteria which 
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could not have been stated in advance. Outcomes and even supplementary 
objective measures simply do not exhaust the information available upon which 
to base rewards. 

A third limitation of the present models is the restricted reward or penalty 
system used. It is always stated in terms of monetary payments. Actually, the 
present literature has already begun to go beyond this limit by considering the 
possibility of dismissal. Still further extensions are needed to capt).lre some 
aspects of reality. Clearly, there is a whole world of rewards and penalties in 
social rather than monetary form. Professional responsibility is clearly enforced in 
good measure by systems of et¥s, internalized during the education process and 
enforced in some measure by formal punishments and more broadly by reputa­
tions. Ultimately, of course, these social systems have economic consequences, but 
they are not the immediate ones of current principal-agent models. 

All three of these limiting elements, cost of communication, variety and 
vagueness of monitoring, and socially mediated rewards, go beyond the usual 
boundaries of economic analysis. It may be ultimately one of the greatest 
accomplishments of the principal-agent literature to provide some structure for 
the much-sought goal of integrating these elements with the impressive structure 
of economic analysis. 
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Chapter 24 

THE THEORY OF OPTIMAL TAXATION 

J. A. MIRRLEES 

Nuffield College, Oxford 

1.  Economic theory and public policy 

A good way of governing is to agree upon objectives, discover what is possible, 
and to optimize. At any rate, this approach is the subject of optimal tax theory. 
From this point of view "optimal tax theory" is an unduly narrow term to 
describe the subject, but it is neater than " theory of optimal public policy". In 
any case, I shall not be discussing the optimization of macroeconomic models, 
which are used to treat several aspects of public policy. Much- though not all - of 
what has so far been done in optimal tax theory uses the standard model of 
competitive equilibrium, with rational consumers and profit-maximizing, price­
taking firms. In this way one avoids debate about the dubious relationships of 
disequilibrium macroeconomics or oligopoly theory, and concentrates on essen­
tials. 

The central element in the theory is information. Public policies apply to 
individuals only on the basis of what can be publicly known about them. There is 
little difficulty about paying the same subsidy to every individual in the economy: 
there is not much more difficulty in making the subsidy depend on age. Uniform 
positive taxes may be a little more difficult. Taxes and subsidies proportional to 
trade in specified goods or services may also be difficult to administer with perfect 
accuracy. But, subject to some minor imperfections, we can take it that most such 
taxes use information that is cheaply and publicly available. Not all conceivable 
public policies have this convenient property. One of the basic theorems of 
welfare economics asserts that, where a number of convexity and continuity 
assumptions are satisfied, an optimum is a competitive equilibrium once initial 
endowments have been suitably distributed. To make distribution requires, in 
general, complete information about individual consumers, for the transfers must 
be lump-sum in character, that is, independent of the individual's behaviour. It is 
generally agreed by economists that the lump-sum transfers necessary to achieve 
an optimum are scarcely ever feasible.1 There is no way of obtaining the 

1 Hahn (1973) asserts that lump-sum taxation has in fact been used. This is true, though his 
examples are bad ones; but it is beside the point. The question is whether optima/ lump-sum transfers 
are possible. 

Handbook of Mathematical Economics, uol. Ill, edited by K.J. Arrow and M.D. Intriligator 
© 1 986, Elsevier Science Publishers B. V. (North - Holland) 
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information about individuals that is required except in a society of individuals 
who are truthful regardless of selfish considerations. A theorem supporting this 
view is given in Section 3 below. 

Widespread agreement among economists that optimal lump-sum taxation is 
impossible in practice came long before analysis of optimal non-lump-sum 
taxation. This is surprising. Possibly too many economic theorists were chiefly 
interested in the supposed merits of the undistorted competitive price sys,tem; but 
socialist economists did not fill the gap. Perhaps distaste for the welfare function 
was a more effective barrier to progress. It is true that Bergson and Samuelson 
used welfare functions in their work on the fundamentals of welfare economics. 
But those more closely concerned with policy issues would not have thought the 
welfare function, embodying interpersonal comparisons of welfare, a practical 
tool of analysis. In this century, economists have usually preferred to analyse 
empirical propositions of doubtful validity rather than analyse the consequences 
of value judgements, even when these might have been expected to command 
more widespread agreement. 

There are, it seems to me, only two promising approaches to making well-based 
recommendations about public policy. One is to use a welfare function of some 
form and develop the theory of optimal policy. The other is to model the existing 
state of affairs in some manageable way, and on that basis to display the likely 
effects of changes in government policy, these effects being displayed in sufficient 
detail to make rational choice among alternative policies possible. If a welfare 
function were used to evaluate the changes predicted, the second approach would 
come fairly close to the first, and in fact there is then a close theoretical 
relationship. But the second method could concern itself with presentation of 
effects rather than their evaluation. For example, the effects of policy changes on 
income distribution can be presented graphically. This approach is open to many 
objections as it is practised, and it is not easy to see how these faults could be 
avoided. In the first place, the particular way of presenting effects is not the 
outcome of systematic analysis, but is chosen quite informally. Secondly, the 
presentation is liable to divert attention completely from matters that could be 
important. In the income-distribution example, people presented with income­
distribution pictures are unlikely to consider how these judgements should be 
affected by differences in relative prices. Thirdly, summary variables may be used 
which no plausible welfare judgements would validate. The use of Gini coeffi­
cients in the presentation of income-distribution effects is, I think a case in point. 2 
The user of such figures is all too likely to regard bigger as better. The fact that 
the summary variable is precisely intended not to be a welfare function, or 
argument in a welfare function, is no help in avoiding misuse. 

There are then some practical arguments in favour of using welfare functions to 
analyse public policy. But unless there are stronger cases for some welfare 

2 Sen (1973, pp. 29-34) makes a moderate case for this measure. 
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functions than for others, the formal derivation of properties of welfare-maximiz­
ing policies is a pointless exercise. It turns out that some of these properties are 
independent of the welfare function; but optimal policies are not. For much of 
the theory, one must bear in mind what kind of welfare function is likely to be 
satisfactory. Furthermore, some of the most interesting results obtainable in this 
area are numerical calculations for specific welfare functions. For this reason, too, 
optimal tax theory is a field where econometric work is of considerable interest to 
the theorist, and the needs of theory a guide to the econometrician. 

The models to be discussed are firmly based on a distinction between public 
and private information. The government deals with an economy of consumers, 
producers, and possibly other corporate institutions, such as charitable bodies. 
These private individuals and institutions may know things the government does 
not know, such as a specific person's income-earning potential. The simplest 
assumption is that, in respect of such individual characteristics, the government 
either observes and knows the precise truth, or knows nothing to distinguish the 
individual from anyone else. Thus we usually exclude the realistic possibility that 
the government could at a cost improve its information; or that the government 
has information about individuals that is not completely reliable. But the theory 
can be expected to throw light on the magnitude of the gain from additional 
information of this kind. Something will be said about the use of imperfect 
lump-sum taxation, based on individual characteristics observed with errors, in 
Section 3. 

Another aspect of public policy omitted from the basic models is the evasion 
and enforcement of government policies. From one point of view, the problem of 
enforcement is one of getting information. A firm reports its profits and pays tax 
accordingly: the profit tax is a policy tool that relates tax payment to reported 
profits. Actual profits may or may not be equal to reported profits; so there are 
other rules relating tax payments - this time known as fines and imprison­
ment -jointly to reported profits and a more accurate measurement of actual 
profits made, at a cost, by government agents. Again, in certain countries, what 
the government servants report actual profits to be may be influenced by bribes. 
This brings in another set of considerations, where transactions are necessarily 
personal, unlike transactions in the standard competitive model. Since, in the 
basic optimal tax models, states of information are fixed, personal transactions, 
whose terms are specific to the individuals involved, need not be considered. But 
transactions of this kind - which are common in the real world, particularly in the 
capital market -would be an important subject of study in a complete theory of 
the administration, enforcement and evasion of the tax system.3 

3A more straightforward treatment of administrative costs has been initiated by Heller and Shell 
(1974). 
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The range of public policy contemplated in optimal tax theory is quite wide. 
Besides taxes and subsidies themselves, which may be related to any transactions 
between individuals, firms, other corporate bodies, foreign countries and individu­
als, and government and its agencies, the theory should also be prepared to 
encompass the use of quantity controls and restrictions, and the control of 
information flows, for example in training programmes or public advice. Also the 
government and its agencies can make expenditures or set up productive ,activities 
itself. Public expenditures may be undertaken to meet international obligations, 
or to benefit individuals, corporate bodies, or groups of these. A first requirement 
of the theory is that one finds a convenient, simple notation that will encompass 
all such policy variables without unduly complicating the analysis. In fact, despite 
the range of possible policies, the basic relationships are usually quite simple and 
similar. It is good to cultivate the art of seeing specific policy instruments as 
instances of the general possibilities of policy whose modelling we are to discuss. 

It will be noticed that the list of policy instruments in the previous paragraph 
does not include certain policies which rely for their operation on disequilibrium 
states of the economy. Deficit finance, price control; wage and income policies are 
instances of non-equilibrium policies. It should be possible to apply the methods 
of optimal tax theory also to models allowing disequilibrium.4 This seems to be 
an interesting area for further research. 

In the next section, the common mathematical form of optimal tax problems 
will be explained, and certain basic features and issues discussed. In subsequent 
sections, we shall look at a variety of cases. After dealing with lump-sum taxation 
in Section 3, we examine linear taxation in Sections 4 and 5. Sections 6 and 7 are 
devoted to the theory of income taxation and non-linear taxation generally. The 
discussion is concluded largely in terms of taxes and subsidies. Models with 
individual uncertainty about the effect of policies are discussed briefly in Section 
8. Some remarks and results about computation and approximation are collected 
in Section 9. After some concluding remarks, constituting Section 10, Section 11 
provides some brief notes on the literature. 

This paper does not contain a thorough survey of the literature on optimal tax 
theory. Neither the time nor the facilities for such a survey were available. It is 
rather an account of what seem to me the fundamental parts of the theory, with 
emphasis on the mathematical problems. Much of the published literature deals 
with economies in which all individuals are identical. Since this case does not 
seem to me especially interesting or useful, it will not be given much attention. 
Interesting and important areas which are neglected are the analysis of an 
international economy, where the impossibility of lump-sum transfers should have 
many interesting consequences; and the study of variable population. 

4 Dixit (1976) has looked at some issues in a temporary equilibrium model. 
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2. Optimization subject to maximization constraints 
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Problems in optimal tax theory have a characteristic form. To bring this out, 
consider three typical models. 

In the first, the government sets commodity taxes t = ( t1, . . .  , t n) proportional to 
trade in the n commodities. Producers face prices p = ( p1, . . .  , Pn), and their 
production activity is uniquely determined by these prices. Writing y for the 
aggregate net production vector, and xh for the net demand vector of consumer h 
(there being H consumers), market clearing requires 

(2.1) 

At the same time, consumers maximize utility, and we have for h = 1 , 2, . . .  , H, 

xh maximizes uh(x)  } 
subject to ( p + t ) ·x s, bh( p ) , 
and X E Xh 

(2.2) 

where bh is the profit income of the consumer, which in the absence of profit 
taxation is simply a function of p; and Xh is the consumption set of consumer h ,  
uh his utility function. 

A rather general form for the welfare function that government seeks to 
maximize is 

In the problem outlined, W is to be maximized subject to the constraints (2.1) 
and (2.2). The first of these constraints is of familiar type. The second group of 
constraints looks quite unlike those encountered in elementary constrained maxi­
mization problems, for it involves maximization itself with respect to some of the 
variables, in this case the x\ while other variables p and t are parametric. 

It will be noticed that, when the uh are strictly concave and the Xh convex, the 
apparently complicated form of (2.2) is of no great consequence, because we can 
write 

just as the supply functions y( p) may be derived from profit maximization. This 
feature is specific to problems with linear taxation. 

The second problem makes a common, but generally unsatisfactory, assump­
tion that all consumers react in the same way to the government's policy 
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variables. The government provides a facility, such as education, to some homoge­
neous groups of consumers. The supply of the facility is measured by a real 
number z which happens to be equal to its cost. The cost is met from the taxes 
paid by the beneficiaries, and taxes T0 obtained from the rest of the community. 
The tax paid by the beneficiaries is a function T1(y), of their labour supply y. 
This function is to be taken as given. The welfare function has as arguments the 
utility u(y, z )  of beneficiaries, and the tax T0 paid by the rest of the community. 
Thus the problem is 

maximize W( u(y ,  z ) , T0) ,  
y , z ,  7Q 

subject to z = T0 + T1 (y  ) , 
and y maximizes u(y ,  z ) .  

(2 .3) 

(2 .4) 
(2.5) 

This problem is a rather special and artificial one, but shows how naturally a 
maximization constraint arises. In this case there would be no reasonable pre­
sumption that u be strictly concave in y for all z, and therefore no reason to 
suppose that we can replace (5) by writing y = y(z). 

The third problem is that of optimal income taxation, where there are two 
commodities, a consumption good and labour, and the population is an infinite 
one where individuals are characterised by a continuous parameter h, distributed 
with density function f. The income tax takes a net amount t( wy)  of consump­
tion good from a consumer who supplies labour y, the wage rate being w. 
Consumer h has utility u(x, y, h), x being his consumption, and x = wy - t(wy). 
The welfare function is 

W =  j u (  wy - t( wy ) , y , h )f( h ) d h .  (2 .6) 

This is to be maximized subject to the constraints that 

y ( h )  maximizes u(  wy - t( wy ) ,  y ) ,  (2 .7) 

for all h; and the production constraint 

j [  wy - t ( wy )] /( h ) dh s G (J yf( h ) dh ) . (2.8) 

Furthermore, the wage is the marginal product of labour, 

w = G ' (fyJ( h ) dh ) · (2.9) 

In this formulation it has been assumed that all profits go to the government: 
otherwise the consumer's budget constraint would have to be modified. 
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Each of these problems can be written in the form 

subject to (x,  z ) E A 
. 

maximize W( x ,  z ) 

) and x maximizes U(x', z ) 
subject to x' E X( z ) 

1203 

(2 .10) 

Generally, the set A represents technological feasibility, and the relationship 
between production and prices. The maximization constraint represents consumer 
and producer behaviour. The set X( z) is the intersection of the set of definition of 
the function U(., z) and other constraints imposed by government. 

There could be many maximization constraints, but in each of the above 
problems they can be written as one. For instance, in the third example, the 
function y( h )  is chosen to maximize 

j u ( wy - t ( wy ) , y )f( h ) dh , 

and this single maximization encompasses the behaviour of all consumers. This is 
possible because of the absence of consumption externalities. It will also be 
noticed that in this case the constraint imposed on consumers by taxation is 
incorporated into the utility function, and the set X( z ) is simply the set of y( h )  
that are consistent with non-negative consumption and labour, i.e. that satisfy 
0 � y(h), t(wy(h)) � wy(h). It usually seems best so to transform a problem that 
the sets X( z ) reflect only consumption feasibility, and can often be understood 
implicitly from finiteness of the function U. It will be seen below that transforma­
tions of problems into convenient form play an important part in the theory. The 
first and third problems, as set out above, are not in a good form for mathemati­
cal analysis : in fact they are much simpler than they look when the economics is 
first set up mathematically. 

In some cases the control variables z and the behavioural variables x are 
numbers or vectors in finite-dimensional vector space. In other cases, such as our 
third problem, they are functions. (z might even be a subset of finite- or 
infinite-dimensional space, but I know of no problem that has been analysed 
directly in this form.) 

Granted that (2.10) is the form of problems in optimal tax theory, we have to 
deal with two issues. The first is that concavity of W and convexity of A are not 
usually implied by the natural assumptions of the problem. Therefore theorems of 
concave programming are not applicable; and first-order conditions for optimal­
ity are unlikely to be sufficient conditions. These issues will be taken up as they 
appear in the various models: the optimal tax theorist must always bear them in 
mind, and look for ways of circumventing them. 
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The second issue is the nature and treatment of the constraint that [leaving 
X(z )  to be understood] 

x maximizes U( x', z ) .  (2.11) 

If U is differentiable and strictly concave, (2.11) is equivalent to 

(2.12) 

which can be handled as a normal set of constraints, although it is unlikely to 
define a convex set. But that takes us back to the first issue. In many interesting 
cases, U is not concave in x, at least not for all z :  this is so for the second and 
third examples above. 

There are two ways of handling (2.11). We could replace (2.11) by the rather 
large set of constraints, with new variables, 

U(x, z ) � (x', z ) , all x'. (2.13) 

In almost all interesting cases, this is an uncountable infinity of inequalities, 
which may therefore be delicate to handle: but the reduction to (2.13) can be 
usefuL The alternative method is to examine directly the set of (x, z) defined by 
(2.11).5 

It may be helpful to do this first for a special case (which has no economic 
significance). 

Example 1 
x and z are scalars. 

Find z to maximize - (x - 1)2 - ( z - 2)2 

subject to x maximizes U(x , z )  = ze- <x+ 1)2 + e-<x-1l2 • 

We begin by describing the constraint set. The first-order condition for maximi­
zation with respect to x is 

z (x + 1)e- <x+ 1)2 + (x - 1)e- <x-1)2 = 0, 

5 The recently developed branch of differential topology known as catastrophe theory (based on 
work of R. Thorn) studies the set of ( x, z ) such that Ux = 0, and particularly the set of z for which the 
local behaviour of x satisfying Ux = 0 is especially noteworthy. The study of the set of (x, z ) such that 
x maximizes U is in some ways closely related. Brocker (1975, p. 145) refers to the Maxwell conventiqn 
as describing this kind of problem. But the features of these sets that are of interest in optimization 
are, by and large, quite different from those that are of interest in the dynamic analysis of systems, 
which has so far been the main motivation of catastrophe theory. In particular, the catastrophe points z 
at which det Uxx = 0 are rather unimportant optimizations. 
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i.e. 

1 - X 4x z =  1 + x e . 
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(2 .14) 

For x between 0.344 and 2.903 there are three values of x satisfying (2.14), and it 
still remains to discover which of them actually does the maximizing. 

To settle this, we observe that 

U(z ,  X ) - U(z , - x )  = ( z  - 1)(e-<x+l)2 - e-<x- l)2 ) 

= - ( z  - 1)(e4x - 1)e- <x+ l)2, 

so that for fixed z > 1, U is less for positive x than for negative; while if z < 1, U 
is greater for positive x than for negative. Therefore the maximum of U occurs 
for positive x when z < 1 ,  for negative x when z > 1. In either case (as is readily 
verified) this identifies the desired solution of (2.14) uniquely. The points of the 
locus (2.14) for which x maximizes U form two closed connected subsets of the 
locus. When z = 1, U is maximized by x = ±0.957. 

It is clear, by sketching contours (x - 1) 2 + (z - 2) 2 = constant in a diagram 
that the solution of the maximization problem is 

x = 0.957, z = l .  

This solution is not obtained if one treats the problem as a conventional 
constrained maximization problem with the first-order condition (2.14) as con­
straint. The Lagrangian is then 

- x - 1  - z - 2 + A z - --e ( )2 ( )2 ( 1 - X 4x ) 
1 + x  ' 

whose derivatives are zero when 

2(z - 2) = A , 

2(x - 1) = 4x2 · 2 
e4xA ,  

( 1  + X  )2 

· 1 - x  z =  --e4x 

i.e. when 

1 + x  ' 
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There are three solutions : 

(I) 
(II) 
(III) 

X =  0.895 , 
X =  0.420, 
X =  - 0.980, 

z = 1 .99 ; 
z = 2 .19 ; 
z = 1 .98 . 

The first clearly gives the largest value for the maximand, - (x - 1)2 .,.- (z - 2)2, 
but our previous analysis shows that x does not maximize U(x, z )  for this value 
of z. As a matter of fact, x is a local maximum, but not a global maximum. The 
second solution is ineligible on all possible grounds : x is a local minimum of 
U( x, z ) .  The third solution, on the other hand, has the property that x is a global 
maximum of U( x, z ), so that it does satisfy the constraint of the original problem. 
But it is not the solution of that problem, and indeed gives a much lower value of 
the maximand than is actually possible. 

This example shows that it is not legitimate to attempt to solve the problem by 
substituting first-order conditions for the maximization constraint. Furthermore, 
and this deserves emphasis, the example, though complicated, is in no sense 
special. Any moderate variation of the functions involved yields a problem with 
the same properties. 

In order to understand the form of the set6 

M = { (x ,  z ) :  x maximizes U(x',  z )  } ,  
in general, we should take U to be a smooth (coo) function on ( m + n )-dimensional 
Euclidean space. We do not want to examine M for all possible smooth U, but for 
"almost all" U, excluding pathological or special cases. In general, for each z, U 
has a finite number of distinct maxima, xi( z )  (i = 1, . . .  , r ). Provided that the 
matrix Uxx of second derivatives is of full rank m at each of these maxima, the x; 
are smooth mappings of z.  Then 

U(x; ( z  ) ,  z ) - U(x1 ( z  ) ,  z )  = 0, i = 2, . . .  , r ,  

and also 

ux (x; ( z  ) ,  z )  = 0, i = 1 ,  . . .  , r .  

(2.15) 

(2 .16) 

Regarding (2.15) and (2.16) as equations for z, x1, . . .  , xr, we have r - 1  + rm 

equations and n + rm unknowns. That is to say, the set of ( z, x1 ( z ), . . .  , x r( z )) is 
contained in the inverse image of (0, . . .  , 0) by the mapping 

( z ,  x1 , . . .  , xr) � (U(x2 , z ) - U(x1 , z ) ,  . . .  , U(x" z ) - U(x1,  z ) ,  . . .  , 
Ux (x1 ,  z ) ,  . . .  , Ux (x" z ) ) ,  

6The discussion of M owes a great deal to discussions with Kevin Roberts, who formulated the 
theorem about the essential maximum to the number of maxima recorded below. 
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from En+ rm to E r- 1 + rm. For almost all functions U, (0, . . .  , 0) should be a regular 
value of this mapping when x1, . . .  , x, are distinct. Provided that is the case, there 
will be a (n - r + I)-dimensional neighbourhood of (z,  x1, . . .  , x,) that also maps 
into (0, . . .  , 0). In other words the set of z for which U has r distinct maxima is of 
dimension n - r + 1; and the corresponding subset of M has the same dimension. 
In particular, there are no z with r > n + 1, i.e. more than n + 1 maxima, for 
general U. 

In Mirrlees and Roberts (1980), written after the present chapter, the following 
theorem was proved: 

For almost aW coo functions U, the number of distinct maxima is less than or 
equal to n + 2 for all z, and the dimension of the set of points of M correspond­
ing to z with r distinct maxima is less than or equal to n + 1 - r. 

It should not be supposed that, since dimension falls with the number of 
distinct maxima, points with a single maximum are almost certain to give the 
answer in actual optimization problems. Points (x, z )  corresponding to r maxima 
essentially form the boundary to the set of (x, z )  corresponding to r - 1 maxima. 
Thus, broadly speaking, the solution to an optimizing problem is just as likely to 
be a value of z with many maxima as with few, subject to the overall bound 
n + 2. 

The economic significance of this is that an optimum may well leave consumers 
indifferent among several options, only one of which the government would like 
to see chosen. Also the optimum can easily be something of a corner solution. To 
bring this out consider how one would have to solve a general problem of the 
form 

maximize W(x, z ) } 
subject to G(x, z ) = O  . 
and x maximizes U(x,  z ) 

(2.17) 

Using the theorem stated above, we can express this in a more convenient form 
for almost all U. Not only do we know that when x maximizes U(x, z ), 
UAx, z )  = 0, but also there are only a finite number of x' that maximize U, and 
these also satisfy Ux = 0. Thus x maximizes U if and only if Ux = 0 and 

U(x , z ) 2 U(x', z ) , all x ' ) 
such that Ux(x', z )  = 0 

' (2.18) 

and we can have equality in the constraints (2.18) for at most n + 2 values of x'. 

7 The set of such functions contains a countable intersection of open dense sets in the Whitney or 
strong topology. 
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In this way we can replace the constraint "x maximizes U"  by a finite number of 
equations and inequalities. The problem can therefore be treated as a standard 
Kuhn-Tucker problem. 

Provided that certain regularity conditions are satisfied, it is necessary for (x, z) 
to be an optimum, that there exist a scalar A. ,  an m-vector p,, and scalars v ', one 
for each x' satisfying Ux = 0, such that 

L (x,  z ) = w + A.G + Ux·JL + L: v'{ U(x, z ) - U(x', z ) } (2 .19) 

have zero derivatives with respect to x and z. The summation is over all x' 
satisfying Ux = 0, and each v' � 0 with strict inequality only if U(x, z) = U(x', z). 
Differentiation of L yields 

(2.20) 

(2 .21) 

(2.20) has simplified because the last terms drop out, as Ux(x, z) and Ux(x', z) 
both vanish. 

In principle, the equations we have found are enough to determine a finite 
number of solutions, one of which is the optimum. The chief difficulty is that the 
set M and its structure must be known before (2.21) can be found explicitly. To 
use the Lagrangian method, we would need to try successively z for which the 
maximim is unique (when the last terms drop out), then z with two maxima, and 
so on until all possibilities have been tried. Unfortunately, the determination of 
the set M of maxima for every z must usually be difficult and require much 
computation. 

Nevertheless, certain lessons can be drawn. Granted the difficulties in handling 
the general problem, it is important to find conditions under which it simplifies, 
particularly under which one can be sure that the optimum occurs where there is a 
unique maximum for U. It is also important not to be lulled into believing that 
solutions in these cases have a character that is universally applicable. 

One of the most striking features of these problems is that, as the number of 
control variables (the dimension of z ) increases, the possible extent of consumer 
indifference in the optimum increases. This suggests that when the government 
pQlicies are functions, i.e. infinite-dimensional, it can be optimal for consumers to 
have continuous ranges of indifference. It can even be the case that this idea 
simplifies the task of solution, because indifference over a range determines the 
form of optimal policy over the range; just as knowledge that the optimum is at 
an ( n + 2)-maximum virtually determines optimal z in the class of problems we 
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have been discussing. On occasion it is possible to discover quite easily conditions 
sufficient to imply that the optimum has this form. 

3. Lump-sum transfers 

In this and the following sections, a common model will be used. It will be useful 
to establish notation. 

xh  = net demand vector (i.e. consumption net of endowment) of consumer, 

uh ,  Xh = utility function and consumption set of consumer h .  

Either there are a finite number of consumers H, or h i s  continuously distributed 
and non-negative with density function f. 

y = aggregate net supply vector of private producers, 

Y = aggregate production set, 

yi = net supply vector of producer j, 

y; = production set of producer j, 

z = net supply vector of governm-. .mt, being the public production vector 
minus the public consumption vector, 

Z = set of feasible z ,  

q = prices faced by consumers, 

p = prices faced by private producers. 

It will be assumed that uh  is differentiable and concave and Xh convex. This is 
rather stronger than assuming convex preferences, but convenient. Private pro­
duction sets are convex unless otherwise stated. Each uh is a strictly increasing 
function of its arguments. 

Let the welfare function be individualistic, i.e. 

(3 .1)  

in the case of a finite population. W is smooth and an increasing function of all 
u h. It is interesting first to analyse the problem when all possible policies are 
available to government, partly because we can introduce some techniques that 
prove useful later. If all policies are possible, the government can impose on each 
consumer separately a budget set B\p ), and have each producer maximize 
profits. (There is no interest here in considering more general forms of production 
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control.) Then the constraints in the optimization are 

xh  maximizes uh (x)  } 

subject to x E Bh(p )  II Xh ' 

yi  maximizes p · y } 
subject to y E yJ ' 
I:xh = LYi + z, 
h j 

J. A. Mirr!ees 

(3 .2) 

(3 .3) 

(3 .4) 

Z E Z. (3 .5) 

By the fundamental theorem of welfare economics, it is known that the solution 
to this complicated looking problem takes the simple form (when every consumer 
is in the interior of his consumption set at the optimum) 

where the scalars bh satisfy 

Lbh = LP "YJ* + p · z* ,  
h j 

yi* and z *  being the optimal values of yi and z. 

(3 .6) 

(3 .7) 

Using the indirect utility function, we state a rule for the optimal lump-sum 
transfer bh. Let 

uh ( q, bh ) = max { u h ( x) : q · x :o; bh, x E Xh } , (3 .8) 

and 

(3 .9) 

Then optimal b* = (b1*, . . .  , bH* ) maximizes 

V( p ,  b ) subject to the constraint (3 .7) . (3 .10) 

The first-order condition for this is that 

h = l ,  . . . , H, (3 .11)  

for some scalar ;\.. This familiar condition may also be expressed by using the 
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expenditure function 

(3 .12) 

With this notation we can say that optimal utility levels u* = ( u1*, . . .  , uH*) 
maxumze 

(3.13) 
h j 

The assumption that uh(x) is a concave function implies that Eh is a convex 
function of uh : E:u � 0. The first-order conditions for (3.13) are 

(3 .14) 

The objections to assuming it possible to make bh a function of h are, first, that 
consumers may not choose to give the government correct information about their 
utility functions; and, second, that, even if consumers were willing to tell the 
truth, it would be costly to obtain the information. These objections will each be 
formalised. 

To capture the first objection we need a formulation of welfare with more 
content. The most powerful welfare functions are those based on the idea that 
individuals are basically the same, but vary in endowment, abilities, and sensibili­
ties. These differences can be taken to be differences in the significance of trade 
for utility. A simple formulation (ignoring differences in material endowment) is 

(3 .15) 

with the consumer described by n parameters h1, . . .  , hn- If, for example, com­
modity n is labour, and labour has disutility, larger h n means labour is harder, or 
equivalently, the ability (or inclination) to provide labour is less. Similarly h1 can 
represent the ability to appreciate wine. If individuals are identical, welfare ought 
to be a symmetrical function of utilities. For concreteness and convenience, take 
an additive function 

(3.16) 

If the government must rely completely on individual report for its knowledge 
of an individual's h, and individuals are truthful only when they do not lose by it, 
either Bh must be independent of h (so that the government does not use 
observations of h), or uh must be independent of h .  We shall see below that, 
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under some plausible assumptions, the latter is the better alternative. It may be 
more interesting to suppose that the government can obtain information about h 
by some form of testing. The leading examples are abilities, where an individual 
can easily pretend to less ability than he truly has, but would find it difficult to 
prove he has more. (Uncertainties of observation will be mentioned later.) 
Supposing then that individuals can misreport h ;  only by claiming it is greater 
than in fact it is, an h ;-dependent policy can be administered only , if, in the 
outcome, 

is a non-increasing function of h;. The following result is then of interest. 

Theorem 3. 1 

( 3 .17) 

Let the utility function be (3.15), and the welfare function additive. In the 
first-best optimum, v is an increasing function of h ;  if commodity i is always a 
normal (i.e. not an inferior) commodity. 

Proof (illustrating the convenience of the expenditure function in these prob­
lems) 

We have seen that, at the optimum, 

(3 .18) 

With the utility function (3.15), Eh takes the form 

( 3 .19) 

Therefore differentiation of (3.18) with respect to h; yields 

Thus 

(3 .20) 

where xf = ( a  I a P;)Eh is the compensated demand function for commodity i. 
Normality means that ( a;au)xf > 0; and concavity of u implies Euu > 0. There­
fore (3.20) implies avjah ;  > 0 as claimed. D 
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This theorem shows how unlikely it is that optimal lump-sum taxation is 
feasible. But the constraint that v be a non-increasing function of the hi still 
implies that all taxation should be lump-sum in character. It does not, in all 
circumstances, imply that utility should be the same for everyone. The next result 
includes one of the cases where equal utility is optimal. We go back to a more 
general form for uh. 

Theorem 3.2 

Let welfare be individualistic, and consumers be characterized by m parameters 
h1, . . .  , h m · If it is required that utility be a non-increasing function of the h i• the 
optimal budget sets have the form 

If m = 1, and the marginal utility of income at constant prices is a non-decreasing 
function of h1, all consumers have the same utility at the optimum. 

Proof (illustrating the use of indifference surfaces; and of convexity inequalities) 

Let Hx2, • • •  , xn, u, h1, • • •  , h n) be the amount of commodity one required to 
provide utility u when x2, . . .  , xn are trade levels in the other commodities. g = oo 

if u is unattainable. g = 0 if x2, • • •  , xn are already enough to provide more that u. 
With this notation, the constraints in the optimization problem take the form 

v (h ) = v ( h 1 , . . .  , h m ) is non-increasing in all arguments, 

X =  y + Z ,  

y maximizes p · Y, 

i = 1 , . . .  , n .  

(3 .21) 

(3 .22) 

(3 .23) 

(3 .24) 

(3 .25) 

We may as well assume that Y admits free disposal, since extra production can be 
used to increase utility, and therefore welfare, without breaking constraint (3.21). 
Fixing v and z at their optimal levels, consider x, defined by (3.24) and (3.25), as 
the functions x2(.), • • •  , xn(h) vary. We shall never obtain a point x - z in the 
interior of Y, because if we did it would be possible to change v in such a way as 
to increase welfare. Therefore the interior of Y does not intersect the set of points 
x - z with x1 � jgjdnh ,  xi � jxi(h)fdnh. This latter set is convex, since prefer­
ences are convex. Therefore we can separate by a hyperplane yielding price� p. 
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These prices satisfy (3.23), and we also have 

n 
p 1Hx2 ( h ) ,  . . . , xJh ) ,  v (h ) ,  h ) +  L P;X; ( h ) = max , {3 .26) 

i = 2  X 

for almost all h at the optimum. We may as well satisfy it for all h. (3.26) implies 
that a�; ax; = - p;/ P1 ( i = 2, . . . , n ), i.e. that consumers maximize utility subject 
to budget constraints of the form stated in the theorem. 

To prove the second part of the theorem, introduce the expenditure functions 
E(p, v (h ), h ), with a single parameter h . Let u * be the maximum constant utility 
level consistent with the optimum output levels, and let v(.) be a non-increasing 
function, which is also consistent with these output levels, consumers always 
facing prices p. Then 

{3 .27) 

Since E is a convex function of v, 

E ( p ,  u * ,  h ) - E(p , v ( h ) , h ) s Eu( p , u* , h ) ( u* - v (h ) ) . {3 .28) 

Let h 0 be the largest value such that v (h) � u *. (If there is none such, u * yields 
more welfare than v.) Then, since, by assumption, Eu is a non-increasing function 
of h , 

EJp , u * ,  h ) ( u* - v ( h )) s Eu( p ,  u*, h0 ) ( u* - v ( h ) ) . 

Combining (3.28) and (3.29), and integrating over h , 

jE(p , u * , h )fdnh - jE(p , v , h )Jdnh 

s EJp , u* , h ) { ju*fdnh - jvfdnh } .  

{3 .29) 

Since, by (3.27), the left-hand side is zero, ju*fdnh � Jvfdnh . Therefore, as 
claimed, the optimum has constant utility. 0 

This last argument fails with more than one parameter because there may be no 
h0 for which (3.29) holds. Conditions can be found that imply constant utility, 
but it looks as if there are cases where it is not optimal. When it is, the theorem 
implies that it is better to have constant utility than any budget set that is the 
same for all h . I do not know whether this is always true. 
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It is obviously unreal to suppose that a government can get perfect information 
about individual characteristics even when individuals have nothing to lose by 
reporting it. We can consider a model in which these characteristics are imper­
fectly observed by government.8 For simplicity, suppose the population char­
acterized by a simple parameter, h. An individual seems to government to have 
characteristic k, but knows he has characteristic h . The distribution of h and k, 
which is not degenerate, is described by a joint density function f(h ,  k). With an 
additive welfare function, and indirect utility function v(p, b, h ), welfare in a 
competitive equilibrium is 

W= j jv ( p , b(k) , h )J(h ,  k ) dh dk. (3 .30) 

Aggregate demand is 

j jx(p , b (k) , h )j( h , k ) dh dk. (3.31) 

Theorem 3.3 

Let vb be a strictly monotonic function of h (for each p and b); and let there be 
a commodity, say i = 1, for which x1 is a strictly monotonic function of h. If the 
frontier of Y is smooth, then no competitive equilibrium with only lump-sum 
taxation is optimal. 

Proof 
We first determine optimal lump-sum transfers given that there are no other 
taxes. The derivative of welfare with respect to b(k) is 

Wk = J vb ( p , b(k ), h )f( h ,  k ) dh . 

The derivative of  p · y with respect to b( k) is 

p · j xb ( p ,  b (k ) , h )f( h ,  k ) dh = jJ(h ,  k ) dh . 

Since Y is smooth at y, transfers b are optimal if and only if Wk is proportional 
to jj(h , k)dh. Thus, for some A, 

jvb ( p · b ( k) , h )j( h ,  k ) dh = A  jJ(h ,  k) dh . (3 .32) 

8 The material on imperfect lump-sum taxation is joint work with Peter Diamond. 
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With optimal transfers, A is the change in W made possible (by changing b) if 
p · y is changed by a unit. 

It will now be shown that a change in p 1 (corresponding to commodity 
taxation of the first commodity), along with appropriate changes in b, can 
increase welfare. The derivative of W with respect to p1 is 

j j ::Jdh dk = - j jvbxifdh dk. 

The derivative of aggregate demand is  11 ( a I a Pl)xf dh dk, whose value at prices 
p is 

p · J j _a
a xfdh dk = - j jxddh dk. P1 

It will be shown that 

(3 .33) 

It follows that it cannot be optimal for p1 to be the consumer price for 
commodity one. This will prove the theorem. 

To demonstrate (3.33), we use (3.32) to obtain 

j j( vb - A )xifdh dk 

= j j( vb - A ) { x1( p , b (k ) , h ) - x1 (p , b ( k ) , hk ) }fdh dk. (3 .34) 

where we can define hk by vb(p, b(k), hk) = A. Since vb - A is strictly mono­
tonic, and so is x1, for each k, the right-hand side of (3.34) is not zero. This 
proves (3.33) and completes the proof of the theorem. D 

The assumption that the private production set has a smooth frontier merely 
excludes pathological cases. The general lesson is that imperfect information 
normally implies that non-lump-sum taxation ought to be used. In the model 
here, it would usually be desirable to use lump-sum transfers as well. There is one 
problem with lump-sum taxation based on inaccurate information which is of 
great practical importance and is hidden by the model, or at least the way it has 
been handled. Suppose, to fix ideas, that consumer prices are p. One would 
anticipate that for certain values of h and k there will be no feasible consumption 
plan satisfying p ·x � b(k). Men of high ability should pay large taxes: what 
should be done about men of apparently high ability who are unable to earn 
much, and how can those be distinguished who simply do not feel like it? 
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Throughout this section, and throughout subsequent sections, it is assumed that 
the government is well informed about the population, as a statistical aggregate. 
The government may be unable to use information about an individual as a basis 
for applying policy to him, but the construction of policies is based on knowledge 
of his characteristics. This dichotomy between individual and statistical informa­
tion cannot be strictly justified. In a small population, any information an 
individual gives affects his own fate. This leads to the theory of preference 
revelation,9 which is however of no value to the student of public policy, since it 
uses only the uselessly weak criterion of Pareto efficiency. A welfare-theoretic 
treatment of the issues, using a Bayesian formulation, would be of interest. But 
for large populations, it seems reasonable to use a model in which there is fixed 
prior information about the distribution of characteristics in the population. It is 
unlikely that for most policy issues this will give misleading results. 

It will now be assumed that there is no information basis for lump-sum 
taxation, because we thereby concentrate attention on the central difficulties. 
Lump-sum taxation is easily introduced into the theory. Something will be said 
about this later. 

4. Producers and efficiency 

In the standard general model of competitive equilibrium, consumers are related 
to producers in two ways, as traders, and as owners receiving pure profits. If there 
are constant returns to scale in private production, equilibrium profits are zero. 
We shall make this assumption for the present and return to it below. In the 
absence of profits, consumers are completely described by their utility functions, 
consumption sets, and budget constraints. If government has no information 
allowing it to discriminate among individuals, the budget set B, consisting of 
those demand vectors that are available to the consumer, is the same for all 
individuals. For example, if there are commodity taxes proportional to trades and 
a uniform lump-sum tax (often called a poll tax or subsidy), the budget set is 

B =  { x : q · x :s; b } ,  (4.1) 

where q = p + t. Notice the important point that we can regard q and b as the 
control variables rather than t and b. In general, B can be taken to be the control 
variable rather than B as a function of p. 

In Sections 6 and 7 we shall analyse cases where the government is not further 
constrained in its choice of B, which may be defined by linear inequalities as in 
(4.1), or some more general set. In most of optimal tax theory, B has been 

9See Groves and Ledyard (1977). 
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assumed subject to constraint, for example that it be linear, or even more severely 
constrained, with some commodities untaxed. In the present section, the choice of 
B is not the focus of interest, but the control of private producers and the choice 
of government expenditures and production plans. The rules that should govern 
these choices depend on the extent to which the government is constrained in the 
control it can apply to consumers. One of the lessons of optimal tax theory that 
matters most in practice is that optimal production rules are not as much affected 
by the existence of constraints on consumer taxation, and in particular on 
lump-sum taxation, as might once have been thought. 

Theorem 4. 1 (Efficiency Theorem for Linear Taxation) 

Let the welfare function be individualistic. If the government is constrained to use 
linear taxation, i.e. to choose a budget set of the form (4.1), then at the optimum, 
y + z is in the frontier of the aggregate net production set Y + Z. This result is 
true even if it is possible to subject producers to differential commodity taxation. 

Proof (simple topology) 
Suppose first that all production is under government control, so that the 
optimization problem is 

maximize W 
subject to L:xh E Y + Z 

h 
X h  maximizes uh(x)  for X E Xh 
and q · x :::; b 

(4.2) 

Under our concavity assumption, the maximizing xh  is a continuous function of 
q and b. If the solution to the problem is q*, b*, no welfare-increasing variation 
of q and b yields feasible aggregate demands. In particular if b > b* and q*  
remains fixed, 

Since L:xh is continuous in b, it follows that 

y*  + z *  = L:xh(  q* ,  b* ) E frontier of Y + Z. 

This implies that y* is in the frontier of Y, and, by convexity, that there exists p 
such that y * maximizes p · Y. Therefore the optimum for problem ( 4.2) is also the 
optimum for the more constrained optimizations where production is private and 
competitive with or without differential taxation. This proves the theorem. D 
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The proof of the theorem is pretty trivial. The result obviously holds whenever 
the range of budget sets that can be imposed on consumers by government is 
sufficiently wide that arbitrarily small expansions of any budget set are possible. 
In particular, the addition of new tax and control possibilities leaves the conclu­
sion unaffected. The importance of the result is that it implies simple rules for 
shadow prices. There are shadow prices s for z * in the frontier of Z if Z is 
convex and s are support prices at z *, i.e. z * maximizes s · Z; or if the frontier of 
Z is smooth at z * , and s defines a tangent hyperplane at z * . In either case we 
have: 

Corollary 4.2 

Under the assumptions of Theorem 4.1, optimal public net production z * is in 
the frontier of Z, and if shadow prices exist, there are shadow prices which are 
equal to producer prices at the optimum. 

The theorem and its corollary imply that, when the assumptions of constant 
returns, competitive conditions for private production, unconstrained linear taxa­
tion, and individualistic welfare, are satisfied, there should be no taxation of 
intermediate goods, i.e. of trade between producers, and that public and private 
discount rates for production decisions should be the same. 

It is interesting to enquire what happens to the efficiency result when the 
assumptions of the theorem are relaxed. Individualistic welfare is not an issue: it 
would be hard to devise interesting welfare assumptions for which the result did 
not hold. I shall comment on non-constant returns, non-competitive conditions, 
and tax constraints, in turn. 

If private producers do not have constant returns, we can restore constant 
returns by defining new dummy commodities, a fixed factor for each producer, 
owned by consumers in the same proportions as they have shares in the firm.10 In 
other words the firm is itself regarded as a commodity. Since these fixed factors 
do not affect utility, utility functions are not strictly concave in terms of all 
commodities, but supplies are continuous functions, provided we make the usual 
assumption that consumers are prepared to supply even when the price is zero.U 
Then the theorem remains valid. This means that efficiency holds if  the fixed 

10Avinash Dixit has encouraged me to take this approach. 11 If a firm that could exist does not, it may be hard for the government to take advantage of its 
potential existence in setting taxes and subsidies. If it cannot, it is possible to construct examples in 
which the optimum is inefficient. There are even examples where no optimum exists. See Mirrlees 
(1972). In that paper, I also discuss briefly the case of what are there called managerial inputs. In the 
terminology used above, it is assumed impossible to distinguish between the managerial input and the 
fixed input for tax purposes. In this case efficiency is generally undesirable. Hahn's (1973, p. 104) 
argument to the contrary is fallacious because it ignores the effect of price changes on the marginal 
profitability of managerial effort. 
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factors can be taxed independently, or, equivalently, profit taxes are levied at 
possibly different rates on different firms. 

If all profits have to be taxed at the same proportional rate, the relative value of 
different shares to the consumer is the same as the relative values of the firms, 
measured in producer prices. Thus the budget sets that can be imposed on 
consumers are constrained by the producer prices ruling. (Taxation on transac­
tions between firms can restore the effect of firm-specific profit taxation, but this 
also violates the uniform treatment of firms.) A similar point might be made 
about the difficulty of taxing labour income derived from different firms at 
different rates, although labour for different firms should often be treated as 
different commodities. The fixed-factor aspect of the issue is really beside the 
point. In any case, profits can be interpreted as the return to the initial en­
trepreneur or inventor who set up the firm (and perhaps took his gains by floating 
the firm as a corporation). Then they are returns to a variable factor, and not 
particularly different from prices in any other market. 

What comes out of this discussion is the importance of the assumption that 
consumer prices (or equivalently tax rates) can be chosen independently of 
producer prices. Governments do not act as though this were true. Then the 
efficiency theorem is not valid - though it may be a good approximation. 

Non-competitive behaviour by firms does not change the efficiency theorem, 
but rather its interpretation, provided that any profits can be taxed as desired. In 
this case Y should be interpreted not as the production set of private producers 
but as the set of net supply vectors that can be elicited as producer taxation and 
other government controls vary. Then shadow prices for government production 
decisions can be obtained as the tangent hyperplane to the new set Y, and will not 
in general be simply related to producer prices. 

Constraints on the tax powers of government have been much analysed in the 
literature.U We have seen that they may be implied by uniform tax treatment of 
producers. Many of the constraints dealt with in the literature are introduced 
without any compelling reason. The non-taxability of certain commodities and 
the imposition of profit constraints on public producers may be instanced. By and 
large these constraints are a way of capturing administrative considerations rather 
than limitations imposed by lack of information. Ideally, a theory of administra­
tion and implementation would be developed before considering what are the 
most relevant and interesting constraints on taxation to model. 

Another reason why tax constraints are important is that governments are often 
prepared to seek advice on public production and expenditure decisions when 
they are not prepared, in the medium run, to change a tax system whose form 
they believe to be constrained by its political image, and perceived effect on 

12 Dasgupta and Stiglitz (1971). Guesnerie (1975) deals with non-competitive producer behaviour. 
The shadow price theorem (Theorem 4.3) comes from Diamond and Mirrlees (1976). 
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particular groups. The last result of this section gives some information about 
shadow prices under circumstances where the efficiency theorem does not apply. 
It takes as premise the optimality of efficiency within the public sector, which is 
probably valid under very general circumstances, since some policy change would 
almost always increase welfare if the resources were available, though no theorem 
on this point seems to be available. 

Theorem 4.3 

Let policy possibilities be constrained only by producer prices (not quantities). 
Suppose that for any optimum, z* is in the frontier of Z. If y0 is the production 
vector for a competitive, constant returns producer in the optimum, there exist 
shadow prices s for z * such that 

(4.3) 

Proof 

Let (J be a real number such that 1 0 1  < 1. If the producer who has been singled out 
produced Oy0 and the public sector produced z * + (1 - 8)y0, there would be no 
change in policies and no effective change in equilibrium. Then welfare is 
unchanged. The producer in question is perfectly willing to produce Oyo instead 
of yo. Thus z * + (1 - O)y0 would be another optimum for public production if it 
were feasible. It follows that 

z * + (1 - O )y0 E frontier of Z, 10 1 < 1 .  

Therefore there exists a tangent hyperplane at z * containing all vectors z * + (1 -
O)y0 •  Let the shadow prices defined by this hyperplane be s. Then s · y0 = 0, as 
was claimed. D 

This result is of use wherever there are a number of sectors which can be 
adequately modelled as constant returns competitive sectors. It implies in particu­
lar that shadow prices of commodities traded at fixed prices in world markets are 
proportional to border prices, a result useful in benefit-cost analysis. It must be 
emphasized that (4.3) is not applicable if in the optimum the constant returns firm 
should close down: it is not always valid to use yo  derived from input-output 
tables for an existing economy. 

5. Linear taxation 

As we have seen, there is no loss of generality in assuming that private-sector 
producers have constant returns to scale. With this assumption, the efficiency 
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theorem (Theorem 3.1) means that the optimal choice of linear taxation is 
achieved by finding q* and b* that maximize V(q, b) subject to x(q, b) E Y + Z, 
where x(q, b )  is the aggregate net demand function of consumers. It must be 
emphasized that q � 0 in this optimization. If production sets had smooth 
frontiers, there would be a unique shadow price vector s associated with x*  = 

x(q*, b* ). Since in that case the aggregate production frontier is approximately 
given by s · y = s · x * in the neighbourhood of the optimum, we would expect that 
the derivatives vq and vb should be prop�rtional to s · xq and s ·xb at the 
optimum, provided the optimum is not on the boundary in price space, i.e. q * is 
strictly positive. 

To obtain a general theorem yielding these conditions, we need certain regular­
ity conditions. A fairly simple one will be used here: we introduce the following 
assumption, which says, in a rather strong way, that inefficiency is feasible in the 
neighbourhood of the optimum: 

(I) There exists y0 in the relative interior of Y and continuously differentiable 
functions q0( 0 ), b0( 0) defined for 0 .::;; 0 .::;; 1 such that q0( 0) � 0 and 

(5 .1) 

Notice that q0(0) = q*, b0(0) = b*. When q* » 0 (i.e. q;* > 0 for all i ), (I) is 
implied simply by the assumption: 

(J) The matrix (xq(q*, b* ), xb(q*, b*)) is of full rank. 

( J) implies that all x in a neighbourhood of x * correspond to some ( q, b) with 
q � 0; and (I) is therefore trivially satisfied, provided that Y consists of more than 
a single point. This assumption (J) is a fairly acceptable one, which would be 
satisfied in almost all cases,13 but it is insufficient when q*  has zero components. 
Assumption (I) is by no means the weakest assumption that would work in the 
following theorem, but it yields a fairly simple proof, and problems not satisfying 
it are unlikely to arise in practice. 

Theorem 5. 1 

Let V and x be continuously differentiable functions of q and b for q � 0, and Y 
a convex set. If q*, b* maximize V subject to x E Y, and assumption (I) is 
satisfied, there exists a non-zero vector s and a scalar A such that 

x * maximizes s · Y 
vq ( q * , b * ) .::;; A.s · xq( q* , b* ) ,  
Vh ( q * , b * )  = A.s · xb (q* , b* ) .  

13 (J) is not satisfied when there are fixed factors, but (I) generally is. 

(5 .2) 
(5 .3) 
(5 .4) 
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Since V and x are homogeneous of degree zero in q and b, 

Therefore q* being non-negative, (5.3) and (5 .4) imply that 

av (q*, b*) = s · ax ( q*, b*)  when q;* > O. aqi aqi 

Proof 

1223 

(5 .6) 

We work in the smallest linear manifold L containing Y. Let C be the cone of 
non-zero vectors s in L such that x* maximizes s · Y. Since y0 is in the interior of 
Y in L, s ·  yo < s · x* for all s in C. Now (5.1) implies, differentiating with respect 
to 0 and setting 0 = 0, that 

(5 .7) 

q?(O) � 0 for any i such that qf(O) = q;* = 0. By multiplying q(O), b(O) by a 
positive scalar if necessary [which does not change x(q(O), b(O))], we can ensure 
that qf(O) � 0 for all i. Thus (5.7) implies that there exists a0 � 0 and a0 such 
that 

Since s ·  yo < s · x* for all s in C, this implies that 

s E C. (5 .8) 

This inequality will prove to be of crucial importance in the proof. 
Consider smooth functions q(O), b(O) (O s 0 s 1) such that q(O) = q*, b(O) = 

b*, a = q'(O) � 0, a = b'(O). If 

vq(  q* '  b*  ) · a + vb( q* ' b* ) · a > 0, (5 .9) 

V(q(O ), b (O)) > V(q'i<, b*) for all small 0. Consequently 

x ( q( O ) , b ( O )) ft. Y. 

It follows that, for some s E C, 

(5 .10) 
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Thus (5.9) implies (5 .10) for some s E C. Equivalently, 

s · x* ·  a +  s · xta < 0 q ' 

implies 

Vq*· a +  Vb*a 5: 0. 

all 

Suppose it were only true that 

s · x;- a +  s · xta 5: 0, all 

s E C, and a z O, 

s E C, and a :::=:: O .  

J. A. Mirrlees 

(5 .11) 

(5 .12) 

(5 .13) 
Then for any positive number y, (5.11) is satisfied by a' = a +  ya0 and a' = a +  
ya0• This follows from (5.8). Then (5.12) holds for a' and a'. Letting y ----) 0, we 
see that (5.12) also holds for a and a. 

Since (5.13) implies (5.12), we can apply the duality theorem for convex cones 
to deduce that the vector (Vq*, Vb* ) is in the closure of the cone 

D =  { ( s · x; - d, s · xt ) : s E C, d z O} .  

In other words, there exists a scalar A and s E C such that 

V*  < As · x *  q - q • 
The scalar A must be inserted to allow for the (exceptional) possibility that A = 0. 

D 

Most of the literature on optimal commodity taxation is concerned with 
manipulating and interpreting the first-order conditions of this theorem. Many 
papers have been written on the case of identical consumers (with identical 
endowments) with b = 0. Since it is hard to see why b must be zero, this case 
seems to be of little practical interest. In the case of identical consumers, the 
conditions obtained by using the direct utility function and constraining maximi­
zation by the first-order conditions for consumer choice, are of some interest, 
particularly for additively separable utility, 14 but the indirect utility approach 
seems to be much more useful for the many-consumer economy. 

The chief manipulations used in interpreting (5.3) and (5 .4) are the following. If 
welfare is individualistic, 

V(q , b ) = il ( v1( q, b ) ,  . . .  , vH( q, b )) ,  

and, writing Q for BQjBvh, 

vq = "L ilhv; = - L: ilhvzxh = - Lf3hxh , (5 .14) 

14Atkinson and Stiglitz (1972). 
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where 

is often called the " welfare weight," or " marginal social utility of income". (5.14) 
says that - Vq is a weighted sum of demands. One also finds that 

(5 .15) 

Thus - Vq/ Vb is a weighted average of demands, and this interpretation encour­
ages one to divide (5.3) by (5.4). 

The right-hand sides of (5 .3) and (5.4) can be written, interpreting q - s = t as 
tax rates 

s · xq = - ( q - s ) ·xq - x  

a = - at [ t
. x ( s + t ,  b )- b] , 

s · xb = - ( q - s ) ·xb + 1  
a 

= - ab [ t · x (s + t , b ) - b] ,  

Writing 

T( t ,  b ,  s )  = t · x(s  + t , b ) - b , 

for the net revenues of government, (5.16) and (5.17) can be written 

and the first-order conditions (5.3) and (5.4) become 

Assuming q » 0, i\ > 0 for emphasis, and dividing (5.19) by (5.20), 

(5 .16) 

(5 .17) 

(5 .18) 

(5 .19) 

(5 .20) 

(5 .21) 



1226 J. A. Mirr/ees 

In words, the welfare-weighted average of demands should be equal to the 
constant-revenue effect of tax-rate changes on the general subsidy b. 

Another manipulation should be mentioned, though it may have been over­
rated. Writing xch for the compensated demand functions, we have 

s · x; = - (q - s) ·x; - xh 

= - t · x�h + t ·xixh - xh 

= - xch . t - (1 - t ·xh )xh 
q b ' 

(5 .22) 

by Slutsky symmetry. Now x�h . t is, to a first-order approximation, the changes in 
demands brought about by the introduction of taxes, provided income effects are 
ignored. One can also interpret x�h · t  = [( a;aO)xch(s + Ot, b)] 11= 1  as showing the 
effects on compensated demand of intensification of the tax system. Thus (5 .3) 
implies that 

L { f3h - ;\ (1 - t · xi ) } xh � Ex�h · t . (5 .23) 
h h 

The welfare weights on demands are here modified to take account of the revenue 
effects of changes in the consumer's lump-sum income. (5.4) implies that 

L { f3h - ;\ (1 - t · xi ) } = O. (5 .24) 
h 

It follows from (5.24) that the left-hand side of (5.23) is the covariance of xh, and 
the adjusted weights (called the social marginal utility of income by Diamond) 

(5 .25) 

Among the problems in this area that seem to be of theoretical interest, 
mention should be made of separability questions, as to the conditions under 
which some commodities should be untaxed, or groups of commodities taxed at 
the same rates. In this connection, it is important to notice that in the model there 
are always many equivalent tax systems. If q* ,  b* and s are optimal consumer 
prices and subsidy, and shadow prices, it is optimal to set producer prices 

p = f.LS, 

and tax rates 

t = vq * - f.Ls, 
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while paying a general uniform subsidy 

b = vb* . 

This tax system is optimal for any positive JL and v. In general, any commodity 
can be made an untaxed commodity by suitable choice of JL and v. If the natural 
interpretation of a problem, e.g. untaxed fixed factors representing the absence of 
profit taxation, imposes part of the normalization, the tax system can no longer 
be chosen so freely. This point has sometimes led to confusion and error. 

It is also interesting to enquire how the optimal tax rules are altered when there 
are constraints on the choice of linear tax systems, for example when certain 
goods cannot be taxed. In such problems, the private producers may, and usually 
should, face prices that are not proportional to shadow prices s, and it is useful to 
speak of consumer taxes q - s and producer taxes p - s, although the constraint 
may take the form of requiring that they be equal for certain commodities.15 

In the model discussed, there has been no dependence of consumer utilities on 
public expenditures, that is, no role for what are called public goods. If such 
expenditures are the sole responsibility of government, and their provision is not 
associated with new controls on consumers, they are easily accommodated in the 
model. We simply write V(q, b, g), x(q, b, g), where g is public consumption 
expenditure. The same methods as were used to establish the first-order condi­
tions for optimal taxation prove that it is necessary for optimality that 

(5 .26) 

If welfare is individualistic, this can be rewritten as before, 

where mh = - ( abh/ ag) uh constant is the marginal value of the public expenditures 
at constant q. Thus at the optimum 

(5 .27) 

The revenue effect could in practice by very important. A revenue gain arising 
from provision of the good strengthens the case for it. 

15Dasgupta and Stiglitz (1971). This work is clarified, and to some extent corrected, by Munk 
(1977). 
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6. Nonlinear taxation in a one-dimensional population 

J. A. Mirrlees 

So long as the government is constrained to choose linear tax systems, consumers, 
provided they have convex preferences, have well-defined consumption choices, so 
that the maximization constraint defines a nice set. If there is no constraint on the 
tax system, other than independence of individual information, it may be desir­
able to impose a budget set which leaves some consumers indifferent among 
widely different consumption plans. For a finite population we intuitiv�ly expect 
that this will be optimal. The most able consumer need be no better off than if he 
did the same as the next most able consumer, but in general the government 
would want him to do something different, i.e. choose a different point on the 
same indifference surface. 

The case of a large finite population seems unlikely to be of much interest, 
because computation would be extremely demanding. Accordingly, we go to the 
continuum case, where under some circumstances it is to be expected that the 
optimum budget set can be defined by nice functions. The population is described 
by a non-negative scalar parameter h with density function f. The allocations 
that can be brought about by government policy are given by 

x ( h ) maximizes u(x ,  h ) for x E Xh n B,  (6 .1) 

for some set B. The first task is to find more manageable control variables than 
the set B. One way of doing this would be to single out a numeraire good and 
express B by the inequality 

(6 .2) 

This approach turns out to be extremely complicated, and an alternative must 
be devised. The difficulty with using the function c in (6.2) as the control variable 
seems to be that variations in it can have complicated effects on the variables of 
the problem. 

An approach that is manageable is to define the function 

V ( h )  = max { U (X, h )  : X E Xh (I B } , (6 .3) 

and use an "envelope theorem" for it. If the maximizing x is a differentiable 
function of h ,  and x( h) is always in the interior of Xh, 

( 6 .4) 

at least for h 2 near h1• This is because, B being independent of h, x(h 2) is 
available to a consumer of type h1 if he wants it. (6.4) implies that, as h1 varies, 
v(h1)- u(x(h 2), h1) attains a local minimum (which happens to be zero) when 
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h 1  = h2 . It follows that 

v'( h )  = uh (x (h ) ,  h ) .  

1229 

(6 .5) 

If  (6.5) were equivalent to (6.1) for some B, we should have reduced our 
maximization constraint to a simple differential equation, which ought not to be 
too difficult to handle; and is in any case the kind of constraint met with in 
control theory. 

The argument leading to (6.5) leaned heavily on the unwarranted assumption 
that x(h), and consequently v(h), is a differentiable function of h .  There were 
also some loose ends about the consumption sets. A precise lemma is needed. 
Before stating it, some standing assumptions about utility functions and con­
sumption sets are introduced. These lay down some standard properties, and 
insist that as h increases the consumption set expands in a very regular way. 

(C1) u is a continuously differentiable function of x and h ,  concave in x. 
(C2) Xh is a convex set; and for all h, k, k > h, the closure of Xh is contained 

in xk. 
(C3) For all x in Xh there exists e > 0 such that x E Xk when l k - h i < e. 

{B) Xh n { x :  u(x, k) ::'5: u(x0, k)} is bounded if h < k, and X0 E Xk. 
The first assumption requires no comment, nor does the first part of (C2). The 

second part says that Xh is a non-decreasing function of h and actually increases 
along any "open" part of its boundary. (C3) requires that Xh vary continuously 
with h and that "closed" parts of the boundary remain fixed. The last assumption 
is a little weaker than the requirement that indifference hypersurfaces be bounded. 
It allows the possibility that the indifference hypersurface u(x, k) = u(x0, k) is 
asymptotic to an "open" part of the consumption frontier, but only if that part of 
the frontier is moving outwards, even at infinity. 

The assumptions are satisfied, for example, by a function u satisfying (C1) with 
Xh = { - h < x1 ::'5: 0, xi � 0, i = 2, . . .  , n } ,  and all indifference surfaces cutting the 
co-ordinate planes xi = 0 when i = 2, . . . , n .  (Think of commodity 1 as labour.) In 
effect, bigger h is now taken to mean greater ability, unlike the special cases in 
Section 3 where it was convenient to use the opposite convention. 

Assumption (B) is unduly strong, but it is hard to see how to prove the result 
we want without something like it. 

Lemma 6. 1 

Let the above assumptions hold. If there exists B such that for all h, x(h) 
maximizes u(x, h) for x E Xh n B, and v(h) = u(x(h ), h), 

v ( h )- u (O) = fuh(x (k ) ,  k) dk. (6 .6) 
0 
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Proof 

Let YJ > 0. It will first be shown that the set 

A =  { (x ( k ) , k') : O � k, k' � h + YJ }  
is bounded. Let h1 > h + YJ. Since for all k, x(k) E B, and x(k) E Xh, for 
k � h + YJ, 

Therefore 

and is bounded, by assumption (B). Thus the set A is bounded. It follows that the 
partial derivative uh(x(k), k') is bounded in A,  and thence, by the mean value 
theorem, that 

a,( k )  = t { u(x(k) , k + e)- u(x(k ) ,  k) }  
is bounded for 0 � k � h, lei < YJ, k + e � 0. 

Since a,(k ) -+ uh(x(k), k) as e -+ 0, Lebesgue's theorem on bounded conver­
gence implies that 

Now 

elha,( k ) dk =  t{ u(x(k ) , k + e) - u(x (k ) , k ) } dk 
1) 1) 

� t{ v (k + e) - v (k ) } dk 
1) 

= {{ v (h + x )- v ( YJ + x) } dx. 

Therefore 

1 1• 
lim - { v ( h + x)- v (YJ + x) } dx e -> 0 + e 0 

� lim lha,(k) dk 
· -- 0 1) 

1 
1' 

� lim - { v (h + x)- v ( 'l) + x ) } dx. e -> 0 - e 0 

(6 .7) 
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The left-hand and right-hand limits exist and are both equal to v (h )- v('q), since 
v is a continuous function. Therefore, from (6.7), we have 

v ( h ) - v ( 'IJ)  = lhuh (x (k ) , k ) dk. 
'1 

Finally we let 'IJ � 0, and the lemma is proved. D 

The strategy that will now be followed is to use the lemma to prove that certain 
conditions are sufficient for optimality. Naturally this can be proved only under 
rather strong assumptions on the utility function; but, since sufficiency theorems 
are of the first value in doing computations, the restrictions are worth their cost. 
To motivate the sufficiency conditions, I shall first derive them in a rather 
heuristic way. 

We saw in Section 3 that, under plausible assumptions, the first-best optimum 
requires that utility decrease with ability. This suggests that the constraint (6.6) 
which (partially) expresses the constraint that B be uniform works as an m­
equality preventing v( h) from being too low in relation to v (O), 

(6.8) 

In this form it is a linear constraint in v. If we are to apply the ideas of 
programming theory to obtain sufficient conditions, the left-hand side of the 
inequality should be a concave function of the control variables. This suggests 
that we treat v(.) as one of the control variables, and eliminate one of the 
commodities. Specifically, let us treat commodity one as numeraire, denoting it by 
�, and write x' for the vector of commodities 2 to n. Then � is defined as a 
function of x', v and h by 

v = u(� , x ', h ) . (6 .9) 

It is readily shown that (C1) implies that � is a convex function of x' and v, and a 
differentiable function of all the variables. 

With this transformation, v and x' are to be regarded as the control variables. 
The assumption that will let the sufficiency theorem go, through is 

' 
(CON') uh(Hx', v, h), x', h) is a convex function of x and v. 

As it stands this is not in satisfactory form. It is equivalent to: 

(CON) For any vector a, ( a  I Bh )(a . uxx<x, h ) · aj U�;,(X, h)) :2: 0. 

In words, this states that the degree of concavity of u (which is measured by 
- a ·  u xx · a) does not increase, relative to the marginal utility of numeraire, when 
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h increases. The condition is numeraire dependent. To have the best chance of 
applying the sufficiency theorem successfully, one should choose as numeraire a 
commodity such that uEhl uE is as large as possible, i.e. the commodity for which 
a( ux, 1 u�)! ah .::;; o. 

To prove that (CON') and (CON) are equivalent, one makes a routine change 
of variables. Writing w = ( v, x'), X =  a, x') and 1[;(  w, h) = uh(x, h), we have 
uhxx = wx· l[;ww· wx + l[;w·wxx (subscripts denoting differentiation). It is easily seen 
that l[;w· wxx = (uh�/uE)uxx· Thus l[;ww is positive semi-definite if and o�ly if 

is positive semi-definite. The equivalence of (CON) and (CON') follows at once. 
Assume an additive welfare function Jufdh, and consider the problem 

maximize jufdh } subject to (6 .8) and (JHx', u , h )fdh ,  J x'fdh ) E Y 
. (6 .10) 

Following our work on the linear problem, it should be legitimate to replace the 
production constraint (6.10) by 

J { Hx', u , h ) + s'·x ' } fdh .::;; a, (6.11) 

where the shadow price of numeraire has been set at unity, and s' are the shadow 
prices of the other commodities. 

If Lagrange's method of undetermined multipliers is applicable, we can find 
conditions for optimality by setting equal to zero the derivatives of the Lagrangian 

where A. should be positive. The sign of JL ( h) will be considered later. If we 
reverse the order of integration in the double integral, we obtain 

(6.12) 

On differentiating with respect to x'( h ) we have 

(6.13) 
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provided that Hh), x '(h)  is in the interior of Xh. If it is on the boundary we have 
an inequality (e.g. for people who do not choose to work). Differentiation with 
respect to v ( h ) yields 

(6 . 14) 

and differentiation with respect to v(O), 

(6 .15) 

Consider the sign of J.t. In the light of (6.15), we cannot want to have J.t ;;::-: 0. But 
we see from (6.12) that L is a concave function of the control variables provided 
that 

(6.16) 

for all h. This completes the heuristic derivation of first-order conditions, except 
for some suggestive simplifications. We note that 

(6 .17) 

(6.18) 

which suggests we define the marginal rates of substitution, or marginal consumer 
prices as 

(6.19) 

Also 

(6 .20) 

These formulas are used to obtain the conditions in the sufficiency theorem. 

Theorem 6.2 

Assume (C1), (C2), (C3 ), (B), and (CON). Let the allocation � *(.), x '*(.), and s', 
v and J.t(.) satisfy the following conditions: 

U * ( h  ) ,  x '* (h )) E Xh, for all h .  (6 .21) 



1234 

For all h, k, such that (� *(k), x'*(k)) E Xk, 

u (  C(k ) ,  x'*(k ) , h ) � u( �* (h ) ,  x'*( h ) ,  h ) , 

(J�*fdh ,  jx'*fdh ) maximizes (1 , s ' ) ·Y, 

{ q (  � * ( h ) ,  x'*(h ) , h ) - s' } f(h )  = u[q/: j00fL dk, h 

J. A. Mirr/ees 

(6 .22) 

(6 .23) 

(6.24) 

(for consumers in the interior of Xh, and an appropriate boundary condition in 
other cases), 

p, ( h ) -
utli j00p, dk =  (_!_ - v )f, u[ h uf 

v > 0 , �oo p, dk � 0, all h ,  

100 p, d k  = 0. 
0 

Then the given allocation is an optimum. 

In this statement, v is ljA and p, replaces p,/A in (6.13)-(6.16). 

Proof 

(6 .25) 

(6 .26) 

(6 .27) 

The argument is a routine calculation based on the assumed concavity properties. 
We consider an alternative allocation satisfying the constraints of the problem, 
I.e. 

Hh  ), x '( h )  maximize u( t x', h ) ,  
subject t o  ( t x') E Xh n B ,  
(fgjdh , f x' fdh ) E Y, 

(6 .28) 

(6 .29) 

and show that �*, x'* provides utility at least as great. [It is a feasible allocation 
by (6.21), (6.22), and (6.25).] 

Lemma 6.1 implies that 

u ( h ) - u (0) -1huh(Hk) , x'(k ) , k ) dk = O, 
0 

(6 .30) 

u*( h ) - u*(O) -fuh {g*(k ) ,  x'*( k ) ,  k ) dk = 0. 
0 

(6.31) 
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(6.30) follows from (6.28), and (6.31) from (6.22) [where the set B* consists 
simply of all � *(h), x'*(h)]. Subtracting (6.31) from (6.30), multiplying by JL(h) 
and integrating from 0 to oo, we get 

la00{JL ( v - v* ) - JL1ah( uh - uh ) dk} dh = { v (O) - v*(O) } jJL dk 

= 0 by (111) . 

Reversing the order of integration, we deduce that 

oo oo ( u,t� 
) 

:?. la � }l dk u;
( v - v* )+ u{qfi(x' - x'*) d h , (6.32) 

by using (6.26) and (CON), and using our earlier calculations for the partial 
derivatives of uh with respect to v and x'. 

Combining (6.32) with conditions (6.24) and (6.25), we obtain 

J( 
u
1
; 

- v ) ( v - v* )fdh :?. j ( q* - s' ) ·  (x' - x'*)fdh 

:?. jq*· (x' - x'*)fdh + j(� - � * )fdh ,  

by (6.23). Since � is a convex function of v and x', 

� - P :?.  �:( v - v* ) + (�, · (x' - x'*) 
1 = -(  v - v*) - q*· (x' - x'*) . u; 

Combining this with (6.33), we have finally 

- vj( v - v*)fdh :?. O. 

Since v > 0, this implies that jv*fdh :?.  Jvfdh. D 

(6.33) 

(6 .34) 

The two problems with this theorem are, first, that (CON), expressing decreas­
ing concavity of u, is a little obscure though not implausible; and, second, that 
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even when (CON) is satisfied, there may not exist any allocation satisfying the 
conditions of the theorem. As to the first problem, it is useful to note certain 
special cases where (CON) holds. If u has the form 

convexity of u1h with respect to x' is equivalent to (CON), and it is readily 
checked whether or not this holds. If u has the form 

it is sufficient for (CON) that u2h be an increasing convex function of g (since g is 
itself convex in x' and v ). 

In this context it is also interesting to note that the theorem can be generalized 
by assuming a welfare function 

W =  jG ( v)fdh ,  

with G concave, increasing; i.e. by  taking a monotone transform of utility before 
using Lemma 6.1. The only change in the theorem is that v is replaced by 
vG '( v*( h )). By this transformation to a new utility function uh may sometimes be 
made convex when it would not otherwise have been. 

The second problem, that it may be impossible to satisfy the conditions of the 
theorem, arises because there are allocations satisfying (6.6) that are not utility­
maximizing allocations. One would expect to be able to satisfy the conditions if 
(6.6) replaced the stronger condition (6.21), but that may not be what one wants. 

To check whether or not a particular allocation x(h) as h varies maximizes 
utility for some constant budget set B, the following partial converse to Lemma 
6.1 is useful: 

Lemma 6.3 

Suppose that for all h ,  

x ( h )  E xh, 
v ( h )  = u (x( h ) , h ) ,  

v ( h )- v (O) = fuh(x (k ) , k ) dk, 
0 

u h ( x ( k ) ,  h )  is a non-decreasing function of k,  (6 .35) 
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for k such that x(k) E Xh. Then there exists B such that, for all h ,  

x ( h ) maximizes u(x , h ) for x E B n Xh. 

Proof 

It is sufficient to show that for all h, h 0 such that x(h0) E X\ u(x(h), h) � 
u(x(h0), h). Since uh(x(k), h )  is non-decreasing in k, we have 

u ( x ( h ) , h ) - v (h 0 ) = fhuh (x(k) , k ) dk � fuh (x (h0 ) , k ) dk 
ho ho 

= u(x(h0 ) ,  h ) - u(x(h0 ) ,  h 0) ,  

proving the lemma. D 

When x is differentiable, a routine calculation shows that (6.35) is equivalent to 

q}, (x (k ) , h ) · d
d
k x'( k ) � O. 

It is interesting to compare this with a form of the second-order necessary 
condition for maximization (also easily proved), 

q;, (x ( h ) , h ) ·  d
d
h

x'( h ) � O. 

In the two-commodity case, and particularly in the simple optimal income-tax 
problem, x' is a scalar. Suppose that h can be measured in such a way that 
B (ux,fu�)/Bh < 0. Then both necessary and sufficient supplements to the en­
velope condition (6.6) have the simple form that x' be a non-increasing function 
of h ,  and, equivalently, that � be a non-decreasing function of h. In general the 
class of allocations consistent with the maximization constraint cannot be so 
easily identified. 

Suppose now that an attempt to apply the sufficiency theorem fails because we 
cannot find a solution satisfying (6.22). Then it must be realized that we should 
not have neglected the other constraints on maximizing allocations [besides the 
condition (6.6) of Lemma 6.1]. It must also be the case that v (h )  does not become 
smaller than u(x(h1), h )  as h increases from h1 .  It might be optimal to have v (h )  
just remaining equal to  u(x(h1), h )  over some interval [h 1 ,  h 2]. Then we must 
allow for the additional constraint v(h) � u(x(h1), h )  in our maximization prob­
lem. This introduces a new term jh�2p(h){  v (h)-(Hh1), x'(h 1), h)} dh into the 
Lagrangian, with p(h)  � 0. If [h1, h2] is the whole interval on which the ad­
ditional constraint binds, we see at once that, since Hh1), x'(h 1) occurs predomi-
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nantly in the new term of the Lagrangian, 

(6 .36) 

It is further found that condition (6.24) is unchanged, while condition (6.25) 
becomes 

utg oo ( 1 ) p ( h ) + p, ( h )- - 1 p, dk = - - p  f. 
u; h u[ 

( 6 .37) 

One can prove in the same way as before that, if the conditions of the theorem 
hold on intervals where v(h) > u(x(h1), h) and the modified conditions [(6.37) 
replacing (6.25), and (6.36) added] hold on intervals where v(h) = u(x(h1), h ), an 
optimum has been found. 

In the two-commodity case, v(h) = u(x(h1 ), h )  and v'(h) = uh(x(h), h) gener­
ally imply that x( h) is constant. Thus these awkward intervals correspond to 
bunching of consumers, many of whom choose the same demands. In the many 
commodity case, this need no longer be so. 

Returning to the conditions of the theorem, we see that (6.24) strongly suggests 
that x (h) is a continuous function of h .  This seems to be correct under 
assumption (CON). It appears that discontinuities occur only when assumption 
(CON) is violated. When it is violated, we can no longer hope to use sufficient 
conditions for an optimum, but must make do with necessary conditions. For 
these we can rely on Pontrjagin's Maximum Principle, suitably generalized to take 
account of possible discontinuities.16 The conditions given in the theorem are 
then necessary conditions for an optimum. 

The conditions for optimal non-linear taxation are interesting in a number of 
ways. Condition (6.24) is the most striking, for it not only shows that the effective 
marginal tax rates on consumer h have the signs of Bqj Bh, but also gives a 
simple formula relating different marginal tax rates, 

(6 .38) 

The general principle is that the proportional marginal tax rate ( q; - sf)/ q;, or 
equivalently ( q; - s;)js;, should be higher for commodity i than for commodity j 
if and only if ( a  1 Bh )( uj u;) > 0, i.e. when the marginal rate of substitution 

16Relevant results and methods can be found in Swinnerton-Dyer (1959). 
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would be increased by an increase in h. This suggests a theorem of Atkinson and 
Stiglitz, whose formal proof is omitted here. 

Theorem 6.4 

If utility takes the form 

the optimal allocation can be obtained by imposing a budget constraint of the 
form 

(6 .39) 
It is interesting to note that the analysis of this section can also be done in a 

fully dual way, 17 treating marginal prices q and utility as control variables. We 
can think of offering consumers a set of linear budget constraints C instead of a 
set of demand vectors. Writing E(q, u, h) for the expenditure function, and 
v (  q, b, h) for the indirect utility function, we can set up the problem as maximiza­
tion of ju(h)f(h )dh subject to 

jEq( q( h ) , u(h ) , h )f( h ) dh E Y  } 
q (h ) ,  E ( q(h ) ,  u (h ) ,  h )  maximizes v (q, b, h )  ' 
subject to (q , b) E C n Qh . 

(6 .40) 

where Qh is the set of linear budget constraints that are consumption-feasible. 
The entire previous analysis can be applied to (6.40), and we obtain as 

first-order conditions 

p, ( h ) - v7;b 100p,dk = (_!_ - v )f, vt h vt 
- s ·xcf = v*x j00p, dk q b h h ' 

(6 .41) 

(6 .42) 

where xh is the derivative of demands holding q and b constant. In fact (6.41) is 
exactly the same equation as (6.25). (6.42) does not look the same as (6.24), but 
the two can easily be shown to be equivalent, by using the equation 

17 This approach is due to Kevin Roberts. 
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which can be obtained by differentiating the equations xc(q(x, h ), u(x, h), h ) = x 
and xc( q, v (  q, b, h), h) = x( q, b, h) with respect to h. 

Equation (6.42) has an interesting similarity to the first-order conditions for 
optimal linear taxation, for they can be expressed [cf. (5.22)] in the form 

( 6 .43) 

If we write (6.42) in the form, obtained by using q · x� = 0 and Slutsky symmetry, 

x�· ( q - s )  = ( vt �oo p. dk ) xh/f(h ) ,  (6 .44) 

it says that the approximate compensated effect on consumer h 's demands of 
imposing the optimum tax system is proportional to the derivative of demands 
with respect to the population percentile. 

It is worth emphasizing that this dual approach to the problem provides a 
technique that allows us to apply non-linear taxation to some groups of commod­
ities while applying only proportional taxes to others, for it is very easy to insist 
that some q; be independent of h .18 

Finally, to mention the obvious, (6.25) would in practice be treated as a 
differential equation in n""p. dk. It is written in the form above to allow for the 
possibility that p. is discontinuous, and that happens only where x is discontinu­
ous. 

7. m -dimensional populations 

Although the one-dimensional population is an extremely useful model for 
computations and examination of particular issues, it is not, in that respect, an 
accurate representation of reality. Theorem 6.2 can be generalized to the m­
dimensional case, with m parameters h1, . . .  , hm ranging over the non-negative 
orthant. The function p.(h) becomes an m-dimensional vector field, and the main 
equations of the theorem become 

m a 1 
( q - s ' )! = ugs� ·M = UgL TM1, 1 ]j 

where 

18The problem was solved by a different method in Mirrlees (1976). 

(7.1) 
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and 

(7.2) 

(ignoring corner solutions). In the case where JL (and x) vary continuously, (7.2) 
can be written 

..::l · M - _!_u ·M  = ( _!_ - v )f, u �h u � � 
where ..::l ·M = 'LBM1jBh1 is the divergence of M. The boundary conditions in 
terms of M (which should be non-negative for the sufficiency theorem to go 
through) are 

M1 = 0 when h 1 = 0, 

M1 -+ 0  as h1 -+ oo . 

The above equations will not be derived here. Lemma 6.1 is easily generalized 
to the m-dimensional case, carrying with it the important fact that uh ' is an 
integrable vector field. Then the equation v(h)- v(O) = J0huh · dk is brought in as 
a constraint in m different ways, following m different rectangular paths of 
integration, to enforce integrability on the solution to the optimization problem. 
The m Lagrangian functions JLi correspond to these m constraints. 

To find an optimum, we would look for a solution to the system of equations, 
in the functions v, x'; M1, . . .  , Mm of h = (h1, . . .  , hm) :  

u�s�·M = ( q - s')f, 

..::l · M - _!_u ·M  = ( _!_ - v )t u� �h u� ' 
..::lv = uh , 
M1 = 0  when h1 = 0, oo . 

(7 .3) 

(7 .4) 

(7 .5) 
(7.6) 

M occurs in these equations only where it is shown explicitly. [(7.5) is the 
generalized envelope theorem.] When m < n ,  i.e. the number of characteristics is 
less than the number of commodities, (7.3)-(7.6) can be reduced to a second-order 
partial differential equation for v with mixed boundary conditions specifying the 
values of functions of v and ..::lv where h1 = 0, oo .  To do this, we would first solve 
(7.3) for x' as a function x'(M, v, h) of M, v and h. In general this is a mapping 
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of full rank from M to x', provided m < n ;  and so is the mapping from 
x', M, h ,  u to ..1u given by (7.5). Consequently the mapping from M to ..1u 
obtained from (7.5) and x'(M, u, h) can be inverted, giving M as a function of 
..1u, u and h .  Substitution in (7.4) gives the promised equation for u. 

This procedure breaks down when m 2 n. In that case one can eliminate u and 
x' from (7.3) and (7.4) to obtain u as a function of ..1 ·M, m, and h. Substitution 
in (7.5) yields a second-order system of m partial differential equations for the m 
functions M1, with boundary conditions specified in (7.6). Even when m = n = 2, 
these look hard to handle. But there are many aspects of the solution one would 
like to know about. Since the budget set frontier is (n - I)-dimensional and 
the population m-dimensional, any point a, x') is chosen by an (m - n + I)­
dimensional set of people. One would like to know what these sets are like. Since 
(7.3) no longer gives any information about marginal tax rates if nothing is 
known about M, it is now a much deeper question, how to characterize the 
commodities that should be most heavily taxed. It would be interesting to enquire 
what special structure of the utility function, as a function of h particularly, 
would simplify the equations and yield information about the solution. One 
would like to use that to indicate what should guide us in setting up one-parame­
ter models for practical work. 

In the model with large m, the boundary conditions (7.6) seem to play a very 
important part in determining the solution. This means that the economist's 
instinct to rely on differential first-order conditions to derive properties of the 
solution is no help in these cases. I think this is the root difficulty in making the 
m-dimensional model produce any results. 

8. Consumer uncertainty 

In all the models considered, consumers have been perfectly informed about 
themselves and the possibilities open to them. There has been no uncertainty 
about taxes or prices, or about the circumstances in which these taxes and prices 
will apply. There is a large range of unexplored problems here. The only case for 
which much is known is that in which individuals all make their decisions in 
advance of knowing the states of nature that distinguish them. This is the case of 
pure moral hazard. Denoting the initially unknown state of the consumer -his 
future ability, health, or luck -by (}, and the observed outcome on which 
government policy can be based - wage, retirement date, or prize -by y, we 
assume a functional relationship 

y = g(8 , x ) ,  (8 .I) 
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where x is the consumer's choice variable. On the basis of y, government delivers 

z = t(y) (8 .2) 

to the consumer, who chooses x to maximize 

Eu(t(g( 0 ,  x )) , x  ) . (8.3) 

There is a resource (or revenue) constraint, which for a large identical population 
with independent and identically distributed states 0 can be written in the form 

Eh (y, t(y ) , x) = 0 , (8 .4) 

where y is given by (8.1). The leading case is that in which expected utility is also 
the government's maximand, though other welfare functions are also of interest. 

I shall not go into the methods of analysing this kind of problem. It is a 
problem in which the general issues raised in Section 2 loom large; and one 
further issue arises which I have not discussed earlier. Since the set defined by the 
maximization constraint can be complicated and difficult to work with, it is best 
to look for cases in which certain kinds of fairly simple solutions exist. There are 
three (if the maximization constraint is not inessential) . 

(1) Problems where the solution is a function t for which the expected utility 
function is known to be a concave function of x. In such a case the maximization 
constraint is equivalent to its first-order condition, and the optimization can then 
be treated by Kuhn-Tucker methods. It is usually quite easy to see for what 
functions t,Eu  is concave in x: to get an adequately large class one may have to 
specialise the utility function. The difficulty is to find conditions under which one 
can be sure in advance that the optimum t falls into this class. This requires a 
direct argument that any other t can be improved upon. 

(2) Following the discussion in Section 2 it is a real possibility that expected 
utility should have up to m + 1 global maxima, where m is the dimensionality of 
the available set of policy functions r If all functions (analytic, integrable or 
whatever) are available, a continuum of global maxima is a possible optimum, not 
only in exceptional cases. It is therefore a good idea to look for cases in which 

Eu(t(g(O , x )) , x )  = u0 (8.5) 
is a constant at the optimum. It may not be very difficult to find under what 
conditions such a policy is optimal, and when it is, both computation and further 
analysis are relatively easy.19 

19An example of special economic interest is treated by Diamond and Mirrlees (1977). 
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(3) In cases where utility is unbounded, which may be useful approximations to 
reality, it is possible that no optimum exists, because government can always 
increase expected utility by reducing the level of reward to some low probability 
set of possible outcomes. It is obvious that minimum reward is an optimal policy 
when effort is then increased so that events with minimum reward do not occur. 
In most of the interesting cases effort can never ensure that disastrous outcomes 
will never happen. Yet it can be (nearly) optimal to impose extremely severe 
"punishment" when these events do occur. Solutions of this form can occur in 
perfectly reasonable models, which contrast sharply in this respect with models 
where there is no consumer uncertainty. The possibility of providing incentives, 
usually sticks rather than carrots, through the consequences of rare events is of 
considerable interest, and should be examined in all cases. 20 

These three possibilities seem to exhaust the manageable solutions to problems 
with consumer uncertainty; but they do not by any means exhaust the possible 
solutions. I t  may be that some of the most interesting results in this area will 
come from identifying the borderlines between the different classes of optimum 
rather than by attacking the optimization problem directly. 

9. Computation and approximation 

A major aim of optimal tax theory is to obtain numerical information about 
optimal policies. In most of these problems, non-concavity is an important 
intrinsic property, and first-order conditions may not determine the optimum 
uniquely, even when the more intractable problems of non-connected constraint 
sets explained in Section 2 do not occur. For example, in the simple linear 
income-tax problem, where there are two tax parameters in a simple two­
commodity world, we have essentially a one-variable maximization, but it must be 
carried out by explicit search over the possible range, not by hill-climbing, or 
solving first-order conditions.21 As soon as additional parameters are introduced, 
computational problems begin to be severe. Even the standard, and empirically 
oversimple, linear expenditure system, when labour is included, leads to non-con­
cave problems. It would seem that optimal tax theory can contribute to the 
computation of optimal commodity taxes chiefly by narrowing down the range of 
tax rates it is sensible to try. 

A major advantage of the non-linear theory is, therefore, that there is a 
sufficiency theorem, such that solution of certain differential equations is sufficient 
to give an optimum, provided a basic condition is satisfied. When the population 

20See Mirrlees (1974) for an example. 
21Stern (1976) discusses and carries out computations for the optimal linear income tax. 
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is more than one-dimensional, the computational problems again become severe. 
However, one-dimensional models would seem to be a promising tool for comput­
ing optimal commodity taxes for many-commodity models, provided an em­
pirically acceptable model can be devised. Of course if the model of Theorem 6.4 
is applicable, and on present knowledge it se�ms as good as any other, optimal 
tax calculations are reduced essentially to a two-commodity income-tax problem, 
which poses no insurmountable computational difficulties. 

Since, in general, computation and simulation are not particularly easy (and 
this is even more true of the models mentioned in Section 8), other techniques of 
numerical exploration can be useful. It seems to be illuminating to set up a 
number of questions as approximation problems, asking for properties of the 
optimum when certain parameters are small. I have been able to obtain ap­
proximate formulae for optimal commodity taxes when the distribution of 
characteristics in the economy has a low variance; and when the degree of 
inaccuracy in observations used for lump-sum taxation is small; but there is not 
space to develop these calculations here. 

In a similar vein, it is interesting to analyse the asymptotic form of non-linear 
optimal tax policies for very high (or very low) values of the characteristics. But 
this often gives inaccurate, or even seriously misleading, information. 22 Indeed it 
is a general principle of work on approximations that one should try to discover 
something about the accuracy of the approximations. It would be valuable to 
show that certain classes of approximations are tolerably accurate by carrying out 
complete calculations in a few representative cases. This may even be the best line 
to follow for calculating optimal commodity taxes. 

10. In conclusion 

Computational and empirical issues seem likely to loom large in optimal taxation 
in future. It is not always easy to devise simple models that are simple enough to 
be manageable theoretically and rich enough to be empirically relevant. Like 
growth theory and planning theory, to instance only two examples in the recent 
history of economics, optimal tax theory has fairly quickly reached a stage where 
good theorems may be hard to come by, while the theory contains many 
suggestions or possibilities for practical implementation. 

Yet there is still much theoretical work to be done, and the best theorems may 
be still to come. The whole area of consumer uncertainty where consumers are not 
identical remains to be explored. Little has been done on variations in population 
size. Aspects of the real world, like overtime rates, discrete labour choices, 
misperceptions, and, above all, disequilibria, could be incorporated in manage-

22The optimal income-tax problem analysed by Mirrlees (1971) provides examples of this. 
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able models. International issues, such as tax agreements and treaties, or incen­
tives acting upon countries (e.g. aid agreements) could be examined. Problems of 
tax evasion and administration have only begun to be looked at. 

This account of optimal tax theory has by no means covered all the theoretical 
work that has been done. On the contrary, it has concentrated on certain 
fundamental models, and the methods for solving them, and has said rather little 
about properties of the solutions. I conclude with a few notes on the lit,erature, to 
guide the reader to what has been said about the topics taken up here. 

11. Notes on the literature 

Optimal tax theory began with Ramsey (1927), who solved the problem of raising 
revenue by commodity taxes from a single consumer. Pigou (1947) discussed 
Ramsey's solution, but the next contributions published were those of Boiteux 
(1956), Corlett and Hague (1953-54) and Meade (1955). Boiteux still assumed 
lump-sum taxation, as it happens quite unnecessarily, and looked at optimal 
pricing by public enterprises subject to a budget constraint. This is essentially 
equivalent to Ramsey, but Boiteux introduced the use of indirect utility functions. 
Corlett and Hague considered a special case of the problem of improving matters 
by introducing taxes where none were before, and Meade solved the correspond­
ing optimization problem. Work on discount rates for public investment during 
the sixties often implicitly assumed imperfections, such as absence of lump-sum 
taxation, but general models of optimal taxation seem not to have appeared 
before 1970. Several contributions appeared at the beginning of the seventies: 
Baumol and Bradford (1970), Diamond and Mirrlees (1971), Feldstein (1972), 
and Kolm (1970) may be mentioned among many. Diamond and Mirrlees 
introduced the many-consumer economy without lump-sum taxes, stated and 
proved the efficiency theorem, provide a discussion of existence, and give a case 
where the optimum can be obtained explicitly. An application of this work to the 
measurement of national income is presented in Mirrlees (1969). 

This work and later contributions are discussed in a brief survey by Sandmo 
(1976), which includes a useful bibliography. Sandmo's paper forms part of a 
symposium in the July-August number of the Journal of Public Economics, which 
contains several useful papers. Much of the recent work in optimal tax theory has 
appeared in that journal. 

I conclude with a few selected references for the individual sections. The 
references provided are by no means complete, even for the period to 1977 when 
the chapter was written. Two valuable books containing extensive accounts of 
optimal tax theory have appeared, Atkinson and Stiglitz (1980), and Tresch 
(1981). 
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Section 2 
The material presented here has not previously appeared in print. Problems of the 
type discussed were classified in Spence and Zeckhauser (1971). Some of the 
difficulties arising from the maximization constraint were noticed in Helpman and 
Laffont (1975). On evasion see Srinivasan (1973). 

Section 3 
The treatment of lump-sum taxation as based on individual information is related 
to the work on ' signalling' and ' screening' : Spence (1973) and Stiglitz (1976). 
Some aspects were mentioned in Mirrlees (1974). 

Section 4 
Efficiency and other shadow-price results are important for cost-benefit analysis : 
Diamond (1968), Little and Mirrlees (1974), and Dasgupta and Stiglitz (1974) 
may be consulted. Efficiency when there are positive profits was first discussed in 
Dasgupta and Stiglitz (1972). See also Mirrlees (1972). 

Section 5 
In addition to the works referred to above, the following should be mentioned: 
Dasgupta and Stiglitz (1971), Atkinson and Stiglitz (1972), Diamond (1975), and 
Atkinson and Stiglitz (1976). Dixit (1975) and Guesnerie (1977) discuss the 
welfare effects of commodity tax changes. 

Section 6 
A special case of nonlinear taxation, with extensive results and numerical calcula­
tions, is given in Mirrlees (1971). Theorem 6.1 above generalizes the result that 
underpinned that paper, a result that never seemed worth publishing for a special 
case. The more general model is discussed under differentiability assumptions in 
Mirrlees (1976). See also Atkinson (1973), Phelps (1973), Atkinson and Stiglitz 
(1976), Sadka (1976), and Seade (1977). An interesting approach, not concerned 
with optimality, but with bargaining, is Aumann and Kurz (1977). 

Section 7 
The optimality conditions were given in Mirrlees (1976). Mirrlees and Spence 
have work in progress on special cases of optimization with many characteristics. 

Section 8 
The papers by Mirrlees (1974), where the inadequacy of treating first-order 
conditions as constraints is not adequately appreciated, and Helpman and Laffont 
(1975), referred to above, are relevant here. Diamond and Mirrlees (1977) give a 
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fairly full explicit analysis of an interesting special case, where the consumer 
chooses retirement, and the government the social insurance system. 
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"One appoints inspectors of weights and measures but not prices." Babylonian Talmud (Baba­
Bathra, 89A) 
" The role of inspectors would be to assure that nobody sells at too high a price. The logic of the 
situation indicates that this is unnecessary. If one merchant wants to charge a high price, another one 
who needs money will give the merchandize cheaply and the customers will go to him. And so the first 
one will have to sell cheaply as well." Rabbi Shmuel Ben-Meier (1080-1160 A.D.) ov. cit. 

I. Introduction 

While understanding the favorable role of competition, the commentators of the 
Talmud could hardly be expected to dwell on possible exceptions and the 
consequent desirability of government intervention. In current theory, the most 
familiar case of "market failure" is that of natural monopoly. 

This paper surveys some issues in positive second-best theory, specifically the 
theory of the optimal pricing of goods (private and public) produced by public 
firms, that is, firms whose objective is the maximization of social welfare. It is 
assumed that these firms, characteristically, display increasing returns to scale. In 
these situations, first-best optima may require lump-sum taxes and subsidies. In 
view of the size of the public sector in most industrialized countries; it is difficult 
to imagine that public activities can be financed without distortionary effects 
elsewhere in the economy. 

It may be claimed, however, that the theory should be sufficiently general to 
explain why first-best optima are infeasible rather than merely stating this as an 

* Due to an error in the manuscript, the name of Kare P. Hagen as co-author has been omitted 
in an earlier printing. 

** Hagen's contribution is based on his article, "Optimal pricing in public firms in an imperfect 
market economy", Scandinavian Journal of Economics, 81: 475-493 (1979). 

*** I wish to thank Roger Guesnerie for helpful discussions and Robert Aumann for the quotation 
below. 
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exogenous fact. That would be a rather ambitious task which is beyond the scope 
of this survey. Here we ask a much more modest question. Given certain 
structural facts which prevent prices from being set equal to marginal costs 
everywhere in the economy, what would then be the optimal rules to follow for 
public production and prices under public control? These price distortions may 
be due to the infeasibility of lump-sum taxation, i.e., price distortion created by 
the government, or they may arise due to monopolistic pricing in the private 
sector which may have to be accepted for political reasons. Clearly this does not 
imply that monopoly in some industry ought to be dealt with by pricing policy by 
public firms. The analysis below merely shows what factors would be relevant to 
take into consideration if price under public control were to be set on the basis of 
economic efficiency, if the inviolability of monopoly has to be accepted for some 
reason. 

It is crucial for the second-best argument that the public firm considers its 
economic environment as given, such that optimal pricing rules only cover aspects 
under its control. On the other hand, it may be claimed that if these rules are to 
be of any practical interest, they must not require the public firm to have 
knowledge which, in practice, would be nearly impossible or extremely costly for 
it to ascertain. In this respect we have to admit that the formulas for the 
second-best pricing rules obtained here may be rather demanding from an 
informational point of view. Indeed, the most interesting possibility for develop­
ment in the theory of "second-best" pricing rules seems to be the explicit 
introduction of uncertainty into the "Ramsey pricing models". 

Throughout this chapter we have assumed perfect possibilities for lump-sum 
income transfers in order to focus on the efficiency aspect of optimal pricing. If 
lump-sum redistribution is impossible, deviations from marginal costs for prices 
under public control may be motivated by distributional considerations; that is, 
the government may want to use its excise tax power to improve the income 
distribution. 

The results reported here are not new and can be found scattered in the 
economic literature (see bibliography). For the sake of unity, we thus start with a 
general formulation that forms a basis for special cases which are analyzed in 
more detail subsequently. 

Section 2 is a general formulation of the pricing rule adopted by a multi-prod­
uct firm whose objective is the maximization of social welfare ("Ramsey prices"). 
The firm's technology is characterized by increasing .returns to scale and thus a 
financial constraint on profits (losses) may preclude attainment of the first-best 
allocation. The "public firm" is viewed as a " Stackelberg leader", competing in 
some markets with private, profit-maximizing firms. Section 3 specializes the 
analysis to the case where the private firms behave competitively. Section 4 
discusses the questions of "cross-subsidization" and the conditions under which 
undercutting the competition by the public firm is socially desirable. Section 5 
analyzes the optimal pricing rule in imperfectly competitive markets. Section 6 
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relates " Ramsey prices" to the issue of price sustainability in perfectly contestable 
markets [Baumol et al. (I982)]. Section 7 looks at the possibility of more general, 
credible decision rules for a dominant public firm, when private firms do not 
necessarily take prices as given. As special cases, the marginal cost pricing rule is 
favorably compared with the fixed output rule. Section 8 discusses the joint 
decision for the optimal supply of public goods and the pricing problem analyzed 
previously. Finally, Section 9 analyzes some issues in predation and Ramsey 
pricing in a dynamic context. 

2. Ramsey pricing 

We consider an economy consisting of I individuals labelled h, m private firms 
indexed j, and a public sector.1 For simplicity, the public sector is assumed to 
consist of one public firm. There are n + 1 private goods indexed i = 0, 1, . . . , n ,  
consumed or supplied by th<:> individuals, the private firms and the public sector. 

We use the following notations: 

x h  = (x3, xt, . . .  , x�) = (n + I)-dimensional commodity vector representing con­
sumer h 's consumption plan, 

y1 = (yc:{, y{, . . .  , YD = (n + I)-dimensional commodity vector representing private 
firm j 's production plan, 

z = ( z0 , z1 ,  . . .  , z , ) = (n + I)-dimensional commodity vector representing the net 
production plan for the public sector, i.e .. total public supply minus public 
consumption. 

We apply the sign convention that negative components in the consumption 
plans represent the net supply of services, while net demand is measured in 
positive quantities. As for production plans, output is measured in positive 
quantities, while input is measured in negative quantities. In the subsequent 
analysis the commodity with index zero will be used as a numeraire good. 2 

The index set E represents the set of goods whose prices are subject to public 
regulation. Goods of which the public sector is the sole supplier or consumer 
clearly belong to this set, although in order to control the price of a commodity, it 
is not necessary for the government to have complete control of its supply or 
demand. 

Production in the public sector takes place using labor and other private goods 
supplied by individuals and private firms as inputs. The public sector supplies 

1 The model generalizes Boiteux (1971) by allowing for private firms competing with the public firm. 
2 Note that we normalize both consumer and producer prices. This may be motivated by an 

assumption of perfect competition in the market for the numi?raire . In any case, this normalization will 
not matter since we assume perfectly redistributable incomes. 
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consumer goods and intermediate goods to private firms. We assume that 
technically efficient production plans for the public sector are defined by the 
implicit production function 

g ( z ) = O. 

Moreover, we assume that for structural reasons which are exogenous to this 
model, the activity in the public sector is subject to a budget constraint given by 

where p = ( p0, p1, . . .  , Pn) is a (n + I)-dimensional price vector with Po = 1. 

A binding budget constraint for the public sector can of course be motivated by 
increasing returns to scale in the public sector such that the amount of lump-sum 
financing (b )  is insufficient to cover the public deficit at a first-best optimum. If b 
is equal to zero, we are imposing a zero profit constraint on the public firm 
operating in the markets for private goods. This would mean that the public 
sector had to be financed entirely through distortionary commodity taxation. 

It may also be noted that we treat the public sector as an aggregate. In a model 
with a disaggregated specification of the public sector, we would have many 
public firms with different production technologies. However, in assuming one 
overall budget constraint for the public sector, we must clearly have production 
efficiency in the public sector at a second-best optimum. Hence, the optimal 
pricing and production rules must be the same for all public firms so that the 
method of treating the public sector in an aggregate fashion entails no loss of 
generality. 

For convenience of analysis and to focus on the efficiency aspect of optimal 
pricing, personal incomes are assumed to be perfectly redistributable through 
lump-sum transfers. By means of this assumption, we do not have to specify how 
the public budget b is financed (if b < 0), and we do not have to specify the 
distribution of profits in the private sector. Also, compensated demand functions 
have some nice properties which will be utilized repeatedly in the subsequent 
analysis. 

The decision variables under public control are the prices under public control 
Pe• e E E, the net production plan for the public firm denoted z, and the income 
distribution { r h } ,  where rh denotes the non-labor income of individual h. 

Assuming that individual consumption plans are ranked according to the 
strictly increasing and strictly quasi-concave utility functions Uh(xh) and that 
only equilibrium values are relevant for social welfare, efficient rules for pricing 
and production in the public sector and an optimal income distribution are 
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obtained through solving the following constrained maximization problem: 

subject to 

max I),hUh(xh), 
(p. , ( rh }, z) h 

L,xt - Z; - 'L,y/ = 0, 
h j 

g(z) = 0, 

b - LP;Z; = O, 

The necessary maximum conditions are 

h = 1 ,  . . . , /, 

i = 0, 1 ,  . . .  , n , 

h -c. O, 'Vh , 

(dual variables) 

(a;, i = 0, 1, . . .  , n), 

(/3), 

(y). 

e E E, 

1255 

(2.1) 

(2 .2) 

(2.3) 

where U/ and g; denote partial derivatives of the functions U\ ·) and g( · ) with 
respect to the i th argument. 

Under the assumption that b exceeds the unconstrained profits (possibly 
negative as in the case of increasing returns to scale in the public firm), y > 0. 
Write V( - b )  for the maximum value of l:.hA.hUh(xh ). Then we have 

y = lim [ V( - b + s ) - V( - b)] Is. 
s -> 0  

Hence y measures the value of marginally relaxing the constraint. 

Multiplying both sides of (2.2) by 1jU0h, observing that according to the 
first-order conditions for consumer optima U/jU0h = P;, and using the property 
of individual demand that L;P;( axt! arh) = 1 ,  the necessary condition (2.2) for 
an optimal income distribution simplifies to 

h h " axt 
A Uo = £... a;-h ' 

i ar 
h = 1 ,  . . .  , /. (2.4) 

Substituting (2.4) into (2.1) and using the fact that for each h, L;P;( axt;ape) = 
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x;, the necessary conditions for an optimal price structure Pe simplify to 

[ ( h h ) . ]  ax . h ax . By! 
,Ea; L -a ' + xe --; - I: -a , = yze , ; h Pe Br 1 Pe 

We define 

e E E. (2 .5) 

representing compensated price derivatives of the private consumption demand 
for commodity i. Similarly, 

representing compensated price derivatives of the net market demand for com­
modity i. 

We eliminate the dual variable f3 through the normalizations 8; = aJf3g0 and 
p, = yjf3g0• Then we define c? = gjg0• Hence, c? denotes the marginal cost of 
producing commodity i in the public sector if z; > 0, or the marginal technical 
rate of substitution between input i and the numeraire if z; < 0. 

With these definitions, conditions (2.5) and (2.3) can be rewritten as 

e E E, (2 .6) 

i = O, l ,  . . .  , n . (2 .7) 

We note from (2.7), 80 + p, = 1, and since 80 > 0 from strict monotonicity of the 
utility functions, we must have that 0 < p, < 1 .  

Substituting (2.7) into (2.4) and (2.6), we get 

I:c?( ax�jdrh ) - p, 

I:c?( axfj Br1 ) - J.t , h = 2 ,  . . .  , I, 

e E E. 

(2.8) 

(2 .9) 
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According to condition (2.8), an optimal income distribution is obtained by 
equating, for any pair of consumers labelled I and h, the ratios of social weights 
attributed to marginal income transfers in favor of I and h to the ratios of 
marginal social costs associated with these transfers. If prices deviate from 
marginal costs in the public sector and Engel elasticities differ among consumers, 
the marginal social cost of income transfers will be different for different 
consumers, which calls for setting A_hU0h =I= A!UJ for h =I= I. 

We define c{ = - aydfayj as the marginal cost of producing commodity i in 
firm j if y/ > 0, and if y/ < 0, c{ denotes the marginal rate of substitution 
between input i and the numeraire in firm j. 

Subtracting (1 - JL )L;P;( azj a pJ on both sides of (2.9) yields 

(2.10) 

Letting t{ denote the mark-up on the price of commodity i in firm j (which may 
be negative), that is t{ = P; - c{, and writing X; = f.hx;, from well-known proper­
ties of compensated market demand functions, we have 

� �  . ay; � � ( .
)

ay/ 
= - £..... £..... 1( -- = - £..... £..... p; - c( -- ,  

j i ape j i ape 

and substituting into (2.10) we obtain our central conditions for optimal pricing 
of private goods in the public sector 

e E E. (2.11) 

3. Competitive fringe 

We see immediately from (2.11) that if the budget constraint for the public sector 
is not binding and if the private sector is perfectly competitive (i.e., marginal costs 
are set equal to prices throughout the private sector), efficiency will require 
marginal cost pricing in the public sector. It should also be clear that if the budget 
constraint is binding andjor there are price distortions in the private sector, we 
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then have a second-best situation, in which case it will generally be optimal for 
the public sector to deviate from marginal cost pricing. 

In order to discuss one complication at a time, we begin by assuming that the 
budget constraint for the public sector is binding and that the private sector is 
perfectly competitive. In this case the optimal pricing rule (2.11) simplifies to 

e E E . (3 .1) 

Except for the dual variable p. and the compensated nature of the demand 
functions, conditions (3.1) are the same as the necessary conditions for profit­
maximizing prices for a monopolist endowed with a technology given by g( z )  = 0 
and with control over the prices Pe• e E E. 

Hence, we have the well-known theorem: For all commodities e E E, the public 
firm should, in the market for outputs, set prices as if it were a monopolist with all 
the compensated demand elasticities inflated by a factor 1/p.. In the markets for 
inputs, the public firm should behave as a monopsonist with all the supply elasticities 
inflated by the same factor 1/p.. This implies that the public firm should use price 
discrimination in the markets for both inputs and outputs whenever possible. The 
inflating factor 1/p. > 1 is determined such that the budget constraint for the 
public sector holds as an equality. 

The intuitive reason for this result is clearly that as long as the budget 
constraint for the public sector is binding, the shadow price of the numeraire will 
be higher in the public sector than in the private sector. 

Although the efficiency conditions (3.1) for the case where p. = 1 are formally 
equivalent to the necessary conditions for profit-maximizing monopoly mark-ups, 
it seems that, except in some rather special cases, no general conclusions can be 
drawn with respect to the relationships between prices and mark-ups in the 
efficiency case and in the monopoly case, i.e., the case where all goods were 
produced and marketed by one large monopoly. As one such special case, assume 
that all prices are under public control and that there are linear compensated net 
market demand functions of the form 

) = 1 ,  . . .  , n ,  (3 .2) 

where the constants A1; = A;1 from the symmetry conditions on net market 
demand, and Po; are the prices that simultaneously choke off compensated net 
demand in all markets. Moreover, we assume constant marginal costs so that the 
deviation of prices from marginal costs must be justified by the presence of a 
fixed or overhead cost. 
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Inserting into (3.1), using the symmetry conditions and rearranging terms, we 
get 

) = 1 ,  . . .  , n .  (3 .3) 

From non-singularity of the Jacobian matrix I IA;)I the only solution to (3.3) is 
given by (1 + p.)p; - c? - p.p0; = 0, and hence the efficiency prices are given by 
/J; = (c? + P.Po;)/(1 + p.) and the corresponding monopoly prices by P; = (c? + 
Po;)/2. Clearly, Po; >  c?, 'rfi, and hence it is easily seen that P; > /J;, 'rfi, when 
p. < 1 .  The efficiency mark-ups are given by /J; - c? = p.(p0; - c?)!(l + p,) and are 
hence proportional to the corresponding monopoly mark-ups so that, while 
efficiency prices are always below the corresponding monopoly prices in the case 
of linear compensated net market demand and constant marginal costs, mark-up 
ratios between any pair of commodities (except the numeraire) will be the same at 
a second-best Pareto optimum and a monopoly profit maximum. 3 In the general 
case, the solution of (3.1) would involve a fixed point problem and there is no 
reason to expect any proportionality between efficiency and the corresponding 
monopoly mark-ups. 

Going back to the general optimality conditions (3.1) and making the simplify­
ing assumption that az;/ aPe = 0, 'rfi =I= 0, e (in which case commodity e and the 
numeraire must be net substitutes), (3.1) simplifies to 

e E E, (3 .4) 

where 

(3.5) 

and 7Te = ze/:Xe, 0 s 7Te s 1 , the share of the public sector in market e. The 
left-hand side of (3.4) are sometimes called "Ramsey Numbers ". In the absence of 
private firms in market e, Y1 = 0, 'rfj (i.e., 7Te = 1), ile is the own (absolute value of 
the) compensated price elasticity of demand for commodity e. If there are 
constant own compensated price elasticities of demand in the above example, we 
then get the well-known result in optimal taxation theory that the optimal relative 
mark-up, or ad valorem tax, will be the same for all taxable commodities and in 

3As would be the case when utility functions are linear in the numeraire and homogeneously 
separable in the taxed goods. 
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particular, with unitary own compensated price elasticities of demand, it will be 
equal to the normalized shadow price of the public budget constraint. 

Willig and Bailey (1979) have calculated "Ramsey Numbers" in different 
markets, testing the hypothesis that they are significantly less than unity (dis­
tinguishing a "socially desirable" Ramsey firm from a "socially undesirable" 
profit-maximizing monopolist). Unfortunately, their tests take �e to be the 
elasticity of market demand, thus disregarding relevant cases of competitive 
fringe, as suggested in (3.4). 

' 

4. Market division and welfare aspects of competition 

As a special case of the above discussion, consider an economy with two goods 1 
and 2, and identical private firms which offer commodity 1 at a fixed price, PI• 
i.e., {5'!(PI) IJ\ = 0 if PI < PI• 0 s J\ s oo if PI = PI• and YI = oo if PI > jji } .  
Private firms do not offer commodity 2 .  Thus, one may call market 1 the 
competitive market and market 2 the (public firm's) monopolized market. Under 
what conditions is it socially optimal for the public firm to undercut the 
competition in the competitive market? 

This question, discussed by Arrow (1983), is related to the argument that public 
firms tend to engage in cross-subsidization. 4 Specifically, these firms tend to 
undercut competition, making up any losses on the competitive commodity by 
increasing prices in monopolized markets so as to generate the required revenue. 
Note that if the public firm would be an unregulated monopoly, there is no room 
for this cross-subsidization because the monopolized markets already yield the 
maximum possible profit. The argument about cross-subsidization for profit-con­
strained regulated public firms is based on the fact that, under regulation, there 
are unexploited opportunities for monopoly profit. Therefore a loss in the 
competitive market will lead to recoupment in the monopolized market. 

We assume that costs of the public firm are subadditive [see Baumol, Panzar 
and Willig (1982)], which is a natural interpretation of economies to scale in the 
multi-product case. It is then never optimal for the public firm to share the 
competitive market with the other firms. The comparison is thus between the case 
when the public firm undercuts the competition and when it abandons the 
competitive market. 

4 If "cross-subsidization" is to be forbidden, it should be welfare-diminishing. The natural defini­
tion, as noted by Arrow (1983), is that there is cross-subsidization from a monopolized to a 
competitive sector if prices are higher in the former than they would be if the competitive market were 
abandoned by the public firm. The reason is that from the social welfare point of view, all that matters 
are the prices charged to consumers. So, if the price in the monopolized market is lower- as against 
the situation if the competitive market were abandoned by the public firm- then the public firm 
should stay in the competitive market. 
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The profit constraint on the public firm may be written 

(4.1) 

where ft;(z;), i = 1 ,2, is the (inverse) demand for commodity i (i.e., demands are 
assumed independent). If the public firm abandons market 1, the output of 
commodity 2 would be determined by (4.1) with z1 = 0, 

(4.2) 

Here, z i is the "stand-alone "  output in market 2 (assumed to be unique). Under 
what conditions can meeting the competition and satisfying (4.1) yield a lower 
price for commodity 1 than a "stand-alone" policy? A lower price is equivalent to 
a higher output. Let z1 be the quantity demanded at the competitive price p1, i.e., 
p1 = jJ1(Z1). The question is thus: z{, z� satisfying (4.1) with z{ � z1 and z� > zi? 

Suppose P(zJ., zi) > b. Then, if z2 is increased, profits will eventually fall 
below b, and therefore z2 > zi for which P(z{, z2) = b. Conversely, if P(zJ., zi) 
< b, it is reasonable to suppose that profits will remain below b for larger values 
of z2•5 Hence, the condition that undercutting competition in market 1 yields a 
lower priced commodity 2 is equivalent to the condition 

(4.3) 

Now, since (4.2) can be written jJ2(zi)zi - c(O, zi)  = b, substitution in (4.3) 
yields 

(4.4) 

where JC1(z1, z2) = c(z1 , z2 )- c(O, z2), 'Vz1, z2, are the "Incremental Costs" of 
commodity 1 .  

The proposition is that a sufficient condition for undercutting competition to be 
socially desirable is that revenues in the competitive market cover incremental costs 
when output in the monopolized market is at the "stand-alone "  level. 

Similar propositions (i.e., necessary and sufficient conditions for undercutting 
or abandonment of a competitive market) can be proved for a profit-maximizing 
monopoly, instead of a Ramsey firm, and these can be used to test whether a 
regulated firm diverges from the (constrained) social optimum or engages in 
predatory pricing. 

5There may conceivably be alternative regimes where profits exceed and fall below average costs. 
We do not consider this possibility. 
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Another question can be raised in this context: in " second-best" situations of 
the kind discussed above, does "increased efficiency of competition" enhance or 
decrease welfare? Specifically, suppose that private firms' supply (demand) func­
tions, y/, depend on an efficiency parameter 0, as well as prices, y/ = y/(p ,  0). 
Let an increase in 0 raise efficiency in some private firms and not .be detrimental 
to any, i.e. , a y/ I ao ;;::: o if y/ > o ( a  y/ I ao < o if y/ < 0). The optimum level of 
welfare, V, now clearly depends on 0: V = V( - b, 0). 

It has been shown [Sheshinski (1983)] that increased efficiency in so'me active 
private firms (i.e., for a given j, y/ > 0 or y/ < 0 for some i ) may yield 
( av1 aO) < 0. This result is not confined to the case where private firms are active 
in the constrained optimum but are inactive in the first-best social optimum (i.e., 
the solution to the maximization problem in Section 2 without the profit con­
straint on the public firm). A characterization of the conditions under which 
welfare decreases when the efficiency of a competitive fringe increases is as yet 
unavailable. 

5. Imperfectly competitive fringe 

We next consider the problem of optimal pricing in the public sector in what is 
perhaps a more interesting case where prices are not set equal to marginal costs 
everywhere in the private sector. These price distortions may be due to a given set 
of commodity taxes and subsidies which, for political or institutional reasons, 
may be considered exogenous to the problem at hand, or they may be due to 
monopoly pricing in the private sector. In fact, the actual reasons for price 
distortions in the private sector are unimportant for the problem of optimal 
pricing in the public firm, as long as these distortions are given for that firm. 

It is seen from condition (2.7) that an optimal production plan for the public 
sector is determined by equating marginal cost c? in the public firm to the 
normalized shadow price l>; for commodity i, plus the normalized shadow price of 
the public budget times the market price for commodity i. With price distortions 
in the private sector, shadow prices will deviate from market prices. Hence, 
regardless of whether or not the public budget constraint is binding, it will 
generally be the case that efficiency requires prices and marginal costs in the 
public sector to differ. We note from (2.7) and (2.11) that this will be the case 
regardless of whether the public firm controls the price or is a price-taker and 
adjusts quantities at given prices. 

To take a simple stylized example, assume that the public firm produces 
electricity, to be indexed e, and uses gas (indexed g) as one of its inputs (not 
necessarily in the production of electricity). We assume that electricity is a 
substitute for gas in the private sector and a complement to appliances which are 
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indexed a. All its other cross-elasticities are assumed to be negligibly small. 
Appliances are produced and used entirely in the private sector. For simplicity, 
we assume that a change in Pe does not change net market demand for gas so that 
azg/ ape = 0. Hence, by assumption, a change in the price of electricity will only 
change the composition of net market demand for gas in the private sector. 

The public firm controls only the price of electricity and from (2.11) the 
optimal price is given by 

= 0 _  'fze - ( - ) "' '\' ( _ J )
ayjjape Pe ce az ;ap 1 JJ £..:- . £..:- P; 

C; az ;ap . 
e e 1 1 = a , g e e 

(5 .1} 

We see from (5.1) that the public firm should set the price under its control 
different from marginal cost for two reasons. First, a compensated price change 
will have an effect on the public budget and the second term on the right-hand 
side of (5.1) measures the social value of this budget effect per unit change in the 
production of electricity. From the assumption of strict convexity of individual 
preferences and private production sets, we have azejape < 0. Thus, as ze > 0 
(output), the budget effect unambiguously calls for setting the price higher than 
marginal cost. Second, we have a re-allocation effect as given by the last term on 
the right-hand side of (5.1) which measures the social cost or gain resulting from 
the re-allocation of resources in the private sector caused by a marginal com­
pensated price change for commodity e. As the consumption side is assumed to 
be perfectly competitive, only the effect of a change in the prices under public 
control on demand and supply of private firms will matter for this re-allocation 
effect. 

We note that P; > c{ with monopolistic pricing (y/ > 0) and P; < c{ for a 
monopsony (y/ < 0). This is also the case with commodity taxes and subsidies, 
although for subsidies the inequality sign must be reversed. Moreover, if commod­
ities i and e are substitutes (complements) then ayjjape > ( < )  0 for outputs 
and a y/ I ape < ( > ) 0 for inputs. Hence, the re-allocation effect alone would call 
for setting the price of electricity above (below) marginal cost if it is generally the 
case that substitutes (complements) to electricity are subject to monopolistic 
pricing or commodity taxation and complements (substitutes) are subsidized. 

This result is quite instructive since, in the present model, the allocation of 
resources is governed by the price mechanism. Thus, if a re-allocation of resources 
to a monopolized sector increases social welfare, the government can do so by 
raising the price of substitutes and lowering the price of complementary goods, 
provided that these prices are under public control whereas the monopoly price is 
not. 

Returning to the specific example above, we may assume that the price of gas is 
subject to a monopolistic mark-up. The government controls the price of electri-
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city but has no control over the price of gas. If we assume that the industry 
supply of appliances is perfectly competitive, the re-allocation effect would 
unambiguously call for setting the price of electricity above marginal cost. If 
electrical appliances were subsidized, this would strengthen the re-allocation 
argument for setting Pe above marginal cost. However, if appliances were also 
subject to mark-ups, the re-allocation effect in this particular market would pull 
the optimal price for electricity in the opposite direction and the overa}.l re-allo­
cation effect on the optimal price for electricity would be indeterminate. 

The matter is complicated even further if a change in the price of electricity 
changes the net demand (or supply) of gas in the private sector. In this case we 
would have to add the term -(pg - c�)( azgjape)/( azefape) on the right-hand 
side of (5.1), in which case the optimal price for electricity would also depend on 
the relevant shadow price for gas in the public sector. On the other hand, if the 
government in this example controls the prices of electricity, gas and appliances, 
we would be left with the conventional taxation problem where the optimal 
solution is given by (3.1). 

We now assume that the public budget constraint is not binding and that we 
still have price distortions in the econ0my. In this case we cannot appeal to the 
theory of optimal taxation to justify the existence of such distortions, as marginal 
cost pricing would yield a first-best optimum if it were feasible. The persistence of 
price distortions created either through monopolistic pricing in the private sector 
or through commodity taxation must therefore be regarded as political restric­
tions determined outside the model. 

We assume that the government has partial control over prices and we examine 
how various feasible price changes will affect social welfare. This may be viewed 
as a problem of comparative statics - or positive economics -in the sense that we 
consider the change in the equilibrium allocations corresponding to various 
feasible price - or tax - reforms and then find the resulting change in social 
welfare. 

We set ti = Pi - c? =  Pi - c/ for all j so that we impose the same absolute price 
distortion on goods produced in both the private sector and the public firm. This 
may be motivated by assuming that the public firm chooses its production plan 
such as to obtain aggregate production efficiency. If all price distortions are due 
to commodity taxation, this formulation implies that taxes on intermediate goods 
within the private sector and between the private and the public sector cancel out 
so that in effect, only private and government sales to and purchases from 
consumers are subject to commodity taxation. Of course, t0 '= 0 by definition. 

As the public budget constraint is assumed to be not binding, y = 0, and setting 
prices under public control different from marginal costs must therefore be 
motivated by the re-allocation effect in the markets with exogenously given price 
distortions. Assume that we undertake a (small) finite change in the commodity 
prices by dpi, i = 1, . . .  , n .  According to conditions (2.1), (2.5) and (2.11), such a 



Ch. 25: Positive Second-Best Theory 1265 

change in the price structure will increase social welfare if 

(5 .2) 

and since the change in net public production must equal the change in net 
private demand, the sufficient condition for an increase in social welfare simplifies 
to 

(5 .3) 

We first assume that all prices are changed in proportion to the distortions, that 
is, dpk = tk d;\,  'Vk. This means a uniform price movement towards or away from 
marginal costs according to whether d;\ is negative or positive. 

In this case the sufficiency condition reduces to 

(5 .4) 

and since the Slutsky matrix Bx;/Bpk is negative definite, (5.4) is satisfied if and 
only if d;\ < 0 when t; =I= 0 for at least one i. Hence, if all prices move towards 
marginal costs in proportion to the prevailing distortions, this will increase social 
welfare. Similar results have been obtained in the context of international trade 
theory by Foster and Sonnenschein (1970). 

Looking at partial price changes, a change in the price of commodity e will 
increase social welfare if 

(5 .5) 

We define 0; = t;/p;, that is, the relative price distortion or the ad valorem tax on 
commodity i. With given distortions on commodities other than e, it follows from 
(5.5) that the optimal ad valorem tax (}e* is given by 

(5 .6) 
i *  e 

that is, a weighted sum of the relative price distortions on commodities other than 
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e. If commodity e is a net substitute for all commodities, then it follows 
immediately from (5.6) that min; ,., /�; < o.* < max ;-i;· 

From the homogeneity of compensated demand functions, 

and deducting from (5.5) and rearranging, we have that a partial price change dp. 
will increase welfare if 

(5 .7) 

where of course 80 = 0. Hence, assuming that 8; > 0, 'tfi -=/= 0, we have from (5.7) 
that a sufficient condition for a decrease in p e to increase social welfare is that 
commodity e is a net complement to all commodities with a greater relative 
distortion than that on commodity e and a net substitute to commodities with a 
lower relative price distortion. In particular, assume that commodities are ordered 
according to the relative price distortion so that On > On_ 1  > · · · > 81. Then, if all 
commodities (including the numeraire ) are net substitutes, a partial reduction in 
the price of commodity n will increase social welfare until On = ()n_ 1  and then 
social welfare could be improved by reducing Pn and Pn- 1 until On = On- l = On_ 2 
and so on, until 8; = 0, 't/i -=/= 0. 

As a special case of (5.7) we consider the case where the relative price 
distortions are the same for all commodities ( 8 may be a common ad valorem 
tax). Then (5.7) reduces to 

(5 .8) 

Hence, if the price is initially above marginal cost by the same factor for all 
commodities (except the numeraire ), then it will be optimal to raise the price 
of commodities which are complementary (in consumption) and reduce the price 
of commodities which are substitutes for the numeraire good. Thus, even though 
prices are a partial price movement away from marginal costs for all commodities, 
we have here an example where a partial price movement away from marginal 
cost will increase social welfare. However, the economic rationale for this result is 
quite simple. With an optimal redistribution of income, 0; is the marginal social 
value of an additional unit of the numeraire allocated to the purchase of 
commodity i. Since, by assumption, 8; is the same for all i -=/=  0, a re-allocation of 
resources away from the production of the numeraire to any distorted sector will, 
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in this particular case, improve social welfare. This can be achieved by taxing 
complements and subsidizing substitutes for the numeraire good, which is pre­
cisely what condition (5.8) says. 

In the case where all price distortions in the private sector are caused by 
commodity taxation, all private producers face the same prices and under 
competitive behavior, there will, in equilibrium, be production efficiency in the 
private sector. Moreover, under the assumption that the absolute price distortion 
shall be the same for goods produced in both the private and public sector, there 
will also be aggregate production efficiency. However, c if there are no such 
constraints on the production plan of the public firm, then the optimality 
condition (2.11)  does not imply aggregate production efficiency. This follows from 
the fact that an optimal production plan in the public firm is obtained through 
equating marginal production costs to shadow prices and with price distortions in 
the private sector, shadow prices will depend on whether commodities are taken 
out of consumption or private production. To see this, assume an economy with 
only two goods, indexed 0 and e, and that there is a commodity tax levied on 
private producers of commodity e which the public firm takes as given. In this 
case condition (2.11) implies (under the assumption that p, = 0) 

Hence, in this particular case, the public firm should equate marginal cost to a 
weighted sum of producer and consumer prices with non-negative weights adding 
up to unity. 

The above example is perhaps somewhat artificial since the public firm takes 
the price distortion in the private sector as given, even when the public budget 
constraint is not binding. With a binding budget constraint and if all goods are 
taxable in the sense that all consumer and producer prices can be changed 
independently, it has been shown by Diamond and Mirrlees (1971) that aggregate 
production efficiency will always be desirable, even in the presence of price 
distortion-provided that profits, if any, in the private sector can be transferred to 
the government. 

If we assume that the government controls all consumer and producer prices, 
then private producer prices would be the relevant shadow prices to use in the 
public sector, provided that the tax structure were optimal. Hence, in this 
particular case, the public firm should aim at aggregate production efficiency, so 
that it should produce until marginal costs in the private and public sector are 
equal. Private marginal costs will of course deviate from consumer prices at a 
second-best tax optimum, which implies that an optimal production plan in the 
public firm is characterized by marginal costs that differ from consumer prices. 
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6. Contestable markets: Relation between sustainable and Ramsey prices 

We have analyzed the optimal pricing and production of a multi-product public 
firm, characterized by increasing returns to scale and facing a competitive fringe. 
The technology available to private firms has not been specified except in 
assuming (implicitly) that, at the optimum, it provided non-negative profits to the 
active private firms. Baumol, Panzar and Willig (1982) have taken 3; different 
approach. In their analysis, the " public firm" is a profit-maximizing monopoly 
("incumbent"), disciplined by potential entrants who have access to the same 
technology, with entry and exit being frictionless (no " sunk" costs).6 They argue 
forcefully that under certain conditions, the market equilibrium is (second-best) 
socially optimal even though there may be only one active firm. Specifically, the 
monopoly will charge "Ramsey prices" which enable the firm to cover costs. This 
result they call the "Weak Invisible Hand Theorem" [Baumol, Bailey and Willig 
(1977)). 

Baumol et al. consider a monopoly using a technology expressed by a subad­
ditive cost function, i.e., c(z1 + z 2 ) .::;; c(z1)+  c(z 2 ), Vz\ z 2 � 0, where zi = 
(z{, z1, . . .  , zD is an n-dimensional output vector.7 Cost subadditivity implies that 
one firm can produce more cheaply than two (or any number of) firms producing 
the same total outputs and hence is offered as a unifying definition of natural 
monopoly. The monopoly faces a vector of demands x(p) = (x1(p ), x2(p), 
. . .  , xn( P )) where p = (p1, p2, • • •  , pn) are consumer prices. Denote by N =  
{1,  2, . . .  , n }  the set of all goods and let S � N be a subset of N. Thus, zs, xs and 
ps are the projections of z, x and p, respectively, on E:. The convention that 
c(zs) = c(z8, 0 NIS), where NjS denotes the complement of S with respect to N, 
will be used. 

Consider a potential entrant having access to the same cost function c( · ) and 
incurring zero entry and exit costs. The entrant may produce any vector of 
quantities z s at prices ps. Then, a price vector p is sustainable8 if every triple 
(S, zs, ps) satisfying 

(6.1) 

6 The market for air travel serves as a canonical example. Such a market may support only one 
airline, but the active airline must price at cost to prevent a price-cutting rival airline from flying in 
and skimming off customers. 

7We focus on the production of outputs, z � 0. The analysis, however, can be applied to inputs too. 
8 This is called sustainability against partial entry, because the entrant may produce any quantities 

up to those determined by market demands. Sustainability against full entry would require that 
entrants supply market demands. 
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also satisfies 

(6 .2) 
When condition (6.2) is not satisfied then we say that markets NjS cross-subsidize 
the commodities in S. 

Two further conditions on cost functions are assumed. First, decreasing ray 
average cost, i.e., 

c(yz ) < yc (z ) for \ty > l .  (6 .3) 
Second, transray convexity, i.e., 

c( Az1 + (1 - "A)z2 ) s "Ac ( z1 ) +  (1 - "A ) c(z2 ) ,  O < "A < l . (6 .4) 
The "Weak Invisible Hand Theorem " [Baumol, Bailey and Willig (1977)] states 

that under conditions (6.1)-(6.4) Ramsey prices are sustainable. Thus, under these 
conditions, a monopoly which uses prices to deter entry leads to an efficient 
allocation without governmental regulation. 

A number of comments on this result are now in order. Assumptions (6.3) and 
(6.4) are contradictory when they are assumed globally and when the cost 
function has no fixed costs, c(O) = 0.9 Baumol et al. (1977) have noticed this 
problem and thus required that (6.4) hold only on the hyperplane which is 
tangent to the zero-profit curve at the Ramsey prices [see Baumol, Bailey and 
Willig (1977, p. 356)]. Clearly, these assumptions crucially depend on the location 
of the Ramsey optimum allocation. 

Furthermore, in the separable cost case, i.e., 

n 

c( z ) = :E ciz) ,  
j � l  

c/ E�  � E� and c(O) = 0, 

these conditions are contradictory. In fact, it has been shown by Mirman, 
Tauman and Zang (1982) that in this case the only sustainable prices are average 
cost prices, which may obviously differ from "Ramsey Prices". 

Finally, Brock and Scheinkman (1983) advanced the notion of quantity sus­
tainability. While in Baumol et al. (1977) entrants expect that the incumbent's 
prices remain fixed [hence, definition (6.1)-(6.2) above may be called price 

9In (6.4), let z 2 --> 0. Then c(A.z1 ) � Ac(z1), 0 � .:\ � 1, which is equivalent to c(yz1) ;;- A.c(z1), 
y ;;- 1. 
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sustainability ], they assume the polar case where entrants expect that the in­
cumbents' quantities remain fixed. This definition, they point out, is more relevant 
in the case where the incumbent's costs are all sunk, because then it is in its 
interest to maintain larger output levels after entry than in the case where costs 
are escapable. They show that under a well-behaved demand function, price 
sustainability implies quantity sustainability. Moreover, it is possible that a 
quantity sustainable price vector yields positive profits to the monopoly. Hence, 
even in the separable cost case, quantity sustainable prices are not in general 
average cost prices. Thus, it is more likely for a weak invisible hand result to hold 
when the notion of price sustainability is replaced by the notion of quantity 
sustainability. 

Baumol et al. (1982) claim that their notion of contestability avoids the ex post 
oligopolistic interactions based on entrants' conjectures, typical of current game­
theoretic industrial-organization models [for example Kreps and Wilson (1982) 
and Milgrom and Roberts (1981)]. Attempts to lay out a framework specified as a 
game between incumbents and challengers [e.g. Maskin and Tirole (1982) and 
Mirman et al. (1982)] have shown that perfect contestability emerges as an 
equilibrium outcome in some, but not in all, dynamic games, depending on the 
assumptions and rules of the game (asymmetric) information (who moves first, 
etc.). 

7. On the public finns' decision rules 

We have assumed that private firms respond, competitively or non-competitively, 
to price changes induced by the public firm. In the competitive case this is a 
natural assumption. In a non-competitive environment, it is perhaps more natural 
to regard the public firm as a dominant agent, i.e., as one capable of imposing its 
decision rules, such that the other firms have to adapt to them. This view has been 
taken by Harris and Wiens (1980), followed by Beato and Mas-Colell (1983). 

To simplify the discussion, assume that there is only one commodity (in 
addition to the numeraire) and one private firm. Consumption is x, the quantity 
produced by the public firm is z and by the private firm y: x = z + y. 

A decision rule for the public firm is, in general form, an arbitrary function 1/; : 
E� � E�, which assigns a public production 1/;(y) to every private production y 
and which belongs to some admissible set of functions A. Particular examples are 
the marginal cost pricing rule, to be discussed below, or a rule which assigns a 
constant level, say z, to any level of y. Given the rule 1/;(y), private firms' profit 
maximization with respect to y determines the equilibrium configuration ( y, 1/; ( y) ). 
Optimization of social welfare consists of finding the best admissible decision rule 
given the information available on demand and the cost function of the private 
firm. 
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As pointed out by Beato and Mas-Colell (1983), in this general form, it is not 
clear what the admissible set A should be. In fact, if no restrictions are imposed 
and information is perfect then the first-best can be attained by the decision rule: 
lfi (y) = max[x - y, O], where x is the first-best production. This rule fixes the price 
at its optimum level with the effect that the private firm, robbed of its monopoly 
power, will produce the socially optimal output. This result, however, crucially 
depends on the public firm's decision rule being perfectly credible, irrespective, 
for example, of possible losses incurred by the public firm. A natural, but ad-hoc, 
restriction on lfi would thus be a no-loss condition. Furthermore, under uncer­
tainty about private costs, the problem of finding the best lfi may not be 
degenerate. The optimum will depend, of course, on the characteristics of the 
uncertainty. However, no results are yet available on this question. 

Rather than pursuing the full optimality approach, Beato and Mas-Colell 
(!983) have taken a "bounded rationality" line, comparing the performance of 
two "simple" decision rules: constant public output and marginal cost pricing 
(MCP). 

A simple diagram may exhibit their analysis. Assume that there is one con­
sumer, with an additively separable utility, U, linear in the numeraire x0, 
U =  u(x)+ x0 = u(z + y)+ x0, where u is strictly concave. Costs (in terms of the 
numeraire) of the public and private firms are c(z) and c(y), respectively. For 
simplicity, both cost functions are assumed to be convex and hence no zero-profit 
constraint need be imposed on the public firm. For a given amount of the 
numeraire, welfare, or net utility, W, is given by 

W(z , y )  = u(z + y ) , - c(z )- c(y ) .  (7 .1) 

Let us examine first the "constant output" decision rule. Assuming that z 1s 
given, the private firm maximizes profits, P, with respect to y, 

maxP ( z , y )  = p ( z  + y ) y - c(y ) , (7.2) 
y 

where 

p (z + y) = u'(z + y) .  

Denote the graph of the solution to (7 .2) by g: y = g (  z ) . The assumptions 
imply that g is continuous and decreasing, as in Figure 7.1. The social optimum is 
now obtained by maximizing (7.1) where y = g(z). This is point L (quantity z0), 
where a social indifference curve is tangent to g. 
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Now consider the MCP rule 

p ( z + y ) - c'(z) = O, 
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y 

Figure 7.1 

(7 .3) 

whose graph is denoted by h: z = h(y). The assumptions imply that h is also 
continuous and intersects g as described in Figure 7.1. The private firm maxi­
mizes its profits with respect to y assuming that z = h(y), 

max P ( h ( y  ) +  y) = p(h (y ) +  y ) y - c (y  ) . (7 .4) 
y 

The solution is at M, where an iso-profit curve, P0, is tangent to h. 
It is quite clear that, in terms of W, the relation between M and L is 

ambiguous. In particular, the MCP rule is not dominated by the constant output 
rule. In fact, Beato and Mas-Colell (1983) show that with linear demands and 
constant marginal costs in the public firm, the MCP rule is superior to a constant 
output rule. 
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Figure 7.2 

The ambiguity regarding the ranking of decision rules can best be seen by 
considering capacity constraints in the above example. Thus, suppose that the 
public firm has a capacity constraint k, i.e., z :::;; k. Let the optimum solution with 
a constant output decision rule be denoted by (yM, zM) (point M0 in Figure 7.2) 
and with the MCP rule by (yF, zF) (point F0). Then it is easy to construct an 
example where for " low" capacity, k0, U(yM, zM) > U(yF, zF), while for "high" 
or no capacity constraint, the welfare ordering is reversed (point F1 preferred to 
M0).10 As the example indicates, it may be desirable for the public firm to build 
capacity and to switch, as capacity expands, from one rule to the other. As the 
Beato and Mas-Colell (1983) calculations indicate, the region (in terms of 
parameters) where the MCP rule fares worse than constant output is when (the 
public firm's) capacity is low and marginal costs are high. 

10The numerical example: p = 10- y - z. The private firm's cost function c(y) = �y2 [so g(z) = 
(10 - z)/4 for z <;; 10], the public firm's cost c(z) = 3z and k = 2.5. Then (yM, zM) = (3, 1) and 
(yF, /) =  (2.5, 2.5). Since U = 10(y + z)- hy + z)2 - h2 - 3z, clearly U(3 , 1) > U(2.5,2.5). 
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Their calculations also show that there is no obvious relation between the size 
of profits (for the public and for the private firms) and welfare levels. In fact, if a 
profit constraint is imposed, one of these decision rules may not be feasible. 

8. Optimal supply of public goods 

The introduction of public goods into the present model would not, in principle, 
present any further difficulty, as we could think of public goods as of government 
production which is given away rather than sold. Yet optimal pricing and 
production rules for public firms which produce both private and public goods 
will be discussed in more detail. 

We let the vector v represent the supply of public goods, and we focus on the 
polar case where exclusion is not feasible and all consumers have to consume the 
same amount of each public good. Hence, individual preferences will be repre­
sented by the utility functions Uh(xh, v) and we set auh;avk = Uf > 0), 't/k. 

The efficiency frontier of the public production technology is now given by the 
implicit production function g(z, v) = 0. 

Necessary conditions for efficient supply of public goods are then given by 
conditions analogous to (2.1), 

(8 .1) 

where 

We write 'ITt = UfjU0h = consumer h 's marginal rate of substitution between 
public good k and the numeraire, or consumer h 's (individualized) price for 
public good k in terms of the numeraire. Observing that L;P;( axr;avk) = 0, 't/h, 
and using (2.4), (8.1) can be rewritten as 

(8.2) 

where cZ is the marginal production cost of public good k. Substituting from 
(2.7) and observing that L;P;( axr;arh) = 1, 'tfh , and L;c{( ay/javk) = O, 'tfj, 



Ch. 25: Positive Second-Best Theory 1275 

after some manipulations, (8_2) can be rewritten as 

The compensated demand derivatives of private goods with respect to public 
goods supply are defined by 

and, accordingly, 

is the partial derivative of the compensated net market demand for private good i 
with respect to the supply of public good k. Using these definitions, condition 
(8.3) can be rewritten as 

" h  1 [ 0 " ( o)
azi ] " " ( . )

ay/ 
';: 'lrk = 1 - JL ck - 7 P; - C; auk - 7 '-; p; - c{ auk . (8 .4) 

With marginal cost pricing of private goods everywhere in the economy and with 
no constraints on public spending, (8.4) simplifies to the familiar Samuelsonian 
conditions for optimal public goods supply [see Samuelson (1954)]. With perfect 
competition in the private sector, (8.4) is identical to the conditions for optimal 
supply of public goods derived by Dreze and Marchand (1976) and Lau, 
Sheshinski and Stiglitz (1978). 

The left-hand side of (8.4) is of course the marginal social value measured in 
terms of the numeraire of increasing the supply of public good k. The term in 
brackets on the right-hand side is the net resource requirement in the public 
sector needed for a marginal increase in the supply of public good k. This net 
resource requirement may be greater or smaller than marginal production cost, 
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depending on whether the public sector prices private goods above or below 
marginal costs and on whether these private goods are complementary to or 
substitutes for public good k. The net resource requirement for a marginal 
increase in the supply of public good k is inflated by a factor 1/(1 - p,) � 1, which 
reflects the fact that the shadow price of the numeraire good is higher in the 
public sector than in the private sector in the case where the public budget 
constraint is binding. The last term on the right-hand side of (8.4) is �ue to price 
distortions in the private sector and expresses the social cost or gain resulting 
from the re-allocation of resources in the private sector caused by a marginal 
(compensated) increase in the supply of public good k. 

An example may perhaps be in order to illustrate the optimality condition (8.4). 
Suppose that a public TV station is contemplating an additional television 
channel. Assume further that this requires highly specialized program personnel 
of which the TV station is the sole employer. Let this input be indexed e and 
assume for simplicity that a z j a v k = 0, 'c/ i =F e. We can also assume that the 
optimal pricing rule derivable from the first-order conditions (2.11) tells the TV 
station to behave monopsonistically in the market for commodity e, setting 
Pe < - az0j aze. Hence, in this case, the net resource requirement of providing an 
additional TV channel will be smaller than marginal cost c2. Moreover, an 
additional TV channel may lead to increased production of TV sets in the private 
sector and, to the extent that TV sets are subject to mark-up pricing, this will 
entail a social gain which should be added on the benefit side. 

We now turn to the case where all price distortions are caused by commodity 
taxes and subsidies and we assume that the government controls all production, 
so that Yi = 0 and xi = zi, Vi. In this case, we can show that the familiar 
Samuelsonian conditions have to be modified to take into account what may be 
called an allocative effect and a distortive effect caused by an increase in public 
goods supply. 

Under the above assumption, condition (8.4) simplifies to 

(8 .5) 

which is similar to the results of Diamond and Mirrlees (1971) and Lau, 
Sheshinski and Stiglitz (1978). In the case where all production of private goods 
takes place in the public sector, condition (2.1 1) for optimal pricing can be 
rewritten as 

'c/ e '  
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and substituting into (8.5) we get 

(8 .6) 

where 

Condition (8.6) for optimal supply of public goods says that marginal produc­
tion costs for public goods should be equated to a factor a times the sum of 
individual consumer prices, plus the social gain (or loss) resulting from the 
changes in the demand for private goods caused by the complementarity and 
substitutability of private and public goods. The latter effect, which is given by 
the change in net tax payments by households, represents the allocative effect of 
increased public goods supply. 

As public expenditures are financed through commodity taxation, an increased 
supply of public goods will lead to increased taxation. This will have a distortive 
effect which is given by the factor a. From the negative definiteness of the Slutsky 
matrix it can be shown that under the condition of positive public expenditure 
(L;f;x; > 0), 

" t .  ax . 
'-' ___!_ __ , < o · 

i Xe ape - ' 

hence a � 1 and the distortive effect will always be non-positive. 

9. Some intertemporal issues 

Interpreting x1, x2, . . .  as the same commodities at different dates, the previous 
discussion can be interpreted as applying to the problem of optimum public 
investment, i.e., the socially optimum shadow discount rates for public invest­
ment. This assumes, however, that the public firm is regulated so that the present 
value of its profits achieve a given target level ( b). This seems a sensible 
formulation of the dynamic Ramsey problem since it recognizes the existence of 
capital markets for borrowing and lending. However, a time inconsistency prob­
lem may arise when explicit dynamics are introduced [Brock (1982)]. 

Suppose that production in the public firm is subject to a " learning" element, 
which can be simply modelled by modifying the public firm's technology to 
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g(z, e) = 0, where e is a productivity parameter and the change in e over time is 
given by a standard distributed lags function of outputs, 

d
d

e = }:a;z; - 8e, t . I 
{9.1) 

where a; (a; � 0) is the "contribution" of a unit of output i to efficiency and () 
(8 � 0) a fixed depreciation rate. Clearly, all variables have now a time dimen­
sion. Assume first that the profit constraint applies at each point in time, 

{9 .2) 

The objective is to maximize the infinite-horizon present value of the maximand 
in Section 2, with a given positive social discount rate, r. 

Elementary control theory yields that equation (2.11), which applies to the case 
of a competitive fringe, then becomes 

" ( 0 ) az . 
.t.... c; - �; - P; -a 

' = p.ze, 
i Pe 

where 

'r/ t ' {9.3) 

t � 0. {9 .4) 

The " shadow price" �; represents the prospective contribution of Z; to future 
cost reduction along the optimum path. We may interpret c? - �; as the "true " 
marginal cost of output i. Notice that in (9.3), p. measures the value of relaxing 
the constraint (9.2) and hence it may vary in possibly complicated ways over time. 
Clearly, operationalizing (9.3) is a complex issue. 

The profit constraint in present value terms is 

(9 .. 5) 

and similar first-order conditions can be deduced. However, as Brock and 
Dechert (1982) have argued, the solution may be time-inconsistent. That is, 
starting at date t > 0, with initial conditions being the optimum values obtained 
for i starting at 0, the optimum values for any s > t are different from those 
obtained when starting at 0. Clearly, there is little point in laying out an optimal 
plan if it is not optimal to follow the rest of the plan at subsequent dates. 
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Chapter 26 

OPTIMAL ECONOMIC GROWTH, TURNPIKE THEOREMS 
AND COMPARATIVE DYNAMICS* 

LIONEL W. McKENZIE* 

University of Rochester 

I. Optimal Paths and Duality 

1. Introduction 

We will be concerned with the long-term tendencies of paths of capital accumula­
tion that maximize, in some sense, a utility sum for society over an unbounded 
time span. However, the structure of the problem is characteristic of all economiz­
ing over time whether on the social scale, or the scale of the individual or the firm. 
The mathematical methods that will be used are closely allied to the old 
mathematical discipline, calculus of variations. However, our problem is made 
simpler by substituting discrete for continuous time so that the Euler differential 
equation is replaced by a difference equation. On the other hand, the problem is 
complicated by the use of an infinite horizon and the adoption as a primary 
objective the characterization of the asymptotic behavior of optimal paths. We are 
particularly interested in the tendency of optimal paths which start from different 
initial positions to converge to the same limit path as time goes to infinity. We 
will go beyond the traditional approach in another direction to consider paths of 
capital stocks which meet the boundaries of the regions within which they must 
lie given the conditions of the problem, in particular, the requirement that the 
capital stocks be non-negative. Of course, this is one of the principal modern 
innovations in the theory of maximization from the work of writers such as Kuhn 
and Tucker (1951), Bellman (1957), and Pontryagin (1962). 

* I  have received assistance from many readers in preparing this chapter. Above all, I am grateful to 
my students, Swapan Dasgupta and Makoto Y ano who have made numerous contributions to the text 
and corrected many errors. I have also received valuable aid on specific points from Jose Scheinkman, 
Peter Hammond, Teh M. Huo, Ali Khan, and Tapan Mitra. Finally, I am especially indebted to 
William Brock, David Cass, David Gale, and Roy Radner for my understanding of optimal growth 
theory. 

Handbook of Mathematical Economics, vol. III, edited by K.J. Arrow and M.D. Intriligator 
© 1986, Elsevier Science Publishers B. V. (North -Holland) 
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A crucial condition for the maximum to be achieved, whether as a necessary 
condition or as one of the sufficient conditions, has been concavity of the 
maximand, at least locally at the maximal path. This is to be expected from the 
conditions for a maximum of a function of a finite number of variables. In the 
calculus of variations the concavity that is needed is provided by the conditions of 
Weierstrass and Lagrange [see Bliss (1925) for a classical reference or Hestenes 
(1966) for a modern reference]. Moreover, when global results are sQught, the 
concavity condition is assumed throughout a relevant region. This is also to be 
expected from the theory with a finite number of variables. In our theory 
concavity of the utility function will always be assumed, even uniformly over a 
relevant region for the global maximum and over time. The utility is defined 
directly on the capital stocks at the beginning and the end of a standard period of 
time, and the concavity is with respect to these variables. It should be mentioned, 
however, that some results have been achieved in one-sector models in which 
concavity is not assumed everywhere [see Skiba (1978), Majumdar and Mitra 
(1982), and Dechert and Nishimura (1983)]. 

In most of the discussion the utility function will be allowed to depend on time, 
as in the standard theory of the calculus of variations. Also the function to be 
maximized will be the sum of utility functions for each period over the future. 
This is described as a separable utility function over the sequence of future capital 
stocks and corresponds to the integral of calculus of variations. Since the 
consumption of one period does influence the utility of later consumption, the 
separability assumption is not exact. However, the error is no doubt reduced by 
lengthening the period, though this may not be much help in an application of the 
theory. Again there are results in the literature where the separability assumption 
is relaxed [see Samuelson (1971) and Iwai (1972)]. The treatment of utility in a 
period as dependent on initial and terminal stocks is not a restriction since the 
usual assumptions that make utility depend on consumption and consumption on 
production and terminal stocks will imply that an equivalent utility depending on 
capital stocks exists. 

The theory that I will present will cover both discounted and undiscounted 
utility. We will seek to determine the asymptotic behavior of maximal paths, 
which display a tendency to cluster in the sufficiently distant future from 
whatever capital stocks they start. Other types of turnpike behavior that have 
been studied are clustering in early periods for finite optimal paths that start from 
the same initial stocks, but have different terminal stocks, and clustering in the 
middle parts of paths that may start and end with different stocks [see McKenzie 
(1976), McKenzie and Yano (1980), and Hieber (1981)]. In models with sta­
tionary utility functions, perhaps subject to discounting, the clustering has been 
seen as convergence to a stationary path along which capital stocks are constant. 
This view is reinforced by the fact that in stationary models the existence of 
stationary optimal paths, which are, moveover, supported by prices, is easy to 
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prove by special means which are not useful for other optimal paths. Then this 
path and its prices can be used to establish the asymptotic convergence of other 
paths to it, with great ease in the undiscounted case. However, methods are now 
available from the work of Weitzman (1973) to derive the prices for other optimal 
paths directly so that the balanced path does not have a distinguished role in the 
asymptotic theory if existence is assumed or can be proved. Also methods are 
available which exploit concavity directly without introducing prices. 

Our consideration will be confined to the deterministic model although using 
methods developed in this model analogous results have also been proved for the 
stochastic model in which the future is uncertain [see Evstigneev (1974), Brock 
and Mirman (1976), and Brock and Majumdar (1978)]. Also most of the 
argument will assume concavity of the relevant functions without requiring 
differentiability or interior solutions. However, some consideration will be given 
to differentiable cases where optimal paths are assumed to lie in the interior of the 
region of definition of the utility function. These stronger assumptions are 
analogous to the assumptions used in the comparative statics of general equi­
librium models of competitive economies. Here they will permit some compara­
tive dynamics to be done. The assumptions are in some ways even stronger than 
those usual in classical calculus of variations. However, the methods that become 
available are very powerful in the discrete model and, so far as I know, have not 
been extended to models where continuous time is the independent variable. 

The original context for the optimal growth model was the problem of the level 
of saving that would maximize a utility sum over future time for a population. 
This problem was solved by the Cambridge mathematician Frank Ramsey (1928) 
for a one-good model, which may be thought of as an aggregated economy over 
an infinite future. The method used by him to handle the infinities involved is still 
useful today. However, the emphasis on asymptotic behavior for optimal paths 
appeared later in the multi-sector von Neumann model analyzed by Dorfman, 
Samuelson and Solow (1958). They dealt with finite paths where the objective was 
to maximize terminal stocks and their model contained two sectors. Since the 
model was stationary they could concentrate on the convergence of all optimal 
paths to a stationary optimal path. Later authors [Radner (1961), Morishima 
(1961), and McKenzie (1963)] extended the von Neumann model and the conver­
gence theorems to many sectors. On the other hand, a Ramsey-style utility 
function on the consumption stream was introduced as the objective rather than 
terminal stocks. Also the horizon was extended to infinity. Asymptotic theorems 
for the one-sector Ramsey model were proved by Cass (1966), Koopmans (1965), 
and Samuelson (1965). Von Weizsacker (1965) generalized the objective function 
somewhat by defining the overtaking criterion in which attention is turned to 
partial sums and optimality is assigned to a path whose partial utility sums 
eventually dominate when it is compared with an alternative path from the same 
initial stocks. He also dealt with a model in which utility and production 
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functions change over time, but he aggregated the economy to a single sector. We 
will deal essentially with the Von W eizsacker model in a disaggregated form, 
which is natural when the analysis is directed to asymptotic behavior of paths. 
The existence of infinite optimal paths in the stationary disaggregated model was 
proved by Gale (1967). Asymptotic theorems in this model were proved by 
Atsumi (1965), Gale (1967), and McKenzie (1968). The existence theorem was 
extended to models with discounted utility by Sutherland (1970), and the asymp­
totic theorems were extended to these models by Scheinkman (1976) and Cass 
and Shell (1976). 

Although the primary sources of the optimal growth model are aggregate 
savings programs and capital accumulation programs for an economy, the theo­
rems and methods of the subject find applications in other areas with increasing 
frequency. For example, applications are made to capital accumulation by the 
firm with adjustment costs by Brock and Scheinkman (1978) and Scheinkman 
(1978), and to competitive markets with perfect foresight by Brock (1974), or 
rational expectations by Brock (1980). In these models the social utility function 
is replaced by individuals' utility functions or by the profit functions of firms. 
Thus there is a movement toward a general theory of economic dynamics in 
which asymptotic theorems and comparative dynamic theorems form the bulk of 
the results and where the analysis is largely derived from the optimal growth 
literature. Excellent examples from the theory of competitive equilibrium are the 
recent works of Becker (1980), Bewley (1982), and Yano (1981), where the 
turnpike results from optimal growth theory are used to prove that competitive 
equilibria approach stationary states over time. It has been suggested that our 
subject is best described as the study of economizing over time [see Intriligator 
(1971)]. 

2. The basic model 

We will use a reduced form of the objective function in which utility is expressed 
as a function of the initial and terminal stocks of a period. The utility function is 
written u1(x,  y), where x is the vector of capital stocks at time t - 1  and y is the 
vector of capital stocks at time t. Then u1 is the utility derived from activities 
during the time period from times t - 1 to t, which we call the t th period. The 
reduced model is equivalent to the traditional extensive model in which utility is 
expressed as a function u 1 (c) of the consumption vector in the t th period. The 
extensive model introduces a production correspondence /1( x) which expresses 
output, not just capital goods, as depending on initial capital stocks. However, so 
long as the utility functions of different periods are independent, it is a necessary 
condition for an optimal program that c be chosen from j1(x)- y, where y 



Ch. 26: Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics 1285 

represents terminal stocks, to maximize u1• Thus the models are not significantly 
different. It should be noted that the full commodity space in which J;(x) lies 
may include labor services and perishable goods dated by their times of use 
within the period. 

We may allow the utility function u1 ,  as well as the space E1 of capital stock 
vectors at time t, to depend on t. Then u1 maps a set D1 contained in the 
non-negative orthant of E1_ 1  X E1 into the real line, where E1_ 1  and E1 are 
Euclidean spaces of dimensions n 1_1 and n �' respectively. Let 1 · 1, for a vector 
argument, denote the Euclidean norm. We assume 

(I) The utility functions u1(x, y) are concave and closed for all t. The sets D1 are 
convex. 

(II) If (x, y )  E Dt and lx l  < � < 00 ,  there is r < 00 such that I Y I  < r 
Assumption (I) provides the concavity and convexity that are recurrent features 

of calculus of variations and other theories of maximization. By u 1 is closed is 
meant that (x, y) E boundary D1 implies u1(x, y) = limsup(u1(z, w) as (z,w) � 

(x, y) if (x, y )  E D1 and ur(z, w) � - oo otherwise. Since we are seeking global 
results, the assumptions on concavity and convexity are global. The boundedness 
assumption (II) is made to avoid trivial cases. Note that (I) and (II) imply that 
u 1 (x, y) is bounded above for lx l  < �-

A sequence of capital stocks { k1 }, t E N, is a path of accumulation if N is a set 
of consecutive integers and (k1_ 1, k1) E D1 when t - l  and t are in N. The set N 
may be a finite or an infinite set. 

We may note that the capital stocks are the state variables in the language of 
optimal control and there is no need to confine them to physical goods or things 
that can be appropriated as private or public property. For example, features of 
the environment, skills of workers, and mineral deposits may also be included. 
These offer ways in which future utility possibilities may be influenced by present 
choices. In addition, the dependence of the utility functions on time may take 
account of trends in technology, tastes, and environment in so far as they are 
independent of the choices made. Of course, the interpretation of the state 
variables will depend on the particular problem at hand. Our descriptions have 
been appropriate to the interpretation of u1 as a social utility function that is the 
objective of planning by the state. 

In classical economics the concavity of the production correspondence which is 
part of the ground for assumption (I) is often explained in terms of the 
independence and linearity of basic productive activities, at least to an approxi­
mation. However, when external effects are present so that different activities 
influence one another, this ground of concavity is jeopardized [Starrett (1972)]. 
Also polluting substances in the environment are not allocated between activities 
the way capital goods are, so they do not fit into the paradigm of an allocation of 
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stocks among independent, linear activities. These are important qualifications to 
the generality of the model. 

3. The objective function 

The objective function for a finite program from t = 0 to t = T is 1:;�1 u1(x1_v y1). 
If the sum exists, the objective function for an infinite program { k 1 }  beginning at 
t = 0 is similarly L��1u1(k1_ 1, k1). However, the infinite sum may not exist and 
one of Ramsey's achievements was to show that this difficulty may be overcome 
in certain models with stationary utility functions by subtracting a constant from 
each term of the series to be summed. A more general method was introduced 
more recently by Von Weizsacker (1965) and Atsurni (1965) and refined by Gale 
(1967) and Brock (1970). In this approach the infinite sum is replaced by a 
comparison of finite partial sums. The new criterion is called the overtaking 
criterion. 

Two definitions are made. The stronger definition characterizes an optimal 
path. We will say that a path { k 1 }  catches up to a path { k; } starting at the same 
time, if for any e > 0 there is T( e) such that I:iC U1(k;_ 1 , k;)- u1(k1_ 1, k1)) < e for 
all T > T( e). Then a path { k 1 }  is optimal if it catches up to every alternative path 
from the same initial stocks. In other words, an optimal path is asymptotically as 
good as any other path from the same starting point when they are compared by 
means of their initial segments. 

We will say that a path { k; } overtakes a path { k 1 }  starting at the same time, if 
there is e > O  and T(e) such that Li(u1(k;_ 1 , k; )- utCk1_ 1, k1)) > e  for all T >  
T( e). Then a path { k 1 }  is maximal if there is no path from the same initial stocks 
that overtakes it. This says that a maximal path does not become permanently 
worse than some alternative path when they are compared by means of their 
initial segments. 

4. Support prices 

We wish to allow for maximal paths that do not remain interior to the sets D1 at 
all times, or perhaps at any time. In these cases derivatives will not always exist 
�or the utility functions along the path. For this reason it is convenient to 
introduce dual variables, which we call prices, as generalizations of derivatives. 
Then it is also possible to dispense with assumptions of differentiability in the 
interior of D1 as well. The existence of the appropriate prices for our purposes was 
proved by Weitzman (1973) when utility is summable. However, his method can 
be adapted to the overtaking criterion [McKenzie (1976) and Hieber (1981)]. A 
theorem corresponding to that of Weitzman has been proved for the continuous 
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time model by Benveniste and Scheinkman (1982). This was extended to a 
continuous time model with the overtaking criterion by Takekuma (1982). 

Consider a maximal path { k1 }, t E N, where N is the set of non-negative 
integers. First, we normalize the utility function choosing the zeros of utility so 
that u1(k1_ 1 , k1) = 0 in every period. This is harmless since the choice of the zero 
level of utility in each period has no effect on the comparison of paths. Next we 
define a value function �(x) which values a capital stock at time t by the utility 
sums that can be got from it in the future. Following the example of Peleg and 
Zilcha (1977) in the stationary model, we set 

(4.1) 

over all paths { h T } with h1 = x. �(x) is well defined when the right-hand side of 
(4.1) exists as a finite number or positive infinity. A little computation will show 
that the concavity of u1 and the convexity of D1 imply that �(x) is concave and 
well defined on a convex set Kr Since �(k1) = 0 for all t, K1 is not empty. We 
may also note that �(x) is well defined for any x for which there is a path { k� }  
with k; = x  and k;+ n = kt + n· 

Let P1 be the set of capital stocks y such that there is x with (x, y) E D1• P1 is 
the set of capital stocks that can be produced from some capital stocks held at 
time t - 1. S is a flat in the Euclidean space E if there are vectors Y; E E, i E J, 
where I is a finite set, such that z E S is equivalent to z = L; E 1a;Y; for some 
numbers a; such that L; E 1a; = 1 .  Let S0 be the smallest fiat in E0 that contains 
Ko, and for t � 1, let st be the smallest fiat in El that contains PI and Kl. It is 
crucial to the derivation of support prices for { k 1 }  to assume: 

(III) Interior (P1 n K1) =I= cp relative to S�' for all t � 1. Also k0 E interior K0 
relative to S0• 

It is important to notice that assumption (III) is not independent of the 
maximal path { k 1 } , since the sets K1 depend on �( x) which is defined after 
normalizing utility on { k1 } .  

Since k 0  lies in the relative interior of K0, given any x E K0, there is x '  such 
that k0 � ax +  (1 - a)x' with 0 < a ;:;;; 1 and x' E K0. Then, from the concavity of 
u1 and V0( k0) = 0, it follows that V0(x ) < oo .  But V0(x ) < oo and (x, y) E D1 
implies V1(y )  < oo.  Since by assumption (III), y may be chosen in the interior of 
P1 n K1 relative to S1, V1(x) < oo for all x E K1. This argument can be continued 
to any t > 0, so �(x) < oo for x E K1 for all t. In interpreting the model it should 
be recalled that any goods not held at t = 0 may be omitted from E0 and any 
goods that cannot be produced from k0 after t periods may be omitted from E1• 
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From the definition (4.1) of �(x) it is clear that the principle of optimality 
holds and we may also write 

(4.2) 
over all y such that (x, y) E D1+ 1 and y E K1+ 1. Make the induction assumption 
that there exists p1 E E1 ( p1 may be 0) where t ;?; 0, such that 

(4.3) 
over all x E Kr Let x = k1 in (4.2). Then the sup is attained at y = k1+ 1  by the 
maximality of { kT } .  The substitution of (4.2) in (4.3) gives 

ut+ 1 ( kt > kt+1 ) + �+1(kt+1 ) - Ptkt ;?;  Ut+ 1 (x ,  Y ) + �+ 1(Y ) - PtX, (4.4) 
for all (x, y) E D1+ 1 with y E K1+ 1. Denote the 'left-hand side of (4.4), a given 
number, by v1+ 1• Then 

We define two sets for each t ;?; 0, 

and 

A = { (w , y ) ly E P1+ 1 and w > v1+1 - u1+ 1 (x , y) + p1x 
for some x with (x, y) E D1+ I } ,  

(4.5) 

By the existence of the maximal path { k 1 } ,  P1+ 1 1\ K1+ 1 =I= cp. Thus A and B are 
not empty. A and B are disjoint by the inequality ( 4.5). They are also convex. 
Thus by a separation theorem for convex sets [Berge (1963, p. 163)] A and B may 
be separated by a hyperplane contained in R X E1+ 1, where R is the real line. The 
separating hyperplane may be defined by a vector ( 'TT, - p1+1) =I= 0, where P1+ 1 lies 
in the linear subspace parallel to S1+1 (that is, q E S1+ 1 implies p1+ 1  + q E S1+ 1). 
Then 'TT W - Pt+ 1y ;?;  w' - Pt+ 1y' for all ( w, y) E A and ( w', y') E B. This situa­
tion is illustrated in Figure 4.1. 

Using the definitions of w, w', and v1+ 1 and relation (4.4), the separation of A 
and B implies 

'TT { Ut+ 1 ( kt > kt+ 1) + �+1(kt+ 1 )- Ptkt - ut+ 1 (x, Y ) + PtX } - Pt+1Y 
;?; '1T�+ 1 (y ' )- Pt+ 1y', (4.6) 
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for any (x, y)  such that (x, y) E D1 and any y' E Kr+ l· If 7T = 0, (4.6) implies that 
p1+ 1 · (y' - y ) � O  for all y' E K1+1  and y E Pr+ I· However, P1+ 1 1l K1+ 1 has an 
interior in S1+ 1 by assumption (III), and Pr+ l is parallel to St+ I· Therefore, 
Pr+ 1 = 0 as well, contradicting the requirement that ( 7T, Pr+ 1) i= 0. Thus 7T i= 0 and 
we may set 7T = 1 . Put x = kl' y = kr+ 1 and (4.6) becomes 

(4.7) 

for all y' E Kr+ I· Put y' = k1+1  and we obtain 

for all (x, y) E Dt+ I· 
The induction is begun by supporting the value function V0(y) at k0 E K0 in 

R X E0• The concavity of V0(y) implies there is ( 7T, p0) i= 0 such that Po E E0 

0 A 

B 

Figure 4.1 

w = inf(v1 + 1 - u1 + 1 (x ,  y) + p1x) 
X " 
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and 

(4.9) 

for all x E K0. Choose p0 in the linear subspace parallel to S0 where S0 is the 
smallest flat containing K0• If 7T = 0, Po =t= 0 and p0(k0 - x) � 0 for all x E K0• 
Since k0 E relative interior K0, the inequality (4.9) is impossible, and 7T =t= 0. We 
may choose 7T = 1, as before. 

We have proved that prices exist supporting maximal paths in the following 
sense: 

Lemma 4.1 

Let { k 1 } ,  t = 0, 1, . . .  , be a maximal path of accumulation. If assumptions (I), (II), 
and (III) are met, there exists a normalization of utility and a sequence of price 
vectors p1 E £1, t = 0, 1, . . .  , which satisfy 

(4 .10) 

for all y E Kl' and �(kt) is finite, and 

(4.11) 

for all (x, y) E Dr+l· 
By (4.10) the prices support the value function. By (4.11) they support the 

utility function. These properties of the prices play crucial roles in the arguments 
leading to turnpike theorems for maximal paths when assumptions of differentia­
bility of the utility function and interiority of paths are not made. The fact that 
the Weitzman prices support the value function implies that they are Malinvaud 
prices (1953), that is, k1 has minimal value at p1 over the set of capital stocks 
from which the subsequent utility stream can be obtained. This is obvious from 
(4.10), since �(y) = �(kr) implies p1k1 � p1y. Of course, Malinvaud prices are 
defined for efficient paths rather than maximal paths and, in particular, summable 
utility is not needed. A path { k 1 } ,  t = 1, 2, . . .  , is said to be efficient if there is no 
path { k; }  with k0 = k0 such that u1(k;_1, k;) � u1(k1_ 1, k1) for all t with strict 
inequality for some t. It is clear that maximal paths must be efficient, but the 
contrary need not hold. 

The converse of Lemma 4.1 is not true. However, a slight relaxation of the 
maximality conditions allows a converse result to be proved. The argument for 
Lemma 4.1 only requires that consecutive stocks along the path realize the (finite) 
supremum in (4.2), that is, for all t, it should be true that 

(4 .12) 
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or equivalently that 

T 
V0 ( k0 )  = LU1 (k1_ 1 , k1)+ Vr{kT) , all T � 1 .  

1291 

(4.13) 

Then under assumptions (1), (II), and (III), the proof proceeds just as given. A 
path satisfying (4.13), where utility is normalized so that V0(k0) is finite, may be 
called potentially maximal, since any " loss" from using an initial segment can be 
made arbitrarily small [a related idea for finite horizons may be found in 
Hammond and Mirrlees (1973) and Hammond (1975)]. At any time T, given an 
arbitrary e > 0, the initial segment of the potentially maximal path may be 
completed with a new choice of capital stocks beyond T, so that no path from the 
beginning can overtake the revised path by more than e. As earlier, one path 
overtakes a second by e if its finite sums eventually exceed those of the second 
path by e at all subsequent times. If we call the revised path e-maximal, the 
potentially maximal path can at any time be converted into an e-maximal path 
where e may be chosen arbitrarily small. 

We will show that price supports imply that a path is potentially maximal. 
Suppose a price sequence { p1 }, t = 0, 1, . . .  , p1 E E1, exists such that ( 4.10) and 
(4.1 1) are satisfied for { k1 } .  Assume that { k1 } is not potentially maximal. Then 
for some T there is e > 0 such that 

T 
Vo ( ko )  � L:ut ( kt- 1 •  kJ + VT{kT)+ e. {4 .14) 

But the definition of � implies there is some path { k; }, t = 0, 1, . . .  , for which 
k0 = k0 and 

T 
Vo (  ko )  � LU1 (  k;_ 1 ,  k;) + VT( kr) + ej2. (4.15) 

1 

Comparing (4.14) and (4.15) we derive 

T T 
L: u1 ( k1_ 1 , k1) + vT(kT) < L:u1( k;_ 1 , k;) + vT (  kr ) .  (4.16) 
1 1 

However, from (4.11) we have 

T 
L ( ut ( kt- 1 •  kt) - ut (  k;_ 1 , k;) )  � PT( kr - kT) + Po(  ko - ko ) , (4.17) 
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and from (4.10) 

Vr(kr )- Vr{ k�) � Pr(kr - k�) .  (4.18) 

Summing (4.17) and (4.18) and using k0 = k0 gives 
T T 

Vr( kr ) +  LU1 (k1_ 1 , k1 ) � Vr{k� ) + L: uJ k;_ 1 , k;) . 
1 1 

This contradicts (4.16), so { k1 } must be potentially maximal. Thus we have 

Theorem 4. 1 

Under assumptions (1), (II), and (III) a path is potentially maximal if and only if 
it can be price supported in the sense of Lemma 1 .  

Notice that the assumptions are not needed to prove that a price supported 
path is potentially maximal. 

The cake-eating example [Gale (1967, p. 4)] is the classic example of a path that 
is potentially maximal but not maximal. The set D contains the pairs of numbers 
(x, y)  such that y � 0, X �  0, and y � x. Utility u(x, y) = v(z ) where z = X - y 
� 0 and v(z) = log(1 + z ). The path k1 = k0, all t, is potentially maximal but not 
maximal. Indeed, no maximal path exists from positive initial stocks. The path 
k 1 = k0 is supported by the prices p1 = 1, all t. The utility function is concave, but 
not strictly concave since u(x, y) = u(x + z, y + z ) for any z � - y. Also �(y) = 

y, all t. However, u is strictly concave in terminal stocks separately. We may 
prove: 

Theorem 4.2 

If u is strictly concave in terminal stocks, a potentially maximal path is unique. 

If a path is potentially maximal it satisfies (4.13). If there are two such paths 
{ k1 } and { k; } ,  let T be the first time that k1 =I= k;. Then by concavity of Vr and 
strict concavity of Ur in the terminal stocks, the average of the right-hand side of 
(4.13) for k1 and k; is less than the value of the right-hand side of (4.13) for the 
average of the two paths, k;', which is also feasible. That is, 

T - 1  
V0 (k0 )  < L u1 (k1_ 1 , k1) + ur(kr_ 1, k¥) +  Vr( k¥) - e, 

1 
(4.19) 

for some e > 0. By definition of Vr(k¥) there is a path { k1 } from t = T such that 
L�+ 1u(k1_ 1, k1) > Vr(k¥)- ej2, where kr = k¥. Let k1 = k1 for t < T. Then 
from (4.19) 

00 

V(k0)  < L: u1 (k1_ 1 , k1 ) ,  
1 

(4.20) 
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in contradiction to the definition of V(k0). Thus there can be only one potentially 
maximal path. Under conditions to be explored in Section 5 this path will be 
optimal. Theorem 4.2 was suggested by Peter Hammond. 

It is sometimes valuable to know that capital values p1k1 are bounded as 
t � oo.  Normalize utility on the potentially maximal path. A simple condition 
that guarantees boundedness of capital values is that v;( ak 1) be bounded as 
t � oo,  for any a sufficiently near 1 .  Consider 

or 

Thus p1k1 is bounded above if v;( ak1) is bounded below for some a <  1, since the 
normalization implies that v;(k1) = 0. Similarly, a >  1 establishes a lower bound. 

5. Optimal paths 

A useful basis for establishing the existence of optimal paths depends on having 
price supports for the utility function in the sense of (4.11) such that capital 
values are bounded along the path. In the case of certain stationary optimal paths 
stationary supports can be found by special arguments. Since capital values are 
then necessarily bounded, the stationary paths are optimal. Then value loss type 
arguments may be applied to prove that optimal paths originate from all capital 
stocks whose value functions are well defined relative to the stationary optimal 
path. 

For the sake of the existence theorems we make three special assumptions, 
suggested by the methods of Von Weizsacker: 

(WI) There is an infinite path { k1 }, t = 0, . . . , whose utility functions are 
supported by a price sequence { p1 } in the sense of (4.11). 

(W2) Lim sup p1k1 = M < oo, and if { k; } is an infinite path with k0 = k0, 
liminf p1k; > M' > - oo. 

Let the value loss 81(x, y) = U1(k1_1 , k1)+ p1k1 - p1_1k1_ 1 - (u1(x, y)+ p1y ­
p1_ 1x), for any (x, y) E D1 • By (4.11) 81(x, y) � 0. 

(W3) For any e >  0, there is 8 > 0, such that j p1(x - k1) 1  > e implies 81+ 1(x, y) > 8 
for any (x, y) E Dt+ I· 
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Assumptions similar to these were used by Von Weizsacker (1965) to prove 
existence for a one-sector model that is time-dependent. 

(W2) places weak bounds on the limiting values of the capital stocks as t � oo,  
along feasible paths and along the path given by (W1 ) .  (W3) provides for a value 
loss for the input-output combination in period t when the value of input differs 
from the value of input on the given path. It is implied by uniform strict 
concavity of u along { k1 } ,  but it is weaker than that condition. · 

With these assumptions we may prove that { k 1 }  is an optimal path. Consider 
any path { k; }  with k0 = k0• Let 81 = 81(k;_ 1, k;), U1 = U1(k1_ 1, k1), u; = 
u1(k;_ 1 , k;). Then u; - u1 = p1(k1 - k;)- p1_ 1(k1_ 1 - k;_1)- 81• Summing, we 
obtain 

T T 
L (  u; - uJ = p0 (k0 - ko) + pr(kr - k�) - L 81 . 
1 1 

Since k0  = k0 ,  using (W2) gives 

T T 
limsup L ( u; - u1) � M - M' - limL81 .  

1 1 

( 5 .1) 

(5 .2) 

Either { k 1 }  catches up to { k;} or lim sup Li( u; - u 1) > 0. In the latter case (5.2) 
implies 81 � 0. Then (W3) implies Pr(kr - k�) � 0, and (5.1) implies l:i(u; - u1) 
� 0 for large T, with < unless k; = k r This means { k 1} catches up to { k ; } .  
Since { k; } i s  an arbitrary path with k0 = k0, { k 1 }  catches up to every path from 
k0 and { k1 }  is optimal. We have proved [McKenzie (1974)]. 

Theorem 5. 1 

Under assumptions (W1), (W2), and (W3), the path { k 1 }  is optimal. 

Once an optimal path { k1 } has been shown to exist from the initial stock k0, 
optimal paths may be derived from all initial stocks in the set K0, that is, the set 
of stocks for which the value function is well defined after normalization of utility 
by u/k1_ 1, kJ = 0, all t. The value function is well defined from a capital stock x 
if there exists a path { k; }  with k0 = x such that liminfLiu1(k;_ 1, k;) > - oo,  as 
T � oo.  Consideration of (5.1) with (W2) and (W3) will show that this condition 
is met if and only if the value loss 2:i81 is bounded as T � oo. The value loss is the 
shortfall of the utility sum less a part due to the first differential of u, when u is 
differentiable, or an analog defined by the support function in the general concave 
case. The value loss method works because the first-order effects on the utility 
sums depend only on the differences in value of the initial and terminal stocks, as 
(5.1) shows, and (W2) and (W3) place certain bounds on the limiting values of the 
terminal stocks. 
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Let K0 be the set of capital stocks x with well defined values V0(x) when 
utility is normalized on the optimal path { k1 } .  We prove [McKenzie (1974)] : 

Theorem 5.2 

If there is an optimal path {k 1 }  from k0, satisfying assumptions (I), (II), and 
(III), and if (W2) and (W3) are satisfied for one of its supporting price sequences 
{ p1 } ,  there is an optimal path from every capital stock in the set K0, defined 
relative to { k 1 } . 

By Lemma 4.1 the hypothesis of Theorem 5.2 implies (Wl). Also from the 
discussion above, the set K0 may equally well be defined as the set of stocks from 
which there exist paths with finite value loss. Let 

over paths { k ; }  such that k0 = x. L0( x) is well defined if and only if V0( x) is 
well defined, given (W2) and (W3). However, I,'[st has the advantage over r:[ut 
that its terms are non-negative, so the finite sums converge if they are bounded 
above. This fact underlies 'the original Ramsey (1928) arguments for one-sector 
models and was adapted to the multi-sector case by Atsumi (1965). However, its 
full implications for the existence problem were first drawn by Brock (1970). 

The essential step in proving Theorem 5.2 is to show that the infimum in the 
definition of L0(x) is assumed by a well defined path from x, if x E K0• This 
path will also realize the supremum in the definition of V0(x). Let s index a 
sequence of paths from x and let L0(x) be the value loss on the s th path. We 
may assume that the sequence is chosen so that L0( x) � L0( x ). Let { k:} be the 
s th path. By assumption (II), k:, s = 1, 2, . . .  , is bounded for each t. Thus we may 
use the Cantor diagonal process to choose a subsequence such that (retain 
notation) k: � k1 for each t. By assumption (I), (k1_ 1, kJ E D1• Otherwise 
u1(k:_ 1, kn � - oo and using the definition of value loss 81(k:_ 1, k:) � oo so 
that 81 ;::;; 0 implies L0(x) � oo and x f/=. K0• Then (k 1 }  is a path of accumulation 
from x. 

Let L0 be the value loss associated with {k1 }. Then L0 ;::;; L0(x). Suppose 
L0 > L0(x). Then for all large s, L0 - L0 > e for some e > 0. Choose T so large 
that 

T 
L0 - L 81 (k1_ 1 , k1) < ej4. (5 .3) 
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Choose S so large that 

T T 
I>�l"t- 1 ' "�) - IA(k;_ 1 , k: } < e/4, 
1 

Then, adding (5.3) and (5 .4), we have 

T 
L0 - L 81 ( k;_1 , k: } < ej2, s > S. 

1 

Lionel W. McKenzie 

s > S. (5 .4) 

(5 .5) 

But Lh � L:i8(k;_ 1, k;), so L0 - Lh < ej2 for s > S which contradicts L0 - Lh > e 
for all large s. Therefore, L0 = L0(x), or the limit path realizes the minimal value 
loss over all infinite paths from x. 

To prove that (k 1 }  is optimal we must show that it catches up to every path 
from x. Suppose { k; } is an arbitrary path from x. Let u; = u1(k;_ 1, k;), 
U1 = u/kt- 1 > k1). By normalization we may put ur{k1_ 1, k1) = 0, all t. Also L0(x) 
finite implies by (W3) that Pr(kr - kr) -'>  0, so by (5.1), 

T 
LU1 -+  p0 (x - k0 )- L0 (x ) > - oo .  

T 
lim sup L: u; = - oo as T -+  oo .  

1 

Then 

T T T 
lim sup E (  u; - u1 )  = lim sup L:u; - lim:[u1 = - oo ,  

1 1 1 

and {k 1 }  overtakes {k ; } .  On the other hand, if L:i81(k;_1, k;) is bounded as 
T -+  oo ,  (W3) again implies Pr(kr - kY.) -'> 0, so by (5.1), 

T oo 

:[ u; -+ p0(x - k0)- :[81 (k ;_1 , k;) . 
1 1 
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Since { k 1 }  minimizes value loss from x, 
T oo 

I: ( u; - u1 ) � L0 (x )- I:81 ( k;_1 , k;) � o as r� oo ,  (5 .6) 
1 1 

and { k 1 }  catches up to { k; } .  Since { k ; }  is an arbitrary path from x, { k 1 }  is 
optimal, and Theorem 5.2 is proved. 

We observe that L0(x) is finite and V0(x) is well defined relative to the optimal 
path { k 1 }  if there exists a path { k;' } with k(f = x and k�' = k7 for some 'T � 0. 
Then { k 1 }  is said to be reachable from x. In stationary models this is often 
provided for relative to the stationary optimal path. 

It is clear from (5.1) that 

T 
lim sup I: ( u; - uJ � lim sup Pr( kr - k7-) ,  

1 
if k0 = k0• Thus { k 1 }  is optimal if lim sup Pr(kr - k7-) � 0 -holds for all paths 
{ k ; }  with k0 = k0• In particular, if lim p1 = 0 and k 1  is bounded over t, { k 1 }  is 
optimal. These conditions are likely to be met in models where u1 = p1u for 
0 < p < 1 , which are called quasi-stationary. We may state the assumption: 

(W2') k 1 is bounded over t and lim p1 = 0. 

Then we have: 

Theorem 5.3 

Under assumptions (I), (II), (W1), and (W2'), the path { k1 }  is optimal. 

Assumption (W2') was introduced in the efficiency context by Malinvaud 
(1953) in the form p1k1 � 0, as t � oo. 

II. Stationary Models and Turnpike Theory 

6. The stationary model 

A particular model to which Theorems 5.1 and 5.2 may be applied is that of Gale 
(1967) and McKenzie (1968). In this model the utility function is stationary, that 
is, D1 = D and u1 = u for all t. Stationarity may be introduced in a model with 
steadily growing population by use of per-capita quantities for capital stocks and 
per-capita utility in the objective. It may be shown that a constant path that gives 
maximum sustainable utility [that is, k1 = k, all t, and u(k, k) � u(x, y) for 
(x, y) E D  and y � x] is supported by prices in the sense of (4.11), so that it 
satisfies (W1). Since the prices may also be chosen to be constant and any path is 
bounded in this model, (W2) follows directly. (W3) also follows if u(x, y) is 
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strictly concave at (k, k). Then Theorems 4.1 and 4.2 apply to show that { k1 } ,  
t = 0 ,  1, . . .  , where k1  = k ,  all t ,  is optimal, and there is an optimal path from 
every x E K 1 = K, where K 1 is defined relative to { k 1 }  as in Section 4. On the 
assumptions often adopted in the stationary model K includes all positive stocks 
and all stocks from which positive stocks may be reached. Free disposal of 
surplus stocks, the expansibility of certain stocks, and 0 E D are used to imply the 
wide scope of K. 

In order to have a set of assumptions that imply (W1), (W2), and (W3), and are 
somewhat more specific than those conditions, we will describe the stationary 
model. The assumptions (I) and (II) of the basic model are retained and in 
addition we assume 

(G1) D1 = D, u1 = u, for all t (stationarity). 

(G2) There is � >  0 such that lx l  > � implies for any (x, y) E D  that IY I < rlx l  for 
y < 1 ( bounded paths). 

(G3) If (x, y) E D, then (z, w) E D  for all z � x, 0 � w � y, and u(z, w) � u(x, y) 
holds ( free disposal). 

(G4) There is (.X, y) E D  for which y > .X (existence of an expansible stock). 

Before stating the last assumption we must show that a constant path exists 
with constant prices satisfying (W1). Define the set V = { v l v  = y - x, where 
( x, y) E D } . Since E1 = En, an n-dimensional Euclidean space, all t, V c En. By 
free disposal, (G3), and the existence of an expansible stock .X, (G4), 0 E interior 
V. Indeed, y ' - x' = v' E V if (x, y) E D  and x < x' < y and x < y' < y. We will 
show that y - x � v E V implies (x, y) is bounded. By (G4) there is v = y - .X > 0. 
Suppose there is v E Vsuch that Dv = {(x, y) IY - x � v }  is not bounded. Choose 
a to give v' = av + (1 - a)v � O, where O < a < l. Let (x', y') = a(.X, j/)+(1 -
a)(x, y) for (x, y) E Dv- Then v' = y' - x' � 0 but (x', y') can be made arbi­
trarily large by choosing (x, y) E Dv arbitrarily large, contradicting either as­
sumption (II) or (G2). Thus Dv is bounded for any v E V. 

Define f( v ) = sup u(x, y) for (x, y) E Dv. Since u is concave and closed by 
assumption (I) and Dv is bounded, the sup is attained for any v E V. Let 
W= {(u, v ) i u  � f(v) and v E V} .  W is convex since f is concave and, putting 
u = f(O), ( u, O) is a boundary point of W. Thus there is (7r, p ) E En+ l and 
(7r, p ) =I= O, such that 7Tu + pv � 7TU for all ( u, v) E W.  Since V is unbounded 
below by (G3), p � 0. Suppose 7T = 0. Then pv � 0 for all v E V, or since 0 is 
interior to V, p = 0. Thus 7T =I= 0, and we may choose ( 7T, p) so that 7T = 1. Then 
u + pv � u for all ( u, v) E W. This implies 

Lemma 6. 1 
There is p � 0 such that u(x, y)+ py - px � u for all (x, y) E D, where u = 
max u(x, x )  for (x, x) E D. 
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Let u(k, k )  = u. Then the path { k 1 } ,  t = 0, 1, . . .  , with k1 = k for all t is an 
infinite path supported, in the sense of (4.11), by the price sequence { p1 } ,  where 
p1 = p for all t. We now assume: 

(G5) The utility function u is strictly concave near the point (k, k), where 
u(k, k )  � u(x, x) for all (x, x) E D. 

It follows from (G5) that u(x, x) = u implies (x, x) = (k, k) . 

The value loss relative to the constant path k1 = k is ll(x, y) = u - u(x, y)- py 
+ px. Then 8 (x, y) � 0. Since u is a concave function, ll is a convex function. We 
may use (G5) to prove a value loss lemma [Atsumi (1965) and Radner (1961)]. 

Lemma 6.2 

For any e > 0, there is ll > 0, such that lx - k !  > e implies ll(x, y) > ll for any 
(x, y) E D, where u(k, k) = u and p and u are given by Lemma 6.1. 

Suppose Lemma 6.2 is not true. Then there exists a sequence (xs, ys), s = 

1 , 2, . . .  , such that 1x• - k !  > e and ll(x•, ys) � 0. Since ll(k, k) = 0 and ll is a 
convex function, ll(x•, y•) does not increase as (x•, y•) approaches (k, k) along a 
line segment. Thus we may put !xs - k !  = e for all s. Then the sequence (x•, y•), 
which is bounded by assumption (II), has a point of accumulation (.X, y) where 
8(.X, y) = 0. Also (.X, y) E D  by concavity and closedness of u on D. Then strict 
convexity of 8 at (k, k) implies ll(x, y) < 0 for (x, y )  between (.X, jl) and (k, k) 
in  contradiction to Lemma 6.1. 

Lemma 6.2 implies (W3) for k1 = k, p1 = p. Lemma 6.1 implies (W1), and (W2) 
follows directly from (G2) and p � 0. Thus Theorem 5.1 implies that k1 = k, 
t = 0, 1, . . .  , is an optimal path. Also Theorem 5.2 implies that an optimal path 
exists from any x E K, that is, from any x for which V(x) > - oo or equivalently 
L(x) < oo, where these functions are defined relative to the stationary optimal 
path, k1 = k. 

On the basis of Lemma 6.2 we may show that the prices derived in Lemma 6.1 
are full Weitzman prices, that is: 

Corollary 

Given assumption (G5) the prices (p, p) of Lemma 6.1 and (k, k), where 
u(k, k) = u, satisfy both (4.10) and (4.11), when ( p1, p1+ 1) is set equal to (p, p) 
and (k" k1+ 1) to (k ,  k). 

That (p, p) and (k, k) satisfy (4.11) is the content of Lemma 6.1. Let k0 lie in 
K and consider 

(6.1) 
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where { k1 }  is any path from k0. Summing (6.1) gives 

T T 
Tu = L: u(k1_ 1 , kJ + pkr - pk0 + 2) (k1_ 1 , k 1 ) .  

1 

Lionel W McKenzie 

{6 .2) 

Let u(k, k ) = O. Suppose liminfl:iu1 > - oo as T � oo. Then by Lemma 6.2, 
kr � k. Therefore, taking the supremum of the right side of (6.2) over paths { k1}  
from k0, we obtain 

V(k ) - pk � V(k0) - pk0 , {6 .3) 

where V(k)  = 0. However, (6.3) is (4.10) for the present case. 
We say that a stock x is expansible if there is (x, y) E D  with y > x. We can 

prove [Gale (1967)] : 

Lemma 6.3 

If x is expansible, then x E K. 

Consider a1(x, y)+(l - a1)(k, k) = (k�' k;+ 1), where y > x, O < a < l ,  t =  
0, 1 , 2, . . . . For t = O, (k�' k;+ 1) = (x, y), and as t � oo, (k�' k;+ I) � (k, k). But 
k;+ 1  = k - a1(k - y) and k1+1 = k - a1+1(k - x). Then k;+1  > kt+ l if y - ax > 
( k - ak ). This holds for a near 1 since y > x. Thus by free disposal we may 
replace (k1 , k;+ 1) by (k�' k1+1) and { k1 }  is an infinite path approaching k. 

Also, by concavity of u, 

and, using free disposal, 

proving that x E K. 

Summarizing the above results we may state: 

Theorem 6. 1 

If in addition to assumptions (I) and (II) we accept assumptions (G1)-(G5), there 
is a stationary optimal path, supported by price vectors p1 = p in the sense of 
(4.10) and (4.11), and there is an optimal path from any expansible stock. 

Without the assumption of strict concavity at the stationary path that maxi­
mizes stationary utility, we cannot show that expansible stocks give rise to 
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optimal paths. However, on the weaker assumption that this path is unique, the 
analogous result can be proved for maximal paths. See Brock (1970), where the 
terminology " weakly maximal" is used. The appropriate assumption is 

(G5') There is a point (k, k) E D  such that u(y, y )  � u(x, x) for all (x, x) E D  
implies (y, y) = (k, k) . 

This assumption is only slightly weaker than requiring u to be strictly concave at 
( k, k) in the directions that lie in the diagonal. The possibility that u has a fiat 
contour in other directions means that other paths originating at k may exist 
which oscillate about k without suffering value losses. See McKenzie (1968). 

Make assumptions (G1)-(G4) and (G5'). Let p be the price vector of Lemma 
6.1, where u(k,  k) = u. As before, define the set K relative to the path kt = k, 
t = 0, 1 ,  . . .  , where K = { x iV(x) > - oo } .  Equivalently K = { x iL(x) < oo } , where 
L (x) = L0(x)  is defined relative to kt = k and Pt = p.  As in the proof of Theorem 
5 .2, for x E K there is a path { k; } ,  t = 0, 1, . . .  , that realizes minimum value loss 
L(x) when kb = x. It is implied by (G2) that { k; } is bounded. Thus 
(1/T)L(k;_ 1, k;) = (kr_ 1, kr) has a limit point (k, k). By closedness of u, 
(k, k) E D. Let u(k, k) = 0. Then 

T T 
L:u(k ;_ 1 , k;) = p ( kb - k� )- L:s ( k;_ 1 , k;) ,  (6 .4) 

from (5.1). Since LiB; -+ L(x), (6.4) implies (1/T)L:iu; -+ 0. On the other hand, 
by concavity of u, (1/T)L:[u; � u(kr_ 1, kr)· Thus u(k, k)  = 0 and k = k by 
assumption (G5 '). 

Suppose { k;' }  is any other path from x. As in the proof of Theorem 5.2 it is 
enough to consider paths with finite value loss. Then by the above argument 
(1/T)L:k;' also converges to k. However, from (5 .1) we derive 

T 
L ( u (  k ;� 1 , k;' )- u (  k;_1 , k;)) 
1 

T T 
= P · ( k� - k�) +  L:st ( k;_1 , k;) - L:st (  k;� 1 , k;' ) .  

1 1 
(6.5) 

Suppose liminfLi( u;' - u;) = y > 0. Since lim LiB;, as T -+ oo, is minimal, 
lim( LiB; - L:isn � 0. Thus (6.5) implies liminf p · ( k� - k�) � y must hold. But 
k� -+ k and k� -+ k, which is a contradiction. Thus liminfl:i(u;' - u;) � 0 and 
{ k; } is maximal. This establishes : 

Theorem 6.2 

If in addition to (I) and (II) we accept assumptions (G1)-(G4) and (G5'), there is 
a maximal path from any expansible stock. 
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7. The quasi-stationary model 

The quasi-stationary model differs from the stationary model by the presence of a 
discount factor 0 < p < 1  for utility, that is, u/x, y)  = p1u(x, y) for t �  0. We will 
first prove that a quasi-stationary model has a stationary optimal path that is 
supported by proportional price vectors [Sutherland (1970)]. As for the stationary 
model, from the stationary optimal path we may derive the existence of other 
optimal paths. 

For the quasi-stationary model, we assume, in addition to (I) and (II) of the 
basic model: 

(S1) D1 = D c E2n, u1 = p1u, for all t, where 0 < p < 1 (quasi-stationarity). 

(S2) Identical with (G2) (bounded paths). 

(S3) Identical with (G3) (free disposal). 

(S4) There is (.X, ji) E D  for which py > .X  ( existence of a stock expansible by a 
factor exceeding p -l ). 

These assumptions are small modifications of those for the stationary model of 
Section 6, (G1)-(G4), to allow for the presence of p. Indeed, if p is put equal to 1, 
they are the same. 

We will show that an optimal stationary path exists in the quasi-stationary 
model. This extends a theorem due to Peleg and Ryder (1974) to a general 
reduced form model. For r given by (S2), let L1 be the set {(x, x) lx � 0 and 
lx l  � r } .  L1 is a compact convex subset of the diagonal of En X En. For any 
(x, x) E L1  define f(x, x) = {(z, w) ipw - z � (p - 1)x for (z, w) E D } .  Since it 
contains the point (.X, ji) by assumption (S4), f(x, x) is not empty. We will show 
that f(x, x )  is bounded. If (z, w) E f(x, x) the definition of f implies that 

l z l  � P lw l + (1 - P ) lxl , (7 .1) 

where 0 < p < 1 .  Suppose l z l  � r_ Then by assumption (S2), lwl < 1z 1. Substituting 
in (7.1), l z l < p lz l + (1 - p) lxl, or l z l < lxl. Since lx l � r  by (S2), this gives a 
contradiction. Thus the set f(x, x) is bounded. 

For U c D, let g(U) = {(z, w) E Uiu(z, w) � u(z', w') for all (z ', w') E U } .  
Consider U = f(x, x). Since u(x, y) is concave and closed by assumption (I) and 
f(x, x )  is bounded, the set {(z, w) E U iu(z, w) � u(x, x)} is compact. Therefore, 
g(U) is compact and not empty. Also by concavity, g(U) is convex. Let h (W), 
for W c D, be the set {(z, z) l(z, w) E W} ,  which lies in Ll. Thus h is a projection 
on L1 along the first factor of the Cartesian product En X En. Finally, define the 
correspondence F = h o g o f. F maps L1 into the set of non-empty, convex, 
compact subsets of Ll.  See Figure 7.1. 
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En 
output space 

w 

We will need: 

Lemma 7.1 

z X 

Figure 7.1 

The correspondence F is upper semi-continuous. 

input space En 

Since h is a continuous correspondence, and both g o f and h have compact 
range, it is sufficient to prove that g o  f is upper semi-continuous. Let (z, w) E 
g o  f(x, x). Suppose (zs, ws) --+ (z', w') and xs --+ x, s = 1 ,2, . . .  , where (zs, ws) E 
g o  f(xs, xs) for all s. Suppose (z', w') is not in g o  f(x, x). Although f is not 
upper semi-continuous, (z ', w') E f(x, x) holds, since u(z', w') > u(x, y) and u 
closed implies (z ', w') E D. Then there exists e > 0 such that u(z, w) > u(z',w')+ e, 
and there is s1 such that s � s1 implies u(xs, ys) � u(z ', w')+ ej3, from closed­
ness of u. Thus s � s1 implies 

u( z , w ) � u(zs, ws ) +2ej3 . (7 .2) 

Choose x0 � .x, x? < X; if X; >  0, x? = X; if X; =  0. Since f(x0, x0) is not 
empty, we may choose (z 0, w0) E f(x0, x0). Finally, we may choose A with 
0 < A <  1 such that (1 - A)( u(z0,w0)- u(z, w)) � - ej3. Since xs --+ x, there is s2 
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such that s � s 2 implies 

xs � ( A.x + (1 - A.)x0 ) = x". (7 .3) 

Moreover, from the definition of I it is clear that 

A. (z ,  w ) +  (1 - A) (z0 , w0) E l(x", x") .  {7 .4) 

From (7.3) and (7.4) it follows that 

p ( Aw + (1 - A)w0) - {A.z + (1 - A ) z0 � ( p - 1)xs, 

for s � s2• In other words, A(z, w)+(1 - A)(z0, w0) E l(xs, xs). But (zs, ws) max­
imal in l(xs, xs) implies u(zs, ws) � u(A.(z, w)+(1 - A)(z0, w0)) or, by concavity 
of u, u(zs, ws) � A.u(z, w) + (1 - A)u(z0,w0) = u(z, w) + (1 - A.)(u(z0, w0) ­
u(z, w )). Thus we have by choice of A, for s � s2, 

u ( zS , w s )  � u( z ,  w ) - ej3. (7 .5) 

By (7.2) and (7.5), for s � max(s1, s2), it follows that u(z, w) � u(zs, ws)+2ej3 
� u(z, w )+ ej3, which is a contradiction. Therefore, it must be that (z', w') E 

g o  l(x, x )  and g o  I is upper semi-continuous, which was to be proved. This 
lemma is due to Khan and Mitra (1984). 

Since .1 is compact and convex and F maps .1 into convex subsets, the 
Kakutani fixed point theorem [Berge (1963, p. 174)] implies there is (k, k )  such 
that (k, k )  E F(k, k). We will show that (k, k )  is a stationary path supported by 
proportional price vectors. It may be seen that (k, k) maximizes utility over 
l(k, k ). In any case, there is (k, w) that does and, by definition of I, w � k. Then 
by free disposal (S3), (k, k) also maximizes utility over l(k, k). 

The derivation of price supports for (k, k) parallels that of Section 6. Define 
the set V = { v l v  = pw - z, for some (z, w) E D } .  By free disposal, (S3), and the 
existence of an expansible stock, (S4), (p - 1)k E interior V. For v E V, let 
Dv = { z, w) E Dlpw - z � v }. Dv is bounded for any v E V by an argument 
parallel to that given in Section 6 for p = 1 .  Define cf>( v) = sup u( x, y )  for 
(x, y) E Dv, u E V. The sup is attained as before. Let W= {(u, v ) l u ;;; cp(u), 
v E V } .  W is convex and interior W =F cp. Let v = (p - 1)k and u = cf>( v). Then 
(u,  v) is a boundary point of W. Thus by a separation theorem for convex sets 
[Berge (1963, p. 163)] there is ('IT, r) E En+l  and ('IT, r) =F 0, such that 'IT U  + rv ;;;; 
'ITU + (p  - 1)rk for all ( u, v) E W. Since v is unbounded below by (S3), r � 0 must 
hold. Suppose 'IT =  0. Then rv ;;;; (p - 1)rk for all v E V. However, (p - 1)k is 
interior to V, so r = 0. Thus 'IT =F 0, and we may choose ('IT, r) so that 'IT = 1. Then 
u + rv ;;;; u + (p - 1)rk for all (u, u) E W. Let q = pr. Using the definition of v we 
obtain [Khan and Mitra (1984)]: 
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Lemma 7.2 

There is (k, k )  E D  and q � 0 such that u(z, w)+ qw - p- 1qz ;;::;; u + qk - p- 1qk 
for all (z, w) E D, where u = u(k, k). 

This extends similar results, arrived at independently by Flynn (1980) and 
McKenzie (1982). 

Consider the path { k1 }, t = 0, 1,  . . .  , where k1 = k, all t, and the vectors q and 
k satisfy Lemma 7.2. Then the price path { p1 } ,  t = 0, 1, . . .  , where p1 = p1q 
supports the utility function u1 = p1u in the sense of (4.11). It is clear that p1 � 0 
and k1 is bounded over t, or (W2') holds. Thus by Theorem 5.3, the path { k1 } is 
optimal. An examination of the proof of Theorem 5 .2 shows that (W2') will also 
replace (W2) there. Then given (W2'), it is unnecessary to use (W3) to show that 
Pr(kr - k].) � 0, and (5.6) is established directly. Thus Theorem 5.2 is valid with 
(W2') replacing both (W2) and (W3), and an optimal path exists from any x E K, 
that is, from any x for which V0(x) > - oo, where this function is defined relative 
to the stationary optimal path. 

We may also show that (4.10) holds for p1 so that they are full Weitzman 
prices. Consider 

p1u ( k, k )  + (p1 - p1- 1 ) qk = p1u( k1_ 1 , k1) + p
1qk1 - P

1-1qk1_ 1 + 131 ( k1_ 1 , k1 ) , 

(7 .6) 

where { k 1 }  is a path from k 0 and 13/ k 1_ 1, k 1) � 0. Summing (7 .6) gives 

T T T 
LPtU + ( pT - 1) qk = LPtUt + prqkr - qko + Ll3t . (7 .7) 
1 1 1 

Since k; = k is an optimal path from k and k1 is an arbitrary path from k0 , in 
the limit (7.7) justifies 

which establishes (4.10). 
In this case it is not difficult to show that the set K of capital stocks x, with 

well defined values V0(x) relative to the stationary optimal path k1 = k, includes 
all sustainable stocks. If x is sustainable, that is, (x, x) E D, then one feasible 
path from x is k 1 = x, t = 0, 1, . . . . This implies 

00 
V0 ( x ) � L p1 u ( x, x ) = 

1 
� 

P 
u ( x, x ) , 

1 

so V0(x) > - oo holds. Thus we have: 
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Theorem 7. 1 

If in addition to assumptions (I) and (II) we accept assumptions (S1 )-(S4), there 
is a stationary optimal path kt = k, supported by price vectors Pr = p1q in the 
sense of (4.10) and (4.11), where q � 0. Also there is an optimal path from any 
sustainable stock. 

According to Theorem 7.1, under the conditions assumed, there alway,s exists a 
stationary optimal path k1 = k supported by a price sequence p1 = p1q, that is, by 
proportional prices. We may also show that any stationary optimal path (k, k) 
has proportional price supports if  (k, k )  E interior D. Since k1 = k, t = 0, 1, . . .  , is 
an optimal path interior to D it satisfies the hypothesis of Lemma 4.1. Thus a 
sequence of support prices { p1 }, t = 0, 1, . . .  , exists, and p1 � 0 by free disposal. 
Consider prices (p, q) that support u(k, k), that is, 

u (x , y ) - u(k , k) � p (x - k)- q( y - k) for all (x, y) E D. (7 .8) 

Since (k, k )  E interior D, it is immediate that /3 exists such that I P I < /3 and 
l q l  < /3 must hold. 

By the support property we have 

Dividing through by p1 gives 

u (X , y )- u ( k, k) � Pt� 
1 ( x - k) -

P
; ( y - k ) ,  

p p 

Averaging the first T + 1 inequalities (7 .9) gives 

u (x ,  y ) - u(k ,  k) � p- 1Pr(x - k ) - Qr(Y - k ) , 

where 

and 

t = 1,2 ,  . . . 0 (7 .9) 

(7 .10) 
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Since IPrl < /3  for all T by (7.8), there is a subsequence { � } ,  i = 1 ,2, . . .  , such 
that Pr, � q � 0. Then Qr, also converges to q, and we obtain from (7.10) 

u (x ,  y ) - u(k ,  k )  ;£ p - 1q(x - k ) - q(y - k ) .  (7 .11) 

Thus the price sequence { p; } ,  where p; = p
1
q, gives proportional support prices 

for k1  = k. This argument is due to Sutherland (1970). We have shown: 

Theorem 7.2 

The path { k 1  } ,  k1 = k, t = 0, 1, . . .  , where (k, k)  E interior D, is an optimal path 
given (S1)-(S4), if and only if there are support prices { p1 } where p1 = p

1q, q � 0, 
which satisfy (4.11). 

It is implied by Theorem 7.2 that u(k, k) maximizes u(x, y) subject to 
py - x �  (p  - 1)k = v. Consider y � p- 1(x + v), k = p-1(k  + v) . Substituting in 
(7.11), we have 

or u(x, y)- u(k, k) ;£ 0. However, it is clear from Theorem 7.1 and the proof of 
Lemma 7.2 that if (k, k) maximizes u(x, y) subject to py - x �  ( p  - 1)k, k1 = k 
is optimal. Then we have the: 

Corollary 

The path { k1 } , k1 = k, t = 0, 1, . . .  , where (k, k) E interior D, is an optimal path 
given (S1)-(S4) if and only if u(k, k) maximizes u(x, y) for py - x �  (p  - 1)k. 

The necessity parts of Theorem 7.2 and the Corollary also apply to the 
stationary model, since the same arguments are valid. However, for sufficiency 
assumption (G5) would be needed, that u is strictly concave at (k, k). 

8. Convergence of optimal paths 

There are three general methods available for proving the convergence of optimal 
paths. A very simple method may be used when the utility function is uniformly 
concave, in a certain sense, along an optimal path. This method makes direct use 
of the fact that a chord of the graph of the utility function lies entirely below the 
graph. On the other hand, we use an alternative method when uniform concavity 
does not hold. This dual approach is used based upon the support prices. This 
approach has been referred to as the method of " value loss", since it is the 
accumulation of shortfalls in values of input-output combinations along one path 
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relative to another at the other's support prices that eventually contradicts 
optimality. However, it is not first-order value losses that force convergence. They 
are fully accounted for over a segment of the optimal paths by the differences in 
value of initial and terminal stocks. Rather the work is done by second-order 
value losses due to concavity. Thus our arguments are closely related to the 
problem of the second variation in calculus of variations. This analogy may be 
illuminating to students of the calculus. However, it should be kept in mind that 
turnpike theory compares paths starting from different points both of which are 
optimal relative to their starting points. This is unlike the classical problems of 
calculus of variations. Finally a method is available based on the treatment of the 
first-order conditions for optimality as a set of difference equations that define a 
transformation of the paths of accumulation into a Banach space. This approach 
will be examined in Section 10. 

Let { k 1 }  and { k;} be two optimal paths for t = 0, 1, . . .  , where k0 and k0 may 
differ. Assume (1), (II), and k0 E relative interior K0, and suppose k0 E K0, that 
is, V0(k0) > - oo, when utility is normalized so that u(k1, k1+ 1) = 0, all t. The 
primal approach to convergence considers a path that is halfway between { k 1 }  
and { k ; } ,  that is, { k;' } ,  where k;' = 1{k1 + k;) . By convexity, k;' E K1 for all t. 
Assume uniform strict concavity of u 1 along { k 1} in the primal sense that 
l(x, y )- (k 1_ 1, k1) 1 > e >  0 implies there is l> > 0, independent of t, such that 

(8.1) 

Applying (8.1) to { k1 }, { k; } , suppose the distance between the paths exceeds e, 
s(T) often by time T. Put u/k1_1, k1) = 0 for all t. Then 

T T 
L: u1 ( k;�1 • k;' ) � ! L:u1 ( k;_ 1 , k; ) + s(T)l> .  (8 .2) 
1 

If s(T) � oo as T � oo, L.'[u;' � oo and V0(k0) = oo. Since k0 E relative interior 
K0, V0(k0) = oo would be implied as we saw in Section 4 in contradiction to 
V0(k0) = 0 by the normalization. More exactly we may prove [Jeanjean (1974) 
and McKenzie (1982)] : 

Theorem 8. 1 

Let { k1 } , { k; } ,  t = 0, 1, . . .  , be optimal paths and assume (I) and (II), and 
k0 E relative interior K0• Assume uniform strict concavity of u1 along { k1 } .  
Suppose k0 E K0• Then for any e > 0 there is a number N(e) such that lk; - k1 1 > e 
can hold for at most N( e) periods. 
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To find N( e) let k E K0, where k0 = ak + (1 - a)k0 for some a, 0 < a <  1 .  
Then, by concavity of V0, 

or 

At  the same time, 

Thus 

which may be seen to be non-negative. This proves the theorem. 

In the stationary model of Section 6, where u1 = u, K1 = K, for all t, uniform 
strict concavity at the (k, k )  of assumption (G5) is immediate, and Theorem 8.1 
implies that all expansible stocks lead to optimal paths that converge to the stock 
k of the optimal stationary path. This result was first proved in a model with 
more than one sector by Atsumi (1965), using the value loss approach. 

If the hypothesis of Theorem 8.1 is strengthened by including the first part of 
assumption (III), so that support prices may be shown to exist, the dual approach 
may be used to draw the conclusion of the theorem [McKenzie (1976) and Hieber 
(1981)]. In this case it is convenient to use a dual notion of uniform value loss. 
The definition of uniform value loss along ( k �' pJ is that I( x, y)-( k 1_ 1, k 1) I > e > 0 
implies that c51+ 1(x, y) > c5 for all t. Since this notion is weaker than the primal 
notion of uniform strict concavity, the two versions of Theorem 8.1 have no 
simple order of strength. 

The role of uniform strict concavity in the value loss approach is to provide 
uniform value loss when (x, y) * (k�' kt+ 1). The value loss in period t + 1 for 
capital stocks (x, y) relative to the path { kT } ,  supported by prices { pT }, was 
defined in Section 5 by 

ut+ l ( kt > kt+ l )+  Pt+ lkt+ l - Ptkt = ut+l (x ,  Y ) + Pt+ IY - PtX + i)t+ l (x, Y ) . 
(8 .3) 

From (4.11) the value loss c51+ 1(x, y) is well defined and non-negative for all 
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(x, y )  E D1+ 1. If strict concavity holds, it is also positive for (x, y) =I= (k1, k1+ 1). 
Indeed, by the same proof used for Lemma 6.2, we obtain: 

Lemma 8. 1 

If u r+ 1 satisfies (I) and is strictly concave at ( k 0 k I+ 1), for any E > 0 !here is 8 > 0 
such that l x - k1 1 > E implies 81+ 1(x, y) > 8, for any (x, y) E D1+ 1. 

Let us consider two paths {k 1 }  and { k; } ,  t = 0, 1, . . .  , that are optimal where 
k0 and k0 may differ. Assume (I) and (II), and (III) for { k 1 }  and { k; } . Suppose 
V0(k0)  > - oo when utility is normalized on { k 1  }, or k0 E K0• Also V0(k0) > - oo 
when utility is normalized on { k; }, or k0 E K0. Let u1 be the utility function 
normalized on { k 1 }  and u; the utility function normalized on { k; } .  Then 

I 
V0 ( kb ) =  L uT (k�_ 1 , k� ) + v; ( k; ) ,  

T = 1  

and similarly for V0(k0). Since uT(k�_ 1,k�)+ u�(kT_ 1 , kT) = 0, it follows that 
v;(k;)+ v;'(k1) = V0(k0)+ V0(k0), for all t. If L�=1uT(k�_ 1, k�) converges, 
V0(k0)+ V0(k0) = 0. Also support prices exist for both paths by Lemma 4.1. 

The definition of the value losses in (8.3) gives symmetrical expressions for the 
two paths, 

ul (kl- 1 '  kl )+ P1k1 - P1- 1k1- 1 = ul ( k;_ 1 , k; )+  p,k; - P1- 1k;_ 1 + 8, , (8.4) 

u, (k,_ 1 , k,)+  p;k1 - p;_ 1k1_ 1  = u1(k;_ 1 , k;) + p;k; - p;_ 1k;_ 1 - 8(. (8.5) 

In these formulae, 81 = 81(k;_ 1, k;), and 8( = B;(k1_ 1, k1). The prices and thus the 
size of value losses are independent of the normalization of u1• Subtracting (8.5) 
from (8.4) gives 

(8.6) 

Let Lp(t )  = (p; - P1)(k; - k1). 
We may apply the support of the value function according to (4.10) to obtain 

v; (kr ) - P1k1 = v; (k; )- P1k; + A0 
v;'( kl ) - p;kt = v;'( k;) - p;k; - A:t , 

(8.7) 

(8.8) 

where A1 � 0, A:1 � 0. Subtracting (8.7) from (8.8) and using v;(k;)+ v;'(k1) = 
JS(k0)+ V0(k0), as well as v;(k1) = v;'(k;) = 0, gives 

(8 .9) 
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Since 81, 8;, AI' and A'1 are non-negative, Lp(t )  is monotone increasing and 
bounded above. This line of argument leads once more to the conclusion of 
Theorem 8.1 with the condition that assumption (III) holds for both paths and 
uniform value loss holds along one of them. From (8.6) and (8.9) we may derive 
A 1  + A'1 = A'0 + A0 - L�_1(87 + 8:). Therefore, to avoid contradiction, the number 
of periods N(e), when lk; - k11 > e, cannot exceed (A0 + A'0)/8 = - (Lp(O)+ 
V0(k0)+ V0( k0))/8. 

We have proved: 

Theorem 8.2 

Let { k 1 }, { k ;  }, t = 0, 1, . . .  , be optimal paths. Assume (1), (II), and (III) for both 
paths and assume k0 E K0 and k0 E K0. Then support prices { p1 } and { p; } 
exist for { k1 }  and { k; } ,  respectively. Assume uniform value loss for either 
( pt> k1) or ( p;, k;). Then for any e > O  there is a number N(e) such that 
lk; - k1 1 > e can hold for at most N(e) periods. 

However, Theorems 8.1 and 8.2 do not apply to objective functions that 
discriminate systematically against the future. The · simplest of these, and one 
often used, is u1(x, y) = p1u(x, y) where 0 < p < 1 and u is a function indepen­
dent of time that satisfies assumptions (I) and (II). Make assumptions (G2)-(G5). 
Then (G1), or u1 = u and D1 = D, all t, implies by Theorem 6.1 that an optimal 
stationary path k1 = k exists supported by price vectors p1 = p. From the proof 
we find that k satisfies u(k, k) � u(x, x) for (x, x )  E D. Moreover, strict concav­
ity at (k, k ), provided by (G5), implies that k satisfying this maximizing 
condition is unique. Also assume (k, k) E interior D. 

If p is now introduced, that is, the utility function u1(x, y) = p1u(x, y), 
0 < p < 1, is defined, for p sufficiently near 1, (G2)-(G4) will imply (S2)-(S4). 
Then for such a p, Theorem 7.1 implies that a stationary optimal path k1 = kP 
exists. From the proof, using Lemma 7.2, kP satisfies u(kP, kP) � u(x, y) for all 
(x, y) E D  such that py - x �  (p - 1)kP. Let V(x) be the value function in the 
stationary model with u1 = u  and u(k, k) = O. Let K = {x iV(x) > - oo} .  As­
sumptions (S3) and (S4) imply that K has an interior. 

For each value of p, p' < p < 1, choose kP satisfying the condition of Lemma 
7.2. With assumptions (I), (II), and (G2)-(G5) we may prove: 

Lemma 8.2 

For any e > 0 there is p' such that lkP - k l  < e holds for the stationary optimal 
path, k1 = k P, when 1 > p > p'. 

By Theorem 7.1, assumptions (1), (II), and (S1)-(S4) imply that a stationary 
optimal path k1 = kP exists. But for p' near 1 these assumptions are implied. 
Then, as mentioned above, such a path exists where u(kP, kP) maximizes u(z, w) 
over all (z, w) that satisfy pw - z � (1 - p )kP, that is, over (z, w) E f(kP, kP). Let 
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ps ---+ 1 ,  where p' < ps < 1  and s-= 1, 2, . . . . Since lkP I < f  by (G2), there is a 
subsequence (preserve notation) such that k" ---+ k. Let f(p, x, x) be defined in 
the same way as f(x, x) in Section 7. Then by an argument parallel to that for 
Lemma 7.1 , g o  f(p, x, x) is upper semi-continuous in (p, x, x). In other words, 
u(kPs, k Ps )  maximal over f(ps, kPs, kPs) implies that u(k, k) is maximal over 
/(1, kl, k1). Since /(1, k\ k1) contains all (x, x) E D, from Lemma 6.1 and the 
proof of Theorem 6.1 we find that k1 = k is a stationary optimal path ,when p = 1 .  
Strict concavity of u near (k, k) from assumption (G5), implies that a stationary 
optimal path k that satisfies u(k, k) ;?; u(x, x )  for (x, x) E D  is unique. Thus 
k = k and the original sequence kPs---+ k. Since kPs---+ k for an arbitrary sequence, 
the convergence is uniform. We may conclude that kP ---+ k as p ---+ 1 and the 
lemma is proved. 

With this preparation we can develop a turnpike theorem for the quasi-sta­
tionary model [Cass and Shell (1976)]. Substitute p1u for u1 in (8.4) and (8.5) and 
multiply through by p- 1• Define current prices by q1 = p- 1

Pr Then we have 

(8 .10) 

in place of (8.4) and a similar equation in place of (8.5). For each p, 0 < p < 1, kP 
is chosen to satisfy the condition of Lemma 7.2. Let k; = kP, all t ,  where kP i s  the 
capital stock of the stationary optimal path and p; = p1qP are the Weitzman prices 
provided by Theorem 7.1 . Let { k1(p)} be an optimal path from k0 E interior K 
and p1(p)  = p1q1(p) the Weitzman support prices. The existence of the Weitzman 
support prices follows from Lemma 4.1, since (G3) and (G4) imply that the set S 
of sustainable stocks has an interior. But S c K0 and S c P1 n K1, for all t, when 
K 0 and K 1 are defined relative to any path { k 1 ( p)} .  If u is strictly concave near 
kP for any e > 0, lk1_ 1(p )- kP I  > e implies there is 8 > 0 such that the value loss 
suffered by k 1_1(p) at prices p1qP is 8f > 8. In formula (8.6) put 81 = 81( p  ), the 
value loss suffered by (kP, kP) at prices p1(p ), and 8; = 8f. This gives 

( qt ( P  ) - qP ) {kt ( P  ) - kP ) - P- 1( qt_l ( p ) - qP ) {kt_ l (p  ) - kP )  

= p- t ( 81 ( p )  + 8f ) ' (8 .11) 

for all t ;?; 1 .  Assumption (G5) implies that a neighborhood U of ( k, k)  exists 
within which u is strictly concave. Suppose p' is chosen near enough to 1 so that 
every (kP, k P )  E U for 1 > p > p'. This is possible by Lemma 8.2. Then for 
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1 > p > p' and any e > O  there is 8 > 0  such that lk 1_1(p)- kP I > e implies 
p- 1( 81 (p)+ 8f) > 8. 

Suppose that the initial prices q0(p) for the path kr(p), and the prices qP that 
support the stationary optimal path are bounded for 1 > p > p'. Then (q0( p  )­
qP)(k0 - kP )  is bounded for these p, and p' may be  selected near enough to 1 to 
imply for 1 > p > p', 

(8 .12) 

Let L�(t) = (q1(p)- qP)(k1(p)- kP). Adding (8.11) and (8.12) gives L�(1)­
L�(O) > 8j2. Then (p- 1 - 1)L�(1) > - 8j2 also holds. Provided l kT(p )- kPI > e, 
for 0 < T < t, we may apply induction to obtain L�(t )- L�(t - 1) > 8j2, uni­
formly for 1 > p > p', or 

(8 .13) 

Since feasible paths are bounded by (G2), utility is bounded above. Therefore, 
discounted sums converge to finite values or - oo, and v;Ck;)+ v;'(k1) = 0, by the 
reversal of the normalization. Therefore, if we multiply through by p- 1, (8.9) 
becomes 

(8 .14) 

We will see that L�(t) = (q1(p )- qP)(k1(p )- kP) may serve in place of LP(t )  to 
prove a turnpike theorem, in the sense of convergence to a neighborhood of kP, 
rather than to kP itself. 

Let R be the set of p < 1 such that (S4) is satisfied. Note that (S4) is satisfied 
for p' > p if it is satisfied for p. First, we must show 

Lemma 8.3 

The prices q0(p) and qP are bounded for p E R. 

Let k1 = k be the stationary optimal path provided by Theorem 6.1 and p1 = p 
the corresponding support prices. Maintain the normalization u(k, k) = 0. Let V<f 
be the value function at t = 0 when p is the discount factor. We will show that 
V<f(x) is bounded for x E k over p E R. Let {k 1 }  be an arbitrary path from x. 
The relation (6.1) gives 

(8 .15) 
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Multiplying through by p
1 

and summing from t = 1 to T, we have 

T T - 1  
LP

1
u ( k1_ 1 , k1) -;?. ppk0 + '£ p1(p  - 1)pk1 - prpkr -;?. px , 

1 
(8 .15) 

or Vrf{x) is bounded above independently of p. On the other hand, x E K implies 
V(x )  > - oo .  That is, there is a path { k; }  with k0 = x for which 
liminfL:iu1(k;_ 1 , k;), as T -'> oo, is finite. Then the argument of Theorem 8.1 
implies that for any e > 0 there is N(e) such that lk; - k l > e for no more than 
N(e) periods. But (k, k)  E interior D implies that (k;, k) E D  for k; sufficiently 
near k. Thus we may assume k; = k and u1(k;_ 1 ,  k;) = 0 for all t > T. Then 

t T 
L PTuT (k�_ 1 , k�) = '£pTuT (k�_ 1 , k� ) , 

1 1 

for all t > T. This implies that VJ'{x) is bounded below over p E R. 
Consider the support formula 

(8 .16) 

implied by (4.10) for k0 and x E k. Choose x so that (k0 - x); = e > 0, all i. Set 
q0(p ) = q0( p  )/ lq0(p ) I. If l q0(p ) I  is unbounded over R, for some p E R  there is a 
sequence ps --" p, s = 1, 2, . . . , such that lq0(ps )  I --" oo, and q0(ps) --" q0 * 0. Then 
(8.16) implies 

Since q0 � 0 by free disposal, this contradicts the choice of x. Therefore, q0(p)  is 
bounded for p E R. 

We must now bound qP. According to Lemma 7.2 

(8 .17) 

for all ( z, w) E D. If qP is unbounded for p E R, there is a sequence ps --" p E R  
such that l q P' I is unbounded and kP' --" k. Choosing a subsequence and normaliz­
ing as before, we obtain in the limit, as a consequence of (8.17), 

( p - 1) qk � q(pw - z) ,  fi * O, 

for all ( z, w )  E D. This is a contradiction since (S3) and (S4) imply that (p  - 1)k 
is interior to the set { pw - zl(z, w) E D } .  Thus qP is bounded for p E R. 
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Since VJ' is concave and finite in K, it is a continuous function of y in the 
interior of K. Therefore, it is bounded in any compact subset of the interior of K, 
for example, over the set U = { Y I Ik - Yl � e/2}. Then it is immediate from the 
proof that the bound on q0(p) for p E R, given by the lemma, is uniform for k0 
in U. We have: 

Corollary 

The prices q0(p) are uniformly bounded for k0 in a sufficiently small neighbor­
hood of k and p E R. 

The corollary implies that the support prices q1(p) for any path lying in a small 
neighborhood of k are bounded as t --+  oo, since the qr(p) are possible choices of 
q0( p) for k0 = k1• 

We may now prove the neighborhood turnpike theorem. A similar theorem for 
the case of continuous time has been proved by Nishimura (1979). 

Theorem 8.3 

Assume (I) and (II). Let u1  = p1u and D1 = D. Assume (G2)-(G5). Also assume 
that the point (k, k) of (G5) lies in interior D. Let { k 1 }  be an optimal path where 
k0 E interior K. Let { k; } ,  k; = kP, all t, be a stationary optimal path given by 
Theorem 7.1. Then for any e > O, there is p(e) and N(e) such that 1 > p > p(e) 
implies lk1 - kP I  < e holds for all t > N(e). 

Since the prices q0(p) and qP are bounded for p near 1 by Lemma 8.3, the 
argument leading to (8.13) may be applied for an arbitrary e > 0. Let N > 
- 2L:(O)j8. Then (8.13) and (8.14) are inconsistent unless lk 1 (p )- kP I < e for 
some t < N. The choice of N is independent of p so long as 1 > p > p'. This shows 
the optimal path must approach kP at least once [see the " visit lemma" of 
Scheinkman (1976)]. However, we will show that there is a neighborhood of kP in 
which the path remains thereafter. 

By Lemma 8.2 and the assumption that (k, k) E interior D, it is possible to 
choose p' so that (kP, kP )  E C c interior D for 1 > p > p', where C is compact. 
Then any y sufficiently near kP will have (y, y )  E interior D, which implies 
y E interior K, for any p with 1 > p > p'. Let U, = { YI I Y - kP I  � e } .  Choose e so 
small that U. c interior K for (kP, kP) E C. Then, by the Corollary to Lemma 8.3, 
the prices q1(p ) are bounded for k1(p) E U. uniformly for p with 1 > p > p'. 

We may suppose that p' has been chosen so that k1(p) lies in the neighborhood 
U. for some t < N for any path p with 1 > p > p'. Uniformly bounded prices for 
1 > p > p' and k1(p) E U. imply that L exists such that 0 � L:( t) > pL for 
k1(p) E U,. Then if k1(p) E TJ., it follows from (8.11) that L:(t + 1) � L. How­
ever, - L:( t )  is seen from (8.7) and (8.14) to be the sum of the remainder terms 
in the supports of the value function, thus, using strict concavity, l k1(p )- kP I --+ 0 
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as L --+ 0. Then for any e' > 0, e may be chosen so small, that is, L so near 0, that 
L�( t  + 1)  � L implies lk1+ 1(p )- kP I  < e'. This follows from the strict concavity of 
u near (kP, kP)  and thus of ��1, for p near 1 .  If k1+ 1(p) is outside U., it is 
implied by (8.11) that Lc(t +2)- p- 1Lc(t + 1) � 8 for some 8 > 0. Also p' may be 
chosen near enough to 1 so that (p- 1 - 1)L > - 8/2 for 1 > p > p'. Then from 
L�( t  + 1) � L we have 

L�(t  + 2) - L�(t + 1) � 8 + ( p- 1 - 1) L  > 8j2. (8 .18) 

This implies Lc(t + 2) � p- 1L also holds and lk 1+ 2(p )- kPI < e'. 
Let U.· = { x l lx - kPI < e' } .  Then (8.18) may be used again to imply that 

kt+T(p )  E U,, for T �  2, so long as kt+T_1(p) does not lie in U,. But kt+T(p )  must 
eventually re-enter lJ., or L�(t + T) will become positive, which is impossible. A 
repetition of the argument shows that kt+T(p )  remains in U,. again. Thus k t+ T(p) 
can never leave U.· and the theorem is proved. 

Theorem 8.3 is weaker than Theorem 8.1 where p = 1� since it is not asserted 
that p can be chosen so that k1(p) converges asymptotically to kP. Indeed, there 
may be other optimal stationary paths interior to U,. and cyclical paths as well 
[see Benhabib and Nishimura (1978)]. However, the assumption (G5) may be 
strengthened to give asymptotic convergence for p sufficiently near 1 .  Suppose 
that u has continuous second partial derivatives at (k, k) and the Hessian of u is 
negative definite there. Then p may be chosen near enough to 1 so that 

evaluated at (kP, kP), is negative quasi-definite for (kP, kP) in a neighborhood W 
of (k, k ). Since the neighborhood W expands as p ---+ 1, while kP ---+ k as p --+ 1, p 
may be chosen near enough to 1 to bring (kP, kP)  inside W. But Q(p) negative 
definite implies that (8.13) will hold for some 8 > 0 for any e > 0. 

Indeed, write the left-hand side of (8.13) as 

(8.19) 

where U� = ( 8j8y)u(k1_ 1 , y)]rk, • U� = ( 8j8y)u(kP, y)]rkP , and similarly for 
uf, and uf. We may express (8.19) in a small neighborhood of (kP, kP) as 

( U�1 ( k1_ 1 - kP) + U�2 (k1 - kP ) ) (k1 - kP ) +  ( puf1 (k1_1 - kP)  
+ p uf2 (k1 - kP) ) (k1_1 - kP ) +o(e2 ) 

= L�( t  - 1) - L�( t ) .  (8 .20) 
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where o(e2) is of order higher than the second in e and e =  l(k1_ 1, kJ-(kP, k P ) J. 
If Q(p)  is negative quasi-definite, (8.20) implies 

(8.21) 

where A is the characteristic root of !(QT(p )+ Q(p )) of maximal absolute value. 
Thus e' > 0 may be chosen so that - Ae2 -o(e2) > - !Ae2 for all 0 < e < e'. But 
from Theorem 8.3, p may be chosen near enough to 1 so that lk 1 (p )- kP I < e' for 
all t > N( e') and all p with 1 � p � p. We may also choose p so that Q( p) is 
uniformly negative quasi-definite for 1 � p � p, that is, (8.21) holds for given A 
for all p with 1 � p � p. To avoid contradicting (8.15), lk/p )- kP I  � 0 must hold. 
Indeed, for any e > 0 there is N1(e) such that Jk 1(p )- kP J < e for t > N1( e) when 
1 �  p � p. 
We have proved: 

Theorem 8.4 

If in addition to the hypotheses of Theorem 8.3, u has continuous second partial 
derivatives at the optimal stationary path (k, k )  of Assumption (G5) and the 
Hessian of u is negative definite at (k, k), there is p such that 1 > p > p implies 
for any e >  0 there is N(e) such that Jk 1 - kP J  < e  for all t > N(e), where {k 1 }  is 
any optimal path satisfying k0 E interior K. 

The fact that k0 is assumed interior to E� is not a restriction, since the capital 
stock space can be chosen differently for each t, so long as all stocks are included 
which can appear in that period given the initial stocks [McKenzie (1976)]. Of 
course, the requirements that k0 be interior to K and (k, k )  be interior to D are 
substantive restrictions. 

Theorem 8.4 extends the classical theorem for p = 1 to the case p < 1 and 
sufficiently near 1 .  A result of this type was first obtained by Scheinkman (1976). 
A similar result was obtained by Brock and Scheinkman (1978). Theorem 8.3 may 
be extended to utility functions u1 that depend more generally on time where a 
uniform concavity condition can be obtained in a way analogous to the move 
from p1u to u. Suppose there exist numbers PT > 0 such that u/ = n�PT-lu/ is 
uniformly strictly concave along { k1 }. Then the argument leading to Theorem 8.3 
can be retraced in this broader context [McKenzie (1976)]. A particular case 
would be that of variable discount factors, or u1 = f1�pTu so that u 1 = u for all t. 

In the special case of the stationary model another type of turnpike theorem 
was established in the course of proving Theorem 6.2. It was shown there that 
even without strict concavity of u near a point (k, k )  where sustainable utility is 
maximized, if this point is unique [Assumption (G5 ')], the average input-output 
vector of a maximal path (1/T)Li(k1_1, kJ converges to (k, k ). Brock (1970) 
refers to this behavior of maximal paths as an average turnpike property. The 
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circumstances that underlie the average turnpike property become clearer when a 
general analysis of asymptotic behavior of maximal paths is made using the 
notion of the von Neumann facet in the following section. 

The asymptotic properties of optimal paths in the continuous time model have 
been investigated along lines similar to those of this section, in particular, by Cass 
and Shell (1976) and Brock and Scheinkman (1976). 

9. The von Neumann facet 

Although the support prices were found for maximal paths in Section 4 with 
utility functions that were only assumed to be concave, the turnpike theorems that 
have been proved so far have used stronger assumptions involving strict concav­
ity, at least at an optimal path. Strict concavity is used to provide value losses 
81(x, y ) > O  whenever (x, y) =l= (k1_ 1, k1) for an optimal path { k1 } .  However, if 
the basis for a value loss argument exists in terms of uniformity of concavity over 
time, it will still be true that paths must behave asymptotically to eliminate the 
value loss. This means that asymptotically optimal paths must be supported by 
the same prices. If we define a facet as the set of (x, y) E D1 that are supported by 
a particular price vector ( p, q ), the elimination of value losses will require that the 
input-output vectors of optimal paths eventually approach the same facets. Thus 
a weaker form of convergence will continue to hold. This convergence may, in 
fact, lead to a turnpike in the original sense when the facets have an appropriate 
structure. This is a generalization of the turnpike theorems to the case where 
utility may not be strictly concave, and value losses do not necessarily appear off 
the turnpike. 

The case of non-strictly concave utility is not really a borderline case in terms 
of the economic problem. Suppose that the extensive model has neo-classical 
production functions with homogeneous labor input and no net joint products. 
That is, if (x, y) is an input-output vector for the jth industry, X; �  Y; for i =/= j. 
Output is divided between consumption and terminal stocks. Let utility be a 
strictly concave function of consumption. Yet the reduced model cannot have a 
strictly concave utility function in terms of initial and terminal stocks. A flat piece 
of the graph of u1(x, y), and thus a non-trivial facet, will be generated by the 
variations in activity levels which are consistent with the labor supply and with 
the consumption vector c that underlies u1(x, y). The possible variations will be 
significant whenever the variations of the input-output vector can be absorbed by 
the initial and terminal stocks without varying either c or the total labor supply. 
If stocks are depleted from use so that an activity from each industry must be 
used to obtain y � x for (x, y) E Dt> the dimension of the facet will be at least 
n - 1 if stocks are maintained somewhere on it. To this extent input-output 
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changes can be made to fall on the accumulation program without losing 
efficiency by varying activity levels for activities in use. 

Define F;( p, q) as all (x, y) E D1 such that 

u 1 ( x, y )  + qy - px = sup ( u 1 ( z ,  w) + qw - pz ) , (9.1) 

over (z , w) E D1• Concavity and closedness of u1 implies that F;(p ,  q) is a closed 
convex subset of D1• Also F; is an upper semi-continuous correspondence from 
E1_1  X E1 to the non-negative orthant of E1_ 1 X E1• Let 

d((z ,  w ) ,  F;) = min l( z , w)- (x, y ) I , 

for (x, y) E F;. We reformulate the value loss result as [McKenzie (1968)] : 

Lemma 9. 1 

Let u1 satisfy assumptions (I) and (II). Let F;(p, q)  =I= <[>  be a facet of D1• For any 
TJ > 0, E > 0 there is l) > 0 such that i z i  < TJ and (z, w )  E D1 implies l>(z, w) > l) for 
d((z, w), F;) > E. 

Consider a sequence (z s, ws) that violates the conclusion, that is, i z s i  < TJ, 
d((zs,ws), F;) > e, but l>1(zs, ws) < l)s where l)s � 0. By assumption (II) ws is also 
bounded, so there is a convergent subsequence whose limit ( z, w) satisfies 
l)t(Z, w)  = 0, iz i � Tj, and d((Z, w), F;) � E. However, l>t(Z, w)  = 0 implies (Z, w)  E 
F;, which is a contradiction. 

Lemma 9.1 may be used to prove a theorem which is the analog of Theorem 
8.1 .  Suppose that { k1 } , t = 0, 1 , . . .  , is a maximal path and F; is a sequence of 
facets where (k1_ 1, k1) E F; for all t. Such a sequence is defined by the sequence 
of support prices { p1 } guaranteed by Lemma 4.1. It is not unreasonable, in view 
of bounded land and labor services, to assume F; to be bounded, even uniformly 
over time. Let us assume further that the value loss off F; is uniform over t in the 
sense that TJ,  E, and l) may be chosen independently of t in Lemma 9.1. Let K0 
be the set of initial stocks with well defined values when u1 is normalized so that 
u1(k1_ 1 , k1) = 0, all t. Then the analog of the dual argument for Theorem 8.2 will 
prove convergence of maximal paths { k;} ,  from initial stocks k'o E K0, to the 
facet sequence { F; } .  The argument for Theorem 8.1 is also valid for a primal 
version of convergence to the sequence of facets. If strict concavity holds, 
F; = { k1_ 1 , k 1 }  and the original theorems are true. We may state: 

Theorem 9. 1 

Let { k1 }, { k ;  }, t = 0, 1, . . .  , be maximal paths and assume (I) and (II), and (III) 
for both paths. Let { p1 } support { k1}  and let { F; } be the corresponding facet 
sequence. Assume k'o E K0 and k0 E K6, and there is uniform value loss along 
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{ Fr } .  Then for any e > 0 there is N( ef such that d((k;_1 ,  k;), Fr) > e can hold for 
at most N(e) periods. 

One case to which Theorem 9.1 applies is the stationary model of Section 6 
with the strict concavity assumption (G5) omitted. Lemma 6.1 is valid since it 
does not use (G5). Thus there exists p � 0 such that u(x, y)+ py - px ;:;;; u for all 
(x, y)  E D  where u = max u(x, x) for (x, x) E D. The price vector p defines a 
facet F(p,  p ). We may prove [Peleg (1973)]: 

Lemma 9.2 

Under assumptions (G1)-(G4) there is (k, k )  E D  such that u(k, k)  � u(x, x), 
for all (x, x )  E D  and k1 = k, t = 0, 1, . . .  , is a maximal path. 

Let C =  {(x, x) Ju(x, x) = u } .  By assumptions (I) and (G2), C is compact. 
Then there is (k, k)  E C such that 

pk ;:;;; px for all ( x ,  x) E C. (9 .2) 

Suppose k 1 = k is not maximal. Then there is a path { k;} and T > 0 such that 
kb = k and 

t 
L: (  u (k;_ 1 , k;) - u )  > e >  0, (9 .3) 

for all t > T. Consider 

Convexity of D implies (x1_1, y1) E D. Since k; is bounded by (G2), there is a 
point of accumulation (k, k) of the sequence (x1_ 1 , y1). Moreover, 

u (x1_ 1 , y1 ) � � t u(  k�_1 , k� ) . 
1 

by concavity of u. Then (9.3) and assumption (I) imply u(k, k)  � u, and 
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(k, k) E C. By Lemma 6.1, and (9.3), for all t > T, 
t t 

e < I: { u ( k�_1 , k�) - u )  � LP (k�_ 1 - k�) = pk - pk; .  (9 .4) 
1 

Since y1 = (1/t)L�k� and y1 � k, (9.4) implies pk > pk + e. This contradicts 
(9.2), since (k, k) E C. Therefore, k1 = k is a maximal path. 

The set C and, in particular, the maximal path k1 = k, lies on the facet 
F(p, p ). We may set F; = F(p, p) in Theorem 9.1 and derive the convergence of 
k ;  to F(p, p ). In a similar way, Theorem 8.3 may be given a facet generalization 
where kP  is replaced by the facet FP = F(qP, pqP) on which (kP, kP )  lies. F(p, p) 
or FP will be referred to  as  a von Neumann facet. The argument for Lemma 8 .2 
now proves that (kP, kP) converges to the compact set C, as p � 1 .  Note that in 
the proof of Lemma 8.3 the support prices given by Lemma 6.1 are used, but the 
stationary optimal path plays no role. Therefore, the boundedness of q0(p) and 
qP follows for the present case just as before. However, two new assumptions are 
needed. 

(F1) The unique support prices for all points of the von Neumann facet contain­
ing (kP ,  kP )  are ( qP ,  pqP). 

(F2) For any � > 0, e > 0, there is <5 > 0, such that lxl < � and d((x, y ), 
F(qP, p qP)) > e implies 13(x, y) > 13, uniformly for p near 1. 

Assumption (F1) implies directly that L�(t) = (q1 (p )- qP)(k1(p )- kP) is 0 for 
(klp ), kt+ 1( p  )) E F(qP, pqP). By assumption (G2), klp) is bounded indepen­
dently of p by the maximum of lk0(p ) I  and t, Then assumption (F1) implies that 
L1(p) is also near 0 for (klp), k1+1(p)) near F(qP, pqP), since in that case qlp) 
will be near qP .  Assumption (F1) is  needed because k1 need not be near kP 
although (klp ) ,  k1+ 1(p )) i s  near F(qP, pqP). Assumption (F2) provides the value 
losses that lead to L1+ 1(p  )- p-1L1(p) � 13 > 0 for some <5 when (k1(p ), k1+ 1(p )) 
is outside an e-neighborhood of F(qP, pqP). 

These facts allow the proof of a neighborhood turnpike theorem for the von 
Neumann facet which is the analogue of Theorem 8.3 [details may be found in 
McKenzie (1983)]. We have: 
Theorem 9.2 

Assume (I) and (II). Let u1 = p1u, D1 = D, and assume (G2), (G3), (G4), and F(1), 
F(2). Let { k 1 }  be an optimal path where k0 E interior K. Let { k; } , k; = kP, all t, 
be a stationary optimal path, and p; = p1qP the support prices, given by Theorem 
7.1 .  Then for any e > O, there is p(e) and N(e) such that 1 > p > p(e) implies 
d((k1_ 1 , kl' F(qP, pqP)) > e holds for no more than N(e) periods. 

The principal change that must be made in the proof of Theorem 8.3 to obtain 
the proof of Theorem 9.2 is to replace the condition lk1(p )- kP I  > e by the 
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condition d((k1_ 1(p ), k1(p ), F(qP, pqP)) > e whenever lower bounds are being 
deduced for value losses 81(p )+ Sf. Then the elimination of value losses to avoid 
contradiction with (8.14) forces convergence to the facet F(qP, pqP) rather than 
to the path k; = kP. The part of the earlier proof that required (kP, kP) to enter a 
strictly concave neighborhood of (k, k) is no longer needed, since it is no longer 
necessary to establish F(qP, pqP) = (kP, kP). 

Given some assumptions on the structure of the facets F; of Theorem 9.1 to 
which the (k 1_ 1, k1) belong, and which are defined by the (p1_ 1, p1), it may be 
that paths that remain close to the F; for a long time must approach each other. 
This can be seen most easily for stationary models where one of the price 
supported paths is a maximal stationary path supported by constant current 
prices so that F; = F for all t. 

Choose points in the facet F which affinely span the smallest flat containing F, 
say (xi, yi ), i = 1, . . .  , r, where the dimension of F is r - 1 ;;;; 2n.  Then any point 
(z, w) E F can be expressed as L�aJxi, y;) where La; = 1. If { k1 } is a path on F, 

h { k k } - "' I( i i) d (k k ) _ "' t+ 1( i i) "' I i _ we ave 1 _ 1, 1 - ..:...1a; x ,  y , an I ' 1+ 1  - ..:...1a; x ,  y , or ..:...1a;y -
L�a:+ 1x;. Suppose that r = n + 1 and A and B are square matrices with columns 

respectively. Then t � 0, the equation Ba1 = Aa1+ 1 must be satisfied for some 
vectors a1 and a1+1  if (k1_ 1, k1) and (kl' kt+ 1) lie on F. If A is non-singular, this 
may be written 

(9 .2) 

Suppose A - 1B has only one characteristic root A with absolute value one and 
this root is simple. Then A =  1, since a must solve (9.2) where 

L: a; ( x;, /)  = (k, k ) ,  
1 

and k is the capital stock vector of the stationary maximal path. The last rows of 
A and B imply that I:;�1a;(J) = O  if A1 ' H  and I:;_1a;(1) = 1  for A1 = 1 . The 
path k1 = k is optimal for the quasi-stationary case by Theorem 5.3. We will show 
later that it is optimal for the stationary case as well. If we make assumption (G2) 
of the stationary model of Section 6 that sustainable stocks are bounded, lk 1 1  is 
bounded by a number r Then for any path { k I } on F, k I � k must hold 
[McKenzie (1968)]. This is easily seen if the characteristic roots are all simple, so 
the characteristic vectors span the complexification of the r-dimensional Euclidean 
space [Hirsch and Smale (1974, pp. 64-65)]. Then a1 = L�{31Aja(J) where a(j) is 
the characteristic vector associated with A 1 and {31 is a given number, possibly 



Ch. 26: Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics 1323 

complex. Also { k1} on F implies Laf = 1, so /31 = 1. If l"'- 1 1 > 1, /31 = 0 must hold, 
or else a1 and thus k 1 is unbounded as t � oo. If l"'- 1 1 < 1, N1 � 0 as t � oo.  Thus 
at � a(1) and k1 � k. By an extension of this argument the same convergence 
property will be shown to hold for any path that converges to F. Then the 
convergence of maximal paths will once again be established. 

In the case where ( k, k) E interior F relative to the smallest fiat that contains F 
we may prove r � n + 1. The proof of Lemma 6.1 implies that u + pv = u for a 
vector p ;;;; 0 for every v = (y - x) and (x, y )  E F. Thus all (u, v )  corresponding 
to points in F lie in a fiat of dimension less than or equal to n in En+l and (u , O) 
is expressible as an affine combination with non-zero .coefficients of r affinely 
independent vectors of W, (u1, v1) = (u(x1, y 1), y 1 - x1), where r � n + 1. This 
means (u(k, k ), k, k)  is the same affine combination of r affinely independent 
vectors (u(x1, y 1), x 1, y 1) of the graph of u. Consequently the dimension of F is 
at least r - 1. We will show that the dimension of F is exactly r - 1. Let 
(k, k) = E;_1a1(x1, y 1). Then 0 = E;_1a1v1• Suppose there were (x, y ) E F which 
was affinely independent of the (x1, y 1). Let v = (y - x). Then v = E;_1/31v1 for 
some /31 where E�/31 = 1 ,  or vi = - f31-1f31u1 + f31- 1u, and 0 = L; ,. / a1 - a1f31-1f3J v1 
+ a1f31- V  This implies there is (k', k') which is the same linear combination of 
the (x1, y 1), i =1= j, and (x, y ). Moreover, the assumption that (x, y )  is affinely 
independent of the (x1, y i) implies that k' =I= k. But (k', k') E S where S is the 
smallest fiat containing F, since S and F are convex, and ( k, k)  is interior to F, 
there is a point (k", k") on the line segment joining (k', k') and (k, k), which lies 
in F. This contradicts the uniqueness of the stationary optimal path. Thus no 
such (x, y )  E F can exist, or the dimension of F is r - 1. If r = n + 1, matrices A 
and B will have the same number of rows as columns and except for coincidence 
their columns will be linearly independent. If the model is neoclassical, small 
perturbations of the processes will eliminate characteristic roots of absolute value 
one except for the root one which is present by construction. Finally, when u is 
piecewise linear, the graph of u is polyhedral and (k, k) E relative interior F 
holds by definition. See Morishima (1969, chs. 10 and 13), for a careful discussion 
of the polyhedral case. 

We may say that the structure of the von Neumann facet F is stable if, for any 
e > o. there is T such that every solution at of the difference equation (9.2), for 
which (Aa1, Bat) = (k;, k;+ 1) E F for t ;;;; 0, satisfies lk; - k l  < e for some k for 
all t > T [Inada (1964)]. The case outlined in the last paragraph is an example of 
a stable facet. Suppose that a bounded path { k t} converges to F, but that { k 1} 
does not converge to k. Choose a sequence of neighborhoods us of F defined by 
us = {(x, y ) ld((x, y ), F) < e• > 0} where e• � 0. Let t. be a sequence of times 
such that (k1 ,  kr+ 1) E us for t ;;;; t •. This is possible since (k,, kr+ 1) converges to F 
by assumption. Consider the sequence of paths { k� }, r = 0, 1, . . .  , where k� = 
k, +T" Since the { k�} are bounded, we may use the Cantor process to choose a 
subsequence converging to a path { k� } .  Then assumption (I) and F closed imply 
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that (k� ,  k�+ l) E F for all 7' � 0. If { kT } does not converge to k, given T � 0 the 
times ts may be chosen so that lkf - k l  > e > 0 for all s. This implies that there 
exist paths beginning at time T = 0 on F that lie outside an e-neighborhood of k 
at time T = T where T may be set arbitrarily large, in contradiction to the 
stability of F. We may prove: 

Theorem 9.3 

If a path { k1 }  in a stationary model, satisfying assumptions (I), (II), and (G2), 
converges to the von Neumann facet F and the structure of F is stable, then 
k 1 � k where k is the capital stock vector of the stationary optimal path. If { k 1 }  
is a maximal path, it is optimal. 

The convergence has been shown. However, the argument for optimality 
leading to Theorem 5.1 only uses (W1) and (W2), which are met here, together 
with the turnpike property which was proved using (W3). Since in the present 
case the turnpike property is established, optimality follows for { k 1 } .  The facet F 
where A is non-singular and A - lB has a unique characteristic root with absolute 
value one, which is simple and equal to one, gives a particular case for Theorem 
9.3. A condition which is equivalent to stability is that the stationary path on F 
be unique and there be no cyclic paths on F of constant amplitude [McKenzie 
(1968)]. 

In the quasi-stationary case the analogue of Theorem 9.3 is not useful since 
Theorem 9.2 only gives a neighborhood theorem, or Liapounov stability, not 
asymptotic stability, for the von Neumann facet. However, the neighborhood 
counterpart of Theorem 9.3 can be proved for quasi-stationary models. First, 
when there is a unique optimal stationary stock, that is, C = { k } ,  for p = 1, 
Lemma 8.2 remains valid and kP � k as p �  1. Furthermore, it is easily seen that 
p � 1 implies that FP � F where F is the von Neumann facet for p = 1. This 
allows us to prove a neighborhood version of Theorem 9.3 [see McKenzie (1983)]. 

Theorem 9.4 

In addition to the hypothesis of Theorem 9.2, assume that the von Neumann facet 
F for p = 1 is stable. Then for any e > 0 there is p( e) and T( e) such that 
p( e) < p < 1 implies that (k1 - kP) < e holds for T > T( e). 

The proof of this theorem is entirely parallel to the proof of Theorem 9.3, 
except that use must be made of a sequence of paths { k1(ps)} from k0(ps) = k0, 
since no single path need converge either to F or to FP. Indeed, suppose the 
theorem were false. Then there are sequences ps � 1, es � o, and Ts, s = 1, 2, . . .  , 
such that (k 1 (ps), k1+ 1(ps)) lies in the es-neighborhood of F for t > Ts, but for 
which there is ts = Ts + T and lk1, (ps), kP' I  > e, where T may be arbitrarily large. 
Let h: = k t' + r Since the paths { h; } lie in a bounded set, we may choose, by a 
Cantor process, a subsequence converging to a sequence { h 1 }, t = 0, 1, . . . . As 
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before, the limit path lies in F but l hr - kl > e. Since this construction is possible 
for T arbitrarily large the stability of F is violated. Thus no such sequences can 
exist, or k1(p )  eventually remains in an e-neighborhood of k, where e may be 
chosen arbitrarily small if p is then chosen near enough to 1 .  

I t  is also possible to prove an asymptotic theorem in the case of a non-trivial 
von Neumann facet and p near 1 if differentiability is assumed in the manner of 
Theorem 8.4. Of course, the presence of the facet implies that the second 
differential of u cannot be negative definite at (k, k). However, it can be negative 
semi-definite and negative definite in the subspace S of E2n defined by S = 
{(z ,  w) i(z, w) · ((x, y)-(k, k )) = 0, for all (x, y) E F } .  That is, [u i) evaluated at 
(k, k) is negative definite on the orthogonal complement of (F- (k, k)). The 
asymptotic convergence to k is proved by appeal to the local stability theorem of 
Scheinkman (1976). Since Theorem 9.4 brings the path k1(p)  into a small 
neighborhood of kP for p near 1, local asymptotic stability of kP completes the 
argument. The local argument uses a linear approximation (12.8) to the Euler 
equations (12.1) and a regularity assumption for the stable manifold of the linear 
approximation. The theorem and its proof may be found in McKenzie (1983). 

III. Comparative Statics and Dynamics 

10. Differentiable utility 

If we assume, in addition to concavity and closedness of u1, differentiability of u 1 
with respect to capital stocks, a new method of proving the turnpike theorem 
becomes available, due to Araujo and Scheinkman (1977), that does not depend 
on the condition that p be near 1 .  Differentiability also facilitates comparative 
studies analogous to the comparative statics of general equilibrium theory. The 
special assumptions which are used to obtain the results are the analogues in the 
dynamic setting of the familiar assumptions of comparative statics and stability 
theory for general equilibrium, that is, a dominant diagonal or negative definite­
ness for the appropriate Jacobian matrix [see Arrow and Hahn (1971, ch. 12)]. 
Negative definiteness is almost equivalent in the differentiable context to the value 
loss assumptions of the last section. However, the dominant diagonal assumption 
for the Jacobian matrix is independent of negative definiteness. The concavity of 
utility that is crucial for calculus of variations, and maximum theory in general, is 
still needed. This should not be surprising since the conditions of Weierstrass and 
Legendre in calculus of variations, which imply local concavity of utility with 
respect to rates of change, ate necessary conditions along an optimal path. 

Because of the. differentiability of u1 we do not need to appeal to Section 4 for 
support prices since the derivatives of u 1 take their place. Recall that a path of 
accumulation is optimal if it catches up to every alternative path from the same 
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initial stocks. If { k1 }  is a path with (k1, kt+ 1) interior to D, consider alternative 
paths { k ; } where k; = k1 for t =I= T and k� = x > 0. Then { k1 } catches up to { k ; }  
i f  and only i f  uT(kT_1, x)+ uT+ 1(x, kT+ 1) ;;;;; uikT_ 1, kT)+ uT+ 1(kT, kT+ 1) . The 
differentiability assumption implies that this condition will be violated for an 
appropriate choice of x and T unless 

(10 .1) 

for all t, where uf denotes the vector of derivatives of u1 with respect to initial 
stocks and u� the vector of derivatives with respect to terminal stocks. Thus (10.1) 
is a necessary condition for optimal paths and corresponds to the Euler condition 
of the calculus of variations. 

We assume: 
(I') The utility functions u/x, y) = p1u(x, y), where O < p < 1 and u(x, y )  is 

concave and closed on the convex set D, contained in the non-negative 
orthant of E2n. Interior D =I= cf> and u has continuous second partial deriva­
tives in the interior of D. 

For the sake of simplicity we make our argument in terms of the quasi-sta­
tionary case u1 = p1u, 0 < p < 1, although the argument can be given in a general 
form applying to utility functions that depend on time in more complicated ways, 
reflecting changes in taste and technology [McKenzie (1977)]. Let { k1 } ,  t = 
0, 1 ,  . . . , be a path satisfying (10.1) for u1 = p1u, where the distance of the path 
from the boundary of D1 = D is at least e > 0 in all periods. Represent an 
arbitrary path { k ; }  by { z 1 }  where z1 = k; - k0 and rewrite (10.1), after dividing 
through by pt, as 

(10 .2) 

for all t, setting u( z1_1, z 1) = u( k;_ 1, k;) for all t. We will refer to { z1 } also as a 
path. For a given 0 < f3 < 1, let x1 = {3- 1z1• Let Gz be the set of paths { z 1 }  with 
{3- 1 iz 1 i  < ej2 for all t. Let Gx be the corresponding set of sequences { x1 }. Then 
Gx is contained in the Banach space /� of bounded sequences of vectors in En. 
The norm l x loo  of x E /� = sup lx1 1 over t � 0, where lx1 1 is the Euclidean norm. 
The set Gx is not empty since it contains 0. By the assumption that (k;_ 1, k;) is 
bounded interior to D, Gx has a non-empty interior in /�. 

We define a function � by 

t = 1, 2, . . .  , where x = {x1 } ,  t = 1, 2, . . . . Then H0,0) 1 = 0  for all t, by the first-
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order condition (10.2) for an optimum. If v has second partial derivatives at (0, 0) 
that are bounded and uniformly continuous over t, �1(x0, x) is bounded over t 
for small e. Thus � maps Gx into 1� . 

We will say that a path { k1 }  is smooth if it satisfies the Euler equation (10.1) 
and is bounded away from the boundary of D. Then u has second partial 
derivatives that are bounded from oo over t and uniformly continuous along 
{ k1 } .  It is possible to show for smooth paths that the derivative Dx� at (0,0) is 
given by 

(10.3) 

for t = 2, 3, . . .  , where h E /�, v:1 = viJ(z1_1, z1), and the partial derivatives are 
evaluated at (0,0). Also Dx� is continuous at (0,0) [see Araujo and Scheinkman 
(1977)]. We may represent Dx� as an infinite matrix, or 

/3pvi2 
v�2 + pv�1 
p-

1
Ji1 

(10 .4) 

If 1 • 1 1 is a norm on R n, for a matrix argument I •  h indicates the corresponding 
operator norm, that is IM;)1 is sup IM;1yl 1 for y E En, I Y I 1 = 1 .  Given any norm 
on Rn, an infinite matrix M formed of n X n blocks M;1, with M;; invertible, is 
said to have dominant diagonal blocks if sup I M;j 1 h < oo over i and sup L 1 * ;  

IM;j 1M;)1 = 8 < 1  over i. M defines a transformation of /� into l� when 
L )MiJ I1 is bounded over i. The boundedness of the second partial derivatives of 
u imply this condition for Dx� if { k1}  is smooth. The matrix M is said to be 
invertible if it defines a linear homeomorphism of /� onto l� [Dieudonne (1960, 
p. 45)]. We may show: 

Lemma 10. 1 

If an infinite matrix M that maps l� into l� has dominant diagonal blocks, it is 
invertible. 

Since M is bounded on the unit ball in 1�, it is a continuous linear map. Let 
M1 be the matrix of diagonal blocks M;; with O's elsewhere. Since IM,i 1 1 is 
bounded over i by the assumption of dominant diagonal blocks, M11 exists and 
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is continuous. Let M2 = M1-
1M.-Then the dominant diagonal assumption implies, 

for some norm 1 • 1 1, 

JM2 - Ih = sup L JM;j1MiJI 1  = 8 < 1 .  
i j + i 

Since M2 = I - (I - M2), formally M2 1 = I + (I - M2)+(1 - M2)2 +
' 

· · · . But 
the Neumann series on the right-hand side converges, so M2 has a continuous 
inverse over /�. Thus M = M1M2 has a continuous inverse over /�. 

Assume that .Dx� has dominant diagonal blocks at (0,0), which corresponds to 
k; = k1 , for all t. This condition will hold for f3 sufficiently near 1 if it holds for 
f3 = 1 .  Then Dx� is a linear homeomorphism of l� onto l�. Also Hx0, x) maps a 
neighborhood of (0,0) in En X l� into I� with HO, O) = 0. We may apply the 
implicit function theorem [Dieudonne (1960, p. 265)] to obtain a continuous 
function tf; (x0) valid in a neighborhood of x0 = 0 such that Hx0, t/;(x0)) = 0 
where t/;(x0 )  has continuous derivatives and 1/; (0) = 0. 

The continuity of 1/; implies that Jx0h may be chosen small enough to put x 
near 0, that is, sup jx1h < e  over t for small positive e. Then z1 = /31x1 for f3 < 1 
implies that z 1 converges exponentially to 0, that is k; converges exponentially to 
k1• We note that for e sufficiently small {k ; }  is also a smooth path. This proves: 

Lemma 10.2  

I f  (k0, k )  i s  a path of accumulation that is smooth and the Jacobian of the map �, 
derived from the Euler equation (10.1), has dominant diagonal blocks, there is a 
neighborhood W of k0 such that k0 E W implies there is a smooth path { k; } ,  
t = 0 ,  1 ,  . . .  , and k; -+ k1  exponentially as t -+  oo .  

In order to derive a local turnpike theorem from Lemma 10.2, i t  i s  only 
necessary to show that the paths { k; } derived there are optimal paths from k0 
near k0• An additional assumption is needed, which in the quasi-stationary case 
can take the form of (S2) or (G2), introduced in Section 6. The effect of(S2) is to 
bound any path. We can prove: 

Lemma 10. 3  

If assumptions (1 '), (II), and (S2) hold, any path that satisfies the Euler equation 
and is bounded interior to D is smooth, and any infinite smooth path is optimal. 

All that is needed to give smoothness for an Euler path that is bounded away 
from the boundary of D is that its second partial derivatives be bounded. 
However, smoothness is immediate by continuity of the derivatives if the path is 
confined to a compact subset of D. But this follows from (S2) and the fact that 
the path is bounded interior to D. 
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To show optimality for smooth paths observe that concavity of u implies for 
{ k; } ,  t = 0, 1, . . .  , 

(10.5) 

for (x, y) E D, where u�+ l = u2(k;, k;+ 1), for example. By the Euler equation 
(10.1), u2(k;_ 1, k;) = - pu1(k;, k;+ 1) for a smooth path { k; } .  Thus p1u �  = 
- p1+ 1uf+

1 in (10.5). Let p1 = - p1u�, t = 0, 1, . . . . Then (10.5) implies (W1) and 
smoothness implies the second part of (W2'). Since (S2) implies the first part of 
(W2'), { k; }  is optimal by Theorem 5.3. 

Together Lemmas 10.2 and 10.3 imply, except for uniqueness: 

Theorem 10. 1  

Suppose { k1 } ,  t = 0, 1 ,  . . .  , is a path that is smooth and satisfies the dominant 
diagonal condition, and assumptions (I'), (II), (G2) are met by the utility 
function. Then every capital stock k0 near k0 initiates a unique optimal path and 
this path converges exponentially to { k 1 } .  

To see that the optimal path is unique, suppose there were a second optimal 
path { k;' } with k� = k0. Consider a path { k1 }  with k1 = ak; + (1 - a)k;', 
0 < a  < 1. Then 

T T T T 
a LU1 (  k ;_ l , k;) + (1 - a:) LU1 (  k;� 1 , k;') = LU1 (kt- l • k ,) - LEt > 

1 1 1 1 

where e1 � 0. Thus the optimality of { k;} and { k;' } implies that e1 = 0, all t. For 
a sufficiently small { k1 }  lies in a small neighborhood of { k; }  and thus of { k1 } .  
Since {k 1 }  is also optimal from k0  it must satisfy the Euler equation. However, 
by the implicit function theorem the solution of the Euler equation in a small 
neighborhood of { k1}  is unique. Thus k;' = k; for all t. 

Theorem 10.1 is a local turnpike result. However, it may be used to prove a 
global theorem. Let C be the set of capital stocks that initiate smooth paths at 
t = 0 along which the dominant diagonal condition is met. Theorem 10.1 implies 
that these paths are optimal. By assumption, C is not empty. If { k 1 }  is a smooth 
optimal path satisfying the dominant diagonal condition, Theorem 10.1 implies 
that k0 in a small neighborhood of k0 initiates a smooth path { k; } that 
converges to { k, } .  Moreover, the uniform continuity of the second partial 
derivatives near the path { k, } implies that the dominant diagonal condition is 
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also met by { k ; }  when the neighborhood is chosen small enough. Thus we may 
consider the maximal connected component C0 of C that contains k0. 

Let S be the subset of C0 such that the optimal path from w E S converges 
exponentially to { k1 } .  If w E  S, Theorem 10.1 implies there is a neighborhood of 
w which is also in S. Let { k;} be the optimal path from w and let y lie in this 
neighborhood. Then there is a path { k;' } from y, and f3 < 1, for which jk 1 - k;'l 
� jk 1 - k; ! + jk; - k;'l � /31jk0 - w j+ /31 jw - y j, so k;' also converge� exponen­
tially to k1 as t � oo.  Thus S is open. 

Now suppose that x E boundary S and x E C0. Since x E C0, Theorem 10.1 
applies and there is y E S near x such that the path { k ;'} optimal from y 
converges exponentially to the optimal path { k; } that departs from x. But y E S 
implies that k;' converges exponentially to k1• Therefore, k; must converge 
exponentially to k1, or S is closed in C0. But C0 is a connected set so S = C0• We 
have proved a global result. 

Theorem 10.2  

Suppose { k 1 } ,  t = 0, 1 ,  . . .  , is a path that i s  smooth and satisfies the dominant 
diagonal condition, and assumptions (I'), (II), and (S2) are met by the utility 
function. Let C be the set of capital stocks, at t = 0, that initiate smooth paths 
satisfying the dominant diagonal condition. Let C0 be the maximal connected 
component of C that contains k0. Then x E C0 implies there is a unique optimal 
path { k; } with k'o = x and k; � k 1 at an exponential rate, as t � oo. 

The crucial feature of the argument leading to the turnpike result is the 
invertibility of the derivative of the Euler functions. This derivative was used to 
define a transformation of 1:;, into 1:;,. Sometimes, however, other Banach spaces 
may be more effective. For example, if assumptions are made like those in Section 
8 to support a value loss argument, the appropriate space is Hilbert space /2_. The 
invertibility lemma follows if the derivative is negative definite. Consideration of 
the matrix representation (10.4) shows that the derivative is negative definite if the 
matrix 

is negative quasi-definite uniformly over the path. This is implied by uniformity 
over interior D n W, for W = {(x, y) l !x l  < max( jk0 j, f)} where s is from (S2). It 
may be shown [Brock and Scheinkman (1978)] that this condition is almost 
equivalent to the value loss conditions (8.14) and (8.21) needed for the turnpike 
results in Section 8 when u is twice continuously differentiable. Thus the method 
of this section is very powerful for interior paths when u is twice continuously 
differentiable. 
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The arguments used here like those in Section 9 are not limited to the 
quasi-stationary case. With minor complications they can be adapted to utility 
functions u1(x, y) which depend on time in the way described in Section 2 
[McKenzie (1977)]. 

11.  Comparative dynamics for optimal paths 

By use of the infinite Jacobian matrix of the first-order conditions (the discrete 
Euler conditions) for an optimal path it is possible to derive comparative dynamic 
results for the differentiable model [Araujo-Scheinkman (1979)]. These are analo­
gous to the comparative static results proved in general equilibrium theory and 
use the same assumptions adapted to the infinite case. The Jacobian matrix is 
shown to be negative definite, or it is assumed to have dominant diagonal blocks 
with certain sign patterns for diagonal and off-diagonal blocks. The parameters 
that shift demand between the numeraire and other goods in general equilibrium 
are replaced by the discount factor or the initial stocks in the dynamic case of 
optimal growth. 

Let { k t } ,  t = 0, 1, . . .  , be an optimal path. Let zt = k; - kt, and z = { z1 } ,  
t = 1 , 2, . . . . Define t(z0 , z, p) for 0 < p <1 by 

(11 .1) 

where v (zt- 1> zt) = u(k;_ 1, k;) for all t. If { k1 } is a smooth path and Bz is the set 
of paths { zt } with lz 1 1  < e, for small e, f maps Bz into t;,. Similarly if Hz is the 
set of paths { z t }  with L;"'lz1 1 2 < oo and lz t l  < e, for small e, f maps Hz into /2_. In 
the first case f maps a neighborhood of 0 in 1::0 into t;,, and in the second case f 
maps a neighborhood of 0 in 12. into 12_. 

As in Section 10, under assumption (I') for a smooth path { kt }, Dzt(O, O, p) 

can be represented in either space by an infinite matrix, [ 1 2 v�2 + PVu· 

DJ = v21 

0 

P0i2 
2 + 3 D22 PVu 

v�1 
(11 .2) 

In this expression v;1 = v;/k1_ 1, kt). Suppose the quadratic bilinear form 
h7(Dznh is negative definite, that is, hr(Dznh < - eL;"' Ih 1 1 2, for all h E  12. and 
some e > 0. Then Dzf is invertible on 12. [Araujo and Scheinkman (1977, p. 619)]. 
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It is clear from the representation (11.2) that Dzt will be negative definite if 

is negative quasi-definite, uniformly with respect to t along the path { k 1 } . At the 
stationary optimal path, k1 = k, all t, Dzt is negative definite if and only if 

is negative quasi-definite, where vii = ui/k, k ). Also, from Lemma 10.1, Dzt is 
invertible over I;, when the dominant diagonal condition is met. These are the 
two conditions which have been shown to imply a turnpike theorem. As in the 
general equilibrium tatonnement, there is a close relationship between conditions 
which imply stability and conditions which allow comparison of equilibrium 
paths. 

As for Dz� in Section 10, the invertibility of Dzt allows the implicit function 
theorem to be applied to obtain a function cf>(z0, p'), defined in some small 
neighborhood of (0, p ), such that t(z0, cf>(z0, p'), p') = 0. Also cf>(z0, p') is differen­
tiable and the derivatives are given by 

[Dieudonne (1960, p. 265)]. We first show: 

Lemma 11 .1  

If Dzt is  invertible on I;,, assumption (I') implies 

00 

LPt+ l  [dzjdp ] 1 [  DPt ] 1 � 0 ,  
1 

(11 .3) 

(11 .4) 

where Dzt and DPt are evaluated at (z0, cp(z0, p'), p'), dzjdp = Dpcf>(z0, p'), and 
(z0, p') is sufficiently near (0, p ). 
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Since dzjdp = - [Dzn-1· DP� by (11 .3), we obtain DJ· dzjdp = - DPr 
Therefore, 

00 00 

L P
1+ 1 [d zjdpL [DJ· dzjdp L = - LP

1+ 1[dzjdp L [  DPt } 1 • 
1 1 

(11 .5) 

The left-hand side of (11.5) is equal to [dzjdp]TA(d zjdp), where A is equal to 
the matrix obtained from DJ when the t th row is multiplied by p1+ 1. However, it 
is easily seen from (11.2) that A is negative semi-definite if 

is negative semi-definite, which is implied by the concavity of v. The concavity of 
v is immediate from the concavity of u given by assumption (I'). Also the 
convergence of the sums in (11.5) follows from the fact that the derivatives belong 
to l:C, and 0 < p < 1. This completes the proof of the lemma. Of course, Dz� is 
invertible on l:C, when the path { k1 } is smooth and the dominant diagonal 
condition holds. 

From (11.1) we observe that [Dpf(O, 0, p)J r  = v1(0, 0) = 111(kt> kr+ 1) = 

- p- 1u2(k1_ 1 , kJ. Thus ([DP�L, p[DP�L+ 1) supports u(kt> k1+ 1) in the sense of 
(4.11) by virtue of the concavity of u. Put p1 = p1+1[DP�L. t = 1, 2, . . .  , and 
Po = u1(k0, k1 ). Then { Pr } ,  t = 0, 1, . . .  , satisfies (4.11). Moreover, by the differen­
tiability of u ,  these supports are unique, so they must satisfy (4.10) as well by 
Lemma 4.1. Since dzjdp = dkjdp, the conclusion of Lemma 11.1 may be 
written L:;"'p1(dk1jdp) � 0, or an increase in the discount factor for utility cannot 
reduce the present value of the stream of capital stocks at the support prices. 

The conclusion of Lemma 11.1 holds equally well when Dz� is invertible on 12 
by the same argument. As mentioned earlier DJ will be invertible for a smooth 
path under assumption (I') if the quadratic bilinear form hT(Dznh is negative 
definite, that is, if 

is uniformly negative quasi-definite with respect to t. Indeed, in this case it is 
unnecessary to multiply by pr+1. Current prices may be used, that is, putting 
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00 00 

P L [dzjdpL [DPfL = Lq1 [dzjdpL > O  (11 .6) 
1 1 

will hold. On the other hand, the economic meaning of a sum of "Current values is 
not clear. 

The results so far are not intrinsic to the stationary model. However, for the 
stationary model when a stationary optimal path exists that is interior, Araujo 
and Scheinkman (1979) have shown a more intimate connection between stability 
and Lemma 11.1 .  If the linear approximation to the Euler equations, as a system 
of difference equations, is asymptotically stable at the stationary optimal path, 
and also the optimal path { k 1 }  converges to the stationary optimal path, then the 
Jacobian matrix Dzf along this path is invertible on /�, and the consequence 
(11 .4) may be drawn. A path that converges in this fashion is said to satisfy a 
strong global turnpike condition. 

The foregoing discussion may be collected in: 

Theorem 11 . 1  

Assume (I '), (II), and (S2), and let { k 1 }, t = 0 ,  1 , . . .  , be  a smooth optimal path. 
Let { p1 } be the unique support prices for { k1 } .  Then I:rp1(dk1/dp) ;;;; 0 if any 
of the following conditions hold : 

(1) The Jacobian Dzf(O, O, p) has dominant diagonal blocks along { k1 }, where 
z1 = k; - k1• 

is negative quasi-definite along { k 1 } ,  uniformly with respect to t. 

(3) The path { k 1 }  satisfies a strong global turnpike condition. If condition (2) 
holds, the inequality is strict and p1 may be replaced with q1 = p- 1p1• 

It should be noted that Theorem 11.1 does not make a comparison of 
stationary optimal paths. Even when k1 = k, p1 = p, for all t, we cannot expect 
dk1jdp to be constant with respect to t. A shift in p to p' will lead to a new 
stationary optimal path k; = k', and the new optimal path from k will converge to 
k'. 
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Comparative dynamic results may also be obtained when the initial stocks vary 
if appropriate assumptions are made on the signs of elements of the Jacobian. 
These assumptions will be sufficient to sign the inverse of the Jacobian matrix just 
as in the static case of general equilibrium theory. The crucial mathematical tool 
is a generalization to infinite dimensions of the theorem on non-negative inverses 
for Leontief type matrices. Araujo and Scheinkman (1979) proved: 

Lemma 11.2 

Let M be an infinite matrix written as a collection of n X n blocks M;i' 
i, j = 1, 2, . . .  , with supL�= 1 1MiJI < oo, over i. If M has dominant diagonal blocks 
and Mii1 � 0, M;1 � 0, for i =I= j, then M-1 � 0. 

As in proving Lemma 10.1 let M1 be the matrix of diagonal blocks M;; with O's 
elsewhere. Let M2 = Mi 1M. As before Mi1 = I +  ( I- M2)+(J - M2)2 + · · · , 
since M11 � 0 and M;1 � 0 for i =I= j, I - M2 � 0. Thus Mi1 � 0 and M-1 = 
Mi 1M11 � 0. 

The condition M;-; 1 � 0 will be satisfied by the theorem for Leontief matrices 
[McKenzie (1960)] if Mu has quasi-dominant diagonal elements, either by rows or 
columns, that are negative, and the off-diagonal elements are non-negative. A 
square matrix A has quasi-dominant diagonal elements by rows if there exist 
numbers d; > 0 such that d;laul > I:1d)aiJI for all i, and mutatis mutandis for 
columns. 

Assume that the Jacobian matrix (11 .2) of the Euler conditions Dzf satisfies the 
conditions of Lemma 11 .2 on an optimal path. That is, ( u�2 + p vi! 1)- 1 � 0 and 
vii 1 � 0, v�! 1 � 0, for t =  1 , 2, . . . . Then if [Dzfl - 1 exists, it will satisfy [Dzfr1 � 0. 
However, by (11 .3), Dz0q,(z0, p') = - [DJ]- 1 ·Dz0f. From (11.1), [DzJh = 
v21(z0, z1), and [DzJL = 0, for t > 1. Thus, by assumption, DzJ � 0, and finally 
[ Dz,0q,(z0, p')L = dk1/dk;o � 0 for all i and t. The effect of increasing any initial 
stock is to cause all subsequent stocks along the optimal path to increase or 
remain constant. This justifies: 

Theorem 11 .2 

Assume (1'), (II), and (G2), and let { k1 } ,  t = 0, 1, . . .  , be a smooth optimal path. 
Suppose the matrix Dzf<O, 0, p) has dominant diagonal blocks, and the sign 
conditions ( u �2 + pufi 1) - 1 � 0, ufi 1

� 0, u�i 1 � 0, 1 = 1, 2, . . .  , are met where 
uf1 = uf/k1_ 1 ,  k1). Then dk1/dk;o � 0 for all i and all t. 

12. Comparative statics of stationary states 

Comparative statics is confined to the stationary or quasi-stationary model and 
compares stationary optimal paths which correspond to different values of the 
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discount factor or other parameters of the model. Our interest will lie in the 
quasi-stationary model where the following assumption holds: 

(I") The utility function u1 = p1u for 0 < p � 1 and u is concave and closed over 
D which is a convex set contained in the non-negative orthant of E2n. 
Interior D =I= cp. Also there is a stationary optimal path { k1} interior to D 
with k 1 = k, where u has continuous second partial derivatives at ( k, k )  and 
the Hessian matrix of u at (k, k) is negative definite. ' 

We will be concerned with the effect of small changes in parameters for stationary 
optimal paths whose input-output vectors (k, k )  are interior to D. 

Let k1 = k be a stationary optimal path where (k, k) is interior to D. Then the 
first-order conditions for optimality (10.1) imply 

u2 (k ,  k ) + pu1 (k, k) = 0. (12.1) 

As noted in Section 11, if the matrix 

evaluated at ( k, k ), is negative quasi-definite the local turnpike theorem holds, 
that is, for any capital stocks in a small neighborhood of k, the unique optimal 
path converges to k1 = k, as t � oo. Then we may say that the stationary optimal 
path k1 = k is locally stable. 

The Jacobian matrix of (12.1) with respect to k is J(p) = u21 + u22 + pun + 
pu12 • If this matrix is non-singular, the implicit function theorem may be applied 
to (12.1). That is, if (k', p') satisfy (12.1) for 0 < p' � 1 and (k', k') E interior D, 
there is a unique differentiable function k(p) such that (k(p ), p) satisfy (12.1) for 
p near p', and k(p') = k'. Let q(p) = pu1(k(p ), k(p )) we may consider the 
inequality 

q ( p' ) ·dk(p  )jdp lp-p' > 0.  (12.2) 

If (12.2) is satisfied at (k(p'), p')) Burmeister and Turnovsky (1972) say that the 
model is regular at (k(p'), p')). Regularity means that an increase in the discount 
factor leads to an increase in the value of capital for a stationary optimal path 
when prices are held constant. 

If the necessary condition (12.1) for optimality with k = k(p) is totally dif­
ferentiated with respect to p, we obtain 
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or 

J(p }(dkjdp) = - u1 = - p- 1q, (12 .3} 

where the functions are evaluated at (k(p ), k(p )), and k = k(p ). Multiplying 
(12.3) by dk/dp on the left gives 

(dkjdp )  TJ(p ) (dkjdp) = - p-1q(dkjdp ) . (12.4) 
But if Q(p) is negative quasi-definite, so is J(p) and (12.4) implies (12.2). Thus 
we have: 

Theorem 12. 1 

Under assumption (I "), the sufficient condition for local stability of a stationary 
optimal path, Q(p) negative quasi-definite, implies that the stationary optimal 
path is regular. 

Another condition that implies J(p) negative quasi-definite and thus estab­
lishes regularity is u21 + u22 negative quasi-definite. Put J(p, a) = u21 + u22 + 
au11 + au12 , evaluated at k(p ). Then J(p, a) is negative quasi-definite when 
a = O, and J(p, a) is negative definite for a = l. Since J(p) = p(J(p, I))+ 
(1 - p )( J(p, 0)), J(p) is negative quasi-definite for 0 < p < 1 [Dasgupta and 
McKenzie (1983)]. The analogous condition in the continuous time model is 
shown by Magill (1977) to imply stability for that model. If we write x1+ 1 = k1+ 1 
- k1 and U(k1, x1+ 1) = u(k�> k1+ 1), then u21 + u22 = U21• Thus u21 + u22 is the 
effect on the marginal utility cost of investment of an increase in the initial stocks. 

According to Theorem lO.l local asymptotic stability holds around an optimal 
path if the assumption of dmninant diagonal blocks is met along this path. For a 
stationary optimal path the dmninant diagonal assumption for the infinite 
Jacobian matrix Dxg(x0, x) with f3 = I  is reduced to 

(12.5} 

since the non-zero blocks of each row are the same, with u;1 = u;/k, k), all t, and 
i, j = 1, 2. Recall that 1 · 1  for a matrix argument denotes the operator norm, that is, 
IA I  = sup I Ax I for lx l  = 1. As in the case of market tatonnement, the dmninant 
diagonal assumption is not effective by itself but requires a supplement, for 
example, symmetry or sign restrictions on the elements. Assume, as in the 
dynamic case of Theorem 11 .2, that (u22 + pu11) - 1 � 0 and u12 = uft ;;;; 0. From 
(12.3) we have 
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By the proof of Lemma 11 .2 and the sign assumptions (I + (u22 + pu11)- 1( u21 + 
pu12 )) - 1 exists and is non-negative. Therefore d kjdp = Mq, where M � 0. Since 
free disposal implies that q is non-negative, we have dkjdp � 0, for all i , or an 
increase in the discount factor cannot lead to a decrease in any capital stock. This 
justifies : 

Theorem 12.2 

Under assumption (1"), if the dominant diagonal block condition holds and 
( u22 + pu11) - 1 ;;:; 0, u12 � 0, along the stationary optimal path k(p ), then 
dk;(P  )jdp � 0, all i. 

We may say that weak regularity holds if � replaces > in (12.2). Then 
Theorem 12.2 implies weak regularity of the stationary optimal path but it is 
much stronger than weak regularity. Also the condition (u22 + pu11)- 1 ;;:; 0 is 
implied, as noted earlier, if (u22 + pu11) has quasi-dominant diagonal elements, 
by row or by column, and the off-diagonal elements are non-negative. 

The relation between stability and regularity, illustrated by Theorems 12.1 and 
12.2, seems to be typical, that is, sufficient conditions for local stability often 
imply regularity of the stationary optimal path, whether the discrete time or the 
continuous time model is used. For the continuous time model additional 
examples may be found in Brock (1976). Results of this type illustrate the 
Correspondence Principle of Samuelson, that " the problem of stability of equi­
librium is intimately tied up with the problem of deriving fruitful theorems in 
comparative statics" [Samuelson (1947)]. Also see Burmeister and Long (1977). 

For further examples of the Correspondence Principle we may consider the 
autonomous difference equation of second order 

(12 .7) 

This is the form taken by the necessary condition of optimality (10.1) for a 
stationary model. It is approximated in a small neighborhood of the stationary 
optimal path k1 = k by the linear equation 

(12.8) 

where z1 = k1 - k. The characteristic equation of (12.8) is 

(12.9) 

where det A is the determinant of A. Suppose (12.9) has n roots of absolute value 
less than 1 and det u21 =I= 0. We may appeal to the argument of Scheinkman (1976, 
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pp. 25-26) which is given for the case p = 1, but also applies when p < 1, to 
conclude that these assumptions imply the local turnpike theorem for (k, k), or 
local stability for optimal paths near (k, k). We will show that, if u21 is also 
symmetric, (k,  k) is regular [Dasgupta and McKenzie (1983)]. 

Rewrite (12.9) as 

det(A + B"'A + pA"'A2) = 0. (12.10) 

The proof that (k, k)  is regular depends on: 

Lemma 12. 1 

If A is non-singular and symmetric, the characteristic roots of B- 1A are less than 
1/(1 + p) in absolute value, if and only if there are n roots of (12.10) with 
absolute value less than 1 .  

Since - B i s  positive definite and A is symmetric there is a non-singular matrix 
Q such that QTBQ = - I  and QTAQ = - R where R = Q- 1(B- 1A)Q is a diago­
nal matrix with the characteristic roots of B-� on the diagonal. Also R is real. 
See Gantmacher (1960, p. 310). Since A is non-singular, the diagonal elements of 
r; of R are non-zero. 

(12.10) is equivalent to det(QT(A + B"'A + pA"'A2)Q) = 0 or det("'AJ + (1 + p"'A.2)R) 
= 0 .  Thus the roots of (12.10) are the roots of the equations 

i =1 ,  . . .  , n ,  (12 .11) 

where repeated roots are counted. The discriminant of (12.1 1) is (1 - 4pr/). Thus 
the roots of the ith equation are real if l r; l � 1/(1 + p ). 

Suppose all l r; l < 1/(1 + p ). Then all roots are real. Also det A =I= 0 implies "'A =  0 
is not a root of (12.10). Then (12.11) implies 

(12 .12) 

This gives ( I "'A I - 1) > ( 1"'A I- 1)(1/p i"'A I). Thus I "'A I > 1  implies 1/p i"'A I < l . But sub­
stitution in (12.11) shows that "'A a root implies 1/p"'A is the other root. Therefore, 
one of the roots has absolute value less than 1 .  Since this is true for all i, there 
must be n roots A; of (12.10) with I "'A ; ! <  1. 

On the other hand, suppose there are n roots A; of (12.10) with I "'A i l < 1. If the 
roots A ;  are real, the equation in (12.12) implies that lr; l = 1/(1 + p) for I "'A i l = 1 .  
Also the derivative of the left-hand side of this equation with respect to I "'A I  is 
negative for 11. 1 � 1 . Then j r; l < 1/(1 + p) for j"'A i l < 1 . If a root "'A i  is complex, it 
follows that 1jp"'A; = Xi, or I "'A i l =  ljp > 1 in contradiction to the hypothesis. Thus 
l r; l < 1/(1 + p)  holds for all i . 
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To show regularity, assume there are n roots A; of (12.10) with I "A; I < 1. By 
Lemma 12.1 if r is any root of B-1.4, then - 1/(1 + p) < r < 1/(1 + p ). But - B 
positive definite and A symmetric implies min;r; � xrAxjxrBx � max ;r;, when 
x * O, and r;, i = 1 , . . .  , n , are the roots of B-1A [Gantmacher (1960, p. 319)]. 
Thus, l xrAxjxrBxl < 1/(1 + p), or, since B is negative definite, xr(A + B +  
pA)x = xr( u21 + u22 + pu11 + pu12)x < 0 for x =I= 0. By (12.4) this implies regular­
ity for (k, k ). 

It is easily seen [Araujo and Scheinkman (1977, p. 611)] that if (12.8) has n + 1 
roots of absolute value larger than 1, the stationary optimal path cannot be stable. 
Thus our result may be stated. 

Theorem 12.3 

Assume (I") and let (12.8) represent the Euler equations linearized about the 
stationary optimal path k1 = k. If (12.8) has no roots of absolute value equal to 1 , 
and u12 is non-singular and symmetric, the stationary optimal path is  regular if it 
is locally stable. 

For a symmetric matrix the operator norm defined by the Euclidean norm is 
equal to the maximum of the absolute values of the characteristic roots [see 
Araujo and Scheinkman (1977, p. 607)]. Let 1 • 1 1 be the matrix defined by the 
norm on Rn given by lx l 1 = ( - xBx)112• Then maxiB-1.4xl1 over lx l 1 = 1 equals 
max1E- 1(B- 1.4)Eyl over I Y I  = 1, where - B = EEr. However, E-1(B- 1A)E is 
symmetric, and it has the same characteristic roots as B-1.4 .  This means that the 
dominant diagonal block condition for (12.8) is met if (1 + p )B - IA has the 
absolute value of all its characteristic roots less than 1, which by Lemma 12.1 is 
implied by local stability. On the other hand, the dominant diagonal condition 
implies local stability by Lemma 10.2. Thus Lemma 12.1 has: 

Corollary 

If u12 is non-singular and symmetric, the stationary optimal path is locally stable, 
if and only if (12.8) has a dominant diagonal block. 

The symmetry of u12 is equivalent to the symmetry of U21 = u21 + u22• The 
implications of the symmetry condition that corresponds to u12 = u21 in the 
continuous time model have been extensively explored by Magill and Scheinkman 
(1979). They prove that the sufficient condition for regularity which corresponds 
to J(p) negative definite implies local stability in the continuous case. However, 
Dasgupta (1982) has shown by a counterexample that J(p) negative definite does 
not imply stability in the discrete case. 

If symmetry is strengthened to separability of U(k, O), that is, U21 = u21 + u22 = 
0, the stability assumption of Theorem 11 .1 becomes unnecessary. With this 
assumption J(p) = p( u11 + u12). Since J(1) is negative definite by assumption 
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(1"), and in this case J(p) = pJ(1), J(p) is negative definite also, which implies 
regularity by (12.4). However, we may also prove stability under the assumption 
of separability. 

Consider ( u22 + pu11) - 1J(p) = I - (1 + p )( u22 + pu11)- 1u22 = I + (1 + p )B- 1A .  
B y  a theorem of Arrow (1974, p. 200) if X is positive quasi-definite and M is 
symmetric, the real parts of th roots of XM have the same sign distribution as the 
real parts of the roots of M. In this case M = - J(p )  and X =  - (u22 + pu11) - 1• 
Since M is positive definite, the roots of I +(1 + p )B-� = XM have positive real 
parts. Indeed, the roots are positive since the fact that B is definite and A is 
symmetric implies that the roots of B- 1A are real [Gantmacher (1960, p. 310)]. 
Let r be a root of B-1A, then 1 + (1 + p)r > O. But B-1A has negative roots by 
the same result of Arrow, since it is the product of a positive definite matrix and a 
negative definite matrix and XM and MX have the same roots. Therefore, 
0 < - r; < 1/(1 + p) for all i and (12.9) has n roots with absolute values less than 
1 by Lemma 12.1. By the result of Scheinkman this implies that (k, k) is locally 
stable, since det u21 = - det u22 =I= 0 by assumption (1"). We have proved [Dasgupta 
and McKenzie (1983)]: 
Theorem 12.4 

Assume (I"). If u21 + u22 = 0, or U(k, O) is separable on a stationary optimal path 
k1 = k, the stationary optimal path is locally stable. 

In the continuous time model global stability of an interior stationary optimal 
path has been proved under the assumption of separability by Scheinkman 
(1978). 

It is an implication of regularity that the utility achieved on the stationary 
optimal path increases with the discount factor p. Indeed, if k1 = k(p') is a 
stationary optimal path and k(p) satisfies (12.1) near p', putting u*(p) = 
u(k(p), k(p)), we have 

du*jdp = ( u1 + u2 ) (  dk( p )jdp) l p-p' · (12.13) 

Since u2 = - pu1 by (12.1), (12.13) implies du*jdp > 0 at p = p' if and only if 

(1 - p') u1 (dk (p  )jdp ) = ( p' - 1 - 1) q (dk( p  )jdp )  > 0, (12.14) 
where the derivatives are evaluated at p = p'. If 0 < p' < 1, the inequality (12.14) is 
implied by regularity. Following Burmeister and Turnovsky (1972), we may refer 
to a stationary optimal path that satisfies du*jdp > 0 as non-paradoxical. Thus 
we have the result: 

Theorem 12.5  

Under assumption (1"), if a stationary optimal path i s  regular, i t  is non-paradoxi­
cal. 
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The Jacobian matrix of the necessary condition (12.1) may also be used to 
study the question of global uniqueness [Brock (1973)]. Let us say that a 
stationary optimal path k1 = k is interior if (k, k )  E int D. Theorem 7.2, together 
with the remark that follows its corollary, implies that (12.1) is necessary and 
sufficient for a stationary path that is interior to be optimal when 0 .< p :;;:;; 1 .  Thus 
the number of solutions to (12.1) for given p and the number of stationary 
optimal paths for p that are interior to D are the same. Also from the remark 
following the corollary to Theorem 7.2, for p = 1 the input-output vector of an 
interior stationary optimal path maximizes u(x, y) over (x, y) E D  such that 
y - x � 0. Because the Hessian is negative definite by assumption (I"), the 
maximum is achieved at a unique point. Thus the interior stationary optimal path 
is unique for p = 1. The capital stock of this path is also the unique solution of 
(12.1) for p = 1 .  

Write G(p, x) = u2(x, x)+ pu1(x, x) for (x, x )  E D  and 0 < p :;;:;; 1 .  �et C be a 
convex subset of the diagonal of En X En which contains the input-output vector 
(k, k )  of a stationary optimal path for p = 1 .  Assume that C is open relative to 
the diagonal, and the closure C lies in the interior of D. It follows from Lemma 
8.2 that for some p' such that 0 < p' < 1, all p such that p' :;;:;; p :;;:;; 1 have the 
property that the solutions k(p) of (12.1) satisfy ( k(p ), k(p )) E C. Let C1 be the 
projection of C on the first component of the product En X En. Since C1 is a 
convex open subset of Euclidean space, it is an oriented differentiable manifold 
and its closure C1 is a manifold with boundary. For p given, G(p, x) defines a 
vector field on C1, which for any value of p with p' :;;:;; p :;;:;; 1 has no zeros on the 
boundary of cl. 

Since G is a continuously differentiable function of p and p varies between p' 
and 1 , the vector fields on C1 are smoothly homotopic to one another. Therefore, 
the degree of the vector field on the boundary of C1 is invariant [Milnor (1965, p. 
28)]. Let Gx(x, p) be the derivative of G with respect to x. The degree of the 
vector field on boundary C1 equals the sum of the signs of det GAp, x) over all 
x = k such that G(p, k) = 0 [Milnor (1965, pp. 36-37)]. But for p = 1, there is 
only one such k, and det Gx(1, x) = ( - 1)n at this k since the Hessian matrix of u 
is negative definite there by assumption (I"). Thus the degree of the vector field 
on boundary cl = ( - 1)n. Assume that the sign of det GAp, x) does not change 
over the zeros of the field for r1 < p < 1 .  Since the sum of signs must have absolute 
value 1, there can be only one zero for G at such p, or equivalently only one 
stationary optimal path interior to D. 

At a zero of G, the derivative Gx(P, x) is the Jacobian matrix J(p, x) of (12.1). 
Thus we have proved: 

Theorem 12. 6 

Let C be defined as above. There is p' < 1 such that all stationary optimal paths 
klp) = k(p)  with (k(p ), k(p )) E interior D, for any p with p' :;;:;; p :;;:;; 1, satisfy 
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(k(p ), k(p )) E C. Under assumption (I") if the sign of det J(p, k(p )) is constant 
for each p over the stocks k(p) of stationary optimal paths with (k(p ), k(p )) E C, 
there is only one such path for each p. 

This theorem was first proved, in a neo-classical model, by Benhabib and 
Nishimura (1979). 

Sufficient conditions for stability are also useful for comparative statics when 
parameters of the utility function, other than p, are varied. Let u1(x, y)  = 
p1u(x, y, a), where a is a vector of m parameters of the current utility function. 
Differentiating (12.1) totally with respect to a gives 

(12.15) 

Multiplying (12.15) on the left by (dkjda)r, an m X n matrix, we have 

(dkjda) T ( u21 + u22 + pun +  pu12 ) (dkjda) = - (dkjda) T ( u2a + pu1a ) .  
(12.16) 

The sufficient condition for local stability of the stationary optimal path klp) = k 
that Q(p) be negative quasi-definite at (k(p ), k(p )) implies that ( u21 + u22 + pun 
+ pu12) is negative quasi-definite. Then (dkjda)T( u2a + pu1a) is positive quasi­
definite. In applications to particular problems, for example, investment of the 
firm with adjustment cost, this result may be fruitful [Brock (1976)]. 

Similarly, the sufficient condition (12.5) for local stability of k 1( p) = k, that is, 
a dominant diagonal for the infinite Jacobian matrix, may be applied to 

dkjda = - ( I + { u22 + pun) -\u21 + pu12)  r
1 

X ( u22 + PUn) -1 · (u2a + pul..) .  (12 .17) 

As before, the matrix -{I + (u22 + pu11)- 1{u21 + pu12)) - 1{u22 + pu11) - 1 is non­
negative when the sign assumptions {u22 + pu11)- 1 ;;£ 0, u21 = u'[; � 0, are made. 
In applications this result may also be useful. 

As an example, consider a simple model of investment by the firm with 
adjustment costs, related to the continuous model of Treadway (1971). Let 
7T(k1, kt+ l• a) = f(k1, k1+ 1)- a(kt+ l - kr}, where f represents gross revenue, after 
maximizing on current spending for variable inputs, and a is a vector of prices for 
new capital goods. The presence of k1+ 1 as an argument of f is a consequence of 
the adjustment costs of capital expansion incurred within the firm. The firm's 
objective is to maximize L';'_1p

17T(k1, k1+ 1, a) given some initial stocks k0• Prices 
are formed on competitive markets and are expected to remain constant, while 
p = 1/(1 + r ), where r is the interest rate, also expected to remain constant. 
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Differentiating 7T(k, k, a), wher� k/p) = k is a stationary optimal path for the 
utility function u1 = p17T, we have 7T2 = /2 - a and 7T1 = /1 + a. Then 7T2, = - I and 
7T1, = I. Substituting in the right-hand side of (12.15) and solving, dkjda = 
(1 - p)(J(p ))- 1. If we make the assumption, sufficient for local stability and 
regularity of k1(p), that Q(p) evaluated at (k, k) and thus J(p, k), is negative 
quasi-definite, we see from (12.16) that dkjda is negative quasi-definite. Then 
the equilibrium demand for each capital stock is decreasing with respect to its 
own price, so long as the interest rate is positive. 

We may also apply the assumption of dominant diagonal blocks, with ( 7T22 + 
p7T11) - 1 ;;;;; 0 and 7T12 = 7T:fi � 0, which is also sufficient for local stability of 
k1(p )  = k. Using again that 7T2, + p'7T1, = - (1 - p )I, we infer from (12.17) that 
dkjda ;;;;; 0. This is what one would expect by analogy to timeless production 
where factors are normally gross complements. See Rader (1968). We may finally 
note that dkjda negative quasi-definite in the adjustment cost model also follows 
from the other assumptions that we used to establish regularity, since the 
arguments proceeded by way of negative quasi-definite J(p, k ). The assumption 
of symmetry and local stability in Theorem 12.3, the assumption of separability, 
and the assumption of U21( = u21 + u22) negative quasi-definite are cases in point. 
Another model of investment, used by Lucas (1967), satisfies the separability 
assumption. It has been studied in this context by Scheinkman (1978). 

13. Comparative dynamics near stationary states 

In the neighborhood of stationary states some further results of comparative 
dynamics are available. In the quasi-stationary model it is convenient to write � as 
a function of k0, k = (k1, k2, . . .  ), and p and give a definition equivalent to (11.1), 

(13.1) 

Then Dkf is given by (11 .2) if u;1 replaces v;1 everywhere. Let k1 = k(p ), 
t = 0, 1 ,  . . .  , be a stationary optimal path and let DPk = (Dk(p ), Dk(p ), . . .  ) where 
Dk(p)  = dk (p )jdp. From (11 .2) and (12.3) we have 

D3(k0 ,  k ,  p )DPk = [ J(p  )Dk(p  )- u21Dk(p  ) , J(p  )Dk(p  ) ,  . . .  ] 

= - (u1 - u21Dk(p) , u1 , . • •  ) . 

However, from (13.1) we obtain 

(13 .2) 

(13.3) 
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Therefore, substituting in (13.2), 

(13 .4) 

If Dkt is invertible, (13.4) implies 

(13 .5) 

But the implicit function theorem implies that in a small neighborhood of 
(k0 ,  k, p) there is a continuously differentiable function 1/;(k0, p') which maps a 
neighborhood of (k0, p) into 1;, such that [t<k0, 1/;(k0, p'), p'L = 0, all t, and 
1/;(k0, p) = k. Furthermore, as in (11.3), 

Thus, combining (13.5) and (13.6), we obtain an expression for the variation of 
the path k 1 = k(p) with p, 

(13 .7) 

Moreover, since the derivative DPI/;(k0, p') is continuous in its arguments, 
DPI/; (k0, p') converges to DPI/;(k0, p) as k0 � k0 = k(p) and p' � p. 

Similarly the variation of the path with respect to the initial stock is given by 

so that 

Dkol/; ( k0 ,  p) = - ( Dkt( k0, k, p )) - l( u21 , 0,0 ,  . . .  ) , (13 .8) 

where k0 = [ 1/;(k0, p )] 1  = k(p ), all t, and k = (k(p ), k(p ), . . .  ). From (13.7) and 
(13.8) we derive 

(13.9) 

The preceding argument is apparently special to p as a parameter because of 
the part played by u1. However, the fact that Dk(p) = u1 need not be introduced. 
If the utility function depends on a parameter a, which may be a vector, it may be 
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written as before u(x, y, a). Then � may be defined by 

(13 .10) 

The earlier arguments can now be made with k(p, a) replacing k(p ), Dak(p, a) 
replacing Dk(p ), Da� replacing DPt, and Da(u2 + pu1) replacing u1. Then in 
place of (13.7) we derive 

and in place of (13.9) we derive 

(13 .12) 

where Dak = (Dak(p, a), Dak(p, a), . . .  ) and Dak(p, a) is the variation of an 
optimal stationary state associated with p and a from a change in a. If a is an m 
vector, Dak(p, a) may be represented by an n X m matrix while Dk0t/; may be 
represented conformably by a matrix of n columns arranged in n X n blocks 
indexed by t. On the other hand, Dak and Dat/1 are representable by a matrix of 
m columns arranged in n X m blocks indexed by t. 

On the basis of the preceding arguments we may state [Dasgupta and 
McKenzie (1983)]: 
Theorem 13. 1  

Let k1 = k(p, a), t = 0, 1 ,2, . . .  , be a stationary optimal path. Assume that 
Dkf(k0, k, p ,  a) is invertible. Then for (k0, p', a') near (k0, p, a), there is a unique 
optimal path tf;(k0, p', a') with [t/; (k0, p', a')] 0 = k0, and Dptf;(k0, p', a') and 
Dat/J(k0, p', a') converge to the expressions given in (13.7) and (13.11) as 
(k0, p', a') � (k0, p, a). Also Dk0t/; (k0, p', a') converges to the analog of the 
expression in (13.8) when a is introduced as a parameter. 

However, to make use of these expressions we need to evaluate 
(Dk�(k0, k, p, a)) - 1Dak(p, a) and (Dk�(k0, k, p, a)) - 1Dpk(p, a). Replacing v by 
u in (11 .2) we observe that 

(13 .13) 

where z0 = 0 and u;1 = U;/k(p, a), k(p, a)). Equate Dkr(k0, k, p, a)·z to a E /';,. 
If J ud =I= 0, (13.13) may be written 

(13 .14) 
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tion zl' t = 0, 1 ,2, . . . , of (13.14) with z0 = 0  satisfies z1 = [(Dkt) -1· aL. Thus 
solutions of (13.14) with appropriate values for h1 will provide explicit formulae 
for the expressions in (13.7) and (13.11). Araujo and Scheinkman have shown that 
solutions exist for any b E t;:, if the Euler equations (12.8) have no roots A with 
I A I = 1 and k ( p) is locally stable. 

It is helpful to transform (13.14) into a first-order system. Define h1(z1_v z1) 
and d1 = (0, b1), so that d1 E R2n. Then (13.14) may be written 

(13 .15) 

where 

H = [! �] . 
Assuming that (12.8) has no roots of unit norm and k(p) is locally stable, there 

are n characteristic roots A of H with IA I  < 1. Thus there is a non-singular real 
matrix P such that 

(13 .16) 

where L1 and L2 are n X n ,  and the characteristic roots of L1 have absolute 
value less than 1 and the characteristic roots of L2 have absolute value greater 
than 1 .  After transformation by P the system of equations (13.15) become 

(13.17) 

where 

From (13.7) and (13.11) we find that in the case where p varies a =  
(u21DPk(p, a), 0,0, . . .  ) and b = - (MDPk(p, a), O, 0, . . .  ). Therefore, the first set of 
equations (13.15) appears as 

(13 .18) 
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These equations are equivalent to 

When (13.19) is transformed by P, it becomes 

( Y� ) - [Ll o ] ( Y� ) = o. 
Yz 0 Lz Yz 

Lionel W. McKenzie 

(13 .19) 

(13 .20) 

It is clear from (13.17) that y E t;, implies yf = 0. Thus it must be that 

(13 .21) 

Putting 

(13.21) implies 

It has been proved by Scheinkman (1976, pp. 25-26) that P11 is non-singular if 
p = 1 .  However, the same argument is effective for 0 < p < 1. Then 

(13 .22) 

Also from (13.21), z1 = P11yi, and from (13.20), Yi = L1y� = - L1P�/DPk(p, a). 
Thus z1 = - P11L1P1!1Dpk(p, a). Indeed, it follows that 

Note that L1 = P1!1P21 from (13.22) and (13.23). 
We may now use (13.7) and (13.23) to derive, for k0 = k(p ), 

( DPl{; (k0 ,  p, a)] 1 = DPk(p ,  a) - P11L�P1!1DPk(p ,  a) , 

(13 .23) 

(13 .24) 

which is valid for t � 1 .  Thus [Dpl{;(k0, p )l r = 0 for t = 0 and converges to 
DPk(p, a) as t � oo.  The argument for the derivative with respect to a proceeds in 
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the same way to give the analogous formula 

( D,.o/ (k0 ,  p, a)] 1 = D,.k(p ,  a)- P11LiP!"/Dk(p ,  a) .  (13 .25) 

Moreover, we have from (12.3) that Dpk(p, a) = ( J(p, a) - 1u1(k(p, a), k(p, a)) if 
J(p, a) is non-singular. However, J(p) singular implies A =  1 is a root of (12.8). 
Thus assuming that (12.8) has no roots of unit norm we may derive from (13.24) 
an explicit expression for the variation of path with p when k0 = k(p, a), that is 

(13 .26) 

Also comparison of (13.26) with (13.9) shows that 

[ Dkolf; ( ko , p ,  a) ] t = pllLiPiJ:l . (13 .27) 

On the basis of the foregoing argument we may assert [Dasgupta and McKenzie 
(1983)] : 
Theorem 13.2  

I f  the path k1 = k(p, a), t = 0, 1 , 2, . . .  , is locally stable, u12 is non-singular, the 
Euler equations (12.8) have no roots of unit norm, and assumption (I") holds, the 
variation of the optimal path for k0 = k(p, a) with respect to p, a, and k0 is 
given by expressions (13.24) and (13.26), (13.25), and (13.27), respectively. More­
over, the variations for optimal paths where the parameter values are p' and a', 
and initial stocks are kb, converge to these expressions as (kb, p', a') � (k0, p, a). 

If it is assumed that u12 is symmetric, as before, sharper results may be 
reached. Let Q be the matrix that appears in the proof of Lemma 12.1. We will 
need: 

Lemma 13. 1 

On the hypothesis of Theorem 12.4, if also u12 is symmetric, P11 = Q. 
The symmetry of u12 implies that M in (12.16) equals - p- 11. Also N = 

- p- 1u!21( u22 + pu11). Let R·be the diagonal matrix with the roots of (12.11) on 
the diagonal. Then 

(13 .28) 
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Let 8 ; E Rn satisfy 8) = 0, j -=!=  i, and 8/ = 1. Consider 

(13 .29) 

If .\ is chosen to be a root of (12.11), 1 + r;� 1.\ = - p.\2, so the right side of (13.29) 
is 

In other words, 

is a characteristic vector of 

for the characteristic root .\, and the matrix of characteristic vectors may be 
written 

T = [L iJ . 

where L1 and L2 are diagonal matrices with the characteristic roots of (12.10) on 
the diagonal. Then 

Finally, from (13.16) and (13.28), 

In accord with the notion of regularity for stationary optimal paths defined in 
Section 12, optimal paths which satisfy Lr"P1(dk1jdp) � 0, as in Theorem 11.1, 
may be said to be dynamically regular. Then we will say that an optimal path k0 
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t = 0, 1, . . .  , has strong dynamic regularity if P1(dk 1jdp) > 0 for all t > 0. With the 
help of Lemma 8.2 we may prove [Dasgupta and McKenzie (1983)] : 
Theorem 13.3 

Under the hypothesis of Theorem 13.2, if u12 is symmetric, optimal paths from 
k0 in a sufficiently small neighborhood of k(p, a) have strong dynamic regularity. 

We apply Lemma 12.1, and the properties of Q, and Lemma 13.1 to (13.26). 
Write J(p, a) = B + (1 + p )A where A =  u12 and B = u22 + pu11• Then 

( J(p , a ) ) - 1 = (A - 1B + (1 + p)I} - 1A -1 

= - (QR -1Q-1 + (1 + p )I ) -
1
QR-1QT 

= - Q( R- 1 + (1 + p)Jr1R- 1Qr. 

Thus (13.26) may be written, using Lemma 13.1, 

(13 .28) 

for k0 = k(p, a). Since L1 is diagonal with A ;  on the diagonal and IA ; I  < 1, and R 
is diagonal with r; on the diagonal and lr; l < 1/(1 + p) by Lemma 12.1, the matrix 
on the right-hand side of (13.28) is positive definite. Therefore, u1[DPI/;(k0, p, a)L 
> 0 and the theorem follows for k0 near k(p, a) by Theorem 12.3. We may note 
that this argument also provides an alternative proof of Theorem 12.3, since 
(J(p, a)) - 1 is shown to be negative definite. Otani (1982) derives results in the 
continuous time model parallel to Theorem 13.3. 

Formula (13.25) may be applied to the adjustment cost model described in 
Section 12. Then a represents the prices of new capital goods. Solving equations 
(12.15) for dkjda = Dak(p, a) gives DaK(p, a) = (1 - p )(J(p ))- 1 as before. Sub­
stituting this expression in (13.25), we obtain 

(13 .29) 

Thus by the argument leading to Theorem 13.3 [Da'/;(k0, p, a)L is negative 
definite when u12 is symmetric. Consequently an increase in the price of any 
capital good reduces its stock along an optimal path of accumulation from k0 
near k(p, a). Also investment, which equals [Da�L+ 1 - [Da�L, is reduced along 
the path in the component corresponding to a capital good whose price increases. 
This application to the adjustment cost problem corresponds to results proved by 
Mortensen (1973) in a continuous time model of investment with adjustment 
costs. 
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Chapter 27 

ORGANIZATION DESIGN* 

THOMAS A. MARSCHAK 

University of California, Berkeley 

1. Introduction 

The study of organizations has taken two directions in recent economic research. 
First, an organization is a productive unit. It transforms resources -members' 
time and informational equipment of various sorts - into certain outputs, namely 
actions that yield some sort of desired commodity, called payoff. A major 
theoretical and descriptive task is to characterize the technology of such produc­
tive units and to discover what distinguishes well designed organizations from 
poorly designed ones. The task is analogous in spirit to the modeling of a complex 
physical or chemical technology so as to find those resource combinations which 
produce the technology's outputs efficiently. Accomplishing the task leads to the 
ranking of possible designs for an organization. We shall use that term loosely for 
the moment. A design specifies, informally speaking, who does what when. 

Second, one particular class of organizations has been studied intensively, 
namely economies, whose members are producers and consumers. The members 
spend some of their time in observing their changing local environments, in 
transmitting messages to other members, in computating, in storing and retrieving 
information. These efforts produce the resource-allocation actions followed in the 
economy. One class of designs for such organizations are called price mechanisms 
and have traditionally received central attention. But more recently, possible 
designs for economies have been studied abstractly and the general term " re­
source-allocation mechanisms" has come into use. Competitive mechanisms using 
prices are examples, but so are planning mechanisms in which various sorts of 
directives are transmitted by a center. 

The work on resource-allocation mechanisms has so far been obliged to take a 
very incomplete view of the issues facing a designer of mechanisms who has to 

*This chapter was to have been prepared by Jacob Marschak. Before his death (July 1977), he had 
prepared an outline. A few initial pages were found as well. The present essay is in no sense an 
attempt to reconstruct what he intended to write. It is, however, unified by the concept of a design 
composed of " tasks" (or "processors"). This concept is central to his final publication [J. Marschak 
(1979)] and, judging by the outline, was to have unified his writing of the present chapter. 

Handbook of Mathematical Economics, vol. Ill, edited by K.J. Arrow and M.D. Jntriligator 
© 1986, Elsevier Science Publishers B. V. (North - Holland) 
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choose between two candidates. Such a designer would want to know, for each of 
two proposed resource-allocation mechanisms, its net performance over time: the 
final commodities available for consumption as the economy passes through any 
given sequence of environments and responds to them with the mechanism's 
resource-allocating actions, after allowing for the resources used in the operation 
of the mechanism itself. This would require a complete characterizatiQn of the 
technology of a mechanism's operation. So far, only fragmentary and extremely 
simple models of technology have been explored. 

Another issue arises both in the general study of efficient organization design 
and in the analysis of resource-allocation mechanisms for economies. That is the 
question of incentives. If the <;>rganization members are humans and not program­
mable robots, they may fail to follow the instructions specified by a given design 
because they do not want to. When is it the case that the benefits which members 
receive as the mechanism generates actions make each member prefer following 
the designer's instructions to violating them? For organizations which �am a 
transferable payoff- a commodity desired by all members and divisible among 
them - it may be possible to award a portion of payoff to each member in such a 
way that each member finds it in his own interest to follow a given design.1 The 
designer may view such rewards as part of a design's cost. It is then payoff less 
rewards less the other costs of operating a design which determine the designer's 
ranking of alternative designs. The incentive problem is

'discussed extensively in 
Chapter 28, largely in connection with resource-allocation mechanisms. We shall 
omit it, in order to keep the present survey within manageable bounds. 

Fortunately, one can usefully study the efficiency of designs, separately from 
the incentive issue. One assumes, in effect, that members are programmable 
robots. A design which has been found to be promising from the efficiency point 
of view can then be studied further to see if its incentive properties are accept­
able - to see whether some system of rewards can induce humans to behave as the 
design's robots behave. 

The present survey takes the point of view of a designer of organizations who is 
to choose among alternative designs for the organization, given certain data which 
determine the designs available as well as the payoffs and the costs associated 
with each available design. Typically, the performance of the design will depend 
on uncertain external events. The generally accepted contemporary view as to 
ideal behavior for a designer -or any other chooser under uncertainty - is that he 
be an expected-utility maximizer who attaches suitable personal probabilities to 
the uncertain events. The difficulty with requiring such uncompromising rational­
ity is that - unless the designer 's utility function is sharply restricted - the study of 
designs with regard to efficiency becomes irrelevant. Without restricting the utility 
function - or, possibly, making very specific assumptions about the 

1An example is studied in J. Marschak (1977). 
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probabilities -it becomes irrelevant to compare designs with respect to the 
amount of "output", as measured by expected payoff, which can be achieved for 
given bundles of costly inputs (communication effort, suitably measured; ob­
serving effort; computing effort; and so forth). 

Suppose utility, defined on payoff and on these input quantities, is increasing in 
the former and decreasing in the latter. Suppose design A dominates design B: A 
achieves at least as high an expected payoff as B and requires no more of any 
input with the strict inequality holding with regard to one or more of these 
magnitudes. Then it is not true that for all utility functions and all probability 
distributions, the expected-utility maximizing designer must prefer A to B. 2• 3 If, 
moreover, both payoff"and all input costs can be measured in dollars, then only 
for a linear utility function -i.e. only for a risk-neutral designer- is it true that "A 
dominates B with respect to expected payoff and input costs" implies ''A has 
higher expected utility than B ". 

Yet much of the work which has beeq done, including work on resource-allocat­
ing designs for economies, can be viewed (as we shall see) as work of the efficiency 
sort. There seems to be agreement that the work is interesting and ought to 
continue. Indeed, this seems often to be the only sort of work presently feasible. 
But one cannot take the view that such work is relevant for any expected-utility 
maximizing designer. 

How then, without restricting utility, can one motivate the efficiency approach? 
The most promising answer is to appeal to bounded rationality as the appropriate 
standard of behavior for a designer. Designing an organization is perhaps the 
most complex decision making that one can study. If ever there were a task for 
which the unlimited rationality of the expected-utility maximizer is too ambitious 
a standard, it is the design of organizations. But " bounded rationality" in the 
present state of the discussion [Simon (1972)] is still only an informal guide, 
permitting a wide choice of models. 4 The discussion provides one with useful 
suggestions - e.g., that a boundedly rational decision maker revises his "aspiration 
level" in accordance with the observed difficulty of achieving the level's previous 
value. But beyond this, the modeler has no accepted and specific ground rules. 

What would be crucial as a foundation for further work in the efficiency of 
organization design is a set of simple, appealing, and modest axioms for a 
boundedly rational decision maker which respect his non-neutrality towards risk 

2For a proof, see J. Marschak (1971). 
3For this to be true with non-linear utility it would suffice for utility to be the sum of a possibly 

nonlinear function of payoff plus several other possibly non-linear functions, each defined on a 
different input. Such separability seems unreasonable in many settings. In ideal models both costly 
inputs and payoff would be measurable in dollars, and such separability of the utility-function would 
be ruled out. But even in models which fall short of the ideal the "preferential independence" [Keeney 
(1972)] required for separability is highly implausible. 

4See, for example, Radner (1975) and Radner and Rothschild (1976). 
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and yet imply that when one design dominates another with regard to expected 
payoff and costly inputs, then the dmninating design is preferred. 

No such axioms are presently available. In their absence, not only expected 
payoff, but also other "output" measures- or gross performance measures, as we 
shall sometimes call them-have a legitimate claim on the attention of the student 
of organization design who is interested in efficiency. One of these is minimum 
payoff or maximum distance from a payoff maximizing action, and some initial 
research using such a measure is summarized below (Section 4.3). 

Our central concept in the present survey will be a simple sort of design - called 
a one-step design, to be developed in Section 2. We shall be able to interpret 
major recent work as a contribution to the efficiency study of one-step designs. 
Section 3 so interprets work in the theory of teams. Section 4 similarly interprets 
work in the theory of adjustment processes (including certain work on resource­
allocation mechanisms) and suggests some possible new directions. Section 5 
interprets briefly some general issues in organization design, notably "centraliza­
tion versus decentralization". 

2. One-step designs 

2. 1. General concepts 

We consider a designer of an organization. He is given 

(1) a set E of possible environments e, 
(2) a set A of possible organization actions a, 
(3) a set R of possible results or payoffs r, 
(4) a result function or payoff function p from A X E to R. 

He is to choose what we shall call a design. He has beliefs about the elements of 
E, expressed as probabilities, as well as preferences among the pairs ( r, c), where 
c denotes the cost of a contemplated design. For each environment in E, the 
design yields a pair (r, c). If the designer obeys suitable axioms [J. Marschak and 
Radner (1971, ch. 2)], then there will be a utility function on the pairs (r, c) such 
that he prefers the first of two designs to the second if and only if expected utility 
over the pairs ( r, c) which the design yields is higher for the first design than for 
the second. If a payoff r is a quantity of a desired commodity and the cost c is a 
quantity of the same commodity, then the utility function is defined on the 
variable r - c. 

" Nature" chooses, at the start of each time period, an element e of E. In each 
time period, the designed organization must choose an element a of A, thereby 
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generating an element r = p( a, e) of R. Each element a of A is a vector 
a = ( a1, . • .  , a 1 ). We shall call the I components of the organization's action " the 
values assigned to its I attributes ". The attributes comprise the /-element set L. 

We list now the elements of a one-step design, the object our designer is to 
choose. The adjective "one-step" will be explained shortly. For ease of exposition, 
we confine the definition to the finite case- i.e., unless otherwise indicated the sets 
E, A, R and the sets comprising a design are all finite. 

First, there has to be chosen a set N of organization members. Let N contain n 
members. 

Second, for each member i E N, there has to be chosen a task Ti = (X\  Xi, r), 
where5 xi is a finite non-empty set of inputs _xi; xi is a finite non-empty set of 
outputs x i; and ri is a matrix of conditional probabilities Pr(xii.Xi). If ri contains 
only zeros and ones, then r is called a noiseless task. To define the sets Xi, xi, 
the designer specifies the observing, message-receiving, message-sending, and 
action-taking in which i engages. To be precise, he must choose for every 
member i 

(a) a partitioning &Ji of the environment set E. Member i, observing the 
environment, determines in which of the sets in &Ji the environment lies (there is 
a finite number of these sets). If &Ji contains only E itself, then i does no 
observing at all. 

(b) a subset L; of the action-attribute set L, and a finite set A L' whose typical 
element aL' specifies a value for every attribute in Li. Here UiLi = L; nf'Li is 
empty (only one member is responsible for a given attribute); and AL' is a subset 
of the projection of A with regard to the attributes in L;. If Li is empty, that 
means that member i has no direct responsibility for any attribute of the 
organization's action. 

(c) For each j =1= i, a finite set Mil of possible messages to j. For all i, j in N 
with i =/= j, the set Mil is a subset of the same set, called a language. If Mil is 
empty, then i never sends messages to j. 

A member's inputs are observations or messages or both; his outputs are 
messages or values of action attributes or both. For every i, then, we define 

Xi = &Ji x  f1 Mki, 
k * i 

Xi = fl Mi1 X AL' · 
l * i 

(Thus, one component of an input is a set - the subset of E in which i knows the 
environment to lie.) Once we have specified the matrix r = Pr(x; I.Xi), we have 

5The alternative term "processor" has been used for this triple in engineering and computer-science 
literature. 
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also specified various associated probabilities. In particular, we have specified the 
conditional probability distribution of certain components of i 's output given the 
value of certain components of i 's input -for example, the probability distribution 
of the message j sends to k, given a value of the message j receives from i. We 
can then also speak, in the usual way, of a certain component of i 's output as 
stochastically independent of (or dependent on) a certain component of i 's 
input - for example, the message i sends to j*  is independent of the message i 
receives from k *. 

Now, in a one-step design a member i never sends to j -:/=- i a message which is 
itself (stochastically) based, either directly or indirectly (via intermediate mem­
bers) on a message sent by j. Formally, we shall say that j sends message to k 
based on messages received from i if for some iizik in Mik, and for some inputs 
x*i, x**i both in J(J and differing in only one component, namely the message 
received by j from i, we have 

We shall say that r receives messages influenced by s if there is some sequence of 
members q1, . . .  , qH distinct from each other and from r and s, such that 

q1 sends messages to q2 based on messages received from s, 
q2 sends messages to q3 based on messages received from q1, 

qH_ 1 sends messages to qH based on messages received from qH_2, 
qH sends messages to r based on messages received from qH_1• 

The design defined by the triples { ( J{i, xi, r)} i E N is then a one-step design if 
no member i sends to k -:/=- i messages based on received messages, where those 
received messages are influenced by i himself. 

We can now interpret the operation of a one-step design -a  design which also 
meets our condition on the sets Li and our condition that J(i, Xi are non­
empty - so that, given a period's new environment the design generates new 
actions in response to it, and so that the probability distribution of these actions 
can (in principle) be computed. To do so we assume that there is no noise in the 
acquisition of inputs and the adjustment of action attributes to their chosen values. 
Member i knows exactly the set in ?Pi to which the period's environment 
belongs, knows exactly the messages sent to him, and the value of a L' which he 
chooses becomes in fact the value taken by the organization. In Section 2.2.3 
below, we consider the case of intervening noise. 

Each member adopts the following procedure: "Send a message to a given 
member and choose a value for a given action attribute as soon as you receive all 
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those input components which determine the probability distribution of those 
output components." Members initiate the period's action-generating process by 
observing the environment. Each observing member then adjusts those action 
attributes whose values depend only on his observation, and sends those messages 
which are based only on his observation. He next sends those messages and 
adjusts those attributes which depend only on his observation and on the 
messages received in the first interchange of messages. He thereupon sends those 
messages and adjusts those attributes which depend only on this observation and 
on the messages received in the first two interchanges. And so on until he has 
selected all components of his output. 

Fulfillment of the one-step condition implies that every action attribute will be 
adjusted. It cannot happen that in order to adjust an attribute, i must wait for a 
message from j which does not arrive because it depends (indirectly) on a 
message i is to send, and that is based in tum on the message i awaits. 

A design, finally, will be said to cover E with regard to A or to be a design on E 
with regard to A if for every environment in E the design generates values of the 
action attributes which define an action6 in A. 

A one-step design covering E with regard to A i s  then a triple 

fulfilling all the conditions we have stated. Given an environment in E, the design 
implies a conditional probability distribution over the actions in A .  If the design 
is noiseless (i.e. each of its tasks is noiseless), then it assigns a unique action to 
every environment. 

The concept of design just given can be generalized in a number of ways while 
still preserving the one-step property. In particular, (1) finiteness could be 
dropped and (2) memory could be added. Some components of an output could 
be sent to a member i 's memory, to be retrieved as an input component, in a 
subsequent period. We shall refer to such generalizations as needed, when our 
simple concept of design is not adequate to interpret a topic in the survey. In 
particular, memory will be added in Section 4.1. 

2.2. Models of technology and costs 

The designer, with his beliefs about E, can proceed to compare two proposed 
one-step designs if he knows something about their costs. A design's cost reflects 
the effort required to carry out each task (transforming inputs into outputs); to 

6 If the set A is the cartesian product of its I projections (with respect to the I attributes), then every 
design covers E with regard to A .  
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acquire each task's inputs (by observing the environment, by transmitting mes­
sages); and to execute the actions whose current value is an output of some tasks. 
We consider several possible approaches to the modeling of a design's technology 
and its costs. 

2.2. 1. Probability-free fixed cost models of technology 

In one approach, one ignores the fact that some environments occur more 
frequently than others, some messages are sent more frequently than others, and 
some actions taken more frequently than others. One portrays a technology in 
which a separate "detector" is required for each of the possible values of every 
component of a task's input. Such a detector is a device which at any moment is 
in a " no" or a " yes" state and at the start of a period is in the "no" state. As the 
period's value for an input component is determined, the device corresponding to 
that value takes the "yes" state, while all the other deviGes, corresponding to 
other values, continue to take the "no" state. Similarly, for each possible value of 
every component of a task's output there is a " selector", a device which is always 
either in a " yes" state or a "no" state and is in a "no" state at the start of a 
period. As the period's value for an output component is obtained by member i, 
in response to the states of the input detectors, the corresponding selector is put 
into the " yes" state and those corresponding to other values continue to take the 
"no" state. 

A fixed investment has to be made in the required number of detectors and 
selectors and the design's cost depends on this investment alone. The detectors 
and selectors may experience different degrees of "wear and tear", since some 
take the " yes" state more often than others. But that, in the model, has no effect 
on cost. 

In the simplest model of this class, cost is given by some function whose 
arguments are the number of members in N and the number of elements in the 
sets !JlJi, Mil, AL. ;  the function is increasing in each of these arguments. Possibly, 
in addition, cost goes up rapidly, for each fixed i, as the sizes of the sets :Yi, 
(Mii }1 ,., i, AL' go up, so that the designer can strike a balance between the 
number of members and the size of their tasks. 

A more elaborate probability-free model would require more than the counting 
of elements of sets. It might, for example, consider some partitionings (Yi more 
costly than others. It might describe i 's observing of the environment as the 
asking of a sequence of binary questions which ends when the correct set in (Yi 
has been found. The (probability-free) "observing cost" might then be an in­
creasing function of the largest number of questions which could ever be asked. 

Under a probability-free model of technology and cost, a designer will never be 
interested in a design with noisy tasks. He is charged nothing extra for noiseless­
ness and can therefore only gain -with regard both to expected utility and 
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expected payoff-by confining his attention to noiseless designs in which a 
well-chosen output always follows a given input. 

More elaborate probability-free models would, however, allow for differences in 
computational complexity. Some noiseless tasks require relatively great effort to 
perform in a given time. The required output is a complicated function of the 
components of the input. Even though one confines oneself to the finite case, so 
that the function is a finite " table", some tables are easier to search through to 
determine the proper output than others. There is substantial theoretical literature 
on computational complexity, but so far it has not taken a form that appears 
useful for the cost comparison of specific designs. We shall comment briefly later 
(Section 4.4) on the theory of sequential finite-state machines, which suggests one 
approach to ranking tasks according to computational difficulty. 

2.2.2. Probabilistic but noiseless technologies which exploit frequency differences 

Consider next models of a technology which are to be used for a noiseless design 
(all tasks are noiseless) and for which there is no noise in the acquisition of inputs 
and the execution of actions. The technology pays special attention to the more 
frequently observed environments, more frequently sent messages, and more 
frequently chosen actions. 

Each task receives its inputs and issues its outputs through various noiseless 
devices 7 - devices which observe the environment, transmit messages, and execute 
actions, adjusting each attribute to its chosen level. 8 Randomness of the messages 
received and actions taken springs then, from the randomness of the environment. 
Suppose Nature chooses the successive environments out of E, in successive time 
periods, in a serially independent manner. Given, then, an unchanging probability 
distribution on E, one can, in principle, compute for a given design the probabil­
ity that member i has to send to j a particular message mil in the typical time 
period. 

7Formally, we could calll each such device a task. Thus, transmission of a message which is i 's 
output to j, for whom it is an input, could be a "  task", whose inputs are messages sent by i and whose 
outputs are messages actually received by j. If transmission is noisy, that means the newly defined task 
is a noisy one. For modeling purposes it seems useful, however, to reserve the " task" concept for the n 
(human) members, and to use the word "device" to describe transmitting " hardware" which links 
tasks to each other, observing hardware and action-executing hardware. Of course, the "hardware" 
might have some human components (e.g. messengers). 

8Given the set E and a partitioping g>i on E, a noiseless observing device always correctly informs 
i as to the set in &'' to which the current environment belongs. For a noisy device there is at least one 
set S in &Ji, containing a subset of positive probability measure, such that for the environments in this 
subset, the device indicates (to i) with positive probability, a set other than S. Of course, one can 
formally redefine E so that the device's ll'oise itself becomes part of the typical element of E. Relative 
to the redefined set E, the device is then noiseless. This exercise seems unlikely to be useful as 
modeling. One would like those objects which are given to the designer- the sets E, A ,  and the result 
function p - to be independent of a particular device, which is just one of many devices choosable by 
the designer. 
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We want now to model the technology of message transmission from i to j. 
One possible transmission device sends certain symbols from i to j and is just 
" large" enough to send a fixed number, say Iii, of symbols per time unit, which 
we shall take to be our "period". The cost of the device is an increasing function 
of I ii. The original Noiseless Coding Theorem of Information Theory9 [Shannon 
(1949)] then tells us that given the probabilities of the messages mil, there is a 
greatest lower bound to those values of I iJ which are capable-using a suitable 
coding of messages into symbols - of "keeping up" with the stream of messages i 
is required to send to j in successive time periods as nature picks successive 
environments. A good code assigns longer symbol sequences to infrequent mes­
sages. Using such codes, there is a greatest lower bound to those values of 1 iJ 
such that with probability one the backlog of messages waiting to be transmitted 
never exceeds a constant bound. If there are t symbols, the greatest lower bound 
is given by the entropy 

This is the greatest lower bound to the average number of symbols needed per 
message. Hence it is the greatest lower bound to the number of symbols per time 
unit which the device must be capable of transmitting if member i is to keep up 
with the stream of messages which he has to send to j, since i has to send a new 
message to j in each time unit. 

Suppose now that member i is permitted to accumulate the messages to be sent 
to j in blocks. Each block is coded into a sequence of symbols which are decoded 
by the receiver. The code has the property that the start of a new message can 
always be recognized. By making the block size long enough, one can bring as 
close to the lower bound just given as one wants the symbols-per-time unit 
capability required in order to process, with a bounded backlog, the stream of 
messages which i has to send to j as Nature chooses its stream of environments in 
successive time periods. 

The difficulty is that if a block is to contain more than one message (from i to 
j), then several time periods, with their successive environments, must pass. 
Hence the action which each of these environments generates is not taken until 

9 The term Information Theory usually refers to the work of Shannon and his successors. It deals 
with the properties of certain models of transmission. The more recent term "Information Economics" 
was originally applied [e.g., J. Marschak (1971) and papers cited there] to studies of the value of 
information to a single decision maker or possibly (like some of the work surveyed here) groups of 
decision makers. In these studies cost either plays no role or else simple assumptions about cost are 
made, not necessarily those made in transmission models of the Shannon type. Even more recently, 
the term " Economics of Information" has come to be used (somewhat confusingly) for a still different 
area: the working of markets whose members respond to various signals which, at some cost, they can 
observe. 
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several time periods after the- environment has ceased to prevail. We have 
assumed so far that the payoff p( a, e) collected in a period depends only on the 
environment e prevailing and the action a taken in that period. If we continue to 
assume that, and if successive environments are indeed serially independent, then 
the delayed actions generated through message-block accumulation 'can be no 
better-with regard both to expected utility and expected payoff- than a well­
chosen constant action repeated in every time period. In that case, the greatest 
lower bound of the Noiseless Coding Theorem can be of no interest to the 
designer. What becomes relevant instead is the lowest symbols-per-time-unit 
capability which -using the best possible code -permits i to send every message 
to j that he may be obliged to send and to do so within a certain fixed time 
interval. The relevant fixed time interval is, in general, less than the time period 
between environments. One has to allow for the time required for coding and 
decoding as well as the time required for members' observing, action-taking, and 
other transmissions (between other pairs of members) which are required by the 
design to precede or follow the transmission from i to j. 

Given, then, the fixed interval T during which the transmission from i to j 
must be completed (T < 1, if we continue to take the period between environ­
ments as the time unit), the required symbol-per-time-unit capability of a !-sym­
bol transmission device is Q/T symbols per time unit, where Q is simply the 
smallest integer satisfying 

tQ � number of elements in Mil. 

(Each message in Mil is coded into a distinct sequence of symbols and there are 
as few unused sequences as possible.) 

The Noiseless Coding Theorem becomes relevant if we continue to assume 
environments to be serially independent but modify our original set of objects 
given to the designer. Let a(e) denote the action in A which a (feasible) design 
generates in response to a period's new environment. Replace the payoff function 
p by a function w defined on quadruples (a, e, e', T) with a in A, e and e' in E, 
and T a positive integer. Suppose a proposed design, yielding a( e), takes T time 
periods to generate an action in response to an environment, where " time period" 
means, as before, the interval between successive environments. Then if the 
environment sequence is e1, e2, • • •  , ew . .  , the payoff collected by the organization 
in the typical time period t is w( a( e t- T ), e t- T, e I' T). 

High values of w are desired by the designer and w is decreasing in T, that is, 
smaller delays yield more payoff. The arguments of w include the current 
environment e 1 - the environment prevailing when the design finally generates an 
action in response to e1_ r· This reflects the fact that delay is undesirable because 
of the elapsed time itself ("impatience") and because the action a( er_ 1) is to 
some extent obsolete when the environment has become e1• Consider, as an 
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example, a design whose purpose is to fill current "orders", which are one 
component of the current environment. The generated action is the fulfillment of 
an order, namely, the shipment of commodities to certain consumers. A long 
delay is undesirable for consumer and designer (impatience). But, in addition, the 
delivered commodities may have become, to some extent, inappropriate in view of 
new tastes (a further component of a current environment) when delivery finally 
occurs. 

If the function w replaces the original payoff function p, then in choosing 
among designs, the designer has to balance the transmission-cost saving due to 
accumulating blocks of messages (and so allowing a low symbols-per-time-unit 
capability) against the lower values of w resulting from longer delay. Needless to 
say, the trade-off is a complicated one, and does not appear to have been worked 
out, even for simple examples. 

The relevance of coding theorems to transmission costs in the case of serially 
dependent environments is dealt with in Section 2.2.3 below. 

Aside from message transmission, the other efforts required by a design may be 
performed in a manner that exploits frequency differences. Unlike the case of 
message transmission, there are no standard models, exploiting frequency dif­
ferences, of observing, action-taking, and computing. But models can be con­
structed. In the case of observing, for example, a possible probability-free model 
was discussed briefly earlier: cost depends on the largest number of binary 
questions ever needed to locate the environment in a set of f!JJ i. In a frequency­
exploiting model of observing, one would consider cost to change from period to 
period and to be an increasing function of the number of binary questions which 
need to be asked in that period in order to locate the environment. 

Given the sets in f!JJ i, many question-asking schemes (algorithms) are possible. 
A partial catalogue of schemes has been explored by H. Oniki (1974a, 1974b). 
One could simply proceed down a given list of sets and ask for each whether or 
not it contains the environment, stopping as soon as the answer is " yes". One 
could arbitrarily divide the sets into two groups, equal in number of elements, or 
differing by one, then similarly divide each of those into two sub-groups, and so 
forth, letting the resulting binary tree (two branches at each node) guide the 
questioning. Or one can arrange the sets in [!)Ji along many other binary trees 
(e.g. trees in which groups are divided into two sub-groups far from equal in size). 
If a probability is attached to each set in [!)Ji, then one natural criterion for 
choosing among these algorithms is the expected number of questions that need 
to be asked until the environment is located. The argument establishing the 
Noiseless Coding Theorem tells us a greatest lower bound for this expected value 
as one passes over the possible algorithms, namely, the entropy 

H = - L Pr( S )logPr( S ) . 
S E &; 
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A further theorem of Shannon tells us that the least upper bound for the expected 
value is H + 1 .  There exists, moreover, an algorithm [Huffman (1962)] for 
constructing all optimal binary trees -all binary trees which minimize the ex­
pected value of the number of questions asked. 

This approach rests on a model of the observing technology wherein all 
questions are equally difficult to answer. In some settings this may, of course, be 
quite unrealistic; some parts of the set E may be harder to " scan" than others, 
or, to use another terminology, some aspects of the current environment may be 
harder to measure than others. Clearly, one has to begin modeling specific real 
organizational observing tasks before one can begin to judge the usefulness of the 
binary-tree model or any other model. 

There have not yet been attempts to construct. frequency-dependent models of 
action-taking as such. One could, presumably, try to capture the idea that 
frequent changes of action are costly as well as the idea that the instructions 
issued to an action taker (which are the outputs of certain tasks) ought to be made 
" simpler" for more frequently taken actions than for less frequently taken ones. 

2.2.3. Noisy models 

In these models it is costly to diminish the noise in a task - to replace (.X\ Xi, r) 
by (xi, xi, f'i), where f'i is, in some appropriate sense, closer than ri to a 
noiseless zero-one matrix. Similarly, in these models, the acquisition of inputs 
through noisy transmission and noisy observation is cheaper than through noise­
less transmission and observation; the carrying out of intended actions with error 
is cheaper than without error. 

Consider first the devices used for message transmission from i to j. Suppose 
environments are serially independent, so that the successive messages i is 
required to send to j are also serially independent. Suppose that i can be 
provided with a device for transmission to j. The device transmits symbols ("0" 
and "1"). But it is not completely reliable; it is characterized by a probability 
matrix .1:  

Symbol sent 
1 
0 

Symbol received 
1 0 

q 
p1 - p 
1 - q 

Suppose one can choose both the matrix .1 and the device's speed (in symbols­
per-time unit). The device is cheaper the less its speed and the "further" is .1 from 
the identity matrix. 

The device is used as follows. Member i is given, in each time unit (the time 
period between environments), a message in Mii to be sent to j. Suppose there 
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are R elements in Mij and their probabilities in every time period are s1 , • . .  , s R " 

Member i takes the messages to be sent, accumulates them into suitable blocks, 
codes each block into sequences of zeros and ones. The sequence is sent over the 
noisy device and received (in somewhat distorted form) by j who decodes it; j, 
that is to say, assigns to the received zerojone sequence a sequence of messages in 
Mij, namely, the sequence with highest posterior probability. 

For any n-tuple of probabilities (p1, . . .  , Pn ) with 0 ;;;;; P; ;;;;; 1, i = 1, . . .  , n ,  and 
L;P; = 1 , let H(p1, . . .  , Pn) denote the entropy - L;P;logp; . Now let 

c (Ll ) = max [H(cx, l - cx) 0 ;:;>  a ;;o l  

- ( pa + q(l - a))H( pa q(l - a) ) 

pa + q(l - ex) ' pa + q(l - ex) 

[ ] 
( 

(1 - p) cx  - (1 - p )cx + (l - q)(l - cx) H 
( ) ( )( ) , 1 - p  a + 1 - q  l - ex 

(1 - q)(l - cx) ) ] 

(1 - p)cx + (l - q)(l - cx) · 

We can interpret C(Ll) (the "channel capacity" associated with .:1) as the largest 
average uncertainty reduction which a noisy device characterized by the matrix .:1 
is capable of achieving, where entropy measures uncertainty and the average is 
taken over the possible symbols received. The first H-term measures a receiver's 
uncertainty about the sender's choice of zero or one before he has received a 
symbol and knows only the probabilities that the sender sent zero or one, which 
are, respectively, a and 1 - a. The last two H-terms measure the receiver's 
reduced uncertainty about the sender's choice given that he has received a 
particular symbol. Now if 

then the error probability, i.e. the probability that a message decoded by i differs 
from the message which i would have obtained from j if .:1 were the identity 
matrix, can be made arbitrarily small by choosing sufficiently long blocks of 
messages. Moreover, this can be done so that the average number of symbols 
(zeros and ones) required to code a message exceeds c(.1) by as little as desired. 
Hence, provided one accepts sufficiently long block accumulations, any device 
transmitting c(Ll) symbols (zeros or ones) per time unit (time period) will suffice 
to keep up with the stream of messages that i has to send to j. 
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Error probability is, of course, a peculiar criterion, since it weighs all errors 
equally, even though some lead to lower payoffs than others. A 1960 generaliza­
tion of the result [Shannon (1960)] allows for a more appealing criterion, namely, 
" fidelity", that is, the expected value of some "benefit" function- a function of 
the message sent by i and the message recognized (after transmission and 
decoding) by j. In the generalized result, expected benefit can be made as close as 
desired to the highest expected benefit achievable for a noiseless device (for which 
L1 is the identity matrix) and this can still be done with a symbols-per-time-unit 
speed as close as desired to C(L1). The result extends from binary devices to 
devices with any number of symbols. 

Even the generalized result is remote from the assessment of a design's cost 
when a "good" collection of transmission devices is chosen for the design. For the 
result to be relevant in the case of serially independent environments, we again 
need to introduce delay penalties. One has to balance the cost saving due to 
noisiness and the saving due to slowness of the devices vsed in transmission 
between all pairs ( i, j) not only against each other but also against the penalty 
due to delay. Then in extremely simple cases the generalized result might guide 
one in achieving the balance. 

If one does not accept delay but requires every message to be sent in the time 
period in which the prevailing environment is the one that gave rise to the 
message, then, as in the noiseless-transmission case, the coding theorems of 
Information Theory have no relevance. Once may use codings and noisy-trans­
mission devices, but the speed of a device (in symbols-per-time-unit) must be high 
enough to permit the longest possible coded message. It must be the speed Q 
defined in Section 2.2.2 above. 

Once a complete set of transmission, observing, and aCtion-taking devices are 
in place- both noisy ones and noiseless ones - so that a design's tasks can be 
carried out, a conditional probability distribution on the actions in A is de­
termined for each environment in E. To find it, one has to interpret properly the 
inputs and outputs of each task. Thus, suppose each input in J(J includes among 
its components a message in Mil; if i transmits to j through a noisy device, then 
a typical value of this input component is j 's best guess, after decoding (his 
maximum-likelihood guess) as to the message in MiJ which i intended to send. 
The probability distribution on A for a given e in E depends, possibly in a 
complex way, on the probabilities characterizing every device used for input 
acquisition and action-taking. But it is determined once those probabilities are 
specified. Given a probability distribution on E as well, the designer who is to 
choose between two designs and does not accept delay can, in principle, rank 
them according to highest attainable expected utility, where utility is defined on 
payoff and cost. Cost consists of the cost of an array of (possibly noisy) devices 
capable of acquiring the design's inputs and executing its actions plus the cost of 
performing the design's tasks (assigning outputs to inputs). A design's highest 
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attainable expected utility is its expected utility for the best possible choice of 
devices. 

Alternatively, one can take the less ambitious bounded-rationality or linear-util­
ity viewpoints described in the Introduction, and could try to study, for a given 
design, the trade-off between expected payoff and the various elements of 
cost - e.g., noisiness of devices and of tasks, speed of transmission, sizes of the 
finite sets defining the design. 

What of the costs associated with the members' tasks themselves? If a task 
Ti = ( Xi, Xi, Ti) is noisy, one approach to modeling its cost is simply to select 
some measure of dispersion and to suppose that given the sets Xi and Xi, the 
lower is the average value of this measure for the probabilities Pr(xi i.X;) - where 
the average is taken over all inputs _xi - the costlier is the task. The costliest 
possible task for a given pair ( Xi, Xi) is that for which r is noiseless. This is 
performed by a totally reliable member. A less reliable, more "confused" mem­
ber, who is, perhaps, less well trained or less gifted, may be acquired (purchased) 
instead. He is able to carry out -given the sets _Xi, Xi -only a noisy task. From 
this point of view, then, a particular acquired member is part of a design; to 
acquire him, and to assign him the sets Xi, Xi, is to acquire the matrix r. It 
might then be reasonable to let the cost associated with the triple ( Xi, Xi, r) 
depend on the sizes of _Xi and Xi and on the average dispersion of ri. 

Note that one possible dispersion measure is, once again, average entropy, i.e . 

.L:
_

Pr(xi) [- I: Pr(xiixi )logPr(xi ixi )] . 
X' E X' x' E X' 

But the grounds for using entropy in this context are not those of the transmis­
sion model. Member i selects outputs in Xi in response to inputs in _Xi so 
nothing need be transmitted. Average entropy is merely one possible measure of 
i 's "confusedness" or "reliability". 

2.2.4. Models in which cost varies from period to period and depends on the 
period's input-output pairs 

In models of this sort the cost of a task T; depends on more than the sizes of 
_Xi, Xi and the "reliability" expressed in r. Some inputs are harder to detect than 
others in the time available and some outputs harder to select than others. There 
is, then, a cost c(xi, xi) attached to every pair (xi, xi) with _xi E Xi and xi  E Xi; 
and the cost is incurred in any period in which i assigns the output _xi to the 
input x i. A design's cost varies from period to period. An example of a "cheap" 
output of member i might be a "null message" sent to j (" silence"). This, of 
course, does tell j something about i 's inputs, but the act of forming it ("doing 
nothing") may, in some technologies, require little effort. 
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Such an approach to cost may, of course, be combined with some of the other 
approaches considered, so that the total cost of a design is composed of a variable 
part and a fixed part. 

2.2.5. Costs: The case of serially dependent environments 

To conclude our general discussion of costs, two final remarks need to be made 
about the case of serially dependent environments. First, if the environments are 
serially dependent - if they are, for example, the successive states of a Markov 
chain - then the coding theorems of Information Theory are again relevant to the 
modeling of transmission costs provided delay is accepted. But the application of 
the theorems is more complicated, since the probability distribution on Mil 

changes from period to period. One possibility is to require the transmission 
device to have a sufficient speed (in symbols-per-time-unit) to keep' up with the 
stream of messages if the probability distribution were stationary and were the 
" worst" of the distributions that could, in fact, prevail - if such a "worst" 
distribution exists. 

Second, to allow for the undesirability of delay one now need not redefine 
payoff as in Section 2.2. Payoff can remain, as in our original formulation, a 
quantity collected in each period depending only on that period's action and that 
period's environment. Since successive environments are now correlated, an 
action which the design generates in response to a period's environment may not, 
on the average, be inappropriate to the environment of some periods later; in that 
later period, the delayed action may generate more payoff, on the average, than 
would the best constant action (repeated in all periods, regardless of present or 
past environments). Hence, for many plausible stochastic processes generating 
successive environments, expected payoff decreases as delay increases, even where 
current payoff depends only on current environment and current action. The 
designer is interested, then, in balancing the low cost of slow devices against the 
lower payoff due to the delay these devices causes. 

3. Contributions to organization design, interpreted in the framework of one-step 
designs: Information structures and decision rules in teams 

3. 1. Information structures and designs 

In the theory of teams [J. Marschak and Radner (1971)], one is given a collection 
N of n members, an environment set E (not necessarily a finite set) with elements 
e, a set A of possible action n-tuples a =  (a1, . . •  , an), and a payoff function p on 
E X  A .  Let A;, i E N, denote the projection of A with respect to the ith 
coordinate of a. For each i E N, a; (an attribute of a in our previous terminol-
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ogy) is called member i 's action . Only two objects are to be chosen: (1) an 
information structure (Y, 11), where Y is an n-tuple of signal sets (Y1, • • .  , Yn) and 
11 = ( 111, . . .  , TJn) is an n-tuple of functions 'II ; from E to Y;; (2) a feasible 
team decision rule 8 = ( ll1, • • •  , 8n), where ll1 (member i 's decision rule) is a 
function from Y; to A1 such that for all (y1, . . .  , Yn) in Y1 X · · · X Yn , 
( ll1[ TJ1 (y1)], • . .  , lin [ 'lln(Yn)]) lies in A.  The latter feasibility requirement is trivially 
satisfied for all ll if A =  A1 X A2 X · · · X An-

Suppose an expected-utility_maxi.!nizing designer is given two pairs: [(Y, 1]), 8] 
which has a cost c, and [(Y, �), 8] which has a cost c. Suppose he has a 
probability distribution on E and a utility function u defined on payoff-cost 
pairs. Suppose there is a sequence of periods in each of which an environment e 
is drawn from E according to the given probability distribution. Then the 
designer prefers the first pair if and only if the expected value of 

exceeds the expected value of 

But most of the work which has been done in the theory of teams deals with a 
simpler issue. That is to find, for a given interesting information structure, the 
" best" decision rule, where "best" means expected-payoff maximizing and not 
expected-utility maximizing, with utility defined on payoff and cost. Given a 
structure ( Y, 11), one seeks the rule � such that for all other rules ll the expected 
value of p(ll1(TJ1(e)), . . .  , •V'IIn(e)), e) is not greater than the expected value of 
p((�1('11 1(e))], . . .  , [�n('11n(e))], e). Such work has to appeal to the linear utility or 
the bounded-rationality viewpoints sketched in the Introduction. Studies which 
compare information structures with regard to highest attainable expected payoff 
seem likely, in any case to continue. They appear far more tractable than 
full-scale studies of highest attainable expected utility for non-linear utility 
functions and specific cost assumptions. 

If we have found, for a given team of n members, an information structure and 
an expected-payoff maximizing team decision rule, have we then also defined a 
one-step design? No, for if we only write down an information structure and a 
decision rule, we say nothing about the observing effort and the message-sending 
which occurs and about who performs these tasks. Only action-taking is dis­
cussed: member i adjusts the value of a;. Suppose, however, one adds that e is an 
n-tuple ( e1 , • • •  , en) and that member i always observes e;, his " local" characteris­
tic. (In our previous terminology, i has a partitioning &Ji whose typical set has 
the form { e :  e; = e; } .) A designer is given, in other words, some sort of " natural" 
association between action and local observation. He may choose from a set of 
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available information structures (Y, 'IJ) which enrich the information (about the 
entire environment e)  of at least one member k. To be more precise: for member 
k, for such a structure (Y, 1J), and for all elements e of some subset E of E which 
has positive probability measure, it is not true that 

(3.I) 

Now suppose further that every such member k receives the additional infor­
mation through a single ( n  - I)-tuple of messages received, all at once, from the 
other members. Clearly, there will be some (n - I)-tuple which suffices, if nothing 
else the (n - I)-tuple (ew • .  , ek- l• ek+ l• • . .  , en)· Then we have all the elements of 
a noiseless one-step design which achieves a given information structure (Y, 11)  
and a given decision rule 8. Member k ' s  inputs are his own observation and the 
messages received from others. His outputs are the messages he sends (which 
depend only on his observations) and a value of ak, which depends on his own 
observation and the messages received and equals 8k['11k (e)]. But some one-step 
designs achieving the structure (Y, 1/) are wasteful. For each member i, one would 
like to search among all ( n - I  )-tuples of functions { qJ;k L. k E N, ; ,.  k •  where qJ;k is 
defined on the possible values of ek and there is some function rk such that for 
every e in E,  

Among all such pairs (r;, { qJ;d; H) one is interested in those which are 
economical with regard to transmission (from k to i )  of the messages qJ;k( e;) and 
with regard to the difficulty of computing the functions qJ;k and r;. If E is finite, 
then the approaches to measuring noiseless transmission costs which were dis­
cussed above are relevant again. If E is a continuum, and the range of qJ;k is a 
continuum as well, then one may require that qJ;k satisfy appropriate smoothness 
conditions and treat the dimension of the range of qJ;k as a measure of transmis­
sion cost. Work of this sort, with a different motivation than the achieving of a 
given information structure for a team, is summarized below in Section 4.2. As for 
computational difficulty (complexity), that, as remarked earlier, is a subject still 
largely unexplored by economists concerned with organization design. 

An information structure for a team, as defined so far, is noiseless relative to a 
given set E of environments. Member i generally does not have complete 
information about the environment but he always receives the same informa­
tion - namely, 1J;(e) - about a given environment e. 

One can study instead information structures which are noisy relative to a given 
E. In the simplest sort of noisy structure, member i obtains for each e in E, a 
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signal 71; (e )+ A;, where 71;(e) is a real number and A; is a real random variable10 
with a probability distribution F;. As before, a decision rule 8 is to be chosen. 
Assume again that e is an n�tuple ( e 1, . . .  , en). But now the " local" information 
which member i always has in any case- regardless of the information structure- is 
e; + JL ;, where JL ;  is a random variable with probability distribution G;. The 
analogue of (3.1) is then the condition that for at least one member k the 
conditional distribution of e given 7l;(e)+ A; is not the same as the conditional 
distribution given e; + /L ;· If this condition is met, then we seek a (noisy) one­
step design which achieves the given noisy information structure. To do so we 
seek for ' each i [analogously to (3.2)] a function r; and an (n - 1)-tuple 
{ ( 'P;k •  D;k )} ;, k E N, ; H• where 'Pik is a function and D;k is the probability 
distribution of a random variable Y;k •  such that for each i in N and each e in E 
the distribution of r;[ e; + JL;,  'P;,1 ( e1 + p1) +  Yi,l• . . .  , 'P;, ;-1 ( e;- 1 + P. ;- 1) +  Y;, ;- 1· 
'P;, ;+ 1(ei+ 1 + JLi+ 1)+  Y;, i+ 1, . . .  , 'P;, n(en + p.J +  Y;, n l is the same as the distribution 
of 71;( e)+ A;. Such (n - 1)-tuples, together with the distributions G; describing the 
members' noisy observing, define a noisy one-step design achieving the required 
noisy information structure. As before, the design's action outputs may be 
assigned to inputs so as to express a chosen team decision rule. 

Some investigations which have used the framework of the theory of teams 
have, in effect, proceeded in the reverse direction from that just described. They 
have considered a particular one-step design which is of interest because of its 
historic role in certain discussions and have then studied the information struc­
ture which the design achieves. The studies by Groves, Radner, and others of a 
"Lange-Lerner" price mechanism and rival mechanisms in a certain class of 
teams are of this sort. Below, in Section 3.4, we briefly consider these studies. 

3.2. Finding best expected payoff for a given structure 

The work done so far in the theory of teams has not concerned itself with the 
design needed to achieve a structure and with the design's costs. That is natural, 
since it is difficult enough to find, as the existing work does, decision rules which 
are best, in the expected-payoff sense, for some interesting information structure 
and payoff function. A main tool for this purpose is the "person-by-person 
satisfactoriness" theorem. Suppose that A = A1 X · · · X An. If a decision rule 
8 = (81, . . .  , 8n) is best for a given structure ( Y, 71) with regard to the expected 

10 Of course, as remarked earlier in connection with designs, one can redefine the environment set so 
that the noise Xi becomes part of the environment; relative to the new set the information structure is 
again noiseless. But doing so obscures the special form taken by the analogues of (3.1) and (3.2) for a 
noisy structure. From a modeling point of view, it may be useful to distinguish between the aspects of 
the environment which no transmission or observing devices can affect, and the aspects which are 
simply properties of the devices the designer chooses. 
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value of payoff p( a, e), then clearly it must be true that each rule 8; is best given 
the other rules { 8 d k ,.  ; · That is to say, for every Y; in ¥; such that the event 
'II ; (  e) = Y; has positive probability, 8;(Y;) must equal that element ii; of A; which 
maximizes with respect to a i • the conditional expected value of 
p([8I('III(e)) , . . .  , 8;- I('II;- I(e)), a;, 8i+ I('II;+ I(e)), . . .  , 8n(11n(e))], e) given that 
1/;( e) = Y;· The theorem says that if p is strictly concave and differentiable in its 
arguments, then such " person-by-person satisfactoriness" is also sufficient for 8 
to be a best rule" .11 

3. 3. The quadratic case 

If the function p is quadratic and concave, then the condition that 8; be best 
against the other rules gives, for each J;, an equation which is linear in the best 
rules �I• . . .  , �;- I• �i+ l• . . .  , �n- To be precise, suppose the payoff function p(a, e) 
has the form 

e0 + 2a 'JL (  e) - a'Q(  e ) a ,  

where e0 i s  a constant n-vector, JL is a vector-valued function of e ,  and Q is a 
matrix-valued function with Q( e) always a positive definite n X n matrix. Mem­
ber i 's signal 'II;( e) tells him something about JL( e) and Q( e) and hence about the 
team action which ought to be taken to maximize payoff. For a given information 
structure ( Y, 11) and for any Y; E y;, the person-by-person satisfactoriness condi­
tion is (after differentiating the conditional expected payoff given 'II;( e) = Y; and 
setting equal to zero) 

(3 .3) 

where tff denotes expectation. 

For the quadratic case there are several procedures for finding explicitly a best 
8 given (Y, 11 ), or at least finding the expected payoff under a best 8: 

(1)  One can, for some information structures, guess, using intuition, at  a 
decision rule 8 which seems likely to satisfy (3.3). If one can then show that it 
does, one has shown it to be a best rule. 

11 The theorem generalizes to the case in which the action a has to lie, for every e, in a convex set 
A ( e) which need not be the Cartesian product of its n projections. In the generalized theorem, 
" (81 , . . .  , 8n ) is person-by-person satisfactory" means, for example, that for every e, a1 = 81 ( "'h ( e)) 
maximizes the conditional expected value of p([ a1 , 82 ("1J2 (e)), . . .  , 8n (1Jn (e))], e) on the set of those 
member-1 actions a1 for which [ a1 , 82 ( "1)2 (e)), . . .  , 8n ( 1Jn (e))] E A (e). 
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(2) One can assume that E is the n-dimensional real space and that the 
probability distribution on E is normal. If Y; = TJ;(e) is a real vector, also 
normally distributed, and if Q is constant, then for the ( 81, . • .  , 8n) which satisfies 
(3.3) and is therefore best, 8; is a linear function of the components of Y;· Each 
coefficient of 8; is a function of the parameters of the distribution of p,( e) and the 
constants Q and e0• 

(3) If Q is constant, then for certain information structures one can show, using 
(3.3), that for each Y;, 8;(Y;) (with 8 best) satisfies a linear equation in 8;(y;) only. 
This occurs, in particular, for a structure wherein each member i knows some 
function t; (e), with f 1 (e), . . .  , f n (e) independently distributed, and also knows a 
vector T1 ( e ) = ( T1 (e), . . .  , '�"n( e)), where Tk( e) is member k 's "report" about fk( e); 
the " report" partitions E more coarsely than does fk( e). 

( 4) If Q is constant, then without further assumptions it is straightforward to 
show that if 8 is best for a structure (Y, TJ), then (using some compact and 
obvious vector notation) 

at the same time, " value of information" - the amount by which best expected 
payoff for (Y, TJ) exceeds best expected payoff for the "no-information" structure 
(where, for every i, TJ;(e) is a constant signal) - is given by 

Iff [ 8 ( TJ ( e ))] p, ( e )- [ 6"8 ( TJ ( e ))] ' Cp, ( e) . 

For a number of structures, this permits calculation of the " value of information" 
[and hence of the best expected payoff for (Y, 11)] without explicitly computing a 
best decision rule. 

Using one or another of these four approaches, a variety of information 
structures have been explored for the quadratic case12 [Chapter 7 of J. Marschak 
and Radner (1971)]. Some of these results can be interpreted (in accordance with 
the central concern of the present survey) as tracing the effect on best expected 
payoff as one varies one or another element of an information structure's cost- or 
the cost, rather, of a design achieving that structure. 

(a) There is a family of structures, called [in J. Marschak and Radner (1971)] 
"dissemination of independent information" and just summarized above in 
connection with the third approach to calculating best decision rules. Consider 
moving from a structure in which a particular member j does not send to any 

12 Chu (1976a, 1976b) considers, for the quadratic case, information structures in which member i 
knows the linear combination of:� thikP.k ( e). One might regard the rwik of the matrix (h ik ) as an 
indicator of its cost. An algorithm is given which converges to that matrix among all those of given 
rank for which best expected payoff [with p.1 (e), . . .  , P-n (e) independent and normally distributed] is 
highest. 
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others a report of r/e) (his "local" observation), to a structure which is the same 
except that j now sends such a report to everyone. It turns out that the resulting 
improvement in best expected payoff is independent of the size and composition 
of that group of other members r =F j who send reports in both structures. So if 
allowing a new " reporter" has a constant cost [if communicating r/ e) to the 
others is equally costly for all j], then if the designer wants expected payoff 
minus cost to be large, all of the members for whom improvement in expected 
payoff exceeds the reporting cost should be instructed to report. 

(b) Interesting classes of structures are suggested by the term " management by 
exception". In one such class, the variable f.L /e) is assumed " locally" observable 
by j and to take values on the real line. To define the information structure, a 
part of the real line- a  set R1 -is chosen for each j and is called j 's "exception 
set". If and only if j finds f.L /e) to lie in the exception set, he communicates it to 
some "central agent" who relays it to all the other members whose observations 
are also exceptional (or, equivalently, who computes the action all those members 
ought to take and tells each of them what that action is). Then TJ/e) equals f.L/e) 
if f.L/e) ft. R1 and otherwise equals { f.Lk(e) : k E J(e)}, where J(e) is the set 
{ k E N : ILk (  e )  E Rd.  If the variables f.LJ( e) are assumed independently distrib­
uted and Q( e) a constant, then a best decision rule is found [by making a good 
guess and verifying that the rule satisfies (3.3)]. When, for an environment e, j 's 
observation f.L /e) is not exceptional, the best rule tells him to take the action 
which would be best under that information structure wherein each member k 
knows only f.Lk(e) for every e. When j 's observation f.L/e) is exceptional, the best 
rule tells him to take the action which would be best for that structure wherein, 
for every e, all members in J( e) known each other's observations [i.e. for any e 
each knows { f.Lk(e) : k E J(e)}]. 

For given probabilities { p1 }J E N' where p1 = Pr[f.L/e) E R1], the sets R1 can be 
chosen so that best expected payoff is a maximum. Doing so, letting p1 = p for all 
j, and letting Q take a special form -namely, qu = 1 ,  q;1 = q, i =F j - one can trace 
(for fixed n )  the effect of increasing p on best expected payoff. As p goes toward 
1 ,  best expected payoff increases but does so more and more slowly. Suppose the 
relevant technology is of the general sort in which a different cost is attached to 
each of a task's input-output pairs and one pays for each pair when it is used 
(Section 2.2.4 above). In the present setting, suppose a certain cost is incurred 
whenever member j reports an exception but not otherwise. If one assumes the 
cost per report to be identical for all members and all reports, and independent of 
the number of members reporting, and if the designer wants the expected value of 
payoff minus cost to be high, then there is a best value of p. Beyond this value, 
the improvement in expected payoff due to more frequent reporting of exception 
is less than the increase in expected cost. 

(c) The effect of increasing or decreasing error in observing and in the 
transmission of certain messages can be examined. One can study, for example, a 
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structure in which complete information about e is accumulated (by some central 
agent). Assume Q constant; the central agent knows (p.1(e), . . .  , p.n(e)). He 
computes the payoff-maximizing action a( e) = (al(e), . . .  , an( e)) and sends a;( e) 
to i .  That transmission, however, is  subject to error, so that member i ends up 
knowing Y; = 1J;(e) = a;(e)+ e;(e). Assuming all the a;(e), e; (e) to be indepen­
dently normally distributed with zero means, a best decision rule can be com­
puted (using the second of the above four approaches). Consider the central agent 
to be an ( n + 1 )st member of the team. In one model of technology we may 
attribute error to "confusedness" or " unreliability" of member n + 1 himself. 
Suppose that the more dispersed is the variable e;( e), the cheaper the design, 
where we measure dispersion by the variance of the e; ( e). If all the variables e;( e) 
have a common variance, a designer can balance the cost of low dispersion 
against the resulting improvement in expected payoff. 

A similar analysis can be performed with regard to observing error. This time, 
the central agent receives erroneous messages p.;(e)+ e; as to the individual 
observations P.;( e). He computes the action ii( e) = (ii1( e), . . .  , iin( e)) which would 
be payoff maximizing if p.(e) were to equal ( p.1( e)+ e1, . . .  , P.n(e )+ en). He sends 
ii;(e ), without error, to member i. Now the cost of reducing observing error can 
be balanced against best expected payoff. 

(d) The size of the team can be considered an element of cost and the effect of 
varying it on best expected payoff traced for a specific family of information 
structures. To do so, one has to specify how the payoff function and the 
probability distribution on E vary as n varies. One may, for example, assume 
that Q is constant and has ones on the diagonal and q everywhere off the 
diagonal [with - 1/(n - 1) < q < 1, which assures positive definiteness]. One can 
assume the variables p. ;(e) to be independent of each other for all team sizes, and 
to be drawn, for all team sizes, from the same probability distribution with zero 
mean and, for every n ,  an n X n variance-covariance matrix with diagonal 
elements 1 and off-diagonal elements a. Under such assumptions, then, the 
"returns to scale" issue can be investigated. For many structures, best expected 
payoff increases as n increases but for some of these structures one has "decreas­
ing returns" (each additional member adds less to best expected payoff than the 
previously added member), for others increasing returns; and for still others 
constant returns. For some structures, the limiting behavior of best expected 
payoff, as n increases without limit, can be conveniently and suggestively studied. 

(e) One can check certain general conjectures as to the desirability of certain 
properties of structures or designs as one changes certain aspects of the payoff 
function. Such properties may be associated, in particular, with the term 
"decentralization", discussed in more detail in Section 5 below. For the present, 
suppose we consider a decentralized information structure to be one in which 
member i knows only certain " local" or " private" information. Suppose, in 
particular, that it is the structure in which i knows p. ;(e). One can then study the 



Ch. 27: Organization Design 1383 

improvement in payoff as one moves away from the structure toward " more 
centralized" structures [wherein at least some member i knows more than P.;(e)]. 
One may be interested in the way the improvement changes as (1) one varies the 
payoff function so as to increase the "interaction" between members - the sensi­
tivity, with respect to changes in j 's action, of i 's marginal contribution to 
payoff - as measured, say, by a2pj aa;aaj; (2) one varies the environmental 
probability distribution so that i 's local observation p. ;(e )  becomes more strongly 
correlated with j 's local observation p./e). More specifically, let Q again be 
constant with ones on the diagonal and q off it. Then l q l  measures the strength of 
interaction between any two members. It is found - as intuition suggests - that as 
lq l  rises above zero, there is an increase in the "penalty" due to decentralization, 
i.e. in the improvement in payoff when "local information only" is replaced by, 
for example, complete pooling of local information, or management by exception, 
or pooling of local information (for every e) among groups of membersY 
Similarly, if one lets cfp.; = 0 and lets lf�t;P.j = 1  when i = j and a > 0 otherwise 
(all i, j in N), then for those "non-decentralized" structures which have been 
studied in this connection, the improvement in payoff as one substitutes that 
structure for "local information only" goes down as a goes up. Again, this is as 
intuition suggests. 

3.4. Studies of a resource-allocation team 

A number of studies have dealt with a team of n + 1 members composed of one 
"center" and n local "managers". Each manager i is to use a resource assigned to 
him by the center and is to choose a value of a local decision variable L;. An 
environment is e = (k, p.1, . . .  , P.n), where k is the total availability of the resource 
and p.; is a parameter defining a local production function f. A team action is the 
vector a =  ( k1, . . .  , kn) where k; is i 's assigned share of the centrally allocated 
resource. The arguments of the production function f are L; and k;. The team's 
payoff is p(a, e) = 'L7�1f(L;, k, p.;), provided 'L7�1k; � k. [In a generalized ver­
sion, Groves and Radner (1972), k and k; are vectors.] 

The first studies [Radner (1972) and Groves and Radner (1972)] were inspired 
by the classic claims made for a "price" mechanism, wherein the center adjusts 
(k1, • • .  , kJ. Each adjustment is made after receiving from each manager i a 
"profit-maximizing demand" message - i.e. a quantity k;(p,  p.;)  which would 
maximize maxLJ(k;, L;, P.;)- pk;, where p is a price announced at each step by 
the center and �djusted in response to the previous step's excess demand. While 
the process may converge, under suitable assumptions on f, to a payoff-maximiz-

13 But these results fail to have analogues, when one studies quadratic payoff functions ane designs 
which carry out successive steps of certain adjustment processes. See Section 4.4 below. 
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ing value of ((k1 , L1), • • •  , (kn, Ln)) it would, in practice, have to be stopped after 
a finite number of steps, say, at the Tth step. At that point, the information 
structure to be studied is defined: for each manager the center knows his original 
local observation (k for the center, Jl; for each manager i )  together with the 
accumulation of messages received in the preceding steps of the process (the 
profit-maximizing demand messages for the center, the prices for each manager). 
In the classic discussion (of tatonnement processes), the action finally taken at the 
Tth step is in fact based on the messages most recently received and not on the 
entire accumulation of messages: the center, for example, allocates k in accor­
dance with the final profit-maximizing demand messages (each manager's share 
equals his final profit-maximizing demand if these demands do not exceed k and 
otherwise falls short of his final demand, in some suitable way). Nevertheless, one 
can ignore the costs of memory and can seek the best decision rule assigning, at 
the final step, a value of (k1, • . •  , kn) to the center's accumulated information and 
a value of L; to each manager's accumulated information. 

This was done, to begin with for the case of a single step ( T = 1 ), with 
production functions f quadratic and the parameter Jl; a pair (P.;k• Jl;L): 

The information structure, labeled "one-stage Lange-Lerner" (OSLL), is in­
tended to capture the interchange of a "price mechanism" which terminates after 
one step. The center announces a price and the managers respond with profit­
maximizing demands. The center's choice of price can only depend on k, since 
that is all the center knows at the start. Once the center knows what the 
profit-maximizing demands are, he can uniquely deduce, for each i, the quantity 
P; = Jl;k - qJl;v It is then argued that nothing is lost if one says that the center in 
fact sends k itself to the managers and each manager sends v;; in the OSLL 
structure ( Y, 'Ij), then, manager i, i = 1, . . . , n , knows "l;(e) = (p.;, k) and the 
center (member n + 1) knows "1n+ 1(e) = (k, v1, . . .  , vn). Informally speaking, this 
viewpoint might rest on a model of technology in which only transmission is 
costly, all real numbers (and vectors of real numbers) can be transmitted exactly, 
and the dimension of the real message sent from i to j determines the cost of that 
transmission. 

Note that given the OSLL structure, each manager has to choose a current 
value of L; in ignorance of other managers' production functions, of the values 
other managers give their local decision variables, and of the quantity of the 
centrally allocated resource which he and others will receive. A team decision rule 
tells i what value of L; to choose. 

Assume all the random variables Jl;k•ll ;v k to be independently distributed 
and assume that the distribution of Jl;k is the same for every i, as is the 
distribution of /l;v It is then verified that for the OSLL structure a certain team 
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decision rule in fact satisfies that version of the person-by-person-satisfactoriness 
condition which is appropriate14 when the decisions are to fulfill a linear 
constraint like Lk; � k. Hence, in view of the concavity and differentiability of p, 
that decision rule is best. The best expected payoff so obtained is then compared 
with the best expected payoff for several other structures. 

In particular, it is found that the best expected payoff is not increased if each 
manager i sends not P; - which is a "contraction" of his local information - but 
rather sends the vector fJ.; = (fL;k, fL;L) itself, so that Tln+ l(e) = (k, p.1, • • .  , p. n), 
while T/;(e) = (p.;,  k), i = 1, . . .  , n, as before. One virtue of the " price mechanism" 
is then demonstrated: given the center's "price" message (here taken to be k 
itself), each manager's "profit-maximizing demand" response (here taken to be P;) 
cannot be improved upon. If there were allowed to be a second price announce­
ment by the center, then the best possible (or "full-communication") payoff - i.e. 
max a p (a, e ) - could be attained for every e, since (k, P1, . . .  , Pn) gives the center 
enough information to compute exactly the optimal shadow price (that price for 
which the profit-maximizing demands would comprise the optimal allocation). 
That is a property of the quadratic payoff function and is not in general true for 
other concave payoff functions. 

A surprisingly rich assortment of further structures have been studied for the 
quadratic case -in a slightly generalized version - by Welch (1980). In the gener­
alized version, there is no separate "center" member and each manager i has an 
endowment W; of the " team" resource. Each manager has to choose a value of his 
local variable L; and a final allocation k; of the team resource, which may be 
more or less than the random variable W;. For a feasible decision rule 'L7=1k; = 
L:;_1w;. A linear function of i 's information plays a role in several of the 
structures studied, namely, Y; = P; - (1 - q2)w;, where P; is defined as before. 

Under the structure called "bilateral sampling", member i knows Y;- 1, Y;, and 
Y;+ 1• Under " pass the mean" he knows ('y;_1,  Y;, Y;+ 1), where Y; = (l/i)L�= 1y1. 
Under the " Feldman Round"/5 he knows Y;, Y;+ l, and P;- 1, where P; = y;/2;- 1 

+ L�=2y1j2i-J+1• For each of these structures, the optimal decision rule for i can 
be interpreted as a profit-maximizing rule for a certain shadow price 'TT;, whose 
definition varies from structure to structure. 

In this study, as well as in the Groves-Radner studies, it is instructive to 
examine the performance - that is, the limit of the best expected payoff- of the 
various structures as the number of managers increases without limit. 
Given the assumed form for p, and the assumptions concerning identical distribu­
tions of the random variables, the move from an r-manager to an (r  + I)-manager 
team is well defined. It may be possible to compute not only the limit of best 

14 See footnote 11.  
15 Inspired by Feldman (1973). 
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expected payoff but also the path of best expected payoff for an initial range of 
team sizes. In the Welch study it is found, for example, that "bilateral sampling" 
performs worse than "pass the mean" for small team sizes, but after n = 8, it 
quickly becomes far superior and stays so in the limit. 

The Radner-Groves studies find that in the limit the penalty of the OSLL 
structure - the amount by which its best expected payoff falls short of best 
expected payoff under full communication- goes to zero as n increases without 
limit. One might view this fact as another virtue of "price-like" mechanisms. The 
results has been generalized [Arrow and Radner (1978)] to the case of a general 
concave function f. 

Arrow and Radner (1978) find a similar asymptotic result for the case of 
general concave production functions f and for an information structure which 
can not be interpreted as a price mechanism. They study the structure wherein 
each manager conveys to the center a complete description of the manager's 
current function f. The center is to allocate each resource in a list of fixed 
resources (whose availability he knows) among the managers, and bases the 
allocation on full information. Each manager, however, knows only his own 
function f and has to chose a value of his local decision variable in ignorance of 
other managers' functions and in ignorance of the total resource availabilities. As 
the number of managers increase without limit, the best expected payoff attain­
able under this structure converges to the best expected payoff attainable under 
completely share full information (i.e. the best expected payoff attainable when all 
managers as well as the center know all production functions as well as the 
resource availabilities). To put it simply, local ignorance becomes less and less 
damaging as the number of managers grows. 

A similar asymptotic result has been shown by Groves and Hart (1982) to hold 
for a structure which it is again difficult to identify with a price mechanism but 
which appears considerably more appealing, with regard to informational costs, 
than .the Arrow-Radner structure, with its full communication of production 
functions to the center. Groves and Hart study an "uninformed demand" 
information structure. Each manager sends to the center a demand for the 
centrally allocated resource (or for each of several centrally allocated resources). 
The demand is not based on any "price" message from the center but only on the 
manager's local information (his current production function). If the total de­
mands do not exceed the current central resource availability then the demands 
are met exactly. If they do exceed it, then one of several rationing schemes are 
used. Formally, the information structure tells each manager only his own 
production function and tells the center the manager's demands (manager i 's 
demand is some function of i 's current production function), as well as the 
central resource availability (or availabilities). A team decision rule for this 
structure tells each manager what value to choose for his local decision variable 
and tells the center how much of the central resource (or resources) to allocate to 
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each manager- it tells the center, that is to say, to fulfill the managers' demands 
when that is feasible and to apply some rationing scheme when it is not. To 
achieve the paper's asymptotic results it is not necessary to compute a team 
decision rule which is best (expected-payoff-maximizing) for each such unin­
formed-demand information structure, but only to study particular interesting 
rationing schemes and the team decision rules associated with them. It turns out 
that for some uninformed-demand structures and some choices of rationing 
schemes, as the number of managers increases without limit, the output of each 
manager (the value taken by his function f) converges almost surely to the 
highest attainable output (i.e. the output attainable when all decisions are based 
on fully shared complete information). In particular, an extremely simple ration­
ing scheme suffices - a scheme in which the m�agers can be viewed as arriving, in 
an arbitrary sequence, at the pool of fixed resources. Each arriving manager takes 
what he wants from the pool until the pool is exhausted. 

From the viewpoint of a designer who wants to compare one-step designs 
whose costs are explicit, these results - asymptotic or otherwise-'- about the merits 
of " price" mechanisms (in their single-interchange-of-messages form) are interest­
ing but quite incomplete. Such a designer would really like to know, in weighing 
the classic claims for price mechanisms as a guide for choice among designs, 
whether " price" designs extract good performance (expected payoff) from the 
effort required to run them; or whether other designs would extract more from the 
same effort. One very special form of this question could in fact be studied using 
the tools of the Theory of Teams (i.e. the techniques which sometimes permit 
computation of best decision rules and best expected payoff). 

In the Radner-Groves problem, one could confine attention to finite designs 
and could permit manager i to impose a "grid" on the set E; of possible values of 
(f.L;k •  f.L;L)· He imposes on E;, that is to say, a partitioning !J'i composed of B; 
sets. Similarly, the center partitions En+l• the set of possible k 's, according to 
9n+\ composed of Bn+ l sets. Consider a technology in which a design's cost is 
increasing in B;, i = 1, . . .  , n + 1, and depends on nothing else. Let E;, i = 1, . . .  , n,  
be the non-negative quadrant of real two-space and let En+l  be the non-negative 
real line. One can, in particular, consider a "(B1, . . .  , En, En+ 1)-grid" finite version 
of the OSLL structure, wherein the center knows, for each manager i, that the 
true value of P; lies in one of E; sets, and each manager knows that the true value 
of k lies in one of En+ 1 sets. The best decision rules for this structure can be 
found. They are obtained in a simple way from the best rules for the original 
"continuum" OSLL structure by substituting, respectively, tS'(v; if.L;  E S;) for tS'v; 
and tff'(kik E T) for tff'k, where S; is a set in !}'Ji and T is a set in 9n+l. A similar 
substitution yields best expected payoff. One can then choose the E; sets for each 
i, i = 1 ,  . . .  , n+ 1, so that best expected payoff is not less than for any other 
(n + 1)-tuple of partitionings, where the ith partitioning is a B;-fold partitioning, 
i = 1 ,  . . .  , n + l. Finally, one can ask whether this best ( E1, . . .  , En+ 1)-grid finite 
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version of the OSLL structure makes the best use of its effort. Is there any other 
structure, under which member i, i = 1, . . .  , n ,  conveys to member n + 1 one of B; 
possible signals about his local environment and member n + 1 sends out one of 
Bn + 1 signals about his, for which best expected payoff is higher? The answer is 
not yet known.16 

3.5. The polyhedral case 

One of the distressingly few attempts to model real organizations in the frame­
work of the theory of teams is a study of a sales organization by McGuire (1963). 
In the simplest model there considered, each of n salesmen decides, in a given 
period, on an order, a;, to be centrally produced and delivered to that salesman's 
location. Salesman i knows a current price, e; (a random variable), at which an 
unlimited amount can be sold in his location. The unit production cost for La;, 
the sum of salesmen's orders, is 1 if La; � c ( c, say, is a "normal-shift capacity"), 
but it is 1 + k for any excess of La; over c ( k  is, say, the extra unit cost of an 
"overtime" shift). Team payoff is then 

p ( a , e )  = 
i
�

l 

a; ( e; - 1) - k max(o,
i
�
l 

a; - c ) 

= minc�
l 

a; (e; - 1) ,  
i
�

l 

a;(el - 1 - k)+ ck ) . 

and A is non-negative real n-space. One may be interested, for example, in the 
structure ( T/, Y) for which T/;( e) = e; and in comparing it with the "centralized" 
structure for which T/;( e) = e. Consider a generalized form of the problem: 
p(a, e ) = min(p1(a, e), . . .  , pg(a, e)), where pk(a, e )  is linear in the vector a for 
k = 1 , . . .  , g. 

Suppose, further, that for any e, the (real-valued) actions are required to satisfy 
not only a; �  0, i E N, but also linear constraints depending on e, namely, 

n 

I: � \ ( e ) a; � JL.(e ) , s = 1 , . . .  , S. 
i
= l 

If E is finite then, not surprisingly, the best decision rules for any information 
structure ( T/, Y) can be found by solving an associated linear programming 
problem [J. Marschak and Radner (1971, ch. 5)]. 

16More ambitiously, one can add a further "effort" dimension, namely, " fineness of action 
implementation", to be discussed below in Section 4.3. One studies a finite version of the OSLL 
structure in which not only the numbers B; are fixed, but also the number of possible team actions, 
ans asks whether any other finite structure characterized by the same B; 's can do better when the 
number of permitted team actions is kept the same. 

Handbook of Mathematical Economics, vol. Ill, edited by K.J. Arrow and M.D. Intriligator 
© 1985, Elsevier Science Publishers B. V. (North -Holland) 
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4. Contributions to organization design: Adjustment processes 

4.1 .  General concepts and background 

1389 

An adjustment process is a system of difference or differential equations in n 
variables, each variable associated with one of the n members - comprising the set 
N - of an organization which has to take actions in response to a changing 
environment. The variable associated with member i is a vector of messages sent 
to other members or possibly to i himself (a stored piece of information). In 
general, the equation associated with a member has the organization's environ­
ment as a parameter. In important cases the parameter is not the complete 
environment but rather the aspect of which that member has " private" knowl­
edge - knowledge he gains through his own observation of the environment and 
not through messages received from others. The organization's action is an 
n-tuple, whose ith coordinates is called "member i 's action". There may be a 
natural association between a member's action and his private knowledge: 
whoever is in charge of a certain coordinate of the organization's action "auto­
matically", or very cheaply, has private knowledge of a certain aspect of the 
environment. Such "cospecialization of action and observation", as it has been 
called [J. Marschak and R. Radner (1971, ch. 4)], is a technological fact and 
partly determines the costs of carrying out an adjustment process. 

We shall confine attention to difference-equation processes. Suppose again that 
new environments occur regularly, one time period apart. The first step of the 
adjustment process follows observation of the new environment. In practice, some 
finite number of steps - say, T -would have to be carried out. Following the Tth 
step, the organization takes an action which is a function of the values taken by 
the members' variables at the Tth step. This action is, then, a response to that 
environment which preceded the first stepY 

Given an n-member organization with environment set E and action set A, a 
temporally homogeneous adjustment process18 is the quadruple 

'1T = (A, m0 , f = {!\ . . .  , r) ,  h ) . 
Here A is a set called a language; m0, an initial message, lies in A<nl, the n-fold 
Cartesian product of A; f ;  is, for every i in N, a function from E X  .ff(n) to 
A; and h - called the outcome function -is from E X  .ff(n) to A,  an action set. 
The quadruple defines, for any e in E, the difference equation system 

m� = f;( e , m1_ 1 ) , t > l ,  all i in N, 

where m1_ 1 E .ff(n) is the n-tuple (m�_ 1, • • . , m�_ 1). 

170ne may wish to add the requirement that T be small enough so that the action is taken before a 
new environment occurs. 

18We consider here a variant of the formulation first given by Hurwicz (1960). 
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In a temporally non-homogeneous process, which we shall not consider, each 
function /; would have a further argument, namely, the interger t. The variable 
m� can be interpreted as a message formed by i at step t and sent to any member 
j who needs it in order to form his next message mj+I. If T steps of the process 
are carried out following the environment e, then h(mr, E) becomes the organi­
zation's action in response to e. 

Now suppose we are given n partitionings f!IJ; on E, i E N. Let the sets in f!IJ; 
be indexed by the variable e;, called the ith environmental characteristic. Then we 
call the process ( Jlt, m0, f, h) privacy-preserving relative to { f!IJi L E N if for every 
i, there is a function P such that if e lies in the set of f!IJ; indexed by e;, then 

f ;( e ,  m ) = fi(e; , m) ,  all m in Jlt(n) . 

An action in A is the n-tuple a =  ( a1, . . .  , an )· If there is an inevitable cospecial­
ization of action and observation, so that only the member who takes, say, the 
action ak can observe a certain environmental characteristic, then that means it is 
technologically impossible to operate a process, say 7T*, which is privacy-preserv­
ing relative to partitionings wherein not k but some other member observes that 
characteristic. If such cospecialization is not inevitable but is extremely cheap, 
then the process 7T * is not impossible but is forbiddingly expensive and perhaps 
not worth studying. 

As for the selection of an action once a terminal message mr has been reached, 
the function h determines a vector of functions (h\ . . .  , hn) where h;(m, e), with 
m E  Jlt(n), is a value of a;, i E N. One may wish to require a similar privacy-pre­
serving property with regard to action-choosing, i.e. for every i, there is a function 
"hi such that when e is in the set of f!IJi indexed by e;, then h;(m, e) = "hi(m, e;) for 
all m in Jlf(nl. This is achieved automatically if h is a function only19 of m. 

Suppose both f and h in the process 7T = (Jit, m0, f, h) are privacy-preserving 
relative to { f!IJi L E N· Suppose the partitioning f!IJi describes the environmental 
observing done by member i. The possible actions a;(e, T) = h;(mr, e) generally 
partition the set E more finely than the observational partitioning f!IJi. The 
further refinement is due to the T interchanges of messages which occur. The 
messages which member i may receive from j are implied by the function r: i 
receives messages from j =1= i if and only if there is some m = (m\ . . .  , ml, . . .  , mn) 
E Jl((n), some m = (m1, . . .  , ;ni, . . .  , mn) E Jl((n), with ml =I= ml, and some e E E 
such that f ;(e ,  m) =I= t(e, m). But a;(e, T) does not depend on the entire T-step 

19Then h is a "non·p�ametric" outcome function in the terminology of Hurwicz (1972). Formally, 
of course, one could let h;(m,_ 1 ,  e; )  be an element of the vector m;. Member i, that is to say, keeps a 
running record (in the form of a message sent to himself) of the action he would take were the current 
step to be the final one, and this is, say, the last coordinate of the vector m;. If the current step is the 
final one- if t = T- then the action taken by i is given by the non-parametric function hi ( mr) which 
equals the last coordinate of m�. 
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accumulation of messages received by i; that accumulation would generally 
partition E still more finely than does a;(e, T). At each step, in the typical 
process, member i, knowing only e; and m1_ 1, is unable to reconstruct (does not 
remember) the sequence of messages which he has received since the first step. 20 

The abstraction just presented was inspired by the classic debates about the 
virtues of price or "competitive" mechanisms for resource allocation in an 
economy. Once classic claim was that an economy, with or without private 
ownership, could be operated at all- or at least could not achieve Pareto-optimal­
ity unless - the information repeatedly exchanged among its many members 
consists, for each commodity, of a price and an excess demand. The unthinkable 
alternative was some scheme which would require descriptions of members' 
preferences, endowments, and technologies to be gathered in a central place, 
where individual consumptions and productions are computed and then issued as 
instructions to the economy's members. Discussions since the 1930's have made 
clear that the choices are not quite so polarized. One can formulate schemes 
(" planning" mechanisms of various sorts), in which there is still a "center", which 
fall short of the unthinkable total centralization, but in which the center may yet 
receive more information about members' technologies and tastes than would be 
given by a classic sequence of utility- and profit-maximizing excess demands. The 
messages sent by the center, moreover, constrain members' actions more than 
prices alone constrain them in the classic scheme. To clarify the issues that arise 
in choosing among the rich variety of resource-allocating schemes which are in 
principle possible, one first needs an abstract concept fitting any scheme. The 
abstraction just given has served the purpose reasonably well in a number of 
studies of resource-allocating mechanisms. We shall consider several lines of 
study and shall relate each of them to the comparison of one-step designs. 

4.2. The equilibrium study of adjustment processes 21 

Hurwicz's original paper (1960) presents a process, the "quasi-competitive" 
process, which captures, in one form, the message interchanges that precede a 
competitive equilibrium. Each member's message is a set of "resource-flow 
matrices" ;  such a matrix describes all trades and productions in the economy. To 
form a new message, a member i finds the set, say S;, of those matrices which 
would leave him at least as well off as any matrix in the intersection of all 
members' previous messages. His new message is not S; itself, but rather the 
smallest cone containing S;. That is of interest because the smallest cone generally 

20The formulation above does, however, permit complete (or partial) accumulation of messages. If 
the language A is sufficiently rich, i 's message mi could contain a complete summary of the sequence 
of messages i has so far received. 

21 Much of ilie literature dealing with this topic is surveyed in Hurwicz (1973); we shall explicitly 
mention here only a small part of the literature. 
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partitions the set of possible previous message n-tuples more coarsely than does 
the set S; itself and therefore is, in a certain sense, an informationally less costly 
message. If the environment set (the set of possible tastes, technologies, and 
endowments) has classic properties, then for every initiating environment the 
quasi-competitive process yields at equilibrium an n-tuple of messages - i.e. sets of 
resource-flow matrices- whose intersection contains only the competitive equi­
libria of the economy defined by that environment. 

In this approach to the study of processes, then, one looks not at the messages 
reached after some finite number T of steps, but rather at the equilibrium 
messages. To be precise, one now no longer defines a process as a quadruple but 
merely as the triple, 

7T = ( Jt , j, h ) ; 

the initial message m0 is omitted. Then, for e in E, the equilibrium messages 
comprise a set D(e) � Jt(nl, where m = (m\ . . .  , mi, . . .  , mn) E D(e) implies 

The action generated by the process in response to e lies in a set, namely, the set 
�(e) of equilibrium outcomes or actions, 

� ( e )  = { a E A : h ( m ,  e) = a for some m in D (e) } . 

We shall say that the process covers E with regard to equilibria if, for every e in E, 
D(e) is not empty. We shall then also call it a process on E. 

One simply lays aside the question of which equilibria, if any, will in fact be 
reached for specific initial messages, and the question of how long (how many 
steps) this might take.22 In the spirit of classic debates about competitive resource 
allocation, one investigates only the achievements of a process at equilibrium. For 
the case of resource-allocating processes for a certain set E of economic environ­
ments, one may be interested, for example, only in processes which (1) cover E 

22There is one process for which equilibrium is achieved in one step. This is the privacy-preserving 
process wherein each member i announces the characteristic e; to the others. For thi� process, the 
language is Jt =U;E; o  where E; is the set of possible values of e; , and f'(e, m) = f' (e; , m )  = e;· 
Following any initial message m0, one has for all i, mf = F(e, m0) = ]i(e; , m0) = e; = ]i(e; , m1) = 
m�. One-step processes are considered in a general manner below. 
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with regard to equilibria and (2) for every e in E achieve Pareto optimality, 
relative to the economy defined by e, at every equilibrium outcome- i.e. every 
element of �(e). One can then ask whether a certain process within the class of 
processes satisfying (1) and (2) for some E is informationally inferior to some 
other process in this class - whether, for example, the quasi-competitive process, 
which satisfies (1) and (2) for the set E of classic economies, is inferior to any 
other process satisfying (1) and (2) for the same23 set E. 

For some purposes it is useful to provide the following interpretation for the 
equilibrium study of a process '1T = (.A, f, h) on E which is used by an n-person 
organization and is privacy-preserving relative to partitionings { ,gt�i} ; E N on E 
with sets indexed by the variables { e; } ; E N · Let there be a center - an ( n + 1 )st 
member -who announces to all the members in N (members 1, . . .  , n) an arbitrary 
non-repetitive sequence of trial messages m = (m\ . . .  , mi, . . .  , mn) belonging to 
v�t <nl. After the current message m is announced, every member i in N examines 
the current value of his private environmental characteristic e; to see whether 
ji(e;, m ) = m ; [where, as before, ji(e;, m) = Ji(e, m )] . If so, member i sends a 
" Yes" signal to the center. If the center receives n " Yes" signals, then an 
equilibrium message, say m E  v�t<n>, has been found; the center then computes 
the value of h(m, e) for the current environment and this becomes the organiza­
tional action taken in response to e. [If h determines a privacy-preserving n-tuple 
h\ . . .  , hn, and every a in A is an n-tuple (a1, . . .  , an) of members' actions, then 
each member i computes the new action h;(m, e;) and takes that action.] If and 
only if the center receives less than n "Yes" signals, a new trial message m is 
announced. 

One ignores, then, the fact that sometimes a large number of trials may be 
needed to reach an equilibrium message and sometimes a small number. Doing 
so, one can simply treat as costly the " size" of the set v�t<n) - i.e. some suitable 
measure of the size of the collection of messages which the center must be 
prepared, in the worst case, to try out. If v�t<nl is finite, the size is the number of 
elements in v�t <nl. If v�t<nl is a finite-dimensional vector space, then its dimension 
is a measure of size. 

The dimension approach is followed in a number of studies of resource-allocat­
ing mechanisms for economies [Mount and Reiter (1974) and Reiter (1974a, 

23Hurwicz's quasi-competitive process is informationally superior to the "greed" process with 
regard to coarseness of the partitioning on the possible message n-tuples m, = ( m� , . . .  , m7 )  induced, 
for any t and any fixed e, by the n-tuple m 1+ t · In both processes, messages are sets of resource-flow 
matrices and the outcome function assigns to an n-tuple of sets another set, namely, their intersection. 
In the greed process, the entire set S; , not the smallest cone containing it, is sent by i. On the other 
hand, the greed process achieves Pareto-optimality at equilibrium for a wider class of economies than 
the classic set E. It is not yet settled whether there is another process, in the class of processes 
satisfying (1) and (2) for the classic E, which is informationally superior - in the same precise 
sense- to the quasi-competitive processes. 



1394 Thomas A. Marschak 

1974b)]. For these mechanisms ,_;ff(n) is a continuum. These studies are well 
surveyed by Reiter (1977) and we shall not re-survey them here. In all of these 
studies, certain smoothness conditions are placed on the functions f and h. 
Without such conditions, a process with a many-dimensional ,_;ff(n) could be 
replaced by a process with a lower-dimensional ,_;ff(n) having the same equi­
librium outcomes for any e - by coding, in a " non-smooth" way, every many­
dimensional message as a one-dimensional one (e.g., n real numbers can be 
hidden in a single decimal number with n digits). Such smuggling of many 
dimensions into one dimension is felt to introduce certain additional costs, so that 
the apparent cheapness of the single dimension is illusory. These costs are not 
explicitly modeled but perhaps have to do with the fact that in practice a 
continuum of messages would have to be approximated by a finite collection of 
messages and a process with " smuggling" would be hard to approximate, since a 
small error in the one-dimensional message would lead to a very large error in the 
" smuggled" n-dimensional message obtained after decoding. 

A specific technology in which such costs would arise for non-smooth processes 
has not so far been presented in the discussions. Instead the general question 
asked has been: Given a certain class E of economic environments (economies), 
and given that the action set A comprises the economy's possible final consump­
tions, what is the lowest dimension of .A, where .A is a Euclidean space, for 
which there is a "smooth" process (.A, f, h ), privacy-preserving with respect to 
the natural partitions24 f!JJi on E, covering E with regard to equilibria, and 
achieving Pareto-optimality at every equilibrium outcome?25 In particular, is the 
lowest dimension that required by the competitive process, suitably defined? For 
the class E of classic economies, and various specific versions of smoothness, the 
answer to the second question has been shown to be "Yes" [Mount and Reiter 
(1974) and Hurwicz (1977)]. 

The simplest and earliest of these results is due to Hurwicz.26 Consider an 
n-person exchange economy with L commodities. In the price mechanism a 
message consists of n L-dimensional trade vectors and L - 1  prices. Now let 
n = 2 and L = 3 and let each of the two persons have a utility function on the 
commodity triples with a quadratic term and a linear term. (We shall be 
considering the very same economy for n = L = 2 in Section 4.3.3 below.) It can 
readily be shown that if a mechanism had as its messages the two trade vectors 
plus less than 2 ( = L - 1) auxiliary variables and if it covered the set of all 
possible economies (endowments and linear-quadratic utility functions), that 
would imply a one-to-one mapping from the message space onto an "economy-

24 In the natural partitions, each agent knows his own endowment, preferences, and technology. 
25 If the sets .A are not restricted to Euclidean spaces, then dimension is replaced by a more general 

concept. 
26The central technique of proof first appeared in Hurwicz (1972), but the discussion there did not 

deal with economies. The most general version of the result sketched here appears in Hurwicz (1977). 
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space" of higher dimension; but such a mapping cannot be Lipschitzian. So if 
" smooth" is taken to mean that the mapping from messages to environments is 
Lipschitzian (or, more precisely, contains a Lipschitzian selection), then there 
exists no smooth mechanism which covers all linear-quadratic two-person ex­
change economies, achieves (at equilibrium) what the price mechanism achieves, 
and has a message space consisting of trade vectors and auxiliary variables and 
having a dimension lower than that of the price mechanism's message space. A 
fortiori there exists no such mechanism covering a larger class of two-person 
economies than the linear-quadratic class. The result extends to n persons and to 
message spaces more general than the trade-vectors-plus-auxiliary-variables spaces. 

Results of this sort are clearly important if one wants to assess in a preliminary 
way the classic informational claims made for the competitive mechanism-claims 
long unsubstantiated since it appeared too difficult to study them with rigor. This 
motivation amply justifies the approach even though it is incomplete from the 
point of view of a designer of organizations. The designer would be concerned 
with a specific transmission, observing, and action-taking technology. He would 
be concerned by the changing number of trials required, from one environment to 
the next, to reach an equilibrium message. He would be concerned with costs not 
captured in the size of vlt, e.g. the action-taking effort, perhaps measured by the 
size of the set of possible equilibrium outcomes (actions). The " trial message" 
procedure, moreover, is generally not a well defined one-step design in our earlier 
sense. 

Some processes, however, are one-step designs. To define them-and for other 
purposes as well- it is first convenient to replace our definition of process by a 
slightly more compact one. The new definition is suggested by the " trial message" 
interpretation just given. We define a process on E, privacy-preserving with 
respect to partitionings { _glli } i E n on E, with each set in _g�Ji indexed by a value of 
e; E E;, as a triple 

P = ( M, g, h ) ,  

where M i s  a language (whose elements we may think of as a center's trial 
announcements) g is an n-tuple of functions (g\ . . .  , g;, . . .  , gn), where g; is a 
function on E; X M taking27 two integer values, namely, zero and 1 ;  and h is 
from M X E to A.  For a privacy-preserving process 'lT = (vlt, f, h)  as defined so 
far, one obtains the new form P = (M, g, h) by letting M = v�t<nl, letting 

= 1 otherwise, 

27Again, E; denotes the set of possible values of e;. 
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and letting h = h. The new form, then, simply suppresses the fact that an 
announced trial message is an n-tuple of individual messages. The equilibrium 
messages and actions for the new form are the same as those for the associated 
original form: for P = (M, g, h), m E  M is an equilibrium message for e, with 
characteristics ( e1, . . .  , en), if and only if g;( e;, m) = 0, all i in N. We shall, 
through the rest of the present section and the next one (Section 4.3) consider 
only processes P = ( M, g, h) as just defined. 

Now suppose that a process P = (M, g, h )  on E is privacy-preserving with 
respect to the partitionings { f!IJ; }; E N• where for each i the sets in f!IJ; are indexed 
by the variable e; and E; = { e; } .  We shall say that the process P is a one-step 
process if (i) there exists for each i a set I; of non-empty sets whose union equals 
E; and (ii) there exists a one-to-one mapping y from M to M = T1 X · · · X Tn 
such that for each i and for every m in M, g;( e;, m) = 0 if and only if e; E t;, 
where (t1 , . . .  , tn) = y(m ). One can interpret such a process as follows: Person i 
observes his local environment e; and determines a set t; in I; to which it 
belongs. This set is communicated to a center. The center finds that m for which 
y ( m)  = ( t  1 , . . • , t n); then the action h ( m, e) is taken. A sequence of trial announce­
ments is not needed. Suppose we now add an explicit statement as to who 
computes and takes the action h ( m, e). If h is privacy-preserving, then the action 
has n parts, each the responsibility of one member, who computes and takes that 
part of the action once the center has announced m; if not, then the entire action 
is computed and taken by the center. To carry out the process in this way is to 
operate a one-step design as we have defined it. In the terminology of Section 2.1, 
a one-step process defines a one-step design covering E with respect to A, where 
A is any set containing the set of actions { a  : a = h ( m, e) for some m in M and 
some e in E }. 

To any arbitrary process P = (M, g, h), there corresponds a one-step process 
which we shall call the standard form of P; it is denoted P* = (M*, g*, h* )  and is 
privacy-preserving with respect to the same partitionings as P. A message in M* 
is an n-tuple of sets. We have 

where 

Further, for any m = (R1, . . .  , Rn) E M*, 

g*;( e; , m) = O  if R; = f.L;
g( e; ) ,  

= 1 otherwise, 

(4.2) 

(4.3) 
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and, for any e in E, 

h* (m ,  e ) = h (me, e ) , (4 .4) 

where me denotes an element uniquely selected from the set ni e NRi. The standard form P *  = (M*, g*, h*)  has the following interpretation: Mem­
ber i observes the environment to determine the current value of e;, say e;. He 
then sends to the center a message, which, is a set, namely, the set !L;/ e;) of all 
those messages- all those elements of the original language M - for which he 
would, in the original trial-message procedure, say "Yes" when e; has the value 
e;. The center examines the n such sets received and selects a message, in the 
original set M, which lies in all of these n sets.28 For the current environment this 
is an equilibrium message of the original process P = (M, g, h )  and is also an 
equilibrium message (with respect to g*)  of the standard-form process P*. (If the 
original process covers E with respect to equilibria, then the intersection of the n 
sets cannot be empty.) An action is then assigned to the equilibrium message so 
found; it must belong to the set of equilibrium actions for e in the original 
process P. If we interpret P*, then, in the sending-of-messages-to-the-center 
manner, and if we add an explicit statement as to who determines the equilibrium 
action, then we have well defined a one-step design, for n members plus a center, 
which realizes the process P = (M, g, h) . Given any e, the design generates as an 
output an action which is an equilibrium outcome for P. 

As an informally sketched example, consider an adjustment process of a 
" Lange-Lerner" price type with n managers and a price-announcing center who 
allocates an organizational resource. In the original process, 29 the center an­
nounces a new price at each step t as a function of profit-maximizing excess 
demands received at t - 1 .  Only at equilibrium are the right prices found; it is its 
achievement at equilibrium that makes the process worth studying and worth 
comparing with others which achieve the same allocation at equilibrium. In the 
standard form of the process, each manager, after observing the current environ-

28To see that the standard form is indeed a one-step process as defined above, we have to exhibit 
the mapping y. For any message m* = (S1 , . . .  , Sn) E M* let y(m*) = [ y1 (m*), . . .  , Yn (m*)], where 
Y; ( m * )  = { e; : g

;( e; , m) = 0 for all m E  S; }. The mapping is one-to-one. Suppose not. Then M* 
contains an m *  = (Sl • ·  . . ' Sn ) and an m* = (Sl ,  . . .  ' S, ), s�h that for some i ,  S; * S; and Y; (m*)  .:::' 
y; (m**).  Suppose (i) S; = { m E M : g;(e;, m)_ = 0} and (ii) S; = { m e M : g;(l;; ,  m) = 0}. Since S; * S;,  
3 m  E M  such that (iii) m e  S; but (iv) m � S;.  Now (iv) means that g;

(e; ,  fh) '* 0 ;  that means in tum 
(sine� m E  S.J that e; � Yi(m*)  = { e; : gi(e; ,  m) = !/, for all m in S; }. On the other hand (ii) implies 
that ii; E Y;(m*)  = { e; : g'(e; ,  m )  = 0 for all m in S; } . That contradicts the statement that Y; (m*)  = 
Y; (m**). 

29The original process can be defined formally so that it has the "(M, g, h )" form. An element of M 
is a trial announcement of managers' local actions and prices. One can also define the process in the 
"(A, /, h)" form. An element of Jt (a message by member i) is a set of prices and managers' 
actions; i proposes a value of his own action by announcing the set defined by that value and by all 
possible values of the other variables. 
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ment - determining his current technology- computes a demand schedule, giving 
the profit-maximizing demand he would announce, for that technology, at every 
possible price in the original process. The center receives the n demand schedules 
and uses them to find a price at which total excess demand would be zero (or 
possibly negative); he then gives each manager i an allocation equal to i 's 
(profit-maximizing) demand at this equilibrium price. Informed of his allocation, 
each manager chooses a (profit-maximizing) value of whatever local action 
variables are in his charge. A one-step design, then, has achieved the equilibrium 
of the price process. 

The standard form requires, in general, a richer language than the original 
form, 30 but since it defines a one-step design, with no mystery as to a terminal 
step, the assessment of its cost, and its payoffs over successive time periods, can 
proceed. 

4.3. Discrete processes31 

4.3. 1 .  Introduction 

The assumption that a process P = (M, g, h)  has a countable language M permits 
mathematically distinct approaches to the assessment of its costs and payoffs. The 
language may be not only countable but discrete. A discrete language lies in a 
metric space and for each element of the language there is a neighborhood 
containing that element but no other element. Among discrete processes those 
with a finite language are of particular interest. 

In the present section we mainly consider processes with discrete languages. 
But some remarks apply as well to the larger class of countable processes and 
some only to the smaller class of finite processes. We shall refer to any process 
whose language is not countable as a continuum process. 

From a technology-modeling point of view, one many argue that discreteness is 
realistic: it is not possible to send any one of a continuum of messages over a 
transmission device found in the real world. If the continuum is the real line, for 
example, then any number to be sent has to be rounded off to a pre-selected 
number of digits. A further reason to study countable or discrete processes is to 
see what results from the study of continuum processes have natural counterparts 
in the countable or discrete case. In particular, are there counterparts to the 
finding that there are no " smooth" continuum processes which achieve what the 
price mechanism achieves but have a message space of lower dimension? 

30An example is given in footnote 36, below. 
31 The problems and results summarized in this section are based on joint work of L. Hurwicz and 

the author [Hurwicz and Marschak (1984)]. An early remark on a finite counterpart to the smoothness 
conditions of the "continuum" literature considered above is found in Hurwicz (1972, p. 314). 
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We start by considering any process P = (M, g, h )  which 

(a) has a countable M 
(b) is privacy-preserving relative to partitionings { f!JJ; } ;  E N 

on E ,  where each set in f!JJ; is indexed by a value of the 
variable e; , whose possible values comprise the set E; 

(c) covers E [for every e in E, there is an m in M 
for which g;( e; , m ) = 0, all i ] 

(d) has an outcome function h whose domain is M and not M X E 

We assume further that 

the index n-tuple ( e1 , . . .  , en ) uniquely determines e ,  i .e ., } 
for every n-tuple ( T1 , . . .  , Tn ) with T; E f!JJ ', all i in N, . 
n; E NT; is a Singleton 
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. (4.5) 

(4.6) 

Now ( 4.6) is satisfied if the variable e is identical with the n-tuple ( e1, . • .  , en) and 
if 

(4.7) 

where, as before, E; denotes the set of possible values of the variable e;. 
We consider in the rest of the present section (Section 4.3) only triples 

( E, P, { f!JJ; } ; E N) satisfying ( 4.5) and ( 4. 7). 

4.3.2. Realizing a discrete process in one step 
It will be useful to define, for any process P = (M, g, h) on E, 

CJ�(m ) = { e, E E, : g;( e; , m ) = O} } CJg(m ) = fl CJ:(m ) . i E N 
.2'� = { S � E, : S is non-empty; S = CJ�( m ) for some m in M }  

(4.8) 

If E; is a set in one-dimensional Euclidean space, then every set CJg(m) is the 
intersection of E with a countable union of rectangles, where each rectangle has 
dimension n or lower. 

We tum now to a two-person organization whose environment set E = E1 X E2 
is a closed rectangle in non-negative real two-space with one corner at the origin; 
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a� (m2 ) 
2 - ) 1 ag (m3 

- R2 
agcill2 ) a&Cill3) 

a� (ml) - R2 � ag (ill1) 
.... 0 

Figure 4.1 

E; ( i = 1, 2) is a closed interval of the non-negative real line, with zero its smallest 
element. The two figures which follow portray two privacy-preserving processes 
on E, i.e. two triples, (M, g, h) and (M, g, h ). Process P = (M, g, h)  has a 
language M containing just three messages: iiz1, iiz2, m3• Process P = (M, g, h)  
has a language M with just four messages: m1, m2,  m3 ,  m4• Assume that process 
'P_ obeys ti:e condition that "m' i= m" and ag(m')U ag(m") is a rectangle" implies 
"h(m ') i= h(m")".32 In Figure 4.1 the three interior clcsed rectangles portray the 
three sets ag(m1), ag(m2), ag(m3). The indicated closed interv�ls �ortray the �ts 
a�(mk) ( i  = 1 , 2; k = 1, 2, 3), which, for brevity, are called R1, R1, R1 and R 2, R2• 
The interior closed rectangles and closed intervals of Figure 4.2 portray the 
analogous sets for process P; there the interi_gr int�rvals are denoted T1, T1 and - . 1 - - 2 - 1 -T2, T2• In the notatwn of (4.8), 2g = { R1, R1, Rt} ,  2g = { R2, R2 } ;  2g- = { T1, Td, 2 -
2g = { T2, Td. _ 

Now we can associate with process P a one-step process which we shall call the 
observational-report form of the original process. In this form the language 
consists of pairs of sets, namely the four pairs {(T1, T2), (T1, T2), (T1, T2), 
(T1, T2)} .  Person i observes in which of the closed intervals, 1'; or f;, the current 

32 Clearly if a process P = ( M, g, h) has two messages, rn' and rn", for which h (rn') = h (rn"), 
while at the same time ag( rn')U ag(rn") is a rectangle, then the two messages can be consolidated, i.e. 
there exists another privacy•preserving process on E, with the same equilibrium actions as P and with 
a language smaller than M if M is finite. 
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2 - 2 -
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local environment ei lies and announces that interval to the center. If ei lies on 
the boundary of two intervals, he announces either one. The center next finds that 
m in M such that a,g( m) is t�e closed rectangle which i� the cartesian product of 
the two intervals. The action h ( m) is then taken, where h is the outcome function 
in the original triple (M, g, h). 

For any e in F' the equilibrium actions for the one-step observational-report 
form are exactly t. � of the original process, i.e. the one-step process realizes the 
original process P. 1�ote that the observational-report form has a four-element 
language, a language of the same size as that of the original process. 

We may define the observational-report form for any process P = (M, g, h). It 
is the triple P = (m, g, h), where 

(a) M = { ( S1 , . . .  , SJ : si E 2�, i = 1 ,  . . . , n } 

{b) gi ( ( ei , (S1 ,  . . .  , Sn )] = O if ei E Si 
= 1 otherwise 

(c) h ( ( S1 ,  . . .  , Sn )] = h (m ) , where m is the only element of M 
satisfying ag( m) = n�=lsi 

(4.9) 

But the observational-report form of a given process P may not exist, since (c) 
may not be satisfiable for some n-tuple (S1, . . . , Sn). The observational-report 
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form exists [i.e. (c) can always be satisfied] if and only if for every n-tuple 
(S1, . . .  , Sn) with S; E 2�, all i, there is one and only one m E  M such 
that ag(m ) = n�_lsi. If the observational-report form of p does exist then it 
realizes P. 

For process P of Figure 4.1, the observational-report form, as just defined, does 
not exist, since e.g. there is no element m in M = { ih1, ih2, m

3
} such that 

a.g(m) = R1 X R2• It is true that we can depart from the observational-report form 
as just defined, and construct another one-step process which realizes process P, 
by discarding the set R1 from the pairs in the language. For !b.at proce�- call it 
P * = (M*, g*, h* )-we have M *  = {(R1, R 2), (R1, R2), (R1, R2), (R1, R1)}, 
while g*; and h*  are defined analogously to g;, h in (a) and (c) of (4.9). But that 
process, while indeed a one-step process realizing P, has four elements in its 
language, whereas P itself has only three. There is, in fact, no privacy-preserving 
one-step process with a three-element language which realizes process P [assigns 
to each (e1, e2) in E the equilibrium actions which process P assigns to that 
(e1, e2)]. Process P covers E with the three closed rectangles of Figure 4.1 and 
assigns a distinct outcome to each rectangle. To construct a one-step process 
realizing process P, we must choose subsets of E1 and E2 such that the Cartesian 
product of each subset pair is contained in ohe of the rectangles and each point in 
E is contained in one of the Cartesian products. But every collection of subset-pairs 
with that property contains more than three pairs.33 

Summarizing the basic differences between process P and process P: 

(i) Process P has an observational-report form, as defined in (4.9), in which 
f!!!ery set in

_ 
2� is a possible message sent by i. The observational-report 

..!_
orm of 

P realizes P in one step and has a language exactly as large as that of P itself. 
(ii) There is no one-step process which realizes process P and has a language no 

larger than that of P itself. 

To put it another way, both of the original processes P and P cover E with 
regard to equilibria, assigning certain action sets to points of E.34 The assign­
ments made in process P lnight be superior to those made in process P, with 
regard to some appropriate measure of performance, 35 even though P has a 

33 If the collection contains three or fewer subset pairs, then for either £1 or E2 there is exactly one 
subset. Suppose that is true for £1. Then there is no subset S of E2 such that £1 X S is contained in 
the top left rectangle. Suppose it is true for E2 . Then there is no subset S of £1 such that £2 X S is 
contained in the bottom rectangle. 

34 To points on the boundary of two rectangles a set containing more than one action is assigned. 
For process P, a point on the boundary shared by the two lower rectangles is assigned the action set 
(li\m3), h(m4)} . 

3 See Section 4.3.3 below. 
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smaller language. But unless the language size is increased, the equilibrium 
actions of process P cannot be realized in one step; it requires a sequence of trial 
announcements- sometimes as many as three-before an equilibrium message is 
found. The equilibrium actions of process P, on the other hand, can be realized in 
one step, by transmission of observational reports to the center, without changing 
the language size. 36 

Now what general property of a process, going beyond the finite Euclidean 
space of the preceding two illustrative processes, makes it behave like process P 
and not like process P? The answer is provided by the following definition; the 
definition abstracts from the visual intuition that a process like P imposes a grid 
on E while a process like P does not: 

Definition 
A process P = (M, g, h )  on E is said to have a grid structure if 

for every i in N no set S in 2� is contained in the union ) 
. 

of some sets in 2�, all of them distinct from S .  
(4.10) 

(Equivalently, P has a grid structure if _!or every _j in N and �ery S in 2�, there 
exists an element x E S  such that x ft. S for all S E 2� with S =I= S.) 

Clearly process P has a grid structure and process P does not. If E is a subset 
of a metric space, then a process P = (M, g, h) on E has a non-overlapping grid 
structure if for all i any two sets S, S' in 2� are either disjoint or have only 
boundary points in common, where every neighborhood of a point in the 
boundary of the two sets contains points in both sets. Process P has a non-over­
lapping grid structure. The discussion which now follows would be greatly 
simplified if we confined attention to non-overlapping grid-structure processes on 
subsets of metric spaces. But the question of when a one-step realization is 
possible and what language size this requires is important enough to merit a more 
general treatment. 

36For both processes P and P there is another one-step form, namely the standard form, defined in 
(4.1) to (4.4). But that requires a larger language than the observational report form. Thus in the 
standard form of process P there are three possible messages for person 1 :  (i) the message ( fil1, fil 2 ) to 
be sent if e1 lies in the interior of R1 [i.e. for such an el.l the set IL1( e1) ,  defined in (4.2), is { filu fil 2 } ] ;  
(ii) the message S,_fil1,  fil3),if e1 lies in the interior of R1; (iii) the message ( fil1, fil 2 , fil,) if  e1 lies at 

the boundary of R1 and R1� Similarly there are three possible messages for person 2. So the language 
of the standard form of P has nine elements. 



1404 Thomas A. Marschak 

It can be shown37 that if a process P = (M, g, h) on E has the grid structure, 
then 

(a) for every n-tuple (S1, . . .  , Sn) with S; in 2�, there is an 
m in M for which ag(m) = ni ENsi 

(b) for every m in M with ag(m) non-empty there is an n-tuple 
(S1, . • .  , Sn) with S; in 2� and ag(m) = fl; e Nsi 

(c) if M is finite and contains no m for which ag(m) is empty, 
then the number of n-tuples (S1, . . .  , Sn) with S; in 2�, 
i = 1, . . .  , n, equals the number of elements in M 

(4.11) 

A process which obeys (4.11) need not have the grid structure. But if it obeys 
(4.11) together with the condition of non-redundancy then it must have the grid 
structure. A process P = ( M, g, h)  satisfies this condition if M contains no 
redundant messages. A message m E  M is redundant if ag(m) is non-empty and 
is contained in U m e Mag( m ), where M c M and m ft. M. (If a process has 
redundant message there exists a second process with the same equilibrium 
actions for every e as the first process and no redundant messages.) 

37 Proposition (b) of (4.11) follows immediately from the definit�n of ug. The proof of proposition 
(a) is as follows, for the case n = 2. Suppose S1 = ui (m), S2 = ui(m), and both sets are non-empty. If 
both S1 and S2 contain only one element or if 2:1 or 2:2 contains only one set, then the assertion of 
(a) follows trivially. Suppose (without losing generality) that S1 has more than one element and that 
2:1 contains more than one set. Then, in view of (4.10), there exists a point e* = ( eJ", e!) in S1 X S2 
such that 

(* ) 

[Suppose not. Then for every (e1, e2) in S1 X S2 there exists an m spch that e1 � ui( m )  and 
ui ( m )  ,P ui ( m ). That is to say, for every ( e1 , e2) in S1 X S2 there exists S1 E 2:1 with S1 "*- Sl > such 
that e1 E .S\ and e1 E S1. That means S1 is contained in the union of some sets in 2:;, all distinct from 
s1 , which contradicts (4.10).] 

Since the process covers E with regard to equilibria there exists an m* with e* E ug (m*). We shall 
show in two steps, that ug ( m * )  = S1 X S2 . 

Step I. Let e ,P  e* belong to ug(m*); in particular (without losing generality) suppose (a) 
e1 $ S1 = ui ( m ). We have (/3) e1 E ui (m*) ;  (y) eJ" E ui (m);  (8) e;* E ui (m*). Now one of three 
possibilities must hold: (a) u1(m*) = ui\m), which contradicts (a), (/3); (b) ui(m*)n ui (m) is 
empty, which contradicts (y) ,  (8); or (c) ug (m*)  "* ui (m),  but ui (m*)n ui (m) is not empty. But (c), 
together with ( y) and ( 8), contradict ( * ). Hence e1 E s1 . An identical argument establishes e2 E s2 . 

Step II. Suppose e *- e* belongs to S1 X S2 . Suppose e $ ug(m*);  in particular, suppose (without 
losing generality) that (X) e1 $ u:(m*).  We also have (p.) e1 E ui (m), in addition to (y)  and (8) of 
step I. Of the three possibilities hsted in step I, (a) contradicts (A), (p,); and (b) and (c) are ruled out 
as in step I. Hence, e1 E ui (m*). An identical argument establishes e2 E uff(m*). 

Proposition (c) of (4.11) follows directly from (a) and (b). 
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If a process P = (M, g, h )  is non-redundant and has the gr id structure then it 
obeys, moreover, a strengthened form of (4.1 1), in wh ich (a) becomes "for every 
n-tuple (S1, . . .  , Sn) w ith S; in 2� there is one and only one m in M for wh ich 
ag( m) = n i E Nsi ". The strengthened form is nee�ed if the observat ional-report 
form of P is to ex ist, i.e. if the outcome funct ion h in (4.9) is to be well-defined. 
A non-redundant fin ite-language gr id-str ucture process P = (m, g, h)  has then [ in 
v iew of (4.11) in its strengthened form] an observat ional-report form wh ich 
real izes P and has a language the same s ize as M. 

F inally, if a process P = (M, g, h) w ith a fin ite language M is non-redundant, 
if "m * m' and ag(m)U ag(m') is a Cartes ian product " impl ies "h(m) * h(m')", 

and if the process lacks the gr id str ucture, then there does not ex ist a one-step 
process wh ich real izes P and has a language not larger than M. The argument 
used above to establ ish th is fact for the illustrat ive process P can be general ized. 

4.3.3. Informational efficiency of discrete processes 
We tum now to the informat ional e ffic iency of d iscrete processes. Suppose the set 

A of poss ible act ions l ies in a Eucl idean space. An organ izat ion has to choose a 
po int in A in response to an env ironment e in a set E. It contemplates do ing so 
by us ing a proposed d iscrete process on E. We shall use a new measure-not 
expected payo ff- of the process's "gross " performance. The measure is well­
defined for many infin ite-language d iscrete processes but w ill be part icularly 
useful for the study of fin ite-language processes. Let </>(e) denote, for any e in E, 
a un iquely selected payo ff-ma xim iz ing act ion in A.  ( We confine attent ion to cases 
where a payo ff-ma ximiz ing act ion e xists for any e in E.) Our measure of gross 
performance of a process P = (M, g, h)  sat isfy ing (4.5) w ill be the "ma ximum 
poss ible error " of the process P or, as we shall call it for brev ity, the "error of the 
process P " . Th is is 

eq. (P)  = sup sup l l h (m)- <t>( e) l l , 
m e M  e e og(m) 

where, as before, 

and the symbols II denote Eucl idean d istance. Study of th is measure is confined to 
processes P for wh ich eq. e xists (a su ffic ient cond it ion is that h be bounded on 
M). The error eq.(P) is, loosely speak ing, the largest poss ible d istance between the 
act ion which the organ izat ion "should " take [ i.e. </>(e)] and the act ion actually 
taken when the process P atta ins an equ il ibr ium message. We shall call </> an 
optimality function. 



1406 Thomas A. Marschak 

Consider now the following question about a given process P. Is there any 
other process P* on E with e<t>(P* )  < e<P(P ), with the informational costs of P* 
not higher than those of P and with a t  least one of these inequalities strict? I f  not, 
the process P is efficient. If there is no such P*  among the processes in a given 
class of processes, then P is efficient within that class. 

Studying such an efficiency question for a minimax performance measure like 
e<t> is, of course, not accepted lightly by someone who regards expected-utility 
maximization with personal probabilities as the only proper procedure for a 
designer or any other decision maker. As the remarks in Section 1 emphasized, 
however, such a viewpoint must also reject the efficiency study of designs with 
regard to expected payoff. Both lines of study are equally " illegitimate", yet it is 
such lines of study, not uncompromising expected-utility comparisons (with 
utility defined on payoff and cost), that one can feasibly pursue. 

The performance measure e<l>, in the proposed efficiency study of processes, is 
itself subject to criticism, since it ignores the payoffs earned by the actions which 
might be in force before the process generates an equilibrium action. If the 
process has a one-step realization, the criticism is not serious. 

On the cost side, progress requires some bold assumptions. In the spirit of 
existing equilibrium studies of processes we ignore all costs incurred in the steps 
which precede equilibrium. Again the omission is not serious if the process has a 
one-step realization; it then becomes a one-step design in our earlier sense. 

Two cost elements will be considered: (i) the size, or for . infinite-language 
processes, the " fineness", of the language M, and (ii) the size or fineness of the 
process's action set h(M) = { a : a = h(m) for some m in M} .  If a process 
P = ( M, g, h)  has the grid-structure, then it can be realized by the one-step 
observational-report form, and the size or fineness of M is a measure of 
"observing effort" or " the precision of observational reporting", since M and g 
determine the sets a;(m) in which person i seeks to locate the current environ­
ment ei. The size or fineness of the action set h(M) is a measure of implementing 
or action-taking effort. In some cases it may also measure some aspects of 
computing effort: an outcome function h which partitions M coarsely may be 
easier to compute than one which partitions M finely. Beyond that, however, no 
explicit measure of computing effort will be suggested. That may create difficul­
ties, as the "price-mechanism" result summarized in Section 4.3.4 below il­
lustrates. Useful measures of computing effort remain a major unmet challenge in 
the study of adjustment pro"tess and the study of designs in general. 

We shall not present a general definition of the two "fineness" measures which 
are to be used when language and outcome set are infinite. Some natural measures 
will emerge in the illustrations of Section 4.3.4. 

We now narrow the discussion to the case of an optimality function cp which 
takes its values in one-dimensional real space and to processes whose action sets 
lie in one-dimensional real space. 
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Three basic propositions are important tools in the construction of discrete 
privacy-preserving processes on a set E = E1 X · · · X En whose actions are points 
on the real line and which are informationally efficient with regard to a real-val­
ued <f>. 
Proposition 4.1 (optimality of the "closest -to -midcontour" outcome function) 
Let P = ( M, g, h) be a process on E for which e<P(P) exists. Let A denote the 
action set h (M). Let P *  = (M, g, h*)  be another process on E, where h *  is 
defined as follows: 

for any m E  M *, h* (  m) is the smallest element of a set 
which has either one or two elements, namely the set 
{ ii E  A :  Iii - d</>(m) l ;;:::; Ia - d</>(m) l, all a in A } ,  where 

d </> ( m ) = ! I inf </> ( e ) + sup </> (e ) I e E <>g(m) e E <>g(m) 

Then e<P(P* )  exists and e</>(P*) ;;:::; e<P(P). 

(4.12) 

The proposition says that a proce�s for which the error E<P exists can be 
improved with regard to error, or at least not damaged, if the process's outcome 
rule is changed so that the action set remains the same but the rule for assigning 
actions becomes the following: to each of the sets ag( m) the rule assigns38 that 
action (in the unchanged action set) which is closest to the "midcontour" action 
for ag(m ), with ties being broken in favor of the smaller action. The "midcontour" 
action for ag( m) is that action which is midway between the infinum of the 
function </> on the set ag( m)  and the supremum of </> on that set. Given any triple 
(A, M, </>) we shall call the function h* defined in (4.12) the closest-to-midcontour 
function for (A, M, </> ). 

Proof of the proposition is straightforward. 

For the next proposition call a process 7T = (M, g, h)  on E </>-connected 
whenever we have (i) e', e", e "' in E; (ii) m E  p,g(e '), m E  p,g(e '" ) ; (iii) <f>(e') ;;:::; 
<f>(e") ;;:::; </> (e "' ). Then we also have m E p,g{e"). [Here p,g(e), following the 
definition in (4.2), denotes {m E  M:  g i(m, eJ = 0, all i } .] The proposition says 
that if a process which lacks the property is modified so that it displays th e 
property, then the error E<P is not increased. Specifically: 

Proposition 4.2 (Optimality of "<!> -connectedness") 
Suppose e', e", e "' E E and </>( e') ;;:::; </>( e") ;;:::; </>( e "' ) . Suppose P = ( M, g, h)  is a 
(not </>-connected) process on E such that for some m E M, m E ,., g( e'), m E 

38Since an outcome rule assigns an action to each m in M, it also assigns an action to each set 
og( m ). 
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p.g( e  "'). Let P *  = (M*, g*, h*)  be another process on E such that M *  = M, 
h* = h ,  

ug. ( e ) = p.g( e) , for all e in E\ { e" } , 

and 

p. g* ( e ") = { m } . 

Then 

The proposition implies, in particular, that if for every i = 1, . . .  , n ,  E; is a 
subset of the real line, and if cp is non-decreasing or non-increasing in each of its 
arguments then we can confine attention, in searching for grid-structure processes 
with low error, to grid-structure processes ( M, g, h )  for which every set og(m) is 
the intersection of E with a single rectangle of dimension n or lower. 

To state the third proposition some definitions are needed. For a given process 
P = ( M, g, h )  on E, let a, /3 be, respectively, the infinum and the supremum of <P 
on E. Assume that )a, /3[ � cp(E). For m in M, define urn = inf{ cp(e) : e E og(m)},  
vm = sup{ cp(e) : e E og(m)}. For a � X < Y � /3, define the set B';y to be the 
empty set if um � y or vm � X, and the set { e : e E og(m); X � cp(O) � Y } 
otherwise. Thus B';y comprises those environments which are in og(m) and have 
cp-values in [ X, Y], except that if such an environment, say e *, lies also in og(m) 
for some m =F m, then e*  is assigned to B';y or B';y according to whether og(m) 
or og(m)  contains environments whose cp-values are in )cp( X), cp(Y)[. 

For a � X < Y � /3  and A c R, let EA( X, Y) = sup{ lhA(m) - cp(e) J : m E M; 
B';y non-empty; e E B';y }, where h A denotes the closest-to-midcontour function 
for (A,  M, cp). (Thus, for the action set A, EA( X, Y) is the supremum of the 
errors on the entire " belt" of environments whose cp-values are in [ X, Y], where 
environments lying in several distinct sets og(m)  are deemed to belong to the belt 
or not in accordance with the preceding definition.) For m in M and a �  X <  Y 
� /3, A c R  and B';y non-empty, define FmA ( X, Y) = sup{ lhA(m)- cp(e) l : e E  
B';y } .  Call the set og(m) "A-critical on ( X, Y)" if B';y is not empty and 
FmA ( X, Y )  = EA( X, Y). [Thus og(m) is A-critical on ( X, Y) if it contains points 
(environments) in the "(X, Y)-belt" and for one of these points, say e*, the error 
ihA( m ) - cp(e*) l  equals the supremum of the errors over all points in the ( X, Y)­
belt.] Finally, we say that the finite set A has the "no-alien property for 
(A, M, cp )" if for two successive elements r, s of A (i.e., r < s and ] r, s [ n A is 
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empty), the action hA(m) equals r or s if ag(m) is A-critical on (r, s). [Thus if 
ag(m)  is A-critical on the "belt" defined by two successive elements of A, then m 
is assigned one of those elements (by the closest-to-midcontour function h A) 
rather than some "alien" element.] 

Then Proposition 4.3 is as follows: 

Proposition 4.3 (optimality of "equal-error" action k-tuples among all action k­
tuples when <[> is bounded) 
Let </> be bounded from above and below, i.e. there exist a, f3 E R such that 
inf{ <[>(e) : e E E }  = a, sup{ <[>(e) : e E E } = /3. Let <[>, E satisfy ]a, /3[ � <[>(E). Let 
P = (M, g, h)  be any process on E with h(M) = A,  where A has k elements. Let 
P *  = ( M, g, h*)  be another process on E, where: 

(i) h*(M)  = A* and h*  is the closest-to-midcontour function for (M, A*, <[>); 
(ii) A* has k distinct elements, namely a1, • • •  , ak, which are ordered, without 

loss of generality, so that a1 < a2 < · · · < ak; 
(iii) A* has the no-alien property for (a, M, <[> ); and 
(iv) A* satisfies the "equal-error" condition 

EA.( a ,  a1)  = EA.(a1 , a2) 

= EA. (a2 , a3 ) 

= EA.(ak - 1 • ak) 

= EA. (ak , /3 ) .  

Then eq,(P* )  � eq,(P). 

(4.13) 

The proposition says that if <[> is bounded then a process with a k-element 
action set can always be improved, or at least not damaged, if the action set 
becomes a k-tuple with the "equal-error" and no-alien properties, and the 
closest-to-midcontour outcome function is used. The proposition rests on a 
somewhat intricate argument. 

Propositions 4.1 and 4.3 tell us, then, that if <[> is bounded, then a search among 
processes with a k-element action set in order to find a process with a low error eq, 
can be confined to those processes for which the outcome rule is the closest-to­
midcontour rule, and the action k-tuple has the no-alien and equal-error proper­
ties.39 

39Each of the three propositions has a counterpart for the case of actions which lie in the real space 
of dimension greater than one. 
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One can, in particular, study the case of a linear cf> on a compact E in a finite 
Euclidean space. Consider the class of k-action grid-structure processes on E, 
where the grid is constrained to consist of cubes of the same size [each cube being 
a set ag( m )]. An exact error-minimizing action k-tuple for such processes (a 
k-tuple with the equal-error and no-alien properties) has been found as a function 
of cf>, E, and cube size. 

4.3.4. Illustrative applications to the study of resource-allocating mechanisms 

Suppose persons 1 and 2 comprise a two-person two-commodity exchange 
economy. Let x and z be symbols associated with the two commodities. For 
person i, endowments of the two commodities are wx , wz .  Additions to endow­
ments (net trades) are denoted X;, z;.  Utility as a function' of net holdings is 

(where a; > 0, /3; > 0), provided 

auj ax; = lX.; - /3; ( Wx, + X; ) � 0 .  (4.14) 

Now define en = a1 - /31wx, • e21 = a2 - /32wxz• e12 = /31 > 0, e22 = /32 > 0, e1 = 
( ew e12), e2 = ( e21, e22), e = ( e1, e2). Then ( 4.14) becomes 

(4.14') 

The pair of consumptions [( wx1 + x1, Wz1 + z1), ( Wx2 + x2, Wz2 + z2)] is an interior 
Pareto optimum if at that pair (4.14') holds for i = 1 ,2 and 

X1 = ( al - lX2 - fJ1wx1 + f32wxJ/(f31 + /32 ) 

x2 = - xl , 
z1 + z2 = 0, 
zl + wzl � 0, i = 1 ,2 . 

( 4.15) 
(4.16) 
(4.17) 
(4.18) 

Now let a set E of pairs e = (e1, e2) be given. Consider the following con­
tinuum " price" mechanism P = (M, g, h) on E:  

M = { ( p ,  x ) : p = ( ene22 + e21e12 )/( e12 + e22 ) , 
x = (en - e21 )/( e12 + e22 ) for some e E E} , 

gl = en - e12x - p , 
h ( p , x ) = x. 



Ch. 27: Organization Design 1411 

Here p is a price and x is a proposed value of the net trade x1. For every e E E, 
the unique equilibrium outcome (the unique element of the set h[�tg(e)]) is 
xe = (en - e21)/(e12 + e22). The inequality (4.14') is satisfied for x1 = xe and 
x2 = - xe provided 

(4.19) 

We consider only E such that (4.19) is satisfied for all e E E. 
We are interested in the informational efficiency of discrete versions of the 

mechanism ( process ) P, as well as the efficiency of other processes on E. An 
appropriate optimality function for this purpose would be one which assigns to 
each e E E,  the set of interior Pareto optima for the economies defined by e. 
Fortunately, however, we do not have to deal with optimality functions which are 
set-valued and not point-valued. For it happens that in the economy considered, 
with its utility functions linear in Z;, every interior Pareto-optimal trade vector 
(x1, x2 , z1, z2) for the economies defined by a given e has the same value of x1 
(and hence also the same value of x2 = - x1), namely x1 = (en - e21)/( e12 + e22). 
Any (z1, z2 ) satisfying (4.17) and (4.18), combined with x1 = (en - e21)/(e12 + 
e22 ) is also, for any e E E, the unique equilibrium outcome of the continuum 
price mechanism P. Therefore, if one chooses P out of those privacy-preserving 
continuum processes on E which achieve a Pareto-optimum at equilibrium, then 
one imposes no "bias" in favor of certain Pareto optima: the x-components of an 
optimum are unique and the process P leaves open the specification of the 
z-components. 

Hence, in judging a certain discrete process on E, it is natural to use the 
point-valued optimality function If>( e) = (en - e21)/(e12 + e22), and to compare 
the maximum distance between that process's equilibrium actions and If>( e), with 
the corresponding maximum distance for other processes on E. 

Judging the information efficiency of discrete versions of the price process P is 
a task which is very different when the environment set is compact than when it is 
unbounded. We consider both compact and unbounded examples. 

A compact two-parameter set of economies. Consider first the economies de­
fined by the following compact set E: 

For every e E E, (4.19) holds. It will save notation in studying this E, to let the 
symbols e1, e2 temporarily take new meanings : let e1 now denote e11, let e2 
denote ew let e = ( e1, e2) and let E now denote the set { e = ( e1, e2) :  0 � e1 � 
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Figure 4.3 

1 ,0  � e2 � 1 }. Our optimality function becomes cp(e) = t(e1 - e2). The con­
tinuum price mechanism P = ( M, g, h), redefined so that it is now a mechanism 
on the redefined E, has 

M =  { ( p , x) : p � O ; p + x - e1 = 0, p - x - e2 = 0  
for some ( e1 , e2 )  E E} 

= { ( p , x) : p � O, Ixl � p � l - lx l ,  - !- � x � !- } , 

h ( p , x ) = x. 

The language M, that is to say, consists of all points in the rotated square shown 
below (Figure 4.3). 

We consider now a discrete approximation, called P, to the continuum price 
process P. The approximation is a process whose language is a subset of M*, 
where M * denotes the points in M which are obtained when one imposes on M a 
uniform lattice whose points are spaced a distance of t apart, with the origin 
being a lattice point. The set M * has 25 elements, namely the points shown in 
Figure 4.4. 

In the approximating process P, there is for every e; E E;, a surrogate value e; 
at a distance of not more than t from e;. Person i observes e; and finds the 
surrogate value ej. (For e; = t or f, there are two surrogates.) Person i says Yes 
for a given message m if he would have said Yes for that m and for e; in the 
continuum process P. Any " tighter" choice of uniformly placed surrogates than 
those which are within t of any given e; would not permit coverage of E: for some 
surrogates there would be no lattice point among those in Figure 4.4 such that in 
the continuum process i would say Yes to that surrogate at that lattice point. 
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Formally, for the approximating discrete price process P = (M, g, h ), we have 

(i) M; = { ( i , - i ) ,  ( t , - t) , ( i , O) ,  ( i , - t) ,  (i , O) ,  

(t t) , ( t , o) ,  ( i ,  t) ,  (t i) } ,  

(ii) g(m , e; ) = O if g;(m , r ) = O for some r in p ( e; ) , 
= 1 otherwise, i = 1 ,  2, 

where 

p ( e; ) = { t } ,  
- { l l } - 6 ' 2  ' 
= 0 } ,  
- { l 5 } - 2 · 6  ' 
= { i } ,  

(iii) h (m ) = h (m) .  

O � e; < L 
e; = t ,  

t < e; < f ,  
e; = f . 

f < e; � 1 , 
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Figure 4.5 

Thus in the approximation P, the sets in { ag( m) : m E M } are the nine squares 
in Figurej.5. Inside each square a.,(m) is written m = (p, x) (at the top) and the 
outcome h(m)  = x (at the bottom). The example illustrates what can be stated in 
a precise manner, namely, a general procedure for obtaining a discrete process 
which approximates a given continuum process whose language is a subset of a 
Euclidean space. As in the example, the approximation imposes a uniform lattice 
on the continuu_!ll language. 

The process P is a grid:§tructure process with a nine-message language M, and 
a five-element action set h(M) = { - t, - i ,O, i, t} .  The five actions correspond 
to the values of cp along five contours (lines of constant cp ) ;  the center of each 
square is on one of these contours. Each square, in other words, is assigned its 
midcontour, which, as we know from Proposition 4.1, is the best possible outcome 
that can be assigned to the_square. It is easily checked that for our optimality 
function cp = !( e1 - e2), e,p(P) = i. The maximum error of i occurs at the corner 
points of the squares. At e = (t,t) for example, an equilibrium messa� [one of 
four in JLg( e  )] is m = (p, x) = {t ,O). For this message, the action is x = h(m) = x 
= 0. But the optimal action is cp( e) = !( t - t) = - i. 

The result concerning linear cp and compact E, alluded to at the end of Section 
4.3.3 above, shows that if a grid-structure process on our unit-square E hl!§ 9 
messages and 5 actions, then it Cannot have a maximum error less than i. So P is 
informationally efficient in the class of grid-structure processes on E. That is to 
say there is no grid-structure process on E with not more than 9 messages, not 
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more than 5 actions, an error "<�> not more than 7;, and one of these inequalities a 
strict inequality. 40 

From another point of view, however, the discrete price process P is not 
efficient, since only 9 of the 25 points in M * are used in the approximating M. 
Suppose that in "purchasing" the lattice on M whose points are 7; apart, one has 
paid for a 25-element language. Given this capability, is t@re a mechanism which 
improves upon the maximum error of 7; achieved by P _and does so without 
requiring more than 5 actions, the number required by P? The answer is that 
there exists a grid-structure process which achieves this improvement. An error of 
i (which is less than 7;) is achieved by a grid-structure process P = ( M*, g, h )  on 
E, portrayed in Figure 4.6, whose language has 25 elements. The sets ag(m) are 
squares and the 5 actions are { - -k, - fo, - -do, i, i.o } . 

These results generalize to any discrete process on E which approximates the 
continuum process P in the manner illustrated and whose language is obtained 
by imposing a lattice of arbitrary fineness on the continuum M. If one counts 
only the lattice points actually used, then the discrete price process is information­
ally efficient, at least within the class of grid-structure processes. If one supposes 
that both the used and the unused lattice points are available as messages, then a 
process on E with no more messages, no more actions and a smaller error than 
the price process can be constructed. 

A compact three-parameter set of economies. Consider now a new E. This time 
let e1 = ( e11 , e12) have its initial meaning: let �22, as initially defined, equal one; 
let e2 denote e21 as initially defined. We consider the class E of three-parameter 
economies, where E is the non-negative unit cube, 

The continuum price mechanism P = (M, g, h)  on E has, as its language M, the 

40 Moreover, it is conjectured, but so far unproved, that if one wants to divide the unit square into t 
non-overlapping rectangles so that the maximum perimeter of the rectangles is minimized, then one 
can confine one's search to t rectangles of equal perimeter. By Proposition 4.1 the best possible 
outcome to assign to a rectangle is its midcontour. But for <f> = �(e1 - e2 ), the maximum error on a 
rectangle of sides a, b, when the midcontour outcome is assigned to the rectangle is (a + b)/4 (this 
error occurs at a comer). Finding an error-minimizing mechanism which uses t messages is therefore 
the same as dividing the unit square into t non-overlapping rectangles so as to minimize the maximum 
perimeter. If the conjecture is true, then it is easy to show that when t = r2 , r an integer, then the 
maximum perimeter is minimized if the unit square E is divided into t equal squares. Since 9 = 32, 
then if the conjecture were true, it would follow that the equal-square mechanism of Figure 4.5, in 
which each square is assigned an outcome equal to its midcontour, is a best mechanism (wjjh regard to 
error) among all 9-message 5-outcome processes, i.e. that the discrete " price" mechanism P is efficient 
in the class of all discrete processes on E, not only in the class of grid-structure processes. 
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Figure 4.6. In every square o- ( m ), the outcome h ( m )  is written. The maximum error in 
every square occurs either at tbe " northwest" or at the " southeast" comer of the square 

and is exactly 3/20. 

set of messages which are equilibrium messages for some e in E. It is straightfor­
ward to verify that this set M is the parallelogram in Figure 4.7. (It contains the 
rotated square of Figure 4.3 since the E of the preceding two-parameter example 
is contained in the new E.) 

Suppose as before that a uniform lattice is placec:!_ on the parallelogram E, 
generating a set M* of lattice points. Suppose that, P, our discrete approxima-
tion to P, is � us� as �s language a subset M of M*. Let the discrete 
approximation P = (M, g, h) be defined quite analogously to that of the preced­
ing example, with "surrogates" playing the same role. It is again a grid-structure 
process. The surrogates are now given by the centers of uniform cubes of side V. 
The cubes cover E. To be an acceptable approximation to P, however, the process 
P must cover all points in E with regard to equilibria. The fineness of the lattice 
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- 1  X 

Figure 4.7 

placed on M must be consistent with the " tightness" of the surrogates, i.e. with 
the number V. That is to say, for each of person i 's surrogates there must be a 
lattice point in M *  such that in the continuum process i would say Yes if his 
local environment were that surrogate and the message were that lattice point. 

It can be shown that if V= 1jt, t > 0 an integer, then: 

(i) For any lattice on M which is consistent with 1/t, the process P = (M, g, h) 
will not use all the lattice points in M * [i.e. for some m in M *, ag( m)  is 
empty]. 

(ii) One can construct another discrete process (a grid-structure process) whose 
language has the same number of element�as the lattice points actually used, 
whose action set is no l�er than that of P, and which yet has a lower error 
e<l>. So the price process P is inefficient: one can do better without increasing 
either language or action set. 

It is perhaps surprising that the three-parameter case should prove less " favor­
able" to the price process than the two-parameter case. One might have expected 
that the price process displays its advantages the more strongly the larger the 
number of parameters determining an environment. In fact a result similar to that 
just summarized, a result which we shall not sketch here, can be obtained for the 
four-parameter case (with 8 ;;:;; e22 ;;:;; 1, where l) > 0 is arbitrarily small and with 
ew e12 , e21 each taking values � 0 and ;;:;; 1). On the other hand, perhaps two, 
three, and four are all " small" numbers and perhaps it takes an example with a 
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much larger number of parameters to illustrate the informational virtues of a 
discrete price process. 

Note finally that the price process P follows one of several possible "styles" in 
which one might approximate the continuum price process. Another style 
("rounding off" the functions g;) is considered in the unbounded example which 
now follows. Whether a "round-off" approximation to the price process is 
inefficient for bounded sets of economies remains open. 

A two-parameter unbounded set of economies. Now let E = { e = [( e11, e12), 
( e21, e22)] :  e12 = e22 = 1, en + e22 � 0} . Again jet e1 denote en and let e2 denote 
e21. We shall consider a discrete process P on E which approximates the 
continuum price process P in a different way than the "parameter surrogate" 
processes just considered. For the process P = ( M, g, h)  on E we have 

Now impose on this M a lattice in which the distance between the x-coordi­
nates of the lattice points is not necessarily the same as the distance between 
p-coordinates. Denote the lattice LPT' where p > 0, T > 0. The lattice is the set of 
points { ( p, x) : p = lp, x = h for some integers /, k L _ 

The language of the discrete approximating process P = (M, g, h) is M =  LPT n 
M. Further for i = 1, 2  and m = ( p, x) in M, 

and 

gi(m ,  e; )  = 0 if lt(m,  e; ) l � i>; ,  
= 1 otherwise, 

'h [ ( p ,  x)] = x. 

The numbers i>1, i>2 are positive. In this style of approximation, person i says Yes 
(for a given " local environment" e;) to a lattice-point message ( p, x) if he would 
be " within i>; '' of saying Yes in the continuum process, i.e., if g; takes a value 
within i>; of zero. This corresponds, for example, to rounding off g; to a given 
number of digits (decimal, binary, or in general, t-nary) and saying Yes if the 
rounded off value is zero. The round-off numbers i>1, i>2 are to be chosen so as to 
permit coverage of E. That means they must lie in the set SPT = { ( i>1, i>2) : for every 
(e1 , e2 ) E E, there exists ( p, x) in M such that I P + x - e11 � 81, I P - x - e2 1  � 
82 } (recall that g1[( p, x ), ed = p + x - e1, g2 [( p, x ), e2] = p - x - e2). 
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Suppose a ( 81, 82) in SPT has been chosen. Then for a given ( e1 , e2), the, lattice 
point (p, .X) is an equilibrium message if · 

That means that .X =  ( !)( e1 - e2)+ t( e1 - e2) will be the action taken. But the 
optimal action for ( e1, e2) is cp[( e1, e2)] = t( e1 - e2) . The supremum of 
the distances between the equilibrium action and the optimal action, i.e. of the 
possible values of lhe1 - e2 ) 1 = !le1 + e2 1, is then !(81 + 82 ). That is to say 

(4.20) 

To judge the proposed discrete price process fairly, we must select a pair of 
round-off numbers ( 81, 82 ) in SPT for which 81 + 82 (and hence et/>) is a minimum. 

Note that for a given pair (p, T) of lattice finenesses, the action set of the 
discrete price process is the set TT = { x :  x = kT for some integer k } .  The 
informational efficiency question is therefore the following: For given p, 'T does 
there exist a process P = (M, g, hJ on E, wi_th M � LPT and with action set 
h(M) = TT such that et/>(P) < et/>(P), where P is defined for a (81, 82) which 
minimizes 81 + 82 on 8PT? If the answer is no, then P is informationally efficient. 
The answer for p < 1, is, however, "Yes". From one point of view, in fact, it is a 
rather strong "Yes". Specifically, for every rival process P, the action set is the set 
7'... Hence we immediately have a lower bound to et/>(P), namely T/2. [To see this, 
pick an arbitrary integer k. Let e = (e1, e2 ) E E  satisfy t{e1 - e2) = h + T/2. 
Then lcJl(e)- xi � T/2 for all x E TT. So we have e<t>(P) � infx E TT icJl(e)- x i � T/2.] 
The error of the discrete price process [for a best choice of 81, 82 ) in SPT] exceeds 
the lower bound T /2. But for any A > _o and any latt�ce LPT with 0 < p < 1, 
however fine, we can construct a process P for which et/>(P) = T/2 + A. That is to 
say, for a giv�n lattice LPT there is a family of discrete processes which are n'?l the 
price process P but have the same language and action set as the price process P; by 
choosing an appropriate member of this family we obtain an error as close as desired 
to the lower bound 'T /2. 

To establish the result one proceeds as follows. The set SPT turns out to be very 
difficult to compute for arbitrary p, 'T. It is a bit easier to compute the not larger 
set SPT = { (81, 82 ) :  for every (e1, e2 ) E E, there exist integers l, k such that 
i lp + h - e11 ;:£ 81, i lp - h - e2 1  ;:£ 82 } .  [Here a weaker requirement is imposed 
on ( 81, 82 ) than is the �ase for SPT' since neg�tiv� "p�ces" lp a.!e now permitted.] 
Let the expression aS be denote the set { ( 81, 82 ) :  81 = a81 , 82 = a82 for some 
(81, 82 ) in Sbc } .  One shows easily that 

(4.21) 
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Figure 4.8 

S11p , I  = (1/P )Sp1 or equivalently Sp1 = pS11p ,1 • (4.22) 

Now for p �!, SP1 consists of all points on or above a certain "staircase" graph 
in the ( 81, 82)-space. 41 The set SP1 contains points for which 81 + 82 = p + ! but 
no points for which 81 + 82 < p + !.  Consequently, in view of (4.22), if p < 1  
(11p � 1 )  then some of the points in SP1 = pS11p,1 lie on the line 81 + 82 = p(11p + 
!) = 1 + p 12 and none have a value of 81 + 82 less than that. Hence, in view of 
(4.21). 

if p � T  (piT � 1) ,  
then the minimum of 81 + 82 on (4.23) 
is 7" ( 1 + (pIT)) 12 = 7" + p 12 

_ Now let p � 7". Since SPT � SPT and since 7" + pl2 is the minimum of 81 + 82 on 
SPT' every ( 8�> 82) in SPT satisfie� 81 + 82 � 7" + p 12. But then, in Jiew of ( 4.20), 
the error of the discrete process P, using any (81, 82)'in SPT' is e</>(P) = !(81 + 82) 
� 7" 12 + pI 4 and so exceeds the lower bound 7" 12. 

41 For p � 1 an integer, SP1 is the set of points on or above the "staircase'� shown in Figure 4.8. For 
p = a/ b > 1, with a ,  b relatively prime integers, b * 1, the role of the lines 8; = � in the figure is 
played by the lines 8; = 1/2b; the staircase has some steps resting on the line 81 + 82 = p + �, but 
other steps (to the left and to the right of these) rest on certain lines 81 + 82 = J, where J > p + � .  For 
p > 1 irrational, the set sp1 changes but still contains points for which 8, + 82 = p + � and no points 
for which 81 + 82 < p + � .  
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Consider now the following rival process P, = (.M, g11, h )  on E, defined as 
follows for any number '1/ > 1 :  

(i) M= LPT' 
(ii) for m = ('IT, x) in M, 

g!{ e1 , m )  = 0 
= 1  

g;{e2 , m) = 0  
= 1  

{iii) h [('TT , x )] = x, 

if i'ITI11 + x - el l �  81 , 
otherwise, 
if i'ITI'T/ - x - ez l � 82 , 
otherwise, 

{4.24) 

{4.25) 

where ( 81, 8) are chosen so that coverage is achieved for all e in E [i.e. so that for 
every e = ( e1 , e2), there exists ('IT, x) in M satisfying (4.2,4) and (4.25)]. 

One can interpret the process P11 as follows: Person i, observing e;, and an 
announced message ('IT, x ), first multiplies 'IT by the positive constant 1 I 11 < 1 .  He 
then int�rprets ('1TI1/, x) as though it were a message (p, .X) in the discrete price 
process P (with 81 = �1 , �2 = �2) and determines whether to say Yes or No exactly 
as in the price process. A "price" may now, ho�ever, b�negative, since the 
language is now the full lattice LPT' whereas in P it is M = LPT n M, which 
excludes negative prices. In effect, person i rescales the announced price, multi­
plying it by 1111 to do so. 

Now for any e = (e1 , e2), the equilibrium action is 1(e1 - e2)+ !(e1 - e2), 
where l e1 1  � �1 , le2 1  � 82• Since <t>ie) = t(e1 - e2), the error e<t>(P11) is (quite 
analogously to the price process P) the supremum of the possible values of 1 1 - " zle1 + e2 1. That equals z( 81 + o2). 

Clearly !he set of prices ( �1, 82) which achieve coverage of E for the process P11 
is the set SP/1I. T' where pI '1/ < 'T (since p < 'T and '1/ > 1). In view of ( 4.23), the best 
choice of (81 , �2) in this set (a pair for which 81 + �2 is a minimum) is a pair for 
which 81 + 82 = 'T +(PI'11)12 = 'T + pl21/. Then the error of the rival process P11 
becomes 

e<t> (P11 ) = Tl2+ pl411 . 

By choosing '1/ suitably large, this error can be made as close to the lower bound 
Tl2 as desired.Jn particular we obtain an error smaller than that of the discrete 
price process P, even though our language is the same lattice (though with 
negative prices now included) as the language of the price process and even 
though the action set remains the same as well. 42 

42 It seems very likely that the same result holds if negative prices are excluded in the rival process; 
but that has not yet been established. 
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A similar result can be obtained (though it is more difficult) when E is 
redefined so that e12 = /31, e22 = {32 and /31, /32 are arbitrary positive constants. 

There are several possible ways to interpret the result. One is that the "correct" 
way to approximate the continuum price mechanism, using a "round-off" ap­
proach, is to admit a rescaling operation, so that P., becomes the "correct" 
approximation. From this point of view, one has a "favorable" result about the 
price process, an analogue of the result in the continuum literature. For there (as 
summarized briefly above in Section 4.1), if one studies the price mechanism on 
the two-person linear-quadratic exchange economy just considered, one finds that 
no smooth (Lipschitzian) process can achieve that mechanism's equilibria with a 
message space of dimension less than that of the price mechanism: that dimension 
is a lower bound. The price mechanism achieves the lower bound. In our result, a 
suitably " rescaled" price mechanism comes as close as desired to the lower bound 
on the error permitted by a given lattice, i.e. by a given language and action 
fineness. So, in a sense, admitting the rescaling operation is the analogue of 
requiring smoothness in the continuum approach. 

In another interpretation, one would say that " rescaling" is a somewhat alien 
operation, nowhere suggested in any discussion of the price mechanism, and that 
P., is not, therefore, a " price" process. The result would then be rather " un­
favorable" to the price mechanism, unless one feels that the rescaling operation 
has its own cost, namely a computing cost, not well captured in language fineness 
or action fineness. But in fact any process which is a rival to the price process will 
have computations (in its g its h or both) which are distinct from the computa­
tions of the price process. So if one takes this point of view one has first to supply 
a general measure of computing cost, preferably as workable a measure as 
language fineness or size and action-set fineness or size. Such a measure remains 
elusive. 

In a third interpretation, one would say that the rescaling result shows that one 
should not in fact study infinite-language mechanisms on unbounded sets of 
economies but only finite-language processes on bounded (though arbitrarily 
large) sets. The rescaling phenomenon just illustrated depends on the non-finite­
ness of the language: having, so to speak, "paid for" an infinite language, one can 
use it, without extra charge, for a rescaled process. 

A three- or four-parameter unbounded set of economies. If one now redefines E 
so that e12 or e22 or both becomes a free unbounded parameter instead of a 
constant, then a discrete process approximating the price process in the preceding 
"round-off'' style cannot be constructed. It turns out that no pair of round-off 
numbers ( 81 , 82 ) achieves coverage of such a three-or-more-parameter unbounded 
E. If one wants to cover E with a price process, one has to adopt another style of 
approximation, for example the "parameter surrogate" style of the preceding 
compact-environment illustrations. Whether a " rescaling" result similar to the 
one just given holds with regard to such a price process is not yet settled. 
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The price-mechanism investigations just summarized have dealt with very small 
classes of economies, with each member identified by a small number of parame­
ters. (The same small class, however, also plays, as we have seen, a crucial role in 
the continuum literature.) It remains to be seen whether analogous results can be 
obtained for both bounded and unbounded sets of many-parameter economies. 

4.3.5. A corljecture about the informational efficiency of discrete price mechanisms 

A possibly distant goal is the settling of a certain general conjecture as to whether 
a discrete price mechanism makes good use of the informational resources it 
requires. Suppose that a class E = E1 X E2 X · · · X En of n-person k-commodity 
exchange economies e is given. Every e is an n-tuple ( e1, . . .  , en), where e; E E; is 
a pair composed of i 's endowment vector wt and i 's preference ordering ;::: e, ; 
defined on commodity bundles. The characteristic e; is observed by i. Let 
P = (M, g, h )  be a price process, privacy-preserving with respect td the character­
istics e; and covering E with regard to equilibria. M is an unbounded con­
tinuum; its typical element m is composed of prices and of feasible net trades, i.e. 
changes (positive or negative) in the n individual holdings, adding up to zero for 
every commodity. Thus M lies in a real space, say Rnk+n- l. The function h is 
defined on M; it simply yields, for every m, the net-trades portion of m; h is a 
vector (h1 , . . .  , hm) and h ;(m) is a change in i 's holdings. For an equilibrium m 
[i.e. g;( e;, m) = 0, all i] , the vector (h1(m)+ w{, . . .  , hn(m)+ w:) is Pareto-optimal 
for e. Consider P* = (M*, g*, h*), an appropriate discrete approximation of the 
"surrogate" type illustrated in Section 4.3.4. The language M * is a uniformly 
spaced and unbounded lattice in Rk. The action set h*(M*) corresponds to the 
net-trades portion of the messages in M*; it is a lattice in Rk. Suppose that 
P**  = (M **, g**, h**)  is any other discrete privacy-preserving process on E 
with M** <:;::; M* and h**(M**) <:;::; h*(M*). 

The conjecture is then: for some e = (e1, • • •  , en )  in E, and every m* E M*, 
m** E M**, with g;*( e;, m*) = g;**( e;, m**) = 0, all i, if there is some individual 
j for whom 

w
' + h** (m** ) > - .w

' + h*(m* ) 1 1 e , 1 1 1 ' 

then there is some individual t =I= j for whom 

w
' + h * (m* ) > - w ' + h** (m** ) 1 t e , t t t · 

The conjecture says that the discrete price process is not dominated, with regard 
to all economies in the given class and the preferences of all members, by any 
other discrete process which generates trades while using no more informational 
resources, i.e. which uses a message lattice and an action lattice contained, 
respectively, in the lattices of the discrete price process. 
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This is perhaps the weakest general conjecture one can make about the 
informational efficiency of discrete price mechanisms. It would be reassuring if 
the conjecture could be verified when E is the class of classic economies. 

4.4. The pre-equilibrium study of adjustment processes 

We return now to the study of processes when they do not reach an equilibrium. 
They are not allowed to because it takes too long, or perhaps (given the initial 
message m 0 used) it never happens at all. Instead, a process is to terminate after 
T steps. Accordingly, a process must again be considered a quadruple: the initial 
message m0 has to be added in order to determine what action is generated at the 
Tth step. Moreover, it is useful to return to the original formulation, where a 
process is a quadruple 7T = ( ...It, m0, f, h), whose functions (f\ . . . , r) imply 
specific message interchanges among the n members at each step. It is no longer 
appropriate to consider the " trial-message-announced-by-a-center" interpretation 
of a process; that was useful in the equilibrium analysis, where it suggested the 
compact form (M, g, h), which suppresses the fact that an element of M is an 
n-tuple of individual messages. As before, an environment set E and an action set 
A are given. 

A central question for the pre-equilibrium study of a process is: When to stop? 
The question admits several interpretations. The simplest43 is as follows. Suppose 
the process is to be started in response to the environment e, that is, m� = 
F(e, m0), all i. An environment e prevails for one time unit. Suppose T is to be 
chosen while the process is operated -at each step it will be decided whether or 
not to stop there. Suppose the designer- the chooser of T -has a payoff function 
p on A X E. In particular, if, during the period of one time unit during which e 
prevails, an action a* is taken for q time units, q ;;;;; 1, then during that portion of 
the period, the total payoff qp(a*, e) is collected. The chooser of T wants the 
total payoff collected in the entire period when e prevails, denoted t/;r(e), to be 
high. One immediate proposition is helpful: If 

it takes time C < 1 to complete one step of the process ; 

if we require that 

the action a( T, e)  has to be reached44 before the 
instant at which the next environment occurs ; 

43 Introduced in T. Marschak (1959) and pursued further in T. Marschak (1972). 

( 4.25a) 

( 4 .25b) 

44As before (Section 4.1), the symbol ii(T, e) denotes the outcome (action) assigned by the outcome 
function h to the message reached at the Tth step, i.e. ii(T, e) = h ( mr , e). 
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a given constant action a E A ,  called the interim action , 
has to be taken until a(  T, e)  is reached; 

and if it is the case that for every e in E, 

.1p, ( e ) > 0 
.12p, (  e ) < 0 

where 

for t > 1 ,  
for t > 2, 

p, ( e )  = p [a ( t ,  e ) , e] , 
.1p, ( e )  = p, ( e ) - p,_ 1 (e) ,  
.12p,( e ) =  .1p, ( e )- .1p,_ 1 (e ) ;  

1425 

(4.25c) 

(4.25d) 

then there is a unique best value of T for e, i.e. a value which maximizes tJ; r( e) 
under the constraints (4.25b) and (4.25c). There is also a unique best once-and­
for-all value of T when successive environments have a stationary probability 
distribution, i.e. a value which maximizes tff!J; r( e )  under the constraints ( 4.25b) 
and (4.25c), where iff denotes expectation with respect to a given probability 
distribution on E. 

For any T satisfying CT � 1, the total payoff for the one-time-unit period when 
e prevails is 

t/lr( e )  = CTp ( a , e ) +  (1 - CT)pr( e  ) . 

So, under condition ( 4.25d), T * is the unique maximizer of tJ; r( e) on the interval 
1 � t < 1 j C if C( T * + 1) < 1 and T * is the lowest positive integer for which 

C [ Pr• ( e  ) - p ( ii ,  e )] > (1 - CT* ).1Pr• + 1 (e  ) . ( 4.26) 

At T *, that is to say, the payoff which would be foregone if the process were 
stopped at T* + 1 rather than at T* (the expression on the left) exceeds the total 
payoff which would be gained by taking one more step beyond T * and thereby 
improving the action which is reached when the process terminates and which is 
thereupon maintained as long as e continues to prevail (the expression on the 
right). Condition (4.25d) guarantees that the expression on the left is increasing in 
T and the expression on the right is decreasing. Hence tJ; r( e) is increased until 
T * is reached and decreases thereafter. To determine T * requires a running 
check on changes in the payoff p from step to step, but it requires neither 
complete knowledge of e nor memory of the preceding values of a(t, e). 



1426 Thomas A. Marschak 

If there is no integer with the properties required for T *, then, under ( 4.25d), 
the largest integer for which Pr( e) > p( ii, e) and CT < 1 is the unique maximizer 
of tfir(e) on the interval l ;;;; T < l/C. If p1(e) < p(ii, e), then, under (4.25d), 
t/Jr( e) is uniquely maximized at "T  = 0", i.e. the process is not started at all. 

Suppose next that "when to stop" is not to be decided afresh, following each 
repetition of the process, initiated by a fresh environment, but rather once and for 
all. Suppose successive environments are independently distributed according to a 
stationary probability distribution on E. A value of T which maximizes t&'t/Jr( e )  
is to  be  chosen [assume t&'t/Jr( e) to be  finite]. Then if (4.25d) holds for every e ,  the 
lowest T satisfying both C(T + 1) < 1 and the analogue of (4.26) (with expecta­
tions added) uniquely maximizes t&'t/Jr(e) on the interval ! ;:;;; T < 1/C. 

The condition (4.25d) holds in certain cases which have been studied. Suppose 
that A is Euclidean n-space, so that a is an n-tuple a = ( a1, . . .  , an), where a; can 
take any real value and is called "i 's action"; e is an n-tuple of real-valued 
characteristics (e1, . . .  , en ) in E = E1 X · · · X En, with e; in E;; and for each e in 
E, p (a, e ) = L7�1a;(e),8;(a;)+ S(a), where a;, ,8;, and S are real-valued func­
tions and for every i, ,8; and S are differentiable with respect to a;. The gradient 
process has received wide attention [Arrow and Hurwicz (1958, 1960)]. In this 
process, the language A is defined so that a message from i is a proposed value 
of his action.45 Letting a; denote i 's proposal at step t (and a� the initial 
proposal), the difference equations defining the process are 

where the prime and the symbol S; denote derivatives. The term .\ is a positive 
constant; a small value of .\ means a fine approximation to the differential-equa­
tion version of the gradient process. The process is privacy-preserving with 
respect to that n-tuple of partitionings on E which is defined when the member 
associated with a; observes the characteristic e;. 

That is one appeal of the gradient process. The other has been its convergence 
properties. Though the focus of considerable work, these hold no direct implica­
tion for the good gross performance of the process in the sense of a high value of 
tfft/Jr( e )  for well-chosen T. Suppose that ,8; is concave, i = 1, . . .  , n, and that S is 
strictly concave, and that for each e some value of a, say a*( e), maximizes 
p(a, e )  on A.  For any e there may be some step, say i(e), at which the proposed 
action a(t, e) first overshoots a*(e) :  while fl;( t, e)- a[(e) has been of constant 
sign for every i until i( e )-1, this difference changes sign for some i at i( e ). It is 
the case, however, that for t < i( e) the properties Llp1( e) > 0, Ll2p1 < 0 hold (the 

45 Formally, if we want the message m; to belong to the same set for all i, we have to define .4t as 
equal to the power set of A. Member i 's message m

; 
E .4t then has the form m

; 
= { a :  a; = Zi; } .  The 

outcome function is h(ml, . . .  , m" ) =n;m
;
. 
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latter for t > 2). 46 So, if the constraint CT < 1 implies T < i( e), then there exists a 
T uniquely maximizing 1[; r( e) subject to the constraint CT < 1 .  If CT < 1 implies 
T < maxe E Ei(e), then there exists a T uniquely maximizing gl[;r(e) subject to 
the constraint CT < 1 .  In the special case where /3;( a;) =  a; and S is quadratic, i.e. 

n 

p (a , e )  = L a; (e;) a; - a'Qa , 
i � l  

( 4.27) 

where Q is pos1t1ve definite, there is never any overshooting at all and the 
conditions (4.25d) hold without modification.47 

Turning back to general processes, note that the constant interim action a 1s 
itself subject to choice. If for each e in E, some a in A maximizes p(a, e), then 
there is a value of ii which maximizes gl[; r( e) . One could replace a constant 
interim action by an interim action chosen afresh at each repetition of the 
process, as a function of e (possibly a privacy-preserving function, with ii; 
depending only on e;). If one permits successive environments to be serially 
dependent - to be the realization of some stochastic process - then one could let 
the interim action be that action obtained in response to the preceding environ­
ment, and could measure the process's gross performance by the expected value 
of the suitably discounted stream of period payoffs48 l[;r( e). [For the serially 
independent environments, choosing the interim action in this way can never be 
better, with regard to gl[;r(e), then using the best constant interim action.] 
Finally, the vector of initial values could be chosen afresh in each repetition and 
could, in particular, equal the preceding terminal message. In these variants our 

46As for convergence: for any e >  0 there is for any e an integer i(e) such that for all t > i(e) the 
distance a* (  e)- a(t, e) is as small as desired, provided A. is taken sufficiently small [Uzawa (1958)]. 
But for the steps following i( e), a( t, e) may fluctuate about a* (e). This property tells us nothing in 
itself about the existence of a T  which uniquely maximizes .Pr(e) or <ff.Pr(e) on given intervals. 

47In most of the economic literature on gradient processes, the variables are constrained so as to 
guarantee that a(t, e) approaches, in a privacy-preserving manner, a constrained maximum. It is 
desired to maximize a function F(a,  e) subjected to the constraints a; � 0, i = 1 ,  . . .  , n ,  and dj(a)  � 0, 
j = 1, . . .  , m, di concave. The Lagrangean L(a, JL1 , . . .  , J!j , e) = F(a, e)+"L!J'�l!Ljdj (a,  e) is formed and 
an associated gradient difference-equation system is defined in all the variables a; and !L . . The change 
in a; at each step is proportional to iJLjiJa;; the change in /Lj is proportional to -1iJLjiJJLj; but 
neither a; nor /Lj is permitted to become negative. Suppose that at the initial (non-negative) values of 
the variables, dj > 0 and /Lj = 0 for all j. If for subsequent steps t ;:;;; t' that continues to be so, then 
for strictly concave F the condition !J. F( a, e) > 0, !J.2 F( a, e) < 0 holds for 2 ;:;;; t ;:;;; t', provided that 
in that interval a*  (e), the maximizer of F subject to the constraints dj , is not overshot. But as soon 
as a t  is reached for which dj (a, e) = O  for some j, then the subsequent signs of !J. F, !J.2F may 
sometimes be positive and sometimes negative. So one cannot, in general, argue the existence of a 
unique best T for the given e, on an interval larger than 1 ;:;;; T ;:;;; t'. 

48With serial dependence, moreover, one might drop the constraint CT < 1: it might be desirable to 
delay the response to an environment until after the environment has ceased to prevail. 
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previous conditions no longer guarantee existence of a unique best once-and-for-all 
T. Computation of a once-and-for-all best T becomes complex, and so does the 
assessment of a process's performance for given costs. 

The appeal of the classic price mechanisms, which inspired the study of 
abstract adjustment processes, has been not only their achievements at equi­
librium but their temporal homogeneity as well as their privacy preservation with 
regard to natural partitionings of the environment. A constant interim action and 
a constant initial value preserve the homogeneity, whereas the other variants do 
not, since special "extra" steps have to be added to the typical repeated step of 
the process. For this reason, and because it implies the simplest gross perfor­
mance measure, the preceding assumptions of a constant interim action and 
constant initial value seem to be a natural starting place, and <fl{;r( e )  for 
well-chosen T a natural gross performance measure, at least for the case of serial 
independence. 

Assume, then, that environments are serially independent and require again 
that the process be ended in the period in which it was started. Suppose the se}s_A 
and E are given and that two processes 7i = (Jt, m0, j, h )  and 7T = (Jt, m0, j, h), 
each yielding an action in A in response to an environment in E, are to be 
compared. In our previous discussion of the cost of a one-step design, it was 
required only that the design's task be accomplished, and an action generated, 
some time in the period during which the initiating environment prevails. The 
cost of a design was the cost of this achievement, and further speeding up the 
performance of tasks had no purpose. Now, however, greater speed in completing 
a step of the process (a lower value of C) means that a given terminal step can be 
achieved sooner. 

We may view completion of one step of a process as the operation of a one-step 
design, provided we first generalize the definition of task and design so as to add 
memory. Member i 's (finite) task Ti is now a quintuple ( J(i, Xi, Si, Ai, L1i). As 
before, J{i and Xi are i 's input and output sets; Si is the set of possible states of 
i 's memory. k is a matrix of probabilities Pr( s i i.Xi, s *i) and L1i a matrix of 
probabilities Pr(xii.Xi, s *i), where s i, s *i each run over all the elements in Si, _xi 
over all the elements in J{i, and xi over all the elements in Xi. The task is 
noiseless if L1i, k contain only zeros and ones. So redefined, a noiseless task is, in 
another literature, a finite-state machine [Hartmanis and Stearns (1966)]. 

A design with memory for an n-member organization is, then, an n-tuple of 
tasks as just redefined. The one-step property is redefined in the obvious way to 
allow for the addition of memory. If every set Si contains only one element, we 
have a memoryless design; this is a design as originally defined. Given a state of 
each member's memory, and given inputs received by members (observations, 
messages), a one-step design with memory yields a new memory state for every 
member and an n-tuple of outputs (messages, action-attribute values). 
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A noiseless one-step design with memory suffices to describe the efforts 
undertaken in one step of a temporally homogeneous adjustment process. Sup­
pose in a process '7T = (vii, m0, f, h), vii is finite. Suppose the process is privacy­
preserving with respect to partitionings { .9'; } ; E N  indexed by { e ; } iN> where for 
each i, e; can take a finite number of values comprising the set E;. Let the typical 
element of i 's memory be a pair - an element of vii, together with an element of 
E;. At the start of the process's initial step, member i 's memory is in an initial 
state sb = (e;, m�), where e; is an arbitrary element of E;. Member i receives an 
input, which triggers the initial step. Its components are the new current value of 
e; , say e;, and an arbitrary "dummy" message fit 1, from every member j * i. In 
accordance with A; ,  an output is formed and sent to all j * i, namely, the 
message m�. In response to the input received, and in accordance with 1j/, i 's 
memory changes from the initial state to the state (e;, m?). The typical step t, 
t � l, is triggered by each member i 's receipt of the messages { m{_djn at the 
end of the preceding step. In response, member i, in step t, forms (in accordance 
with A ;), the output m� = f ;[e; , (m�_ 1 , • • •  , m�_1, • • •  , m7_ 1 )], which is a function 
of the messages received and the state of i 's memory [namely, ( e;, m�_ 1)] at the 
step's start; member i also, in response to the input received, updates his memory, 
giving it (in accordance with N) the new state ( e;, m� ), again a function of the 
same two arguments. At the tth step, the processes tenninates. Formally, one has 
to add a "counter" to each member i 's memory; the counter's reaching T causes i 
(in following N, .1;) to form the final output (the Tth) and to reset the memory 
(including the counter) to its starting position. 

Modeling of the outcome function h depends on whom one gives the responsi­
bility for transforming the terminal message into an action. If h is privacy­
preserving - i.e., h(m, e) = [h

1
(m, e1), • • •  , hn(m, en)] - then one can add, for each 

member i, an action-taking device. This is a subsidiary memoryless task (ma­
chine) which takes as an input the main task's terminal output and terminal 
memory state and assigns to it an output, namely, an action fulfilling the function 
hi. If h is not privacy-preserving, several formalisms are possible, including the 
addition of an (n + l)st task (machine) which generates actions and is triggered 
only at the Tth step; in each of them, an interchange of messages about e must 
take place at the terminal step in order to carry out h. 

To compare two processes with regard to the best value of t%'1/J r( e) achievable 
with a given cost, one needs knowledge of the cost of operating the associated 
one-step designs-with-memory in C time units for alternative values of C; the cost 
of alternative speeds of the final action-taking step is needed as well.49 As in the 

49It is easy to check_ that if Llpr(e) > 0, Lfpr(e) < 0, then the T which maximizes tB'l/;r( e) on a 
fixed interval 1 ,;;; T ,;;; T cannot become smaller if C is replaced by C' < C, and if C' is sufficiently 
small, then it becomes larger. But the effect of reducing C on the clock time CT [where T maximizes 
tB'l/;r( e) on the given interval] is indeterminate [T. Marschak (1972)]. 
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discussion of Section 2.2 above, models of observing, transmission, computing, 
and action-taking are required. The difficulties of existing models, surveyed there, 
arise again. In the case of transmission, the setting of the coding theorems is again 
inappropriate. If every step is to be completed in exactly C time units, no delay 
can be permitted. 

As for the computing effort required in each task - the effort required to find 
the output and state to be associated with a given inputjstate pair - the theory of 
finite-state machines appears to hold some promise. It studies the decomposition 
of a given machine into a number of smaller ones which are linked together and 
realize the original machine. One might reasonably take as a unit of cost a certain 
"basic" machine (e.g. a two-input, two-output, two-state machine). It may be 
possible to find the smallest number of them which realize the original machine 
(algorithms for doing so are available for certain cases). If a given speed of the 
basic machine has a given cost, and if reasonable assumptions can be made about 
the way the speed of a machine built out of basic machines is obtained from the 
basic machine's speed, then the theory may eventually permit one to characterize 
usefully the costs of alternative speeds for the achievement of a given task. 

If one is content to compare designs with regard to gross performance only, 
then the detailed study of CtJ; r( e) for fixed T and C may be fruitful. Thus, if p is 
taken to be quadratic, as in (4.27), and the process is the gradient process, then it 
is possible to find, from the solution to the difference-equation system, an explicit 
expression for Ct/J r( e). One can then study, for example, th� question considered 
above at the end of Section 3.3: if Q is a matrix with ones on the diagonal and 
q 's off it, how does increasing l q l  (the " strength of interaction") change the 
amount by which Ct/Jr falls short of the expected period-payoff achieved in a 
"centralized" process which always yields (after an elapsed time equal to CT) a 
payoff-maximizing action? It turns out [T. Marschak (1972) and Simonovits 
(1976)], under certain assumptions about the way the "approximating" fineness A 
is chosen, that increasing lq l  does not increase the penalty of "decentralizing" 
(operating the privacy-preserving gradient process rather than the centralized 
one). 

The pre-equilibrium study of adjustment processes remains difficult and unde­
veloped. Yet theorists continue to produce additional adjustment processes 5° and 
claim informational (and incentival) virtues for them. It is difficult to see how 
those claims can be defended without pursuing a pre-equilibrium analysis of the 
sort we have outlined.51 

50 Some of which are described in Chapter 29. 
51 A major complicating step, which some might argue is essential for realism, is to permit the time 

required to complete one step of an adjustment process to vary and either to be determined uniquely 
by the initiating environment e or to be a random variable whose distribution depends on e. This may 
make relevant transmission models of the Shannon type, where transmission times differ from one 
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5. General concepts and issues in organization design 

5.1. Replacing "centralization versus decentralization" by "resources for 
coordination versus resources for local expertise" 

1431 

A one-step design is a complex object, and an adjustment process, requmng 
repeated operation of a design with memory, is still more so. Given the sets E 
and A,  a rich variety of designs can be constructed. It is natural that discussions 
of organization design have struggled to introduce order by defining (loosely or 
otherwise) categories of designs, and even orderings of designs, and by making 
conjectures that some aspects of a design's performance might be deducible from 
its membership in a category or its place in an ordering. The most notorious 
attempts to categorize are associated with the terms "centralized" and decentral­
ized", and the most notorious attempts to order with the term " more centralized 
than". 

The terms have appeared so often that no survey can ignore them. "Decentral­
ized" and "centralized" are typically used as though they denoted colors, under­
stood by everyone in the same way without further elucidation. Yet in many 
discussions it is quite unclear to what objects the terms are being applied and how 
the terms are defined. We can attempt to catalogue some of the current usages, 
but only by first defining a class of objects. Let that class be noiseless one-step 
designs (possibly with memory) for a given set E and a given set A.  Then the 
following usages (and others as well) have occurred: 

(a) A design is "centralized" if there is one member, say i *, whose output 
includes a message to every other member, and member i 's output, i =I= i *, is 
uniquely determined by the message received from i *  [see e.g. Camacho (1980)]. 

message to another. It also permits models in which the time required to perform a task-to assign 
outputs to inputs-varies from one inputjoutput pair to another. The step completion time of a 
temporally homogeneous process with noiseless tasks then varies from one repetition of the process to 
another. If the tasks carried out in one step of the process are noisy, then for a given repetition of the 
process the completion time of a step is random-but the action generated at the terminal step, given 
the initiating environment, is random as well; we have not dealt with such "noisy" processes at all. 
Variable task-completion times are studied by Drenick (1977), who obtains some results about the 
probability distribution of completion times for certain tasks, given the distribution of inputs for each 
task. 

Suppose, for a (noiseless) temporally homogeneous process, the step-completion time C becomes a 
function C( e) of the initiating environment e (though a function choosable by the designer). Then the 
condition CT < 1 has to be replaced. One possibility is the condition T maxe e EC( e) < t A second 
possibility is to adopt the convention that the process is stopped either at T, chosen once and for all, 
or at the end of the period wherein the initiating environment prevails, whichever comes first. Under 
either assumption, condition (4.21d) again implies the existence of a unique best once and for all 
choice of T. 
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(b) The same usage as (a), except that i 's output is uniquely determined by the 
message received from i *  and the observation on the current e made by i. 

(c) A design is "decentralized" if, for every member i, the action chosen [i.e. the 
value given to those components of i 's output which are attributes of the 
organization's action] is independent of any message received from another 
member [Camacho (1980)]. 

(d) A design is "decentralized" if each member's environmental observing 
accords with a "natural" partitioning of E: a member who is made responsible 
for a given attribute of the organization's action is thereby naturally endowed 
with an associated partitioning on E. This association is given to the designer and 
defines the class of decentralized designs. In particular, a design with memory is 
"decentralized" if it achieves the typical step of a temporally homogeneous 
adjustment process which is privacy-preserving relative to the given n-tuple of 
natural partitionings on E [J. Marschak and R. Radner (1971, ch. 6), Hurwicz 
(1971, 1972), and many other writings]. 

(e) A design is "centralized" if there is one member for whom the partitioning 
on E induced by the input he receives (comprised of messages and observations) 
is at least as fine as the sum52 of the observational partitionings of all other 
members [Hurwicz (1971, 1972), and many other writings]. 

All these usages define extreme categories. Many discussions loosely suggest 
that one can meaningfully speak of a greater or smaller distance from one of these 
extremes. Others explicitly use the terms "more centralized" or "more decentral­
ized". Two possible definitions that appear to capture some of the intended usage 
follow. Let A and B be noiseless, memoryless one-step designs with the sets in i 's 
observational partitionings f!JJi indexed by e

i
, i E N, and with the input and 

output sets ( Xi, Xi) identical in both designs for every member i. 

(a) Design A is "more centralized" than B if: 

(i) In both designs there is a member i * whose output xi* determines a subset 
of the output set Xk for every member k -:!=  i; in design A the subset is aAx'· ( Xk), 
in design B it is a Bx'· ( Xk). 

(ii) In design A, there is, for every k -:!=  i, for every value of e
k
, and for every xi* 

in xi*, a function oe�x'· on xk such that k 's output maximizes oe�x'· on 
OAx'" ( Xk) ;  similarly, in B there is a function oe�x'· on xk such that k 's output 
maximizes oe

s
x,. on Osx•· (Xk). 

(iii) For e�ery xi* E Xi* and every k -:!= i *, oBx'· (Xk) ;;;) oAx'· ( Xk) with strict 
inclusion for at least one k -:!= i *. 

(iv) For at least one xi* E xi*, at least one k -:!=  i*, and at least one value of e
k

, 
every maximizer of OeBx,. on Osx•· ( Xk)  is distinct from all the maximizers of Oe

A 
x'· 

k 
k k 

on oAx'· ( X  ). 

52 The sum of two partitionings on E, say f1lJ = { S }  and 9* = { S * }  (where S, S* denote typical 
sets) is the collection of sets { T :  T is non-empty; for some S e f1lJ, S * e f1lJ * ,  S n S * = T } .  
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(v) There is no other member with the properties just attributed to i *. 

(b) Consider the partitioning on E induced by the n-tuple of message outputs 
which the design generates in response to an element of E. If the partitioning is 
finer for A than for B, then A is "more centralized" than B. 

The first definition corresponds to the usage wherein the more a center 
(member i * )  constrains the sets (of messages and actions) out of which each other 
member chooses, the more "centralized" is the design. But it is not enough just to 
compare sizes of choice sets, because if, for some member, we have only specified 
a set of choosable outputs, then we have not specified a design. A rule for choice 
must be specified as well - and the definition uses a maximizing rule. The rule may 
be interpreted as the normal, voluntary behavior of a competent member con­
fronted with an assigned choice set, a local observation, and some guidance from 
the center as to how the choice is to be made. One difficulty, however, is that there 
may in fact be several members such as i *, so that if we did not add condition 
(v), then the " more centralized" ordering of A and B might be reversed as we go 
from one such "center" to another. It would be more satisfying, in such a case, to 
be able to select that one "center" who really matters, but there appear to be no 
appealing guidelines for such a selection. Another difficulty is that searching for a 
unique maximizer in a large set may be viewed by many as more "constraining" 
than searching for one of many tied maximizers (one of many equally acceptable 
outputs out of which the design arbitrarily selects one) in a small set. The 
definition masks this possibility. 

The second definition attempts to capture the usage wherein " more centralized" 
means that the entire bundle of inter-member communications which follows a 
new environment is richer in information about that environment - as it would be, 
for example, if n - 1 members told the remaining member a great deal about their 
local observations. Here a difficulty is that some rich message bundles may in fact 
have little influence on the actions generated by the design; the "centralization" 
of information may be to very little purpose and discarding some of the message 
bundle would define a new " less centralized" design which is only trivially 
distinct from the original one. 

Both definitions are modest in that they provide only partial orderings. Never­
theless, a definition which combined both usages and which also met the 
difficulties just sketched would have to be complicated indeed. The outlook is not 
promising for propositions which use such a corrected definition and can answer, 
in interesting cases, the question "when is more (less) centralization good?" 

If one despairs of sharpening the centralization (decentralization) concept so 
that it usefully classifies and orders designs, there is an alternative which may yet 
prove superior. It is suggested by the observation that in real organizations a very 
concrete choice facing a designer is the allocation of informational resources - e.g., 
administrative manpower - among various organizational activities, in particular, 
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the allocation of resources among a center and "local " members. It may be useful, 
then, to group activities, and to compare designs with regard to the efforts 
devoted to each group and the resources required for these efforts. 

To do so, one member, say n, is identified as the center. Consider a design in 
which each member i, i = 1, . . .  , n - 1, observes the environment (the observation 
is one of his input components) and forms one of his output components, namely, 
a message- a report - to n. The center's function is to coordinate- to use a 
common term -but he also makes an environmental observation of his own. In 
response to the observational component of his input and the " reports" compo­
nent, the center forms his output, which is an (n  - 1)-tuple of messages called 
instructions, one to each member i =F n. Member i =F n responding to the instruc­
tion received (an input component) and to his own observation, forms the other 
component of his output, namely, the value of one or more action attributes. The 
one-step requirement is satisfied (a "report" message is not based on messages 
received by the reporter which are influenced by the reporter himself; and 
similarly for " instruction messages"). 

Suppose we regard observing and action-taking by the members i =F n as 
local-expertise activities, and regard reporting by i =F n (and the reading of the 
reports by n ), instructions by n, and observing by n as coordination activities. In 
a finite design a non-probabilistic indicator of coordination effort would be 
fineness of reporting, of central observing, and of instructing. A non-probabilistic 
indicator of local-expertise effort is fineness of local observing and action-taking. 
Fineness may be measured by the sizes of the corresponding finite sets (the 
number of possible reports, instructions, central observations, local observations, 
actions). Suppose there is a total cost function on these set sizes, namely, 
C = C1 + C2, where C1 is increasing in the coordination set sizes and C2 in the 
local-expertise set sizes. Consider two designs with equal total cost, i.e. with a 
common " budget". We can say that design I devotes more of the budget to 
coordination and less to local expertise than design II if C1 is greater for I than for 
II. The issue to be studied then becomes: given the sets A and E, for what payoff 
functions, probability distributions on E, and functions C1 and C2, is it desirable 
(with regard to expected payofl) to choose a design in which a high proportion of 
the budget is devoted to coordination?53 To define a design with given set sizes, 
the observational partitionings { Y'; } ; E N on E must be specified and each 
partitioning must contain the prescribed number of sets; and the permitted 
action-attribute values must be chosen for each i =F n. Once this is done, the 

53 Camacho (1972) considers payoff functions which have an explicit "poor-coordination" penalty 
and an explicit " inadequate-local-expertise" penalty. The question studied is then the effect of 
changing those penalties on the relative performance of centralized and decentralized designs, where 
those terms are given the definitions (a) and (c) above. The approach is promising since it appears to 
permit replacing those extreme categories by an ordering and studying the effect of the two penalties 
on the desirability of "greater centralization". 
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choice of the best finite design among those for which the report and instruction 
sets have the required sizes becomes purely a combinatorial matter. Suppose, for 
example, that n = 3,  and that members 1 and 2 each have three possible 
observations, two possible reports, and two possible actions (action-attribute 
values) while member 3 has two possible observations and two possible instruc­
tions to each other member. Then, given the three partitionings on E, and, for 1 
and 2, the two possible actions, there are 9 · ( 62) 2 R possible designs, where R is 
the number of ways eight objects can be partitioned into four non-empty sets. 54 It 
may turn turn out that for some highly symmetrical examples there are algorithms 
drastically cutting the number of alternatives to be examined in finding an 
expected-payoff-maximizing member of the given class of designs. 55•56 

5.2. Hierarchies 

Hierarchies have been central to organization theories associated with the term 
"general systems" [Carzo and Yanouzas (1967), Lasdon (1970), Mesarovic, Macko 
and Takahara (1970), and Ruefli (1978)] and more recently in attempts to model 
centrally directed (Soviet-type) economies [Montias (1973, 1976)]. For a noiseless 
one-step design and given sets A and E, an r-tier hierarchy is simply an r-tuple 
( G1, . . .  , Gr) of disjoint groups, or tiers, of members; G, is higher than G1 if s < t. 
An input for every member i of tier I consists of i 's observations on E and 
messages received from one or more members in tier I - 1 .  

A hierarchy model may be natural where, for institutional reasons, the chaos­
able designs are confined to those with the following property: many of the 
possible messages in the design can be viewed as determining, together with the 
recipient's own observations, both a permissible subset of the recipient's output 
set and a criterion for choosing an output out of that subset. Formally, one 
assumes a generalization, from two tiers to many, of properties (i) and (ii) in our 
first definition of "more centralized than". Those properties are now displayed 

54 There are three ways 1 or 2 can partition his three possible observations into two non-empty sets, 
corresponding to two reports; R ways 3 can partition the eight possible combinations of reports 
received and central observations made into four non-empty sets, corresponding to four instruction 
pairs; 62 ways 1 or 2 can each partition his six possible combinations of local observation and 
instruction received into two non-empty sets, corresponding to his two possible actions. 

55Such an algorithm is sketched in T. Marschak (1980). 
56The share of an organization's administrative resources to be given to " line" versus " staff'' 

functions is discussed in general administrative literature. It could be modeled in the same spirit as 
"coordination versus local expertise". "Staff'' resources are assigned to the center and permit greater 
fineness for his choices. (Or staff may be modeled as a group of members all of whom send messages 
to the center and adjust no action attributes.) "Line" resources are assigned to those members who 
may be arranged in hierarchies, the concept to be discussed next. Drenick (1977) studies aspects of the 
line-versus-staff issue for designs whose task-completion times are variable. 
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with respect to a member of a tier and another member, belonging to the tier 
immediately below. One might wish to add, in the definition of hierarchies, the 
further property that environmental information becomes poorer at higher tiers, 
i.e. the sum of the observational partitionings of the members of tier l is coarser 
than the sum of the partitionings of the members of tier l + 1 .  

Some of the hierarchy theorizing has an incentive element. The output selected 
by a member in response to a message from above must be, in an appropriate 
sense, acceptable to that member, who has his own preferences over the possible 
choices [Mesarovic, Macko and Takahara (1970), Charnes, Clower and Kortanek 
(1967)].57 

With regard to hierarchies, a further definition of "more centralized than" is 
possible. Consider a fixed set A and a fixed set E and two one-step designs which 
are both r-tier hierarchies. Consider the assignment of action attributes to 
members. Suppose that if an attribute is assigned to a member of tier s in design I 
and a member of tier t in design II, then s � t, with " < " for at least one 
attribute. Then design I is called " more centralized" than design II. 

One can certainly formulate general conjectures about the desirability, for given 
A, E, and n (the number of members) of many-tier versus few-tier hierarchies, 
and of more centralized hierarchies versus less centralized ones; and loose 
conjectures of this sort have been made. But such conjectures ought to specify a 
class of payoff functions, probability distributions on E, and functions yielding a 
design's cost, and they ought to interpret "desirability" as expected payoff 
attainable for a given cost. No conjectures of that form have yet been checked, 
not even for very simple cases. 58 

6. Concluding remarks 

We have tried to view an assortment of recent economic studies in the same way: 
as steps toward characterizing those organization designs which do well, accord-

57Miyasawa (1973) considers the two-member team example (the " shipyard" example) with regard 
to which J. Marschak first illustrated team-theory concepts [an example treated further in Chapter 4 of 
J. Marschak and Radner (1972)]. Miyasawa makes the team a two-tier hierarchy by adding a center 
who gives commands specifying the sets out of which the two members can choose, and studies those 
commands for which the two members' Nash-equilibrium choices are good from the designer's point 
of view. 

58Some discussions [e.g., Koopmans (1969)) have complicated the hierarchy concept, and perhaps 
made it more realistic, by introducing activities in which each member engages. One speaks; then, of a 
hierarchy with regard to a particular activity. In our terminology, one would divide the set of action 
attributes into subsets, each called an activity. A hierarchy with regard to an activity is then defined as 
before: each member of a tier receives messages from the tier above but now these messages constrain 
and guide him only with regard to his choice of a value for any action attribute in the given activity. 
Not every member, then, belongs to the hierarchy associated with a given activity. 
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ing to some measure of gross performance, with the informational and admin­
istrative resources they require. The steps turn out to be diverse and modest, but 
the problem is difficult. Piecing the assorted contributions together, one is still far 
indeed from a unified theory of efficient organization design. 

The main stumbling block remains the modeling of technology and cost. Some 
elements of cost have been studied intensively and even elegantly. We have 
examined briefly the Shannon theory in connection with transmission, and the 
theory of finite-state machines in connection with the assignment of output; state 
pairs to inputjstate pairs in one-step designs with memory. We have not 
considered other well-developed efforts: the theory of pattern recognition in 
connection with observing [Fu (1974)], models from psychophysics and mathe­
matical psychology in connection with various issues in the characterization of 
human information-processing capacities [e.g., Chevanny. and Dickson (1974), 
Luce (1963), and Miller (1963)]. 

None of these topics were developed as part of a unified theory of organization 
design and so they appear difficult to fit into one. It may well be that only the 
observing and modeling of real organizations- something economists have been 
reluctant to do59 -can lead to models of technology and cost which fit usefully 
into a unified theory of organization design. 

On the other hand, techniques have been developed for study of a design's 
gross performance- e.g. the computation of expected payoff for a given team 
information structure - and these will remain useful in efficiency studies when 
good cost models do become available. 

The theory, even in its present form, has already been useful in revealing how 
difficult it is (1) to define certain widely current terms sharply and agreeably to 
most usages; and (2) to verify certain widely held conjectures. The notion of 
supervision and hierarchy, boldly proclaimed in a thousand "organization charts", 
and the pervasive terms "centralization" and "decentralization" are examples of 
the first. An example of the second is the conjecture that " the stronger are 
externalities, the more centralized the organization ought to be". Theory-building 
shows us the many meanings one can give to "externalities", " stronger", "more 
centralized", and "ought", and leads us to study small examples, some supporting 
a version of the conjecture, others contradicting a version of the conjecture.60 

A designer of a real human organization cannot in fact expect to choose 
designs as we have defined them, because the behavior of members is not in the 
designer's control. He may be able to specify the set of actions and messages out 
of which each member can choose and the administrative and informational 

59Economists, of course, observe and model one organization of monstrous size and complexity- the 
market economy. Recently, theories of organization design have had some influence on the observing, 
modeling, and comparing of socialist economies [e.g., Duffy and Neuberger (1972), T. Marschak 
(1968), and Montias (1976)]. 

60See, e.g., Camacho (1980), J. Marschak and R. Radner (1970, ch. 7), and T. Marschak (1972). 
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resources to be placed at each member's disposal. He will then have to make 
behavioral predictions about the choices members will in fact make. These 
predictions determine an "expected" design, and the assignment of resources 
determines a cost. The expected-design/ cost pair can then be ranked against 
others. If the designer is also free to choose the structure of members' rewards, 
then one guide to good predictions may possibly be norms for rational behavior 
in game situations. That approach is pursued in Chapter 28. 

Which behaviorally robust designs- those wherein members are likely to be­
have in the way described by their assigned tasks-are also efficient designs? That 
is a complex question; it will have to be answered eventually by joint work of 
theorists and observers of the real behavior of the members of organizations. 
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Chapter 28 

INCENTIVE ASPECTS OF DECENTRALIZATION* 

LEONID HURWICZ 

University of Minnesota, Minneapolis 

1. Resource allocation as information processing 

A resource-allocation mechanism is sometimes viewed as a gigantic information 
processing system. Such a system utilizes the knowledge dispersed among eco­
nomic agents concerning their preferences, technologies, and endowments in 
order to determine how resources should flow. Information is transmitted be­
tween economic units and processed by them through computations which result 
in allocative decisions. Alternative mechanisms can then be compared in terms of 
their efficiency in processing information adequate for optimal decisions. It is 
from this point of view that Hayek (1945) stressed the merits of the competitive­
market mechanism. The informational aspects of resource-allocation mechanisms 
were formalized and analyzed in a number of papers in the last twenty-five years 
[Hurwicz (1960), Mount and Reiter (1974), Reiter (1974a, 1974b), Hurwicz (1972, 
1977), Walker (1977), Osana (1978), Sato (1981), and Jordan (1982)]. 

From an informational point of view an economic mechanism may be thought 
of as an exchange of messages. In line with the tatonnement idea, an outcome is 
determined when the exchange of messages is in a stationary position. 

Denote by ..#; the "language" of the messages to be used by agent i. Then the 
process of exchanging messages may be represented by a system of difference 
equations of the form 

m; _ / ;{ml mn. e ) t+ l - " . . .  , t '  ' t = 0, 1 ,  . . .  , i E  { 1 ,  . . .  , n }  = N, 

where n is the number of agents, e represents the economic environment (prefer­
ences, endowments, technologies) and m� E ..#; for all t = 0, 1, . . .  , and all 
i E N = {1 ,  . . . , n } . 1 

* This research was partially supported by National Science Foundation Grant No. SES-8208378. 1l is called agent i 's response function. 

Handbook of Mathematical Economics, vol. Ill, edited by K.J. Arrow and M.D. Intriligator 
© 1986, Elsevier Science Publishers B. V. (North -Holland) 
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A message n-tuple m = (m\ . . .  , mn) is stationary if it satisfies the equation 
system 

-i /i( -1 -n ) m =  m ,  . . . , m ; e , i E N. (1 .1) 

Denote by Z the space of conceivable resource allocations. Then, given the 
stationary message n-tuple m, the resulting allocation z is determined by the 
outcome function h :  At �  Z, where2 At =  At1 X · · · X Atn, so that 

z = h (m) .  

The response functions t are assumed to be  defined for environments e which 
are elements of a class E of a priori admissible environments. An adjustment 
process for E is then defined as ,. = (At\ . . .  , At"; /1, . . .  , r; h ). 

Note that the i th equation of the system (1.1) may be interpreted as defining a 
correspondence p,; : E = At such that 

if 
m E p,;( e ) , 

i E /i(  1 n ) m m , . . .  , m  , e . 

In turn, we also have the correspondence p, :  E = At, defined by 

m E  P, ( e ) if and only if m E  n p,i( e ) . 
i E N  

In this formulation a message n-tuple m is stationary (or: equilibrium) for e if 
and only if 

m E p,( e ) .  

A mechanism is then defined as (At, p,, h )  where p, =ni E NP-; and At may, but 
need not, be a Cartesian product of some Ali 's. 

Historically, the economists' interest has been focused on informationally 
decentralized mechanisms. An adjustment process is said to be privacy-preserving 
if each response function t depends only on the characteristic e; of the ith 
agent. Typically, e; is defined in terms of the endowments, preferences, and 
technologies of that agent; e.g. e; = (<.i, R;, T;) where w; is the ith agent's initial 
endowment, R; hisjher preference relation, and T; hisjher technology. We may 

2.K is called the message space. 
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then write 

i - f i(ml m n . e i) mt+l - p · · · ,  t ' ' t = O, l , . . .  , i E N. 

It is understood that ( e\ . . .  , en) =  e. 

1443 

A corresponding formulation of the privacy-preserving property in terms of the 
equilibrium correspondences is 

!L ( e ) = n p/( e i ) ,  
i E N  

where, this time, IL
; : E; � .A, and E; is the a priori admissible domain of 

characteristics of the i th agent. Naturally, we have E = E1 X · · · X En. 
A message mechanism x = (.A, /L, h; E, Z) on the class of environments E to 

an outcome space Z defines a correspondence, say F: E = Z, by 

F( e )  = { z E Z :  z = h ( m) , m E IL ( e) for some m E .A } , 

for every e in E. F is said to be the (static) performance correspondence ofthe 
message mechanism.3 Given a correspondence G :  E = Z and a message mecha­
nism x, we say that x realizes G over E if F(e)  =1=/J and F(e) � G(e) for all e in 
E. We say that x fully realizes G over E if F( e) =I= /J and F( e) = G( e) for all e 
in E. 

It is important to note that the static aspects of performance depend on the 
response functions but only through the equilibrium message correspondence IL· 
I.e. if two n-tuples of response functions generate the same /L, then the resulting 
performance correspondence will be the same. 

Much of the traditional welfare economics takes a mechanism (e.g. perfect 
competition) as given and investigates the properties (e.g. Pareto-optimality) of its 
(static) performance correspondence. 

More recently, the reverse problem has come under investigation: given a 
correspondence F:  E = Z, viewed as a social desideratum, are there mechanisms 
which (fully) realize it? In particular, one question has been whether there exist 
decentralized (privacy-preserving) mechanisms realizing the Pareto correspon­
dence over "non-classical" sets of environments, such as those with indivisibili­
ties, non-convexities, externalities, etc., where the competitive mechanism is 
known to fail. On the other hand, for the "classical" environments, in which the 
competitive mechanism is known to realize the Pareto correspondence, the 
problem has been whether there exist mechanisms that are informationally 
equally or more efficient (e.g. with message spaces of lower dimension) but that 

3 Mount and Reiter (1974) and Reiter (1977). 
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still realize the Pareto correspondence. The realization of other correspondences 
(e.g. those that are individually rational or envy free) has also been studied. 

2. Decentralization in economies with public goods 

The preceding analysis treats the economic agent as an information processing 
(communicating, computing) unit. But this, of course, is very inadequate, since 
economic agents also have motivations and preferences and their levels of 
satisfactj.on depend on the allocative decisions. Because of the dispersion of 
knowledge, it is usually possible for an economic agent to transmit false informa­
tion. If this possibility is ignored in the design of a mechanism, the system is 
likely to malfunction. In early discussions, this danger became particularly 
obvious in two situations: the behavior of enterprise managers in Lange-Lemer 
socialist economies, 4 and in the Lindahl scheme of allocation of public goods. 5 
For our purposes, the latter problem constitutes a particularly convenient point of 
departure. 

Consider an economy with two goods (a public good Y and a private good X) 
and n agents, n � 1.6 The ith agent's initial endowments are denoted by w�, wiy 
E R +, and the preferences are represented by a utility function7 ui(xi, y) which is 
strictly increasing in each of its arguments. (xi is the total amount of private good 
available to agent i; y is the total amount of public good available to all agents.) 
The private good can be used as an input to produce the public good. This 
technology is expressed by the input requirements function g: it takes g(y) units 
of X to produce y units of Y.8 For instance, we may think of X as leisure-labor, 
and y as measuring the width of a road to be constructed; then g(y) is the 
number of units of labor required to construct the road of width y. (We ignore 
the costs of maintenance and crowding effects.) Denote by t i  the work contribu­
tion by the i th agent, so that the amount of good X available to this agent after 
the contribution is 

xi = w� - ti. 
An allocation (x\ . . .  , xn, y) is feasible if 

n 

g(y) � I: ti, i = l , . . .  , n .  
i = l 

4Weitzman (1974), Fan (1975), Bonin (1975) and Gindin (1970). 
5 Lindahl (1919), Samuelson (1954), Malinvaud (1971), Dreze and de Ia Vallee Poussin (1969), and 

Groves and Ledyard (1977). 
6 The public goods aspect is trivial for n = 1 .  
7 The representability of preferences by utility functions is  convenient but not always essential. The 

analysis can often be carried out in terms of preference relations. [See e.g. Hurwicz (1979).] 
8 The function g will be called .the input requirement function. It is the inverse of the production 

function for the public good. 
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The well-known Samuelson condition states that an interior allocation 
( xl, . . .  , x n, y) is Pareto-optimal for a differentiable utility function with u� > 0 
for all i and a differentiable input requirements function g only if 

n u�(xi, y ) 
I: i (  i ) = g '( y) , 
i = l  Ux X ' Y 

where u�, u� are the partial derivatives with respect to xi and y (marginal 
utilities) respectively. (Since u� > 0 for all i, Pareto-optimality also requires that 
L:ti = y.) 

A particularly simple case is obtained when constant returns prevail, so that 
g(y)  = ky for some k > 0. It is then possible to choose the units of commodity 
measurement so that k = 1, so that g(y) = y. In what follows we shall often 
confine ourselves to this case. 

A number of allocation systems and equilibrium concepts for economies with 
public goods have been considered in the literature. These include the "equi­
librium with subscription" [Malinvaud (1972, pp. 213-214W and Foley's "public 
competitive equilibrium" [Foley (1970, p. 67) and Malinvaud (1972, pp. 215-218)]. 
The former is in general not Pareto-optimal. The latter is Pareto-optimal under 
classical assumptions, but it has been characterized by Milleron (1972, pp. 432, 
453) as "an interpretation of Pareto optimum" rather than "a true definition of 
equilibrium"; as pointed out by Malinvaud, it is a partly cooperative solution, 
somewhat analogous to the concept of the core. 

The best known concept of a decentralized Pareto-optimal equilibrium was 
proposed by Lindahl in 1919.10 

Lindahl's " positive solution" 11 can be interpreted12 in terms analogous to those 
involving the Walrasian auctioneer as follows. The auctioneer calls out a proposed 
price vector ( p1, . . .  , Pn) where Pi is the price to be paid for each unit of the 
public good Y by agent i. The agent treats the price parametrically, and 
calculates his demand (xi, _pi) by maximizing ui(xi, y) with respect to its argu­
ments subject to the budget condition xi + YPi � w� + w�Pi· Equilibrium is ob­
tained when all agents' demands for the public good are equal, i.e. _yl = · · · = yn. 
Under classical assumptions, such equilibrium is Pareto-optima1.13 However, as 
stressed by Samuelson14 there is the problem of incentives: " It is in the interest of 
each person to give false signals, to pretend to have less interest in a given 

9See also Milleron (1972, pp. 451-453), Groves and Ledyard (1977, p. 789, ex. 2.1), and Roberts 
(1976). 

10 Independently proposed by Bowen (1943). 
11  Of the 'just taxation' problem. 
12 See Johansen (1963). 
13 Foley (1970); and Milleron (1972). 
14Samuelson (1954). 
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collective consumption activity than he really has, etc." Furthermore, the objec­
tions he raised applied not only to the Lindahl solution but to any decentralized 
solution. (In fact, the relevant section of Samuelson's paper is entitled " Impossi­
bility of Decentralized Spontaneous Solution"Y) Was Samuelson's impossibility 
claim correct? And was he right in contrasting16 the impossibility when public 
goods are present with the self-policing nature of markets for private goods? 

To try to answer these questions we shall first formulate them in an analytically 
tractable manner, with sufficient generality to apply both to public and private 
goods, and to a variety of mechanisms. 

3. Mechanisms (game forms) and implementation of social choice rules 

Let E i, i E {1 ,  . . .  , n }, n � 1, denote the class of a priori admissible characteris­
tics17 for agent i, and E = E1 X · · · X En denote the class of a priori admissible 
environments (economies). It is assumed that the Ei 's, and hence E, are known to 
the designer. The designer also knows a social choice rule F, i.e. a correspon­
dence18 from E to the set d of conceivable19 outcomes (resource allocations). 
The designer's task is to find a mechanism whose outcomes would, in some sense, 
implement (or be acceptable for) F. 

But what is meant by a mechanism in this context? In this exposition, we shall 
think of the (game) mechanism or game form as an ordered pair (S, h )  where 
S = S 1 X · · · X sn, Si is the strategy domain of the i th agent, and h an outcome 
function20 h :  S --... d. (We shall see subsequently how this game mechanism can 
be related to the notion of a message mechanism [an adjustment process] as 
defined above in Section 1.) We shall assume that the agents participate in a 
non-cooperative game, with the Si 's as their strategy domains and with the ith 
"payoff function" vi : S --... R defined by vi = u i  o h, where ui is the ith utility 
function u i :  d --... R. 21 [Note that the domain of the utility function is the set d 
of conceivable outcomes. For selfish preferences this can be reduced to the ith 
agent's component zi of the outcome z = (z\ . . .  , z n), z E d.] 

More generally, instead of a utility function, one may merely postulate for each 
agent a preference ordering on d, to be denoted by �} or Ri. 

15See Samuelson (1955). 
16 0p. cit., p. 389. 
17Typically, the characteristic e; of the i th agent is given by e; =  (Ci, wi, Ri, Y;) where C; is the 

consumption set, wi the initial endowment, R; the preference relation, and yi the production 
possibility description. 

18 By hypothesis, F(e) #-/J for all e e E. 
19..!11' includes all outcomes known to be possible, but may be broader. 
2° Called by Gibbard (1973) a "game form". 
21 R is the set of real numbers. 
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We define the game (S; h, e) generated by the mechanism (S, h) in the 
environment e as the game T = (S; II) in which Si is the strategy domain of the 
ith agent, S = S1 X · · · X sn, h :  S � R is an outcome function, and the payoff 
relation IIh, e  of the i th player is given by 

s' IIh , es" = h (s') Ri(e )h (s") for s', s" E S. 

Here Ri( e )  is the weak preference relation of the ith agent in the environment e. 
E.g. in a pure exchange economy, if e = ( e\ . . .  , en), ei = (wi, .k), then J?..i = 

Ri( e). 22 
Then a list (n-tuple) of strategies s* E S, s *  = (s*\ . . .  , s*n), is called a Nash 

equilibrium for the game (S; h, e) if, for each i E N,23 

where 

( s*jt ,  i ) = ( s *\ . . .  , t, . . .  , s*n ) , 

with t in the i th place.24 h(s*) is then called a Nash equilibrium outcome for 
( S; h, e) (for a Nash equilibrium allocation when d is a space of allocations). 

The set of all Nash equilibrium strategy lists for the mechanism ( S, h) in the 
economy e is denoted by Ps, h( e); it is a subset of S. 

The set of all Nash equilibrium outcomes for the mechanism (S, h) in the 
economy e is denoted by .JVs, h(e); it is a subset of d. In fact, .JV's, h(e) = 

h(vs h(e)). 
We say that a mechanism (S, h) implements or is acceptable for25 the social 

choice rule F in the class of economies E, if, for all e E E, 

(3.1) 

and 

(3 .2) 

[Recall that, by hypothesis, F(e) =1=/J for all e E E.] 

22i/ is called the i th agent's characteristic. c;:/ is that agent's initial endowment, and R; hisjher 
preference preordering (a total, reflexive, transitive binary relation). a' R; a" means that agent i either 
prefers a' to a" or is indifferent between them. 

· 

23 Where N =  {1 ,  . . .  , n } . 
24 Equivalently, s* Tih e(s* jsi, i) for all s; 

E S; and all i E N. 
25At times, to avoid . ambiguity we use the expression Nash-implementation. In Hurwicz and 

Schmeidler (1978) a mechanism is called acceptable if, in the sense of the above definition, it is 
acceptable for the Pareto correspondence. 
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We say that the mechanism (S, h )  fully implements the social choice rule F for 
the class of economies E if, for all e E E, 

(3 .1') 

and 

�.h ( e ) = F(e ) .  (3 .2') 

I.e. the inclusion in (3.2) of the definition of acceptability becomes an equality. 
[Since F(e )  =F/J by hypothesis, (3.1') follows from (3.2'), but we have shown it 
explicitly for the sake of parallelism with the previous definition.] 

We may note that when F is a (single-valued) function, the two definitions 
coincide. 

Denote by Pi( e) the strict preference agent i in e, and by A( e) � d the set of 
outcomes possible when the environment e prevails. As usual, an outcome 2 E d 
is Pareto-optimal in e if 

2 e A ( e ) , 

and there is no z ' E A( e) such that z' Ri( e) 2 for all i E N  and z ' Pi( e) 2 for 
some j E N. 

In the earlier period of investigation, the question asked was relatively modest. 
Given the class of a priori admissible economies E, does there exist a mechanism 
(S, h )  such that, for each e E E, every Nash equilibrium outcome is Pareto-opti­
mal in e? To avoid triviality, it is natural to add the requirement that the set of 
Nash equilibria, and hence Nash outcomes, be non-empty for all e E E. As above, 
when these two conditions are satisfied, we say that the mechanism ( S, h )  is 
Pareto-acceptable for E. 

Groves and Ledyard, in their path-breaking contribution (1977), constructed a 
Pareto-acceptable mechanism for a wide class of economies, 26 with three or more 
agents, containing public goods. Hurwicz and Schmeidler (1978) and, indepen­
dently, Maskin (1977) undertook a systematic study of the existence of Pareto­
acceptable mechanisms. 

Paradoxically, it was discovered that, for the case of two agents, n = 2, if all 
strict preference orderings were a priori admissible in E, then only dictatorial 
mechanisms were Pareto-acceptable for E. [See Theorem 1 and Corollary 1 in 
Hurwicz and Schmeidler (1978, p. 1451) and Theorem 1 in Maskin (1977).] By 
contrast, many non-dictatorial Pareto-acceptable mechanisms could be found 
when there were three or more agents [see the kingmaker outcome function in 
Hurwicz and Schmeidler (1978, p. 1452) and Example 1 in Maskin (1977)]. 

26 For the nature of this class, see Groves and Ledyard (1980). 
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Once it became clear that, for n > 2, Pareto-acceptable mechanisms do exist, 
ambitions expanded. In particular, it was noted that in the Groves-Ledyard 
mechanism, an agent's utility at equilibrium could be lower than at the initial 
endowment, 27 i.e. that the requirement of individual rationality was violated. This 
was in contrast to the properties of such traditional equilibria as Walras or 
Lindahl. Both of these give each agent the option of not trading (i.e. staying at the 
initial endowment), hence they do satisfy individual rationality. 

Formally, when E is a class of pure exchange economies with initial endow­
ment allocation w(e), a social choice rule F: E = .s# is individually rational in E 
if, for all e E E, and every z E F(e), 

zR;( e ) w ( e )  for all i E N.28 (3 .3) 

The same definition can be used in a more general setting, with w (e) interpre­
ted as some type of reference allocation (e.g. status quo). We shall denote by I( e) 
the set of all allocations z satisfying (3.3). 

4. Revelation mechanisms and dominance equilibria 

The new problem then is whether, for a given class of environments E, there 
exists a mechanism (S, h )  such that, for any e E E and any z E %s, h(e), 

z E P( e) n I( e) , 

where P( e )  and J( e) are, respectively, the sets of Pareto-optimal and individually 
rational allocations in e. 

This issue was already studied in Hurwicz (1972) in the context of Edgeworth 
Box examples (pure exchange, two goods, two persons). However, the formulation 
there introduced an additional requirement, which in present-day terminology 
could be expressed as the requirement that (S, h )  be a revelation mechanism. A 
mechanism (S, h )  is said to be a revelation mechanism for E =  E1 X · · · X E n, if 
S; = E; for each i E N, where E; is the class of a priori admissible characteristics 
for the ith agent.29 Hence a revelation mechanism for E can be written (E, h). A 

27See Groves and Ledyard (1980, p. 1487). 
28 It is not obvious how to define individual rationality in an economy with production. For a 

possible interpretation of this concept, see Hurwicz (1979b, p. 159). 
29This usage of the term " revelation mechanism" corresponds to that of Green and Lalfont (1979, 

p. 50, definition 4.3) except that we use characteristics where they use valuation functions. Dasgupta, 
Hammond and Maskin (1979, p. 188) use the term "direct mechanism" in the same sense as our 
" revelation mechanisms". 



1450 Leonid Hurwicz 

revelation mechanism (E, h) for E is said to be compatible with (or natural for )  
social choice rule F, if for every e E E, 

h ( e ) E F(e ) , 

where F is the social choice rule to be implemented. (Note, it is legitimate here to 
have e as an argument of h because in a revelation game S =  E.) 

In particular, if the social choice rule F is a (single-valued) function, then 

h ( e )  = F( e)  for each e E E ,  

and the revelation mechanism compatible with F becomes (E, F), since here 
S =  E and h = F. 

Let the i th agent's true characteristic be denoted by e;. In games of revelation 
to be considered it is understood that 

e i E E i  for all i E N. 

This means that the true characteristic is a priori admissible (otherwise the 
designer is misinformed!) and also, since S ;  = E;, i E N, that each agent has the 
option of using the true characteristic as his strategy. On the other hand, unless 
E;  is a one-element set (which case we shall exclude), he also has the option of 
using as his strategy some element e; of E;  which is different from e;. 

This raises the question whether the true profile e = ( e\ . . .  , en)  is a Nash 
equilibrium for the revelation mechanism ( E, h ). I.e. the question is whether, for 
each i E N, 

h ( • 1  • n )Ri( ' ) h (  • 1  - ; • n ) e , . . .  , e  e e , . . .  , e  , . . .  , e  

[Note that R;(e) depends on e; only. In fact, usually, e ;  = (C;, wi, R;, Y;).] 
We say [see Hurwicz (1972)] that a direct mechanism (S, h) is incentive-compat­

ible on E if truth is always a Nash equilibrium in E, i.e. if 

Ps, h (e ) *j) and ' e E vs, h (e ) for all e E E. 

[A more stringent requirement would be { e }  = vs, h(e) for all e E E, i.e. that truth 
be the only Nash equilibrium.] 

Now denote by L(e) the set of Lindahl allocations30 in the economy e. Then L 
is a social choice rule (the Lindahl Social Choice Rule). We may note for later 

30 See, e.g. Johansen (1963) and Hurwicz (1979a, 1979b). In the two-good economy described in 
Section 2, e = ( Ci, &i, Ri) i e N and L( e) = {(:Xi, ji)i e N :  (1) ( :Xi, ji) E Ci for all i E N, and (2) for 
some (p1 ,  . . . , Pn ), and all i E N, if (xi, y) E Ci and xi + YPi � w� + w�pi , then (xi, ji) Ri( e)(xi, y)}. 



Ch. 28: Incentive Aspects of Decentralization 1451 

reference that 

L(e) c;;;; I( e ) ,  

i.e. a L i s  always individually rational, 31 and, under classical assumptions, 

L(e) c;;;; P( e ) , 

i.e. a Lindahl allocation is Pareto-optimal. To simplify exposition, let us suppose 
that, for each e E E, there is a unique Lindahl allocation, also to be denoted by 
L( e ). Thus, now L is a function. Then the Lindahl mechanism, to be dis­
tinguished from the Lindahl social choice rule L, is the (unique) revelation 
mechanism natural for L, namely (E; L).32 I interpret Samuelson's critique as the 
claim that truth is not a Nash equilibrium for this game, i.e. that the Lindahl 
mechanism is not incentive compatible. 

In a moment, we shall see that Samuelson's claim concerning the Lindahl 
mechanism was correct. But, somewhat surprisingly, it turned out that this was 
due not, as many thought, to the peculiar features of the public goods but rather 
to incentive problems that arise for private goods as well. This latter fact was 
shown in Hurwicz (1972). Consider a pure exchange economy with two private 
goods and two traders. First let the (revelation) mechanism require the agents to 
report their characteristics e1, e 2; given these the outcome function dictates the 
W alrasian (competitive) allocation corresponding to e = ( e1, e 2 ), to be denoted by 
W(e).33 Assume w(e) $. P(e), i.e. a non-optimal initial endowment. [For the sake 
of simplicity suppose that the competitive allocations are unique (i.e. that W( e) is 
a singleton for all e E E ).] Then, if the a priori admissible class e is sufficiently 
rich, truth turns out not to be a Nash equilibrium. Thus the Walrasian (competi­
tive) process, viewed as a revelation mechanism, was seen (in this special case) to 
be not incentive-compatible. But this fact turned out to be a special case of a 
more general phenomenon: for n = 2, pure exchange, two goods, any revelation 
mechanism guaranteeing Pareto-optimality and individual rationality34 is not 
incentive-compatible if E is sufficiently rich. 35 

31 Because it leaves each agent the freedom not to trade. 
32 This mechanism can be interpreted as follows. Each agent is asked to report his characteristic ei. 

Given the reports e1
, . . •  , e" , the allocation prescribed by the mechanism is the Lindal!l allocation for 

the economy in which e
1
, . . .  , e" are the agents' characteristics. 

33 I.e. we require the mechanism to be compatible with the Walrasian (competitive) social choice 
rule. In a pure exchange (" Edgeworth Box") economy where e; = ( C;, wi, Ri ), we have W( e) = 
{ (Z', . . .  , z " ) : (1) zi E C; for each i, and (2) there exists (p1 ,  . . .  , Pn ) such that, for all i E N, if zi E C; 

and p1z
;

;;;; p11,/, then z;R; ( e) z ; } .  
34I.e. compatible with P(e) n I( e) . 
35Although there are truthful equilibria when the initial endowment w ( e) is Pareto-optimal. 
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More precisely, for n = 2, pure exchange, two goods, if (S, h) is a revelation 
mechanism for E (i.e. S = E ) and 

� h (e) � P( e) n l(e) for all e E E, 

and if the class E is sufficiently rich, then 

unless w(e)  E P(e). 
Now, when there are two agents, the geometry of the Edgeworth Box so helpful 

for private goods has a close counterpart in the Kolm (equilateral) Triangle, using 
barycentric coordinates [Kolm (1964) and Malinvaud (1971)]. Using this fact, 
Ledyard and Roberts (1974) showed that the phenomenon just described for a 
private goods economy also occurs in a two-agent economy with two goods, one 
of which is public, and where constant returns prevail in producing the public 
good, using the private good as input. 36 

Thus they showed that for such public goods economies ( n = 2), all revelation 
mechanisms guaranteeing Pareto-optimality and individual rationality over a 
sufficiently rich class of environments, are not incentive-compatible. In particular, 
since the Lindahl mechanism does have these two properties, it is not incentive­
compatible.37 

Thus the Samuelson claim turns out to be correct, although for reasons not 
related to the presence of public goods!38 

The results so far discussed are very specialized. A number of generalizations 
have been obtained. The impossibility results just cited for n = 2 were extended 
by Ledyard (1977) as applied to "core-seeking" mechanisms for arbitrary n .  See 
also Satterthwaite (1976) and Dasgupta, Hammond and Maskin (1979, p. 198 
thru Section 4.4.1).39 

36See Section 2. An analytic example is given in Roberts (1979, p. 289). 
37In fact, the geometry of Lindahl equilibria in the Kolm Triangle is completely analogous to the 

geometry of the Walrasian (competitive) equilibria in the Edgeworth Box (price line, double tangency, 
etc-J-

3 However, the similarity between the public and private goods economies appears to break down 
as the number of agents n ..... oo .  For private goods, Postlewaite and Roberts (1976) showed the 
competitive mechanism (which has individually rational equilibria) to be, in a sense, asymptotically 
incentive compatible. By contrast, Roberts (1976) found that, for public goods, mechanisms accept­
able for individually rational choice rules (such as Lindahl) are not asymptotically incentive compati­
ble. [However, when the individual rationality requirement is abandoned, asymptotic incentive 
compatibility is possible. This is shown to be the case in certain economies for the pivotal mechanism 
with rebates in Green, Kohlberg and Laffont (1976).] 

39This theorem drops the requirement of individual rationality but requires a broader class E than 
used in Hurwicz (1972) and an additional condition for n ;;;; 2. See also Hammond (1979) for related 
results in " large" economies, i.e. those with a non-atomic measure of space agents. 
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Furthermore, it was discovered that there is a close relationship between 
incentive-compatibility as defined above and dominance-equilibria. 

Let T = (S, 'IT) be a game with the strategy space S = S1 X · · · X sn and a 
payoff function '1T = ('IT\ . . .  , '1Tn). Then s;* is said to be a dominant strategy for 
player i if 

where S)i( = S1 X · · · X si- l X Si+ 1  X · · · X sn. Similarly, when h is an outcome 
function, s ;* is a dominant strategy for the game ( S; h, e )  if 

S .  E S)i( )1( • 

s*  = (sf, . . .  , s;:') is said to be a dominance equilibrium if s;* is a dominant 
strategy for each i E N. 

The discovery was the following: if, for a direct revelation mechanism ( E, h), 
truth is a Nash equilibrium for all e E E, then truth is a dominant strategy for 
every agent. 40 Thus such truthful Nash equilibria are dominance equilibria, and a 
search for incentive-compatibility is a search for dominance equilibria. 

Moreover, as shown by Dasgupta, Hammond and Maskin (1979, theorem 4.1.1, 
p. 194), 41 given a mechanism with dominance equilibria, there exists an equiv­
alent42 direct mechanism in which truthtelling constitutes a dominance equi­
librium. 

One approach, pioneered43 by Vickrey (1961), Clarke (1971), and Groves 
(1979), is focused on the design of mechanisms for which truthtelling is a 
dominant strategy. It turns out that such mechanisms can be designed, at least for 
the class of "parallel" preferences, i.e. preferences representable by utility44 

40See d'Aspremont and Gerard-Varet (1979a, theorem 1, p. 31) and Dasgupta, Hammond and 
Maskin (1979, theorem 7.1 .1 ,  pp. 209-210). In Gibbard (1973, p. 595) a game form is called 
straightforward if every player always has a dominant strategy (so a dominance equilibrium exists). 

41 The construction is used in Gibbard (1973, p. 596) and in Green and Laffont (1977, p. 434, proof 
of theorem 5). 

42 See Dasgupta, Hammond and Maskin (1979, p. 189). Let (S, g) be any mechanism possessing 
dominance equilibria in games (S; h ,  e) for e in E, and let s* : E ->  S be a (single-valued) selection 
from the dominance equilibrium correspondence. Then the composition h = g o  s* defines the 
outcome function of the corresponding revelation mechanism. This mechanism ( E, h) is said to be 
equivalent to ( S, g) if, for all e E E, e E ..#"h( e), i.e. truth is an equilibrium for all environments. 
However, it may happen that (S, h) is compatible with F while ( E, h) is not. [See Dasgupta, 
Hammond and Maskin (1979, p. 195).] 

43With Jacob Marschak as a precursor; see Groves (1979, p. 50, footnote 11) and Green and Laffont 
(1979, p. 36). 

44 Called quasi-linear or transferable. 
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functions linear in the private good (which can be thought of as numeraire). Let 
the i th agent's preferences be represented by the transferable utility function 
ui(xi, y) = xi +  v;(y), where xi is the amount of private good retained (after 
taxes) by i, and y the level of the public good available to everyone. vi( · ) is called 
the i th valuation function. [Our terminology differs somewhat from that used by 
Green and Laffont (1979) because they subsume the costs of a project in the 
valuation function.] Equivalently, 

where t i is the tax (contribution) paid by the i th agent. For any individual agent 
this tax may be positive, negative, or zero. But if no outside funds are available 
[assuming the input requirements function g(y) = y, i.e. constant returns prevail 
and measurement units are normalized (see Section 1)], taxes must satisfy the 
feasibility requirement 

n 

Furthermore, an allocation is not Pareto-optimal unless the equality holds, i.e. 

n 

[See Groves (1979, p. 47, proposition 2, condition (a)). The notion of Pareto-opti­
mality used by Groves and in our text differs from that in Green and Laffont 
(1979, p. 33) where the utility of the public agency [an additional (n + 1)st agent] 
permits Pareto-optimality even when L t i > y.] 

If the valuation functions are concave, at a Pareto-optimal allocation, the 
expression 

must be maximized. (For differentiable u;'s and an interior optimum this yields 
the Samuelson condition in the form 

L:v; ( y) = 1 .) 
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On the other hand, if Lti = y and the expression - y + L:ivi(y) is being maxi­
mized, then the allocation is Pareto optimal. 45 Thus, for transferable utilities, the 
maximization condition determines the optimal values of the public good, inde­
pendently of the distribution of tax burdens. If y is an optimal value of the public 
good, then an n-tuple ( t\ . . .  , t n) of taxes is Pareto-optimal if and only if it 
satisfies the conditions 

n 
I: t i = .Y, 
i = l 

and46 
ti � - w� for all i E N. 

Consider now a revelation mechanism with the initial endowments known to 
the designer. Under the assumptions made, the only aspect of the ith characteris­
tic unknown to the designer is the ith valuation function, vi. The�efore, the space 
Ei may be identified with a set Vi of the a priori admissible valuation functions 
for agent i. 

An outcome function for such a mechanism is of the form 

h : V1 X · · · X yn � Rn X R+,  

so that 
h : ( vl ' . . .  ' vn) � ( x1 ' . . .  ' xn ' y) . 

We shall write xi = hx,( u1 , • . •  , un), y = hy(v1, . • .  , vn). 
Revelation mechanisms independently proposed by Clarke (1971) and Groves 

(1970) have the remarkable property that truthtelling is a dominance equilibrium 
when preferences are representable by utility functions linear in the private 
good. 47 Furthermore, these mechanisms have the following additional property. 

Let wi denote the valuation function reported (whether truthfully or not) by 
agent i. Then, in the above mechanism, 

maximizes the expression 

45Assuming that, for each i E N, Ci = R� and ti 2: � w� (Ci = the i th agent's consumption set). Cf. 
the corresponding theorem in Groves (1979, p. 47, proposition 2). 

46Again assuming that each agent's consumption set Ci = R� (the non-negative quadrant). 
47See Groves (1979, corollary, p. 51). 
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with n;spect to y. I.e. for all (w1, . . .  , wn) E V1 X · · ·  X Vn, 

hy ( w1 , • . .  , wn ) = m;x [- Y + � W;(Y) ] . 

But truth constitutes a dominant strategy for each agent. Hence we have, at 
dominance equilibrium, 

w; = D; for all i E N, 

where D; is the true valuation function. So, there exists a dominance equilibrium 
such that the value of y maximizes the expression [ - y + L;D;(y)], hence y is 
Pareto-optimal (with regard to the true preferences). 

However, the fact that y is Pareto-optimal does not imply that the allocation 
(x

1
, . . .  , xn, y) produced by these mechanisms is Pareto-optimal. As seen above, 

for Pareto-optimality it is necessary that 

(4.1) 

The latter condition is not satisfied by the "pivotal " (Clarke) mechanism. Now 
the pivotal mechanism is a special case of a class called the Groves mechanisms. It 
turns out that, under certain conditions on the families V; of a priori admissible 
valuations, the search for mechanisms whose dominance equilibria yield Pareto­
optimal outcomes can be confined to Groves mechanisms.48 But, unfortunately, it 
has been found that every Groves mechanism will violate the balance condition 
on large classes of profiles. 49 

48See Green and Laffont (1977, corollary 3, p. 433; 1979, theorem 4.5, pp. 63-64), Walker (1978), 
and Holmstrom (1979). A sufficient condition [Holmstrom (1979, theorem 2, p. 1141)] is that 
V = V1 X · · · X vn be a convex set in the space of valuation n-tuples. This condition is satisfied in 
cases underlying the results due to Green and Laffont and to Walker where V; consists of all 
continuous functions or all strictly concave (or convex) functions, or all concave quadratic functions 
on a convex subset of R1. 

Holmstrom (ibid., theorem 1,  p. 1140) also shows a weaker condition (that V be " smoothly 
connected") to be sufficient. 

On the relationship of the previous conditions, see Green and Laffont (1979, p. 65, footnote 15) and 
Holmstrom (1979, p. 1142). 

49See Green and Laffont (1979, theorem 5.3, p. 90). Walker (1980, theorem 1, p. 1531) shows that 
the " failure set" is everywhere dense on a space of concave valuation functions when this space is 
endowed with any topology weaker than the strongest topology in which vector addition and scalar 
multiplications are continuous. Analogous results for private goods, pure exchange economies are 
presented in Hurwicz and Walker (1983). See also Hurwicz (1975a, 1975b, 1981) for impossibility 
results when n = 3.  

However, the balance condition may be satisfied on sufficiently small classes of profiles. See Groves 
and Loeb (1975) and Hurwicz (1975a, 1975b, 1981). These cases involve economies with three or more 
agents. For impossibility results for two agents, see Green and Laffont (1979, p. 94) and Hurwicz 
(1975a, 1975b, 1981). 



Ch. 28: Incentive Aspects of Decentralization 1457 

To present these results more formally, it is convenient to switch to a model of 
public decision-making which subsumes the inputs (costs) of producing a public 
good under the more general rubric of a public decision (project). 50 

Formally, this reduces the problem to that of a "costless-" project, but at the 
expense of increasing the dimensionality of the space in which the project is 
defined. 

Thus, let ci, ci � w�, i =1, . . .  , n ,  be such that I:7_1ci = y, y � 0. Then the 
"project" z = ( c1, . . .  , en; y) requiring the ith agent to contribute ci units of the 
private good to the production of y-units of the public good is feasible. Suppose 
that proposal p combines this project with a transfer scheme (r1, . . .  , r n) where, 
for each i E N, ri is the compensation (in terms of the private good) paid to agent 
i. Then the utility of the proposal to the ith individual is ui[p] = ui( w� - ci + 
ri, y). When ui is linear in the private good, we may write this as 

Alternatively, we can write 

ui [ p ] = w� + ri + cpi ( z ) , 

where 

i E N, 

Since xi = w� - ci + ri, i E N, the feasibility condition, 

becomes 

Hence 

y - E ci + Eri � O or Eci - Y � Lri. 

But, by construction, L:ci - y = 0. Therefore, the feasibility condition becomes 

n 

L ri � 0 . 51 
i - 1 

50See Green and Laffont (1979, pp. 29-31 ; p. 42, footnote 9; p. 52, footnote 5; pp. 74-75). 

(4.2) 

51 Here and subsequently we shall ignore the implications of individual feasibility requirements, viz. 
that xi = w;x - c; + r; ;;;; 0, i E N. 
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Thus, in this formalization, the public decision ( project) is a point z = 
(cl, . . .  , cn; y) in the (n + l)-dimensional Euclidean space Rn+ l satisfying the 
condition 

n 
L ci = y, 

i = l  
(4.3) 

and a proposal is a point p = ( cl, . . .  , en; y; rl, . . .  , r n) in the (2n + I)-dimensional 
space R2n+ l satisfying the conditions (4.2) and (4.3). 

Somewhat more generally, and reverting to the customary notation, 52 a proposal 
is defined as a point q = ( r1, . . .  , r n; y) where y is an element of a set Y of feasible 
projects and I:7+1r ; � 0. As before, for preferences representable by utility 
functions of the form 

i E N, 

vi ( · ) is again called agent i 's valuation function . 
The a priori admissible class of i 's valuation function is denoted by Vi. 
In a revelation game, an individual's strategy is an element wi of Vi. A 

mechanism then is defined as a function 

h :  Vi X · · · X Vn -+ Rn X Y, 
so that 

n 
h (w1 , • . .  , wn ) = ( r\ . . .  , rn , y ) with L: ri � O. 

i = l  

Write w = (w1, . • .  , wn) and r = (rl, . . .  , r n). For (r, y) = h(w), we shall use the 
notation r ; = h'i(w), i E N, r = h'(y), and y =  hY(w). 
Example 
Although we have come to this model through a re-formalization of a particular 
public goods problem, it has in fact much greater generality, as long as we retain 
the freedom of choosing a suitable set Y. In particular, a pure exchange economy 
with k + 1 goods and selfish preferences can be modeled by choosing 

Y =  Rk X · · · X Rk (n  times) . 

Here, for y E Y, we write y = (y\ . . .  , y n), y i E Rk, i E N, and require that 
L:;= lyi  � 0. 

52 Thus from now on y here corresponds to z = ( cl, . . .  , c"; y) above (not to y above) and Y can be 
either multi- or one-dimensional; u; here corresponds to '¥; above (not to u; above). 
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Furthermore, the utility functions are made selfish by postulating that, for 
every y E Y, 

for some functions vl, . . . ' n n· 
Clearly, this represents a pure exchange model with (r i, yi) as the net trade of 

agent i and the agent's selfish utility function (in terms of net trades), 53 

Going back now to the general model, we note first that54 a proposal 
( r1, . . .  , r-n; y)  is Pareto-optimal if and only if 

and 

n 
:E ri = O, 

i = l  

n n 
L V; ( .Y ) � :E vi(y ) for all y E Y. 

i = l i = l  

(4.4) 

(4.5) 

Let wl, . . . ' wn , W; E v i, i E N, be the agents' reported (possibly false) valuation 
functions. 

A Groves mechanism uses an outcome function h :  V1 X · · · X vn --+ Rn X Y, 
such that (i) 55 

n n 

i = l  i = l  

and (ii) for each i E N, there exists a function g; : V1 x · · ·  x v;- 1 x VH1 --+ R  
such that 

h'i( w) = L w; ( hY( w ) ) - g; ( w)i( ) . 
) * i 

53See Walker (1980, section 5, p. 1534) and Walker (1977). I have also benefited from private 
communications with Walker on this subject. 

54 See Groves (1979, p. 47, proposition 2). Note again that the "if" part of the statement ignores the 
lower bound restrictions (due to considerations of individual feasibility) on the x;. 

55 Writing w = (w1 ,  . . .  , w. ) and w)i( = (w1, . . . , W;_ 1 ,  wi+ l •  . . .  , w. ). 
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I.e. the public decision y* = hY(w) chosen by a Groves mechanism maximizes 
(over the set Y) the sum of reported valuations.56 Clearly, if the reported 
valuations are truthful ( W; = D; for all i E N), then y* will be a Pareto-optimal 
value of the public decision. Now, 57 truth is a dominant strategy for every agent. 
It follows that, for a Groves mechanism, there exist dominance equilibria yielding 
Pareto-optimal public decisions. I.e. if h is a Groves mechanism outcome func­
tion, then there exist some reported valuation lists w* E V1 X · · · X Vn, r E Rn, 
'L7=/; = 0, such that (1) w* = v (true valuation list), (2) w* is a dominance 
equilibrium, and (3) (i', hY(w*)) is Pareto-optimal. However, this does not imply 
the optimality of (r*, y*) = (hr(w*), hY(w*)) because optimality requires that 
Lr*i � 0, about which so far nothing has been said. (Note that r above need not 
equal r *.) 

Example 
As mentioned above, the pivotal (Clarke) mechanism is a Groves mechanism. To 
define it, it is sufficient to specify the "alien" component function gi appearing in 
the definition of the compensation function h ri for a Groves mechanism. 

For each i E N, let y;** denote the maximizer of I:1 ,. ;wiy) over Y, i.e. 

Then, for the pivotal (Clarke) mechanism, we have 

g; ( w)i( ) = - L wAy;** ) . 
j .. i 

Thus, for this mechanism, the ith compensation function is given by 

h ri( w) = I: wAy* )- I: wAy;** ) , 
j .. i , .. i 

where y*  maximizes L�=Iwk(Y) while y;** maximizes I:1,. ;w/y); in both cases 
the maximization is over Y. 

It is instructive to apply this in the special case where Y is a two-element set, 
say Y = {0, 1 } .59 Normalize w;( · ) so that w;(O) = 0, and write w;(1) = w;. Then60 

56 Revelation mechanisms with this property are called direct revelation mechanisms in Green and 
Laffont (1979, p. 51, definition 4.4). 

57See Groves and Loeb (1975), Green and Laffont (1979, pp. 56-57, theorem 4.1). 
58 See Green and Laffont (1979, pp. 42-43 ; p. 52, definition 4.7). 
59 The interpretation is that 1 represents undertaking a specific project and 0 not undertaking it. 
60 See Green and Laffont (1979, p. 42). 
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the function h i for the pivotal mechanism becomes 

It turns out that the compensation ri paid to agent i is either zero or - II:1,. iw1 1 ,  
and the latter can be the case for some agents61 at a dominance (truthful) 
equilibrium. Hence it can happen at equilibrium that 

and this inequality implies absence of Pareto-optimality. Thus the pivotal mecha­
nism does not guarantee the Pareto-optimality of the equilibrium allocation 
( r *, y *) it generates, although the choice of y * itself is Pareto-optimal. 62 

Contrary to what one might have hoped, this difficulty is not remedied by 
broadening the horizon to the class of all Groves mechanisms. The fact that there 
exists no Groves mechanism such that the compensatory payments balance when 
the sets Vi are unrestricted, is demonstrated63 in Green and Laffont (1979, p. 90, 
theorem 5.3). On the other hand, a balanced Groves m.echanism64 was con­
structed by Groves and Loeb (1975) for the case where Y = R + and the valuation 
functions are quadratics, 

i E N, 

with ()i E R +• provided #N � 3. 
The requirement that #N � 3 is essential: when there are only two agents, 

balance cannot be achieved even for quadratic utility functions. 65 
Such results raise the question of conditions under which Groves mechanisms 

are balanced and hence Pareto-optimal. A necessary and sufficient differential 

61 It is the case for the " pivotal" agents. An agent i is " pivotal" if the sign of I:Z_ 1wk is different 
from that of i:j + iMJ • namely where one of these sums is non-negative while the other is negative. 

62 In the sense that there exists some allocation (i', y*) which is Pareto-optimal. However, in 
general, i' ,;.  r* .  

63 Explicitly, for a two-element set Y. 
64 I.e. such that h'(w) = 0 for all w E  V1 X • • • X V". 
65Green and Laffont (1979, pp. 94-95). 
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condition for a class of differentiable valuation functions is given in Green and 
Laffont (1979, p. 96). It makes possible the direct testing of specific classes of 
environments. 

So far we have been focusing on Groves mechanisms. But negative results 
concerning Groves mechanisms have broader implications. First, it has been 
shown66 - under varying assumptions concerning the a priori admissible classes of 
valuations Vi, i E N  -that Groves mechanisms are the only revelation mecha­
nisms for which truth is always a dominant strategy. But even going beyond 
revelation mechanisms does not alter the situation materially as long as we insist 
on dominance equilibria. This is so because67 given a mechanism (S, h), using an 
arbitrary strategy space S = S1 X · · · X sn and possessing a dominance equi­
librium s * = (s{, . . .  , s:) over the environment E = E1 X · · ·  X En, there exists a 
corresponding revelation mechanism ( E, g) in which truth telling is dominant. 
Furthermore, the outcome generated by the truthtelling equilibrium correspond­
ing to s *  yields the same outcome, hence preserves Pareto-optimality.68 

Thus the difficulty arises as soon as one demands a mechanism with dominance 
equilibria. Such a mechanism will be subject to the same difficulties that would 
arise for Groves mechanisms. It has already been seen that there do exist69 
families of valuation functions for which balanced and truthtelling Groves 
mechanisms exist, hence Pareto-optimality can be guaranteed. But are such cases 
typical or exceptional? Answers to this question are provided in Walker (1980). 

To formulate the relevant results one must specify the topology to be used on 
the space V = V1 X · · · X Vn of valuation function profiles. 

Walker requires Vi to be a subset of C( d), the set of _all continuous 
real-valued functions on d (the space of public decisions). Let ,I be the largest 
topology in which C( d) is a topological vector space, and let ,I be the topology 
on Vi inherited by Vi as a subspace of C( d). (,/ is called the vector space 
topology on Vi.) 

Walker's Theorem 1 assumes n � 2 and d a convex open set in R1 and uses 
V1 = . . .  = vn, with V1 the set of all strictly concave valuations on d which 
attain a maximum on d. Then, for any Groves mechanism, the set of profiles in 
V1 X · · · X vn for which the mechanism yields non-Pareto-optimal outcomes is 
everywhere dense70 in V1 X · · · X Vn. The same proposition is valid for any 
mechanism where truth is a dominant strategy. 

66 Green and Laffont (1977, theorem 3, corollary 3 ;  1979, theorem 4.5, pp. 63-64), Walker (1978), 
and Holmstrom (1979). See footnote 49. 

67See footnote 41. 
68 See, however, Dasgupta, Hammond and Maskin (1979, pp. 189, 194-195) concerning complica­

tions due to additional, possibly non-optimal, equilibria. 
69Quadratic in the public good, linear in the private good (see above). 
70In the product topology ,J<nl or in any topology ,Y(n) such that / c ,}. 
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Now, as mentioned above, mechanisms with dominance strategies can be 
transformed into revelation mechanisms where truthtelling is dominant. Given a 
mechanism (S, h) for E with a dominance equilibrium (sf, . . .  , s;n we define a 
mechanism (E, g) with truthtelling dominance equilibria, where 

g {e) = h { s t' { e1) ,  . . .  , s: {e n)) , 

and ei is the characteristic of the ith agent. 
This transformation yields a strengthening of Walker's Theorem 4 which, under 

the same assumptions on d and the Vi 's, asserts that any mechanism yielding 
dmninance equilibria will have an everywhere dense set where optimality fails. 

However, a stronger conclusion is obtained if the mechanism yielding domi­
nance equilibria is continuous and each Vi a compact subset of C(Y). In that 
case, Walker's Theorem 5 states that the ("good") set of profiles with Pareto-opti­
mal outcomes is closed and nowhere dense in V1 X · · · X vn. Thus here the 
failure set is open as well as everywhere dense. 

The results so far discussed show that, generally speaking, one cannot hope for 
both dominance equilibria and Pareto-optimality. Several alternative directions of 
research have been explored, including asymptotic properties of mechanisms as 
the number of agents tends to infinity,71 sampling procedures,72 and Bayesian 
specifications. 73 

These directions attempt to preserve, to the extent possible, the availability of 
dominance or truthful equilibria, possibly at the expense of other desirable 
properties of mechanisms. 

5. Pareto-optimal Nash equilibria in economies with public goods 

On the other hand, one may sacrifice the dominance equilibria and accept the 
weaker type, namely the non-cooperative Nash equilibria discussed above. This 
time, however, the mechanism is not one of the revelation type; hence, Nash 
equilibria do not become dominance equilibria. 

The pioneering contribution in this direction is due to Groves and Ledyard 
(1977). 

The Groves and Ledyard idea may be illustrated by a mechanism close to (but 
not identical with) theirs. Consider again a three-person economy with two goods 
(a private good X and public good Y), and constant returns in producing Y from 

71 Bowen (1943), Green, Kohlberg and Laffont (1976), Green and Laffont (1979, pp. 157-188). For 
private goods, see Roberts and Postlewaite (1976). 

72 Green and Laffont (1979, pp. 213-227). 
73See, for instance, d'Aspremont and Gerard-Varet (1979a, 1979b) and Arrow (1977). 
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X, the input-output coe fficient normalized to 1. Assume a differentiable (but not 
necessatily transferable) utility function, denoted for the ith agent by u1(x 1, y). 

Let each agent's strategy domain be the set of reals. Denote the ith strategy 
domain by .A1 (here .A1 = R, i = 1,2, 3) and its elements by m1• Write m = 
(m1, m2, m 3), and .A = M1 X M2 X M3• The outcome function is defined by the 
tax functions T1, i = 1, 2, 3, and the public good function Y. Given the strategy 
triple m = (m1, m2, m3), agent i pays tax equal to t1 = T1(m), and the amount of 
public good produced is y = Y(m). Now specify these functions as follows:  

T1(m )  = m; +2mjmk>  

Y(m )  = M2 , 

i = 1 ,2 ,3 ,  i =fo j =fo k =fo i, 

where 

M =  m1 + m2 + m3• 

Note first that the balance condition is satisfied because, for every m E M, 

3 3 
Y(m ) = M2 = I: (m� + 2mjmk ) = I: T1(m ) .  

i = l  i = l  

Now examine the first -order necessary interior Nash equilibrium condition, 

i = 1 ,2 ,3 ,  

where v1 is the payoff (indirect utility) function defined by 

Hence 

0 = av1j am; = u�· (- T;1) +  u�· :r; , 

where 

a:r; = aY/m1 • 

i = 1 ,2 ,3 ,  

Using the outcome function specified above, this yields 

i = 1,2 , 3 ,  

and hence 

u�ju� = mJM, i =1 ,2 , 3 .  
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Summing, we obtain the Samuelson condition 

Thus, subject to the verification of second-order condition, we see that -locally at 
least- a Nash equilibrium allocation is Pareto -optimal. . 

For a precise version the reader is referred to Groves and Ledyard (1977, p. 
796, esp. (4.3) -(4.4)), of which earlier version was circulated in 1974. 

In a subsequent paper Groves and Ledyard (1980) (an early version was 
circulated in 1975) gave su fficient conditions for the existence of Nash equilibria 
in their model. As they point out, these conditions are slightly stronger than those 
required to prove the existence of Lindahl equilibria. Furthermore, the taxes may 
leave the consumers worse off than they had been with their initial endowments. 
I.e. the Groves -Ledyard mechanism is not individually rational. 

6. Implementing the Lindahl correspondence 

One is thus led to ask whether there exist alternative mechanisms whose Nash 
equilibrium allocations are not only Pareto-optimal but also individually rational. 
Also, it is of course desirable that equilibria exist for a wide class of economic 
environments. 

All of these desiderata would be fulfilled if it were possible to design a 
mechanism whose Nash equilibria generate Lindahl allocations. We know already 
that this cannot be accomplished by a revelation game that is "natural for" (or 
"compatible with") the Lindahl correspondence. But there do exist mechanisms 
whose equilibrium allocations are precisely those of the Lindahl solution. Before 
describing them, a brief digression concerning feasibility. 

In the public goods economies described above, there are two feasibility 
conditions: (a) "aggregate", y = L7_1t i, and (b) "individual", t ; ;;;:; w�, for each 
i = 1, . . .  , n .  Translated into properties of outcome functions, these become (a') 
Y(s ) = L7= 1T;(s) for all s in S, and (b') T;(s) ;;;:; w� for all i in N =  {1, . . . , n } 
and all s in S (where S = S1 X · · · X sn is the Cartesian product of individual 
strategy domains). Condition (a') is referred to as balance, and condition (b') as 
individual feasibility. 

Consider now the conventional scenario with the Lindahl analogue of a 
Walrasian auctioneer (Section 2). The auctioneer announces an n-tuple p = 
( p1 , . . .  , Pn) » 0, L:7_1p; = 1, of personalized prices; for each i = 1, . . .  , n, the ith 
agent responds with the desired net trade commodity bundle (x;, y;) such that 
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and (x i, yi )  is individually feasible.74 In the usual interpretation, each agent treats 
the price parametrically and acts as if expecting to receive the requested bundle. 
Such a situation may be formalized as what has been called a quasi-game. 75 In a 
quasi-game there are two types of participants - not only the players (here, the n 
economic agents), but also non-players (here, the auctioneer). Each participant 
has a strategy domain. The ith agent's domain may be the set of individually 
feasible trades zi = { zi : z i ;?; - "i } ,  and the auctioneer's domain may be the 
price space P = {(p1, . . .  , Pn) E R�+ : E7=lPi = 1 } .  Thus, in conventional notation 
the (n + 1)-tuple of strategies is S = (S\ . . .  , sn, sn+l) = (z\ . . .  , z n, p). Suppose 
that the outcome function for the ith agent is given by 

h i( s )  = zi if (1 , pi) ·z i � O ,  i = 1 ,  . . .  , n , 
= 0 otherwise, 

and the auctioneer's outcome function by 

h n+ l( s ) = ( L xi, - L xi ) , 
} E N' } E N' 

where j ranges over the set N' of those agents j for whom (1, pi) ·zi � 0. (Thus 
the auctioneer is supplying y = E .  E N'xi in exchange for the tax revenue of 
x = L 1 E N'xi. In effect, the aucti�neer is also the producer or, at least, the 
supplier of the public good or service.) 

What we have described so far is not yet a quasi-game, but only a mechanism 
(outcome function) which is individually feasible but not balanced76 and involv­
ing a non-player participant. To define a quasi-game we must specify the 
participants' behavior rules. For each player, as usual, we define a payoff (indirect 
utility) function, 

i = 1 ,  . . .  , n ,  

where ui is the utility function (assumed to be strictly increasing) of the i th agent 
in terms of net trades. The auctioneer's payoff function may be defined as 

74I.e. (xi, yi ) � - w; = - ( w�,O). 
75 Hurwicz (1979b). 
76 Since it is not in general the case that yk = 'L1 e N,xi for all k such that xk + PkYk � 0. 
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A Nash equilibrium s *  of this quasi-game is defined, as usual, by 

v'( s * )  � v'( r ,  s '/s * )r( ) for all s' E S', r = 1 ,  . . .  , n , n + 1 .77 

1467 

It is clear that the Nash equilibrium s*  for the outcome and payoff functions 
specified above is characterized by: (1) y *1 = · · · = y *n ( = y * say) since other­
wise vn+ l is not maximized with respect to s n+ l  = p; (2) x *i + p[y* = 0 for all 
i = 1 ,  . . .  , n ;  and (3) ui(x*i, y*) � ui(xi, /) for any (xi, yi) satisfying the budget 
constraint x i +  p[yi � 0, since otherwise vi is not being maximized with respect 
to s i  = (x i, y i). Note also that the last condition implies that, at a Nash equi­
librium, prices are treated parametrically. 

Thus Nash equilibrium for this quasi-game yields a Lindahl equilibrium. But 
there are two features considered unsatisfactory by some. The first objection is to 
the introduction of a non-player participant, the auctioneer. This participant has 
a strategy variable but his payoff function is artificial- corresponding to the rule 
that the price vector should be chosen so as to equalize the agents' demands for 
public service. But it is not obvious how seriously to take this objection, since the 
role of the auctioneer could be programmed for a computer. 

The second objection is to the lack of balance in the outcome function. When 
the agents' demands y1, • . •  , y n for public good are not all equal, the actual supply 
y (here equal to L . E N'xi) must be different from / for some i. The allocation . . . 1 
z '  = (x', y ' )  = h(s) specified by the outcome function is therefore different from 
the allocation that would in fact be made, say z i  = (xi,LJ EN'xi) if xi + PiY i  � 0 
or z = (0, 0), otherwise. One would, in effect be assuming that the agents are either 
acting in ignorance of what the actual outcome would be, or willing to act on an 
"as if'' basis. Such lack of realism can only be avoided by constructing a game 
that is balanced. 

Thus it becomes of interest to know that a balanced outcome function can be 
constructed to implement the Lindahl correspondence. Indeed one need not use a 
separate auctioneer or any other non-player participant.78 

7. Balanced outcome functions without an auctioneer 

For n = 3, and without satisfying the individual feasibility condition, such out­
come functions were constructed by Hurwicz (1979a) and Walker (1981). In 

77Hurwicz (1979b) gives a somewhat more general definition of Nash equilibrium in a quasi-game. 
78In fact, the issue of constructing balanced outcome functions implementing a Pareto-optimal 

individually rational social choice rule without an auctioneer arose first in the context of implementing 
the Walrasian correspondence and was accomplished for n � 3, although without satisfying the 
individual feasibility condition, by Schmeidler (1976). 
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Hurwicz (1979a) one may think of agents as arranged in a circle, with each agent 
setting the price (acting in effect as an auctioneer) for hisjher neighbors.79 

At the same time each agent proposes the level of the public good. Thus agent 
i 's message is of the form mi = ( p;, y;), where Y; is the proposed level of the 
public good and P; ;?; 0 will serve to determine the price to be paid by certain 
agents other than i. Specifically, the Lindahl price to be paid by agent j is80 

R/ m )  = 1/n + PJ+ l - PJ+2 • 

where j is taken modulo n .  (I.e., n + 1 = n 1, n + 2 = n 2, etc.) The outcome 
function is defined as follows: 

and 

n 

Y(m )  = L y1jn ,  
j = l  

X;(m )  = - R; (m) ·Y(m)- P; ( Y; - Yi+ I)
2
+ Pi+l ( Yi+ l - Yi+2)

2
, 

i = 1 , . . .  , n . 

As is necessary for the Lindahl prices in this normalized model, we have 
n 

L R/m) = 1 for all m,  
i = l  

and hence 
n n n 

L X;(m) = - Y(m)  L R; ( m)- L P; ( Y; - Yi+lf 
i = l  i = l  

n 
+ L Pi+ l ( Yi+ l - Yi+ 2f 

i = l  

Now the last two terms cancel out and so 
n 

L Xi(m )  = - Y(m) ·R; (m)  = - Y(m) .  
i = l  

Hence the mechanism is balanced. 81 

79Thus every agent is forced to treat the price parametrically because, at a Nash equilibrium, the 
other players' strategies are taken as given. 

80m = ( m\ . . .  , m"), mi = (p;,  Y;), i = 1 ,  . . .  , n. All summations, unless otherwise indicated, are from 
1 to n .  

81 The balance is essentially due to the presence of the term Pi+ I (Y;+I - yi+ 2)2 in X;( m). Note 
that this term cannot be influenced by agent i when n � 3. (For n = 2, yi+ 2 = Y; -) 
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On the other hand, it is not the case that ( X;(m), Y(m))-;;:;; 0 for all m. Hence 
the mechanism does not satisfy the condition of individual feasibility.82 

It turns out that, at a Nash equilibrium m* = { (Y;*, p;")}7=l• we have, for every 
i, Y;* = Y/':.1 or p[ = 0, and hence 

which is the Lindahl budget equation. 
It was then shown that, for n ;;:;; 3, the mechanism so constructed (fully) 

implements the Lindahl correspondence. 
A simpler mechanism, using a smaller message space, 83 was constructed in 

Walker (1981). Here each player has a one-dimensional strategy (message) space 
M; = R. The outcome function is given [with m = (m1, . . .  , mn)l by 

and (in terms of net trades) 

where 

is the i th agent's Lindahl price [with L,q;(m) = 1], again outside the control of the 
ith agent. The balance property follows from 'LX\ m) = - Y(m )Lq;( m)  = 

- Y( m) for all m. Again, however, individual feasibility may be violated. 84 For 
n ;;:;; 3, this mechanism is shown to (strongly) implement the Lindahl correspon­
dence. It is obvious that85 it does so with a message space of minimal dimension.86 

Neither of the preceding two mechanisms implements the Lindahl correspon­
dence when there are only two agents, and both violate the condition of 
individual feasibility. But we shall now see that either one of these defects may be 
avoided. 

82In Hurwicz (1979a) the preference relation :;, i was extended to all R2, so formally the 
mechanism was well-defined, and individually feasible in terms of extended preferences. But there is 
no realistic reason why an agent would prefer one infeasible bundle to another. 

83And having other advantages, see Walker (1981, p. 66, footnote 2). In addition, Walker shows how 
to generalize this mechanism to many agents and goods and more general production relations (ibid., 
pp. 68-69). 

84See Walker (1981, p. 67, footnote 3) where, however, the point is made that an interior 
equilibrium has a neighborhood on which feasibility is assured. The same applies to Groves and 
Ledyard (1977) as well as Schmeidler (1976, 1980) and Hurwicz (1979a). 

85 For a sufficiently rich class of environments. 
86 Cf. Reichelstein (1983). 
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For an economy with two agents, a mechanism has been constructed by Miura 
(1982).87 Here again m; = (p;, y;), i =1, . . .  , n ,  and the outcome function is given 
by88 

Y(m) = Ly1jn , X;(m) = - (p;/LpJY(m) if flp1 =1 ,  

while 

This outcome function is balanced under both regimes, but - like Hurwicz 
(1979c) - it is discontinuous and violates the individual feasibility condition; also, 
it uses a message space bigger than Walker's (1981).89 It does implement the 
Lindahl correspondence for n = 2. 90 

Completely feasible implementation. The issue of implementation satisfying both 
the balance and individual feasibility conditions (we call this completely feasible 
implementation) is treated in Hurwicz, Maskin and Postlewaite (1980). It is shown 
there that, for n � 3, the constrained91 Lindahl correspondence can be Nash-

87This is a modification of the mechanism in Hurwicz (1979c) which Miura (1982) showed to 
contain an error. Hurwicz (1979) used the condition l:j_ 1 p1 = 1  rather than Tij_ 1p1 = 1  to distinguish 
between two regimes. 

88All summations and products are from 1 to n. 
89By an argument analogous to Hurwicz (1976, appendix 1) one can show that no smooth balanced 

Nash implementation of any Pareto-optimal correspondence is possible for n = 2 with a 2-dimensional 
message space. 

90 Note that the previously discussed mechanisms [Hurwicz (1979) and Walker (1981)], for n ;;:  3, are 
not only continuous but even smooth. For n = 2, it appears that the Lindal!l correspondence cannot 
be Nash-implemented smoothly by a balanced outcome function [using an argument analogous to 
Reichelstein (1984)]. 

91 In the setting of footnote 30, a constrained Lindahl allocation L,.( e) for environment e, denoted by 
L,.( e), differs from an ordinary Lindal!l allocation L( e) in that condition (2) is replaced by the 
following (2') :  for some. (p1 , . . .. , p.)  and all i E N, if (x;, y)  E C;, x; + YP; ;;;; w� + w�p; , and x; ;;;; 
L; E  Nw� , then (:X' ,  ji) R'(e) (x', y). 

Analogously, an allocation (:X;) ; e N •  X; E R� and a price vector p constitute a (pure exchange) 
constrained Walrasian equilibrium if 

(i) i E N, p · :X; = p · w;; 

(ii) i E N, x;R;x for all x ;;;; w, w .. LW; , such that p · x ;;;; p · w; ; 

(iii) L; e NX; = w. 

Note that :X; E R� represents total holdings ( not the net trade) of the ith agent. 
It is the condition "for all x ;;;; w" that distinguishes this from the ordinary Walrasian equilibrium, 

since here the i th agent maximizes satisfaction subject not only to the individual budget constraint but 
also constrained by the aggregate availability of resources in the whole economy. (Similar remark 
applies to the condition x; ;;;; l:w� in the definition of constrained Lindal!l equilibrium.) 
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implemented by characteristic profile strategies over a class of environments E 
for which Lindahl allocations leave everyone with some private goods, i.e., such 
that for each e in E, 

w� + L�(e ) :2:: 0, 

where L�( e) is the net Lindahl increment of private good X obtained by agent i 
in the environment e. 

In Hurwicz, Maskin, and Postlewaite (1980), a generic element of agent i 's 
strategy space is of the form 

e/ = ( w/, R{) ,  

where Y; i s  i 's proposal for the level of public goods, and e/ rs agent i 's 
statement concerning agent j 's characteristic; w/ and R{ are, respectively, j 's 
X-endowment and j 's preference relation according to i. It is postulated that no 
agent can exaggerate his own endowment, i.e., w/ � w; for all i. The outcome 
function is formulated in such a way that only truthful unanimity as to endow­
ments can prevail at a Nash equilibrium. Once such unanimity as to endow­
ments has taken place, a game of type considered in Maskin's Theorem 5 
guarantees the Nash implementation of the (constrained) Lindahl correspondence 
through the use of preference profiles as strategies. 

The result obtained [Hurwicz, Maskin and Postlewaite (1980, theorem VII)] 
applies to a class of performance correspondences broader than (constrained) 
Lindahl; it is sufficient that they be individually rational and monotone; 92 
monotonicity is also necessary by Maskin's (1977) Theorem 2. This result pre­
supposes that there are at least three agents, that the endowments are semi-posi­
tive, and preferences strictly increasing. 

Every Walrasian equilibrium is a constrained Walrasian equilibrium. Every interior constrained 
W alrasian equilibrium is a W alrasian equilibrium. 

When non-interior equilibrium allocations can occur, the (ordinary) Walrasian and Lindahl cor­
respondences are not monotone, hence [by Theorem 2 in Maskin (1977)] are not Nash-implementable 
(see next page). The smallest monotone correspondences containing these are the corresponding 
constrained correspondences. Hence they are the smallest supercorrespondences that have a chance of 
being implementable. 

92A performance correspondence F: 91 = A  defined on the family 91 of preference profiles into the 
feasible set A is said to be monotone if, for any a in A,  and any two profiles R ,  R', the following 
holds: if (1) a E F( R ), and (2) aR;b implies aR�b for all i E {1 ,  . . .  , n } and all b E A , then 
a E F(R'). I.e. if g is F-desirable for profile R ,  and another profile R' is at least as favorable to g as 
R was, then g remains F-desirable for profile R'. [Here R = (R1 , . . .  , Rn), R' = (Rl ,  . . .  , R�)- " g is 
F-desirable for environment g " simply means a E F(e). Maskin (1977) uses the term "F-optimal". 
"At least as favorable" here permits replacing preference by indifference.] 
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It may be noted that the "no veto power" 93 condition used by Maskin in 
theorem 5 is not necessarily satisfied by the Lindahl or other performance 
correspondences to which Theorem VII of Hurwicz, Maskin, and Postlewaite 
(1980) applies. However, it is shown that, under the assumptions made, the 
" no-veto power" condition can be dispensed with. 

Unfortunately, profile-using mechanisms require huge message spaces and are 
discontinuous. However, it may be possible to construct continuous mechanisms 
using smaller spaces, in a manner analogous to that used in Postlewaite and 
Wettstein (1983) for the implementation of Walrasian correspondence, but this 
question is still open. So is the problem of designing a feasible mechanism to 
implement the (constrained) Lindahl correspondence when there are only two 
agents. 

8. Implications of Nash-implementability 

We have already mentioned Maskin's result that only monotone performance 
correspondences are Nash-implementable. An example due to Postlewaite94 shows 
that the W alrasian correspondence containing boundary allocations is not mono­
tone; an analogous example could be constructed for the Lindahl correspondence. 
It is for this reason that the Nash-implementability results are for "constrained" 
Walrasian (respectively Lindahl) correspondences; these constrained correspon­
dences are the smallest monotone ones containing the Walrasian (respectively 
Lindahl) correspondences. 

Now it turns out that, in conjunction with other frequently made assumptions, 
monotonicity has very strong implications. In particular, suppose that a corre­
spondence F is not only monotone, but also Pareto-optimal, individually rational, 
and continuous, over a sufficiently rich class of preferences. If we are dealing with 
pure exchange economies, it follows that 

F( e )  � WJ e) for all e in E, (8.1) 

where }¥, is the constrained95 Walrasian correspondence and E ;;;;;> EL , the class 
of economies specified in Hurwicz (1979b ). 96 Similarly, if we are dealing with a 

93 A performance correspondence F: f1l => A is said to have the "no veto power" property when the 
following is true: if, for any a in A, and R in f1l, and for some i in { 1, . . .  , n } , we have aR j b for all 
b E  A and all j * i, then a E F(R). I.e. if the prevailing preferences are such that g is the most 
preferred alternative either for all players or for all players but one, then a is F-desirable. 

94Described in Hurwicz, Maskin and Postlewaite (1980). 
95 See footnote 91. 
96For n ;;; 3 this can be proved [see Hurwicz, Maskin and Postlewaite (1980)] by using Theorem 1 in 

Hurwicz (1979b) and Theorem 2 in Maskin (1977). However, a direct (unpublished) proof is available, 
valid for all n ;;; 1 . 
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public goods economy, 

F( e ) � Le( e )  for all e in E,  

where L e i s  the constrained Lindahl correspondence. 

1473 

Now consider an arbitrary correspondence F which is continuous, Pareto-opti­
mal, individually rational, and Nash-implementable over E ;;2 EL . Since Nash­
implementability implies monotonicity, it follows that F � We if we are in a 
private goods, pure exchange economy, or that F � Le in a public goods 
economy. In other words a continuous, Pareto-optimal, individually rational 
correspondence, which does not contain the W alrasian (respectively Lindahl) 
performance correspondence, is not Nash-implementable. In particular, if F is 
singleton-valued, continuous, Pareto-optimal, and individually rational, it is 
Nash-implementable only if it is constrained Walrasian.97 

A partial converse is obtained under additional (convexity or starlike) restric­
tions on the outcome function [Hurwicz (1979c) and Schmeidler (1982)]. 

If, in the above assumptions, fairness (in the sense of absence of envy) replaces 
individual rationality, it has been shown by Thomson (1979) that analogous 
conclusions obtain for a pure exchange economy, namely with formula (8.1) being 
replaced by 

where We 1 (e) is the constrained W alrasian allocation that would follow equal 
distributi�n of endowments. 

Hence, if, in a private goods, pure exchange economy, F is continuous, 
Pareto-optimal, and envy-free, it is Nash-implementable only if it contains We 1. 
Analogous results were obtained by Thomson for other concepts of fairness, e:g. 
that of egalitarian equivalent [Pazner and Schmeidler (1978)]. Partial converses 
were also obtained. 

9. Private goods, pure exchange economies 

The preceding exposition has been focused on the public goods problem. But 
there are analogous results for private goods economies. The earliest balanced 
outcome function Nash-implementing the Walrasian correspondence for n � 3 is 
due to Schmeidler (1976). A slightly m'odified form [Hurwicz (1979c)] works for 
all n � 2. Here the ith strategy m; = (p;, y;), where both components are of 
dimension l - 1, is an economy with goods X and Y [X  one-dimensional, Y 
(l - 1)-dimensional]. P; is the price of Y while X is the numeraire. 

97For a related result in " large" economies, see Theorem 5 in Hammond (1979). 
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Given an n-tuple m = ( ml, . . .  , mn) of strategies, the set N of agents is parti­
tioned so that (1) if agent i has proposed a price vector Pi that has not been 
proposed by anyone else, then i belongs to the subset T0 of N, and only such 
" loners" belong to T0; (2) if a price vector q has been proposed by two or more 
members of N, then all those proposing q belong to the subset T( q ). 

Let ql, . . .  , q k be the complete list of price vectors each of which has been 
proposed by at least two agents, and write T(q') = T,.. Thus N is partitioned into 
subsets T0, T1, . . .  , Tk, with some of these possibly empty. The outcome function is 
written 

If T0 =I= N and agent i belongs to the subset T,., r E {1 ,  . . . , k }, then 

Yi(m ) = yi - ( L Y1 )/#T,.,  
} E T',. 

Xi( m )  = - q'· Yi(m) . 

(This is precisely the Schmeidler rule.) 
If T0 is non-empty and i belongs to T0, then 

Yi(m )  = pi - P,  
where 

(This rule is different from Schmeidler's rule for T0.) 
This outcome function is balanced but outcomes need not be non-negative; i.e., 

individual feasibility is not guaranteed. But with regard to extended preference 
relations, it (fully) Nash-implements the Walrasian correspondence for all n � 2. 

The preceding out�ome function is discontinuous. A smooth balanced outcome 
function, also Nash-implementing the Walrasian correspondence (but again only 
for extended preferences, hence violating individual feasibility) is given, for 
m = (m1, . . .  , mn), m; = (p;, y;), P;, Y; both ( / - I)-dimensional vectors by h(m) 
= { X;(m) = ( X;(m), Yi(m))}7=1 ,  as follows : for each i = 1, . . .  , n ,  

Y; ( m) = Y; - Y _ 0 

where 

Y- ; = c�/J)j<n - 1
) , 

X;(m )  = - P- ; · Y;(m) - Li(m ) + S;(m) , 
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where 

and S;(m), which does not depend on m;, is such that E7�1 X;(m) = 0 for all m. 
Since E7�1Y;(m) = 0 for all m, the outcome function is balanced. The "penalty" 
term L;( m)  provides an incentive to equalize all price proposals, and the 
"budget" term - P-; · Y;(m) prevents all agents from being their own price­
setters.98 

Completely feasible implementation. On the other hand, it is also possible to 
Nash-implement the Walrasian correspondence by a balanced outcome function 
without violating the individual feasibility condition, in a manner analogous to 
that outlined above for the Lindahl correspondence. In fact, a more general result 
is available. Assume n � 3, and consider a performance function99 f (on a class E 
of pure exchange economies) which is individually rational and Nash-implemen­
table by an outcome function gv on strategy domain D = D1 X · · · X Dn when v 
is a known endowment profile. 

To implement f when the endowments are not known to the designer we give 
the i th agent the strategy domain S; whose generic element is of the form 

s; = ( w/ , . . .  , wt, d; ) ,  

where w/ is i 's statement concerning the endowment of agent j/00 and d; an 
element of D;. The outcome function on S = S1 X · · · X Sn (for the game in 
which initial endowments are not known) is so designed that a Nash equilibrium 
can occur only when, for all i, ( wl, . . .  ' wn = ( wl, . . .  ' wn) = the true endowment 
profile. When such unanimity occurs, what remains is in effect the game form 
(D, gv) implementing f on the assumption that the unanimously agreed endow­
ment profile v is the correct one. 

98An earlier version of Hurwicz (1979a) contained a "circular" variant, with X;( m )  � - Yi( m ) ·p;_ 1 
- Li + a  balancing term independent of ri. Here, as in the above public goods mechanism, each agent 
is his neighbor's price-setter. 

99With minor modifications of the outcome functions, these results can be extended to correspon­
dences. 

1001! is  assumed that wi ;:;;; w; for all v, i.e. one cannot exaggerate one's endowment. See Hurwicz, 
Maskin and Postlewaite (1980). 
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Since f is assumed Nash-implementable for known endowments, it must [by 
Maskin (1977, theorem 2)] be monotone. We have also assumed n � 3. If f has 
the "no-veto property", then Maskin's Theorems 4 and 5 provide us with a game 
form with a generic term of strategy domain D; of the form 

d; = ( R� ,  . . .  , R7 ) ,  
where R{  i s  the statement by i concerning the preference relation of agent j. 

Maskin's Theorems 4 and 5 do more than construct a game form for a 
particular performance correspondence; these theorems constitute a recipe for 
constructing game forms Nash-implementing a large class of correspondences 
when there are at least three players ( n � 3). Let F: E => A be a correspondence 
to be implemented in an economy where A is the set of feasible outcomes, 
R = R1 X · · · X Rn is a class of preference profiles, and 

EA = { e : e = (A ; R1 , . . .  , Rn ) , (R1 , • . .  , R n ) E R1 X · · ·  X Rn } ·  
For each i, R; is a preference preordering (a total, transitive and reflexive binary 
relation) on A. It is assumed that A and R are a priori known to the designer. 

Agent i 's strategy space is 

S} = { (R1 , . . .  , R n ,  a) : (R1 , . . .  , Rn )  E R ,  a E F(A ; R1 , . . .  , Rn ) } . 
A generic element of S; is of the form 

where R{ is i 's statement about j 's preference relation. 
Note that when F is singleton-valued (i.e. a function), the a-component of s; 

can be omitted. Theorem 4 states that an outcome function h :  S � A, S = 
S1 X · · · X sn, fully implements F if it has the following three propenies :  
(i) I f  there i s  unanimity, i.e. if, for some (R1, . . .  , Rn)  E R and a E F(R1, . . .  , Rn ), 

all agents' strategies satisfy .I\ =  . . .  = sn = (Rl, . . .  ' Rn , a), then101 

h { s1 , . . •  , sJ = a. 

(ii) For any agent i E { 1, . . .  , n },  let s1 = 
(Rw . .  , Rn ,  a), with a E  F(Rl, . . .  , Rn) ; then102 

- -= si- 1  = si+ l = . . .  sn = 

{ b E A : b = h (s1 , • • .  , s; _ 1 , s; , s;+ 1 =  · · ·  = sJ , s; E S; } 
= { c E A : aR; c } 
= the lower contour set of a under R; . 

-101 Note that when F is a function this relation becomes h (S) = F(S), 
102 Le. when all agents but i are unanimous, every outcome in A can be reached by i through 

unilateral choice. 
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(iii) For s E S, let there exist i E {1, . . .  , n } such that "s1 = · · ·  = si_ 1 = si+ 1 = sn" 
is false; then103 

Maskin's Theorem 5 shows by construction that when n ;::::; 3, and· F is mono­
tone and has the "no-veto power" property, then there exists an outcome function 
h satisfying the above conditions (i), (ii), (iii). [See, however, Williams (1984a, 
1984b) and Saijo (1984).] 

However, the strategy domain used in the above example is extremely large, 
and the outcome function discontinuous. For the special case of a Walrasian 
correspondence, n ;::::; 3, Postlewaite and Wettstein (1983) have designed a bal­
anced continuous outcome function, with a generic element of Di of the form 

d = ( z i  pi  r i )  l ' ' ' 

where z i  and pi are, respectively, a net trade vector and a price vector announced 
by individual i, and ri a positive real number. Thus the dimension of Di is 1 + 21, 
where l is the total number of goods. 

Reichelstein (1982) has constructed, for n ;::::; 3, smooth mechanisms Nash­
implementing the W alrasian correspondence with strategic domains of smaller 
dimensions, but these do not satisfy the individual feasibility condition. It is not 
known at present what the minimal required dimension is when we insist on 
individual feasibility as well as balance and continuity or smoothness. [But see 
Williams (1984c ). ] 

10. Informational aspects of Nash-implementability 

An exciting aspect of recent research is the convergence of informational and 
incentive aspects of economic mechanisms. One example of this is the investiga­
tion of minimal dimensional requirements104 on the strategy spaces of 
mechanisms implementing the Pareto (and, in particular, Walras or Lindahl) 
correspondence. Another is a study of the relationship between message mecha­
nisms and game forms giving rise to Nash equilibrium outcomes.105 

It is clear that such a game form may be viewed as arising from an adjustment 
process or a message mechanism. Given a game form (S, h ), let Ps, h be its Nash 
equilibrium correspondence over E; i.e. for each e in E, 

Ps , h ( e ) = { s E S :  s is  a Nash equilibrium for the game ( S ;  h, e ) } , 

103I.e. when there is no unanimity among agents other than i, agent i can reach every feasible point 
by unilateral choice. 

104 Reichelstein (1982) and Hurwicz (1976). 
105 Williams (1984b ). 
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where (h ,  e ) is the payoff function defined by the composition of the outcome 
function h with the preferences in e. E.g. if e = ( e\ . . .  , en), e ; = (u;, . . .  ), where u; 
is the i th utility function, then the ith payoff function is vi = ui o h. 

Furthermore the resulting process is privacy�preserving. This is seen most easily 
when the preferences are represented by concave differentiable functions ui and 
the outcome function h is also concave differentiable. Then the ith payoff 
function is vi = u; o h .  At a Nash equilibrium, av;/ as; = 0 for all i. More 
explicitly, in an /-dimensional commodity space, and with a krdimensional 
strategy vector s;, the condition becomes 

I 
.L ( aui; axJ ) (  ah�! as; , , J = o, 

j � l  

I t  i s  clear that each agent can verify this condition knowing only the values of the 
strategy variables s and his/her own utility function. So the process is privacy­
preserving. 

Given a game form (S, h) which Nash-implements the correspondence F, we 
can easily construct a privacy-preserving message mechanism (S, Psh •  h )  which 
realizes F. But the converse problem is much more difficult: given a privacy-pre­
serving message mechanism (At, p,, h) realizing F, to construct a game form 
( S, h )  which Nash-implements F. Sufficient conditions for such construction are 
given by Williams (1984b). 

In particular, let (A, p., h) be the natural direct revelation mechanism for a 
social choice function f :  E --+  Z. Thus At =  A1 

X · · · X Atn = E1 
X · · · X E n = 

E, h = j, and p. is given by 

Then the Williams construction (which, however, covers a much broader class of 
mechanisms) yields a Maskin-type game form, with S = E. 

The present paper fails to cover a number of important topics : the Harsanyi-Bayes 
type mechanism, the dynamics of allocation processes (e.g. Malinvaud, Dreze and 
de la Vallee Poussin), performance of mechanisms in large economies, and many 
others. 

Several excellent surveys cover some of the. topics neglected here as well as 
many that are discussed in the present essay [e.g. Dasgupta, Hammond and 
Maskin (1979), Groves (1982), Laffont and Maskin (1982), Postlewaite (1983)]. 
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PLANNING 

GEOFFREY HEAL 

University of Sussex 

1. Introduction 

Economists have been discussing the way in which a planned economic system 
might be run for about three-quarters of a century now, though progress towards 
the clarification of the issues involved has certainly not been uniform during this 
period. Not surprisingly, the literature was given considerable impetus by the 
Russian revolution, with a number of major contributions following within a 
decade or so [Lange (1936) and Taylor (1929)]. But further advances had to await 
the absorption into economics of the mathematical techniques of constrained 
optimisation (see Chapter 24) and occurred only in the 1960s [Arrow and 
Hurwicz (1960) and Malinvaud (1967)]. 

· 

It has generally been accepted in the literature that the problem of economic 
planning is best viewed as one of solving an extremely large constrained maximis­
ation problem. [For a dissenting view, see Kornai (1967), and for a general 
discussion, see Heal (1973, ch. 1).] In such a formulation, the objective function is 
identified with a measure of economic welfare, which has to be maximised subject 
to a variety of constraints, including those imposed by the details of available 
production processes and by the economy's endowment of economic resources. 

A problem of this sort naturally involves very large numbers of variables and 
constraints - "  millions of equations in millions of unknowns", according to 
Barone (1935) - and it had been recognised that because of this it would not be 
either desirable or feasible to assemble a complete description of the problem 
under the auspices of a single agency. Such a procedure would be undesirable 
because, as observed by Hayek (1945), the collection and transmission of infor­
mation could lead to errors: and it would anyway be infeasible simply because of 
the scale of the problem. Much attention has, therefore, been devoted to the 
analysis of informationally decentralised planning procedures: the precise defini­
tion of informational decentralisation is still open to some debate [an interesting 
contribution is Hurwicz (1969), and there is a survey in Heal (1973, ch. 3); see 
also Chapter 28], but in essence the phrase is used to describe a way of breaking 
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the planning problem down into a number of independent operations, each of 
manageable size and each performed by a separate agency. In a typical decentra­
lised planning scheme, one might find that a central authority was responsible for 
ensuring that for each good supply and demand were in balance, taken across the 
whole economy, and that this authority was provided with the minimum informa­
tion sufficient for execution of this task. Responsibility for ensuring that techno­
logical constraints were satisfied would be delegated to firms in whose processes 
the constraints were embodied. 

In addition to being decentralised, in the above sense, most planning proce­
dures discussed have been iterative in the sense that they view the planning 
problem as being solved by a trial and error process, in which information 
exchanges between the participants in the decentralised process lead to the 
construction of better and better approximations to tl;le solution of the planning 
problem. Formally, therefore, the literature is concerned with procedures for 
solving constrained maximisation problems which are iterative (involve taking 
successive approximations) and which have the distinctive feature that the infor­
mation available to the participants about the economy available is never pooled: 
there is never any one agent having a complete specification of the problem. 

Within this framework, it is conventional to distinguish between price-guided 
and quantity-guided planning procedures, though not all contributions fit happily 
into this framework. The former are procedures within which the information 
flowing from the central planning authority to the firms or sectors takes the form 
of prices for the goods and services that they consume and produce: the latter are, 
as their name would suggest, approaches within which this information takes the 
form of quantitative input-output targets. In general, the information flows from 
firms to the central agency are dual to those in the reverse direction, in that price 
information flowing from the centre to the sectors elicits quantitative responses, 
and vice versa. 

Unfortunately, there are no general theorems available about the relative merits 
of the different approaches: the literature takes the form of studies of individual 
processes, supplemented by pairwise comparisons of their properties. The conclu­
sions that seem to be emerging are that quantity-guided approaches are more 
demanding than price-guided alternatives in terms of the amounts of information 
collected and transmitted by the central authorities (though the measures of 
information on which such statements rest are extraordinarily crude) but they do 
have the substantial advantage of superior convergence properties in economies 
where production possibility sets are not convex. In view of the fact that much of 
heavy industry has non-convex production possibilities and that it is with the 
development of large-scale industry that planning is primarily concerned, superior 
performance under these conditions is of importance. 

A significant omission from the literature on planning, is any discussion of the 
objective function for the planning problem. This is typically taken to be a 
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real-valued, quasi-concave function of the outputs of goods and services which is 
known to, or chosen by, planners. If planning is to be in some sense democratic, 
then this function must be related to the preferences of individuals in the society. 
Of course, preferences typically differ from individual to individual, so that we 
need a representative or aggregate preference. There is an extensive literature on 
social choice theory (see Chapter 22) which makes it clear how elusive such a 
concept is. In view of this, it seems reasonable to conjecture that if a planning 
procedure is to take adequate account of individual preferences, it will not be 
sufficient merely to work with an aggregate objective function, but there will be a 
need to decentralise the consumption as well as the production side of the 
operation. This is an issue which, with the exception of the literature on planning 
with public goods (see Section 6), has not been considered. In conclusion, it is 
probably worth noting that obtaining adequate information about preferences is a 
major problem in many of the planned economies of eastern Europe. There it is 
widely felt that an inadequate amount of information is available to planners 
about individual preferences, and the resulting problems are becoming more acute 
with the growing range of goods and services available [see, for example, Dyker 
(1976)]. 

2. The Lange-Arrow-Hurwicz approach 

The earliest carefully articulated contribution to the subject was that of Lange 
(1936) and his contribution was subsequently formalised by Arrow and Hurwicz 
(1960). Their formalisation concentrated on that aspect of Lange's work that was 
concerned with the use of prices in an iterative and decentralised resource-allo­
cation procedure and did not pursue his interesting discussion of distributional 
issues. In this respect we shall follow Arrow and Hurwicz, as these issues have 
continued to be largely neglected in the post-war literature. 

The present approach can be illustrated by a fairly straightforward model: 
suppose that there are n firms and s commodities, with each firm using a range of 
inputs to produce several different outputs. The key variable in describing a firm's 
production activities is its scale of operation: at a given scale, the vectors of 
inputs used and outputs produced are uniquely determined, with no scope for 
substitution. Let the scale at which firm j operates be JS, with giJCX) standing 
for the amount of good i produced by firm j at scale j. (Inputs will be 
represented by negative numbers.) The object of the planning exercise is to find 
an allocation of resources that maximises a function U(y1, • • •  , Ys) of the amounts 
of various goods allocated to final demand. The total net output of good i is 
r.;_ 1g;/x), and if e; is the economy's initial endowment of good i, then the 
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overall planning problem can be stated as 

maximise U( Ji , . . .  , Ys) 
n 

subject to - Y; + L giJ (x) +  e; � 0, 
j = l 

Geoffrey Heal 

(2.1) 

If the functions U( ) and g;/ ) are concave and satisfy a constraint qualification, 
the Kuhn-Tucker Theorem can be used to characterise a solution to (2.1) :  under 
the postulated assumptions, necessary and sufficient conditions for (y1, . . . , Ys ) 
and (x1, . . .  , xn) to solve (2.1) are that 

U; - A ; ;;;;_ 0, = if Y; > 0, i = 1 ,  . . . , s ,  

s 
L A ; (  agijjxi) ;;;;_ 0, = if xi > 0, 
i = l 

n 
L giJ (xi) + e; - Y; � O, 

j = l 
if A; > 0, 

j = I , . . . , n , 

i = I ,  . . . , s ,  

(2.2) 

(2.3) 

(2.4) 

where (A 1, . . .  , A s) are the dual variables associated with the constraints in (2.1). 
Now suppose that this simple economy is run by managers of firms, who seek to 
maximise profits, and by a distributor, who controls the allocations of goods to 
final uses and who detennines these allocations so as to maximize the difference 
between the value of the objective function and the cost of the final demand 
vector. Formally if A;  is the price of good i, then managers maximise 

L A ;g;/xi) 
j = l 
subject to xi � 0, 

The distributor maximises 

} ;o l ,  . . . • J 
U( y1 , • • •  , y. ) - ;t1 A;Y;} · 
subject to Y; � 0. 

(2.5) 

(2.6) 
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Necessary and sufficient conditions for solutions to these problems are 

and 

s 
L A; ( ag;1/Bx1 ) ;;;; o, = if x1 > 0, 
i = l  

. 
U; - A ; ;;;; 0, = if Y; > 0, i = 1 ,  . . .  , s .  

j = 1 , . . .  , n ,  
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(2 .7) 

(2.8) 

Obviously (2.7) and (2.8) are identical in form to (2.3) and (2.2), and if the 
functions involved are strictly concave, (2.7) and (2.8) will have unique solutions. 
In such a situation, it is clear that if managers and the distributor are faced with 
market prices equal to the dual variables associated with a solution to (2.1), they 
will choose consumption and production vectors which solve (2.1). T)le solution 
to the resource-allocation problem (2.1) can, therefore, be attained simply by the 
centre quoting the appropriate prices, if all the functions involved are strictly 
concave. 

How are these "appropriate prices" to be calculated? Arrow and Hurwicz show 
that they may be found by an iterative procedure which in a very direct sense 
imitates a competitive market. Consider the following equations: 

Y; = 0 if Y; = 0, U; - A; ;;;; 0, 
= a ( U; - A; ) otherwise, 

s 

= a  L A;(  agijl axJ otherwise, 
i = l  

s 

n 

�;  = 0  if A; = O, e; + L g;/x) - y; > O, 
j = l 

(2 .9) 

(2.10) 

= a ( yi - £ g;ix) - e; ) otherwise. (2.11) 
; = 1  

These have very simple interpretations : (2.9) requires that the final demand for 
good i should be adjusted at a rate dependent on the difference between its 
marginal contribution to the objective function and its price, (2.10) requires that 
each firm should alter its operations in such a way as to raise its profits, and (2.1.1) 
simply implies that the price of a good is raised if demand exceeds supply, and 
vice versa. All three statements are complicated by the need to respect non-nega-
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tivity constraints. The information flows involved in this are clear: the centre, 
which sets prices, has to inform firms and the distributor of these, so that they can 
calculate the expressions on the right-hand sides in (2.9) and (2.10). In exchange, 
they inform the centre of demands and supplies, so that it can calculate the price 
adjustment in (2.11). Arrow and Hurwicz (1958) showed that the process de­
scribed by (2.9) to (2.11) converges to a solution to problem (2.1), thus enabling 
the central authority to find an optimal resource allocation without at any stage 
receiving information about the production possibilities open to firms. In 
mathematical terms, (2.9) to (2.11) can be seen as defining a gradient process 
which is applied to locate the saddle-point of the Lagrangian corresponding to 
(2.1) :  it is interesting that this mathematical procedure has such a simple 
economic interpretation. It should be noted that (2.9), (2.10) and (2.11) have 
discontinuous right-hand sides: this is a feature also of the adjustment equations 
of Sections 4, 5 and 7 below. In these cases it is not straightforward to establish 
the existence of a solution. This problem is discussed by Henry (1972, 1973). 

3. The contribution of Malinvaud 

Malinvaud (1967) has analysed a procedure which is also price-guided, but which 
is very different in spirit from that just discussed. Pose the planning problem in 
the following terms: 

find a vector y which �aximises U( y) } subject to 0 � y � L x1 + e and x1 E X; , 
j = l  

for j = 1 ,  . . .  , n  

(3.1) 

where y is once again a vector of amounts allocated to final demand, e is the 
vector of the economy's endowments, x1 is firm j 's production programme, and 
X; is the set of all such programmes feasible for j. At the t th iteration of the 
planning process, the central authority solves this problem with the constraint 
x1 E X; replaced by the constraint x1 E Xj, where Xj c X; is an approximation to 
Xi' constructed as follows. At each iteration of the planning procedure, the 
central authority announces a set of prices:  firms are required to calculate their 
profit-maximising production programmes at these prices, and inform the centre 
of these. At the t th iteration, therefore, the centre knows of t feasible plans for 
each firm. For firm j, let these be xj, xJ, . . .  , xj: firms' production possibility sets 
X; are assumed to be convex, so that the approximation Xj, defined by 

Xj = [xjx = i�/' ixJ , A i � O, i�1 A i = 1 ] , 



Ch. 29: Planning 1489 

is contained in �- In order to compl�te a description of the process, it is only 
necessary to define the rule by which the centre chooses the prices announced at 
each step. This is straight-forward: they are simply the dual variables associated 
with a solution to problem (3.1) with � replaced by XJ. Hence a typical iteration 
runs as follows: 

(i) The centre announces as prices the dual variables of the solution to the 
problem: 

maximise U( y) 
n 

subject to 0 ;;;;; y ;;;;; L xJ + e ,  
j = 1  

where 
[ t - 1  

xj-1 = xjx = L A;Xj, 
i = 1  

and the xJ are firm j 's responses at earlier iterations. 

(ii) Firms inform the centre of the input-output plans that maximise their 
profits at the new prices. 

(iii) The centre constructs new approximations XJ to the � by incorporating 
this new observation. 

(iv) Step (i) is repeated with XJ-1 replaced by XJ. 
Malinvaud (1967) proves that this process converges to a solution to the 

problem (3.1): perhaps equally importantly, he establishes that it does so via a 
sequence of feasible plans y1 having the property that U( y1) � U( y1- 1) � 
U( y1-2), • • • •  In practical terms this is very important, as no procedure can be 
iterated through to convergence: it is thus of great significance that a finite 
number of iterations can be guaranteed to produce a feasible plan superior to the 
initial proposal. And, as Weitzman (1974) has observed, the fact that Malinvaud's 
procedure is a discrete-step and not a gradient process may well enable it to 
converge more rapidly. On the other hand, as Heal (1973, ch. 6) has emphasised, 
it does require the central authority to process very large quantities of informa­
tion. 

4. Non-price approaches 

All planned economies have relied heavily on forms of organisation within which 
the central authorities dispense quantitative input and output targets, supple-
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mented only minimally by prices. During the last decade, several writers have 
turned to an analysis of such approaches, to enquire whether they are fun dam en­
tally misguided or whether they have real advantages in resource-allocation terms. 
It turns out, as mentioned in the introduction, that they do have such advantages, 
though they are bought at the cost of extra complexity in the field of 
information-processing. The simplest non-price approach is that of Heal (1969), 
which may be formalised as follows. Consider an economy with n different firms, 
each producing a good used only to supply final demand. The output of firm i is 
described by Y; = /;( Xi1, X;2, . . .  , Xim), where Xii' j = 1, 2, . . .  , m, is the amount of 
resource j used as an input by firm i. The economy has endowments of m 
different resources, J0 being that of the jth, so the XiJ must satisfy 1::7� 1 X;1 = J0 
for all j. The planning problem is 

maximise U(Y1 , Y2 , • . .  , Yn) 
n 

L XiJ � J0, (4.1) 
i = l  

The procedure suggested for solving this is as follows: the centre proposes an 
initial allocation X;�, i = 1, . . .  , n ,  j = 1, . . .  , m ,  of all inputs in all firms and in 
return is informed of the values of the derivative of aYj a X;1 for all i and j. It 
then alters the initial allocation according to the equations 

X;1 = U;/;1 - Av(K1) U;/;1 for i E K1 ,  
= 0 otherwise, 

(4.2) 

where Av( K)U;/;1 is to be read as " the average of the /;1 for all i in K/' and Ki' a set of indices, satisfies K1 = (i/ Xu > 0 or XiJ = 0 and U;/;1 > Av(K)U;/;1); its 
construction is described in Heal (1969; 1973, ch. 7). 

The basic idea behind ( 4.2) is that each input is reallocated in a way which 
directs more to firms where its productivity on the margin is above-average, and 
vice versa: the obvious procedure has to be complicated to avoid violating 
non-negativity constraints. It is relatively easy to prove that this gradient-like 
process generates a sequence of feasible plans associated with steadily increasing 
values of the objective function, and that it converges to a critical point of (4.1) 
that is not a local minimum, independently of any convexity assumptions about 
the feasible sets. Hori (1975) discusses in some detail the nature of the critical 
points to which the process might converge. 

These are stronger results than can be established for either of the previous 
approaches without a convexity assumption. The general strategy of the proof 
runs as follows. The rate at which the objective function changes can be expressed 
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as 

n n m 

if =  I: U;Y; = I: U; 'L t;1kij i - 1  i � l j = l  
m 

= I: 'L U;t;AU;j;1 -Av(KJU;j;1) 
J - l i E Kj 
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with equality if and only if lf;/;1 is a constant for all !__ E K1, each j, and less than 
or equal to this common value for i $. k1. By letting U be the maximum value of 
U feasible for problem (4.1), one can construct a Lyapunov norm [see, for 
example, La Salle and Lefschetz (1961)] equal to fJ- U and use this to prove 
convergence. 

The approach just discussed can, of course, be extended to more complex and 
realistic models of an economy, and details of these extensions are given in the 
references cited. 

In view of the informational advantages of a price-guided approach, and the 
superior performance of non-price approaches in non-convex environments, there 
is an obvious interest in attempting to combine the attractive aspects of the two. 
A certain amount of progress in this direction has been made by Aoki (1971) and 
Heal (1971):  both discuss mixed price-and-command planning where some re­
source-allocation decisions are made centrally and dictated for firms, while other 
decisions are left to firms that, subject to the constraints imposed by centrally-made 
decisions, are free to act in a profit-seeking manner. These procedures bear an 
interesting silnilarity to the mixed command-and-market systems that have been 
developed lately in some eastern European economies, and are discussed in the 
following section. 

5. Price and quantity approaches 

As just mentioned, one can in some measure synthesise the approaches outlined 
in the previous sections, and produce an amalgam which has several attractive 
features. This approach is necessarily somewhat more complex, and so can be 
presented only in outline and in its simplest interpretation here: in Heal (1971) 
the basic idea is shown to be open to several quite different institutional 
interpretations. 

The model within which we shall consider the planning procedure may be 
formalised as follows. The only inputs to the production process are resources: 
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these are used exclusively as inputs to production, and are not themselves 
produced. They are indexed by j E M, M = (1, . . .  , m ). There are n firms, indexed 
by i E N, N = (1, . . . , n), and p distinct produced goods, indexed by g E P, 
p = (1, . . . , p ). 

Our notation is as follows: X;1 is the amount of resource j allocated to firm k, 
Y;g is the amount of good g produced by firm i, R1 > 0 is the total amount of 
resource j available to the economy, X; is the vector of inputs to firm i, and y; is 
the vector of outputs of firm i. 

The production possibilities of firm i are represented by an implicit function, 

where y; and X; are the vectors defined above. It will be assumed that the set of 
efficient production programmes open to firm i can be represented by 

It is also assumed that the I; are once continuously differentiable. 
In the ensuing argument we shall make frequent use of a slightly unconven­

tional derivative: we shall use the symbol Fi1 to stand for the rate at which firm 
i 's output of good g changes, as the input of good j to firm i is varied, assuming 
that the quantities of the firm's various outputs are maintained in their existing 
proportions to each other. It is fairly easy to derive an expression for this 
derivative in terms of the conventional partials of J;, 

This equality is well-defined as long as the Y;g are not zero for all g: in such a 
case, the Y;g can be assigned arbitrary values, though the derivatives must still be 
evaluated at Y; = 0. 

We need to make one further, fairly innocuous, assumption about firms' 
production possibilities-a  "finite input, finite output" assumption. Formally, we 
assume that if I IX/11 < A, where A is finite, then any Y; satisfying I;(¥;', X /) = 0, 
also satisfies 1 1 1';' 1 1  < B, for some finite B. 

The symbol I I  X; I I  denotes the Euclidean norm of the vector X;. Let Yg = L; e ny;g, 
etc. Then the objective of the planning procedure can be specified as follows: 

maximize U( Y1 , . • •  , �) 
subject to I; ( Y; ,  X;) � 0 for all i E N, (5 .1a) 

I: X;1 � R1 for all j E M, (5 .1b) 
i E N  

X;1 ,  Y;g � o for all i ,  g,  j. (5 .1c) 
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U is a function of class C1 from R P to Rl, and has finite first partial derivatives. 
We denote 

Before describing the details of the planning procedure, it is necessary to 
introduce one additional concept- the value of a resource in a particular use. The 
value of resource j in firm i, J!i1, is given by 

Vii = L UgFiJ · g E P  

and thus gives the rate at which U would change if XiJ were changed marginally, 
and firm i maintained its existing output proportions. It is, in a sense, a "shadow 
price" for the variable xi}" 

As mentioned in the introduction, there are a number of different institutional 
interpretations that can be given to the planning procedure under consideration. 
However, in all variants, the differential equations governing the reallocation of 
resources are the same: this provides the justification for speaking of different 
interpretations of one planning procedure, rather than about three distinct 
procedures. We consider here a simple price-and-command interpretation, where 
economic activity is controlled partly by input quotas set by the central planning 
board (CPB), and partly by the use of output prices, also set by the CPB. 

There are two main elements in the planning procedure: 

(1) The re-allocation of resources amongst firms. This is carried out by the CPB 
in the light of the Vii it increases the allocation of a resource to a firm where 
its value is above average and vice versa. 

(2) The substitution of one output for another. This is carried out by firms: at 
each stage of the process, the CPB announces "prices" for each produced 
good - the price of good g is Ug, the derivative of the objective function w.r.t. 
the output of that good at the current output levels. Taking these prices, and 
its inputs of resources, as given, each firm then adjusts its output mix so as to 
increase the value of its output. 

Details of the planning process are as follows. Starting from an arbitrary feasible 
plan satisfying (5.1a) and (5.1b) with equality: 

(1) Firms inform the CPB of their outputs of the various produced goods. 

(2) The centre computes the totals Yg, and the prices, Ug, for g E  P, and informs 
firms of the latter. 
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(3) Each firm now calculates a value for every resource in its productive processes, 
and informs the CPB of these. (Alternatively, firms may inform the CPB of 
the quantities F;1 and leave the CPB to calculate the VtJ.) 

(4) The centre now changes the allocation of inputs amongst firms according to 
the following rules: 

X;1 = v;1 -Av( K1) v;1 for i E K1 , 
= 0 otherwise, 

(5 .2) 

where a dot over a variable denotes its time derivative, and the notation 
Av(K)v;1 denotes the average of the values of v;1 over the subscripts i 
contained in the set Kr The set K1 is constructed iteratively as in Heal 
(1969). It is defined by the following property: 

and contains only firms whose allocation of resource j is positive, or those 
whose allocation is zero but where the value is above the average over K1. 
Hence application of (5.2) will never violate the non-negativity constraints. 

(5) At the same time, each firm, remaining on the efficient surface given by the 
current input vector, substitutes between outputs so as to increase the total 
value of its output. That is if Y;� is the rat� of change of i 's output of g due 
to substitution between outputs, then the Y;� are chosen so that the Y;g vary 
continuously and 

I: ugY;� � o, 
g E P  

with equality if and only if the necessary conditions for a maximum of the 
value of output at prices Ug are satisfied. 

This completes one step of the process: we now return to item (1). 
The necessary conditions referred to in item (5) can easily be derived. The 

relevant maximisation problem is 

maximize L UgY;g g e P  
subject to T; ( ¥; , X; ) = 0, y; � 0, Ug , X; given, 
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which yields as necessary conditions 

which must hold for all g E P, each i E N. 
Note that the total change in firm i 's output of good g is the sum of any effect 

due to substitution between outputs and any effect due to changes in inputs, 
governed by (5.2). Hence the total is 

Y;g = L kijF;j + Y;�. 
} E M  

It is now relatively straightforward, using the techniques outlined m the 
previous section, to prove the following: 

Theorem 

If the production relations T; and the objective function satisfy the assumptions 
specified and if the initial allocation satisfies constraints (5.la) to (5 .1c) and is not 
a local minimum, then: 

(a) every limit point of the re-allocation process is a critical point: such limit 
points exist and are not local minima; 

(b) along the paths produced by the process, the objective function increases 
monotonically; 

(c) every proposed allocation satisfies the constraints (5.la) to (5.lc). 

6. Cremer's quantity-quantity model 

A paper by Cremer develops the idea of quantity-guided procedures in a different 
direction. The procedure that he proposes has a very strong intuitive resemblance 
to that of Malinvaud, in that it is one in which the central authority receives 
output proposals from firms, accumulates these in its memory, and uses them to 
construct progressively more accurate approximations to their production possi­
bility sets. There are however two important differences: 

(i) The information flows from the centre to firms take the form of proposed 
production vectors, rather than price vectors. 

(ii) Production possibility sets are approximated from the outside rather than 
from the inside. That is, if � is firm j 's true production set and XJ is the t th 
approximation to it, � � XJ (whereas in Malinvaud's model, XJ � �). 
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It immediately follows from these two points that this procedure requires very 
substa:ntial quantities of information to be transmitted - the loads on the par­
ticipants exceed those in Malinvaud's model - and that not all plans proposed 
short of the optimum will be feasible. However, the procedure is still of interest 
because Cremer establishes that it will lead to a globally optimal allocation of 
resources even if the production sets are non-convex. 

The details of Cremer's model can be appreciated with the help of the model 
used in Section 3 to discuss Malinvaud's contribution: recall that in this case the 
overall problem is posed as 

find a vector y which �aximises U( y)  } subject to 0 ;:;;; y ;:;;; L xi + e and xi E J0 , 
j = l 

for j = 1 , 2, . . .  , n 

(6.1) 

where the J0 are the individual production possibility sets. In Malinvaud's model, 
as in the present one, the centre constructs approximations to these, the ap­
proximation at the t th iteration being XJ, and in both cases the centre at the t th 
iteration solves the problem 

maximise U( y)  
n 

subject to 0 ;:;;; y ;:;;; L xJ + e 
j = l  

and x 1 E X1} · 1 J 
(6 .2) 

The differences, as mentioned, lie in the ways in which the XJ are constructed, 
and in the information the centre sends to firms. Let xi* be production vectors 
which solve (6.1): it is assumed that the centre knows for each firm a vector 
xJ > xt which forms an upper bound for its optimal production plan. We then 
set 

J0° = { xlx ;:;;; xJ } ,  

ask firms to specify an efficient feasible production vector x} < xJ, and set 

which is just J0° minus that portion strictly greater than x;. At this point the 
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centre solves problem (6.2) with Xj = X], leading to solution vectors xJ for the 
firms. Firms are then asked if they can produce xJ and, if not, to specify an 
efficient feasible production vector xJ strictly less than xJ. In this case, 

Xf = { xix E X} , x :t> xJ } , 

and so the procedure continues. 
Cremer shows that, under certain mild assumptions on the function U( ) and 

the sets X1, and provided that the responses of the firms satisfy technical 
conditions not described in the brief outline above, this process converges to a 
global solution of the problem (6.1). He also shows that, although the problem 
(6.2) to be solved by the centre at each step is typically a highly non-convex 
problem, the feasible set has in fact a special structure which might make the 
problem tractable. 

In summary, then, we see that Cremer has proposed a process which has 
stronger convergence properties than any of the others mentioned, but at the cost 
of substantial information flows and the imposition of a more demanding task on 
the central authority. This confirms the nature of the trade-offs suggested by 
earlier work. 

7. Planning with public goods 

It has been known since the work of Samuelson (1954) that, because of the 
free-rider problem, we cannot rely on a competitive market to produce an efficient 
allocation of public goods. In recent years an extensive literature has developed 
on this subject. An excellent survey is Tulkens (1976); important contributions 
have been made by Malinvaud (1971, 1972) and Dreze and Poussin (1971), who 
have developed a planning procedure for use in an economy with public and 
private goods which is now generally known as the M.D.P. procedure. In this 
brief treatment, we shall be concerned to present the essentials of this in a simple 
context, drawing heavily on Tulkens (1976). 

We consider a set of N consumers, indexed by i = 1, . . .  , n ,  each possessing a 
differentiable utility function u;(y;, Z), where Y; is his allocation of a single 
consumption good and Z is the output of the single public good. Individual i 
enters the picture with an endowment e; of the private good. Production of the 
public good uses as an input the private good, according to the formula w = g(Z), 
where w is the input needed to produce Z. The overall problem with which we are 
concerned can thus be stated as follows: 

maximize L u; ( Y; , z ) 

subject to LY; + w = L:ei ,  
(7.1) 
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Letting 

one can readily verify that the first-order conditions for a solution to (7.1) are that 

(7.2) 

which is of course just the familiar condition [see Samuelson (1954)] that the sum 
of the consumers' marginal rates of substitution between public and private 
consumption, must equal the marginal cost of the public good in terms of the 
private. 

In intuitive terms, the essence of the M.D.P. approach is that, starting from an 
arbitrary but feasible initial allocation (y;, i E N, Z), a planning board (C.P.B.) 
revises the Y; and Z so as to eliminate the discrepancies between the left- and 
right-hand sides of (7.2). In particular, it raises the output of the public good if 
L;?T; - the sum over all consumers of their willingness to pay for an extra 
unit - exceeds g'(z), the marginal cost of that unit, and vice versa. 

More formally, the procedure runs as follows. At each point, the C.P.B. 
proposes an output of public good, Z, and a set of private consumption levels y;, 
which are feasible. Consumers respond by reporting to the centre the associated 
marginal rates of substitution ?T; , and the producer responds with g'( z ), the 
marginal cost of the public good. The C.P.B. then revises the proposed allocation 
according to the following equations, and the procedure continues: 

z ( t ) = a ( L?T; ( t )- g ' [ z ( t ) ] ) . 
I 

w( t ) = g'(z )z ( t ) , 

y, ( t ) = - '1T, ( t ) z ( t )+ 8,a [ �'1TJ ( t )- g'(z )  r 

(7.3) 

(7 .4) 

(7.5) 

In (7.3) 0 < a <  oo is an adjustment coefficient, and in (7.5) 8; � 0, LA = 1 are a 
set of distributive weights. Clearly (7.3) is merely a formalisation of the intuitively 
appealing idea mentioned above and (7.4) is the consequential adjustment to the 
inputs allocated to producing the public good. As the production of the public 
good changes, so of course does that of the private good. (7.5) specifies that i 's 
allocation Y; changes at a rate which depends partly on her expressed willingness 
to pay for the public good, and partly on the distributive weight 8; and the 
squared error in the first-order conditions. 
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Although the rationale for the presence of this second term may not be 
immediately clear, it is in fact essential, as it enables one to establish that along 
any path satisfying (7.3), (7.4) and (7.5), each individual's utility is non-decreas­
ing. The proof is as follows: 

if; =  ( au;� a y; ) Y; + ( au;� az ) t  
= ( au;� ay; )Y; + 7T;i 

= ( au;; ay; ) �;a ( I:W1 - g'( z )  r � o. 
1 

(7 .6) 

The fact that utilities are non-decreasing is clearly an appealing feature of the 
procedure, and is also of significance in a discussion of whether participants have 
an incentive to misrepresent their preferences for the public good. This issue is 
discussed in Section 8. 

It is evident by inspection of (7.3) and (7.5) that any equilibrium of the M.D.P. 
procedure must satisfy the first-order conditions (7.2). Malinvaud and Dreze and 
Poussin show that if for each i, u;(y;, z) is strictly concave, and if g(z) is convex, 
and if certain technical assumptions are satisfied, then the M.D.P. procedure 
converges to a solution to the problem (7.1) - and hence converges to a Pareto 
optimum. Given the monotonicity property established above, this optimum is 
clearly individually rational with respect to the initial allocation. For any initial 
allocation, there are typically many Pareto optima which are unanimously pre­
ferred and hence individually rational : Champsaur (1976) has established that to 
any such optimum there corresponds a set of �;. i E N, such that the M.D.P. 
procedure had this optimum as its limit point. The procedure is thus in a certain 
sense distributionally neutral: it does not restrict the set of Pareto optima 
attainable, other than by the condition of individual rationality relative to the 
initial allocation. 

8. Revelation of information 

8. 1. With public goods 

All planning procedures rely on the revelation of information by participants to 
the central authority. This may take the form of information about outputs and 
marginal productivities at certain input configurations, or of information about 
preferences for public goods. The need to ensure accurate revelation of this latter 
sort of information raises particularly acute problems, for it has long been 
recognised in the theory of the allocation of public goods that individual 
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consumers have an incentive to misrepresent their preferences [Samuelson (1954)]. 
This problem has recently given rise to some interesting literature by, amongst 
others, Groves and Ledyard (1977) and Green and Laffont (1977). These authors 
have shown that under certain circumstances one can devise ways of ensuring that 
it is in an individual's interest to reveal his true preference. The basic idea is very 
straightforward: by raising my demand for a public good, I raise the output and 
hence everyone else's consumption, conferring on them a positive externality. The 
procedures of Groves and Ledyard and Green and Laffont can be viewed as 
ingenious ways of internalising this externality. 

What then is the state of play in the field of planning with public goods? 
Clearly the relevant procedures need preferences to be revealed to the centre: can 
it be assumed that they will be revealed accurately? This is a field in which much 
work remains to be done, but there are indications that the M.D.P. procedure is 
to an encouraging degree cheatproof. There have been two approaches to this 
issue, which have been termed local and global. The former asks the question: 
suppose that at each instant of the planning procedure, a consumer is concerned 
only with the change in his utility that results from the re-allocation carried out at 
that instant, and gives a reply which will maximise this, taking due account of the 
behaviour of others. Depending on whether or not he collaborates with the others, 
we have a cooperative or non-cooperative local game, and we can ask whether the 
solution to this involves telling the truth. The global approach to this issue 
involves assuming that at each instant a consumer attempts to anticipate the 
effects of his actions on the allocation that will eventually result when the 
procedure converges, and behaves so as to optimise this, again either with or 
without cooperating with the other individuals. 

The most extensive results are available for local games. Dreze and Poussin 
(1971), working in a non-cooperative framework; showed that telling the truth is a 
minimax strategy in the non-cooperative local game, and is in general the only 
such strategy. A proof of this is easily outlined. Let 1/J/t) be j 's declared 
marginal rate of substitution between public and private goods at time t: this 
need not equal the true value, still denoted by 7T/t). Then from (7.6), 

if, � ��  ( s,a [ ��} - g'(z )r + Z(wd,] ) 

= �� 8;a [ 71/Jj - g'( z) r + ( 7T; - 1/J;) [ 71/Jj - g'(z )l 

It is clear from this that setting 1/J; = 7T; guarantees i a non-negative change in 
his utility, and it can readily be shown that any other strategy will allow other 
players to choose 1/Ji' j =I= i, which can ensure that (f; is non-positive. Hence the 
result. Dreze and Poussin also show that at an equilibrium of the procedure, and 
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only at such a point, telling the truth and setting 'TT; = 1/J; for all i is a Nash 
equilibrium. 

Roberts (1976) considers the Nash equilibrium of a local non-cooperative game 
away from an equilibrium and shows that although truthful revelation of prefer­
ences is not in general a Nash equilibrium (it is in the special case when there are 
two consumers with /)1 = l>2 = !), it is still the case that if all consumers play their 
Nash strategies at each instant, the process converges to a Pareto optimum. This 
may be a different optimum from that which would have been reached if 
preferences had been revealed correctly (so that some consumers may gain from 
misrepresentation), and convergence may be slower, but the outcome is still 
efficient. Henry (1977) has extended this result to the case when there are 
constraints on the numbers 1/J; that each consumer feels able to present as his 
marginal rate of substitution-constraints imposed for example by the need to lie 
in a manner which is plausible a priori and is consistent with previous replies. 
Roberts has also studied global games associated with the M.D.P. procedure, and 
has shown that a Nash equilibrium in a global non-cooperative game cannot in 
general involve accurate revelation of preferences. 

It can be seen from this review that our understanding of the problems of 
eliciting accurate information about preferences for public goods has progressed 
considerably, and indeed that the M.D.P. procedure for determining the alloc­
ation of such goods has encouragingly strong properties in this respect. 

8.2. The production of private goods 

As mentioned earlier, information has to be revealed by agents to the centre even 
when planning is entirely in the context of private goods. In general it is simply 
assumed that this information will be accurate. There is very little literature on 
the problem of ensuring accuracy, though Heal (1971) does discuss this problem 
in the context of the mixed price-and-command procedure of Section 5. The 
essentials of the argument can be appreciated in a one-firm model. Let the 
economy consist of a single firm: when using all the resources available (these are 
not consumable) it can produce an output vector Y = ( Y1, . . .  , � ) according to the 
equation F(Y) = 0. The social welfare function is U(Y). Suppose now that the 
firm is told that the use of resources is free, that it will be paid an amount Ug for 
each unit of good g it produces, and that the price vector (U1, . . .  , �) will vary as 
the output vector varies. The firm is then instructed to maximize its profits (which 
in this case equal its revenue) : this puts it in the position of a monopolist, and it 
has to solve the problem 

maximise I: Ypg } g E P  
subject to F( Y )  = 0 

' (8.1) 
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where the vector ( U1, • . •  , Ug) depends on ( Yv- . .  , Yg) in a way that may or may 
not be known to the firm. Assume the social welfare function to have the 
following property: 

I: YgUg = q> [ U( Y)] for some fj> with fj>' > 0, 
g E P  

(8 .2) 

then the solution to the problem (5.2) is identical to the solution to the planning 
problem 

maximise U( Y) } 

subject to F(Y)  = 0 ' (8 .3) 

and the social optimum is the monopolist's profit-maximum. Condition (8.1) is by 
no means completely unacceptable: the class of positively homogeneous functions 
is a subclass of those satisfying it. Three interesting implications result from this 
identity of the solutions to (8.1) and (8.3): 

(i) During the application of any of the planning processes described above to 
this simple economy, the monopolist's profits will rise monotonically as the 
process continues. 

(ii) Any departure from the socially optimal production plan will lower the firm's 
profits. 

(iii) No false reporting of outputs during the procedure leading to the optimum 
could increase the total profit that accrues to the firm at the equilibrium. 

These conclusions have to be modified for the many-firm model set out in 
Section 5 .  In that case one has corresponding to point (i) the fact that the total 
revenue from the sale of the outputs of all firms is rising during the planning 
process; in points (ii) and (iii) the " total revenue of all firms" must likewise be 
substituted for " firm's profits". 

It is also possible to make the following statement about this more general case. 
Consider an arrangement whereby once the optimum had been attained, firms 
were permitted to trade resources with each other and the auctioneers. Then the 
sum of the profits earned by all firms and auctioneers would be maximised, over 
all possible allocations, at the social optimum. The proof of this assertion is 
trivial: if P1 is the price of resource j, and '11' the sum of the profits, 

'11' = I: I: Y;pg - I: I: X;1P1 + I: I: xijP1 i E N g E P  i E N j E M  j E M i E N  
= 4> ( U( Y1 , . . .  , �)] with 4>' > 0 if (8 .2) is satisfied. 

It is therefore true that if in such a situation any agent departs from his socially 
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optimal action the resulting gain to him must be less than the losses to others: the 
losers could therefore bribe the gainers not to make such a departure. 

In summary, it is clear that although the social optimum located by the 
planning processes discussed cannot be supported by prices in the normal way, 
there is implicit in the rules of the economy a structure of incentives that, if the 
objective function satisfies (8.2), makes a departure from the social optimum 
against the interests of all agents taken together. By the same reasoning, false 
reporting during the planning process done with the intention of diverting the 
process to a point other than the social optimum, though it may be in the interests 
of a subset of agents, cannot be in the interests of all. Those who lose from such a 
diversion to a non-optimal point could profitably bribe those who gain from it 
not to cause it. The idea which underlies this analysis, that of supporting an 
optimum in a non-convex technology by demand functions rather than prices, has 
recently been extended to a general equilibrium context by Brown and Heal 
(1976, 1979, 1980). For a related discussion of non-convex optimislltion problems 
in economics, see Chichilnisky and Kalman (1978). 

Another contribution of interest in the present context, is that of Weitzman 
(1976), who gives a theoretical development of recent Soviet innovations in 
planning practice. The background to his analysis is as follows: in planning 
procedures in the Soviet Union, the central authorities will typically assign inputs 
to firms and request information about the output that these can produce. The 
response is used (typically together with other information available to the centre) 
to set an output target for the firm, and various bonus payments to the firm will 
then depend on the amount by which it manages to overshoot this target. The 
firm clearly has a strong incentive to understate its output possibilities, so that the 
target is easily surpassed and the bonus earned. This is of course disadvantageous 
to the central authorities, who need accurate information about the likely output 
in order to assign to other firms outputs which are intermediate goods. 

The basic idea behind the new system that Weitzman discusses, is that firms are 
invited to suggest output targets for themselves, and are then penalised for 
departing from these in either direction. This clearly gives the firm an interest in 
suggesting as a target, the output that it actually expects to produce. Formally, if 
B is the bonus, q is the output that will be produced from the inputs assigned and 
q* is the output target that the firm suggests, then a suitable scheme would be: 

B = a + f3(q - q* )2, a > O, /3 < 0. (8 .4) 
In this expression, q is assumed to be determined by the available inputs, so that 
q* is the firm's only choice variable. Evidently B is maximised by setting 
q * = q - i.e. by telling the truth. This point is of relevance to our earlier 
theoretical discussions, because in the planning procedures of Sections 4 and 5 it 
was assumed that the central authorities could ask for, and receive, accurate 
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information about the outputs proceeded by any given set of inputs. It is also true 
that ·they assume information about marginal productivities to be obtainable, and 
fortunately the present idea can be extended to cover this need also. The basic 
point is that the marginal productivity of an amount xih of input h to fiim i can 
be accurately approximated from information about the output levels associated 
with inputs xih + .:1xih and xih - .:1xih which means that marginal productivities 
can be approximated by asking the sort of question to which we know how to 
obtain an accurate answer. Indeed, in the discrete-step reformulations of the 
procedures of Sections 4, 5 and 6, to be discussed in the next section, the only 
information about outputs associated with input levels slightly different from the 
present ones. 

In the analysis of the previous paragraphs, it was assumed that a firm's output 
was uniquely specified by the inputs assigned to it by the centre. There will of 
course be occasions when this is not true, because there are certain other local 
inputs controlled by the firm's management. Important amongst these might be 
what could loosely be called managerial effort. In such situations, the centre will 
of course wish to ensure that the management is provided with an incentive to 
supply this local input, and the formulation (8.4) fails to do this. It could however 
easily be adapted: 

B = aq + P ( q - q * )  2, a > 0, P < 0, 

provides an incentive to raise output, and to announce as a target the output it is 
intended to produce. 

Weitzman's formulation of the 1971 Soviet incentive reforms is clearly of 
interest, but these proposals suffer from the drawbacks that they are in essence 
partial equilibrium in approach - that is, they are based on an analysis of an 
individual firm in isolation, and do not take account of the interactions between 
firms that may arise because one firm's proposals affect the allocations that the 
centre makes both to that firm and to others. A recent paper by Loeb and Magat 
(1978) has analysed this dimension of the problem, bringing to bear on it the 
results and techniques already developed by Groves, Ledyard, Green, Laffont and 
others for the analysis of problems of preference revelation with public goods. 
They show that in a multi-firm situation there may indeed be circumstances in 
which the Weitzman scheme leads firms to report inaccurate information to the 
centre, and go on to develop an incentive system which ensures that revealing 
accurate information on production possibilities is a dominant strategy for each 
firm. 

The basic idea of the Loeb-Margat model can be explained very simply. 
Suppose that each firm's output :r;, i = /, z, . . .  , n ,  is a function of the amount of 
material inputs Mi allocated to it by the centre, and of the work effort li supplied 
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by its staff: 

where M; is fixed centrally and I; is chosen locally, subject to the constraint 
I; E L;, to maximise the firm's bonus receipts. The overall resource allocation 
problem is then to 

n 

maximise L Y;( M; , 1;) 
i = l  

n 

subject to L M; � M, 
i = l  

The firm's problem is to 

maximise B; { M;, I; ) } 
subject to I; E L; ' 

each} M; f;; 0, l; E L; , 
(8 .5) 

(8 .6) 

where B; is the bonus payment scheme and M; is the amount of material 
allocated to the firm by the centre. The centre is not of course in a position to 
solve problem (8.5), as it is unaware of the true production functions ¥; ( ). It has 
to obtain information about these, and asks each firm for a forecast Y;(M;) of the 
output it would produce from any given material allocation. The rational firm will 
choose Y;( M;) to equal the output which would maximise its bonus B;, given M; 
and the constraint l; E L;. That is, 

Y; ( M; ) = Y;(M; , l;*( M;)) 
where l;*(M;) maximises B; (M; , l; )  
subject to I; E L; . 

Now consider the following bonus payment scheme: 

B; (M; , l; )  = Y;(M; , I; ) +  L YJ (MJ - C; , 
j � i  

where C; is a number independent of firm i 's forecast. The ith firm's bonus thus 
equals the value of the output it actually produces, plus the forecast outputs of 
other firms at allocated input levels, minus an amount which is independent of 
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firm i 's forecast. The central authority will choose M; to solve the problem 

n 
maximise L Y; ( M;) 

i = l 
subject to LM; � M, M; � 0, 

and if firm i sets 

then the centre is in fact choosing the M; to maximise 

y;(M; . l; (M;)) + L YJ(Mj) , 
) ,P i  

which is of course identical to the part of B;(M;, I;) which depends on i 's output 
forecast to the centre. Hence by giving an accurate forecast, the firm can ensure 
that the materials allocation chosen by the centre is so chosen as to maximise its 
bonus function. In other words, reporting accurate information to the centre 
becomes a dominant strategy for the firm. 

The Loeb-Magat contribution is interesting because it stresses the applicability 
of the literature on incentive compatibility, which originated with the free rider 
problem for public goods, to the general question of incentives in economic 
planning. At the same time, their particular formulation obviously has many 
limitations. It deals with firms producing a single good, and using a single input. 
It thus avoids the problems of aggregation which are particularly difficult in a 
planned economy because of the absence of market prices. It also assumes 
sufficient separability and linearity that the social objective is the sum of the 
individual objectives. Such strong assumptions are probably necessary to ensure 
that truth-telling is a dominant strategy. If one were to be content with the 
weaker result that telling the truth was a Nash equilibrium, then recent work [see, 
for example, Dasgupta, Hammond and Maskin (1979) and Chichilnisky and Heal 
(1980)] suggests that considerably weaker assumptions could be used. But it 
would still be necessary to model explicitly the interactions and interdependencies 
between firms before really convincing results could be established. 

9. Discrete steps 

It will no doubt not have escaped the reader's attention that whereas most of the 
planning procedures presented so far have been continuous processes, any actual 
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planning exercise must consist of only a finite number of discrete steps. The 
procedures are usually presented in continuous form because the mathematics is 
far more tractable, but it is clearly essential to confirm the existence of discrete 
analogues. Although this may appear a straightforward matter, such an ap­
pearance would be most misleading: workers in this area have needed great 
ingenuity to surmount considerable technical problems. 

The first to tackle these problems was Uzawa (1958), who considered what is in 
essence a discrete step reformulation of the Lange-Arrow-Hurwicz procedure. 
Instead of (2.9) one has 

Y;t+ 1 - yf = 0 if y/ = 0 and U; - A; < 0, 
= a ( U; - A;)  otherwise, 

(9.1) 

with corresponding alterations to (2.10) and (2. 11). A difficulty arises in proving 
convergence for such an approach. This is that if a fixed value of the adjustment 
coefficient a is maintained, the procedure cannot be shown to converge to an 
optimum, but merely to within a certain neighbourhood of an optimum. Once 
that neighbourhood is entered, it may overshoot and oscillate around the opti­
mum. Naturally, the smaller the coefficient a, the smaller the neighbourhood, but 
of course the slower · the rate of adjustment towards that neighbourhood. Conse­
quently there is a trade-off between the speed of convergence and the asymptotic 
precision of that convergence. 

It is reasonable to suppose that the conflict that gives rise to this trade-off could 
be overcome if the parameter a were systematically reduced during the procedure, 
and this is indeed an ingredient of a discrete reformulation of Heal's planning­
without-prices procedure that has been analysed by Henry and Zylberberg (1976). 
The essence of their proposal is that at each step the centre proposes to a typical 
firm i both an input vector X; = (xi1, . . .  , X;m) and a "pitch" a E Rm which 
specifies the amount by which it considers changing each component of the 
allocation. The firm then has to respond with the outputs from the 2m input 
vectors (x;1 ± a1, X;z , . . .  , X;m), (x;1, X;2 ± a2, X;3 , . . .  , X;m), . . .  which of course form 
a basis for computing discrete analogues of marginal productivities. Henry and 
Zylberberg specify a rule by which the centre can use the information just 
described to decide whether to alter the pitch a: they also specify a rather 
distinctive reallocation rule according to which at each step the centre changes the 
allocation of only one good between one pair of firms - contrast this with 
equation (4.2), which may require all inputs to all firms to be changed simulta­
neously. The reallocation rule is as follows: if the indices i, j E N  refer to firms, 
and h E M  refers to goods, then the centre has to choose a triple (i, j, h) so as to 
maximise the difference 

U;v;t { xf, a t) - �f}"h ( xJ, at) , 
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where U; and � are the partial derivatives of the objective function (assumed for 
convenience to be linear) and 

V+ ( t t) _ 1 1 ( t t + t ) ih X; , a  - -,; xi1 , . . .  , xih ah , . . .  , xim , 
a t  h 

and so on. The centre thus performs that transfer of an amount ah which 
maximises the increment to the objective function. For this revised procedure, 
Henry and Zylberberg establish monotone convergence, via a sequence of feasible 
plans, to a critical point, thus establishing that all of the properties of the 
continuous procedure hold for the discrete case. Cremer (1983) generalises these 
results of Henry and Zylberberg so that the procedure requires less information 
and may have faster rates of convergence. 

It is worth noting that Champsaur, Dreze and Henry (1977) have completed a 
similar analysis for the M.D.P. procedure with public goods, again demonstrating 
the existence of a discrete version enjoying the same properties as the original 
continuous formulation. 

Postscript 

This entry was written in 1978. Between then and the publication date there have 
been a number of mathematical developments in the analysis of convergence rates 
of algorithms for solving optimization problems. It appears likely that these 
results could provide a basis for a more systematic study of the properties of 
alternative planning procedures, and for an investigation of the trade-off between 
the informational requirements of a procedure cand its convergence properties. 
These mathematical results are summarized in Nemirovsky and Yudin (1984). 

References 

Aoki, M. (1971), " Investment planning in an economy with increasing returns", Review of Economic 
Studies, 273-281. 

Arrow, K. J. and L. Hurwicz (1958), " Gradient methods for concave programming, I, II and III", in: 
K. J. Arrow, L. Hurwicz and H. Uzawa, eds., Studies in Linear and Non-Linear Programming, pp. 
117-146. Stanford. 

Arrow, K. J. and L. Hurwicz (1960), " Decentralisation and computation in resource-allocation", in: 
R. Pfouts, ed., Essays in Economics and Econometrics in Honour of Harold Hotelling, pp. 34-103. 
Chapel Hill: University of North Carolina Press. 

Barone, E. (1935), " The Ministry of Production in a collectivist state", in: F. A von Hayek, ed., 
Collectivist Economic Planning. 

· 

Brown, D. J. and G. M. Heal (1977), " The existence and efficiency of equilibrium with increasing 
returns in production", Cowles Foundation Discussion Paper. New Haven: Yale University. 

Brown, D. J. and G. M. Heal (1979), " Equity, efficiency and increasing returns", Review of Economic 
Studies, Oct. 

Brown, D. J. and G. M. Heal (1980), " Two-part tariffs, marginal cost pricing and increasing returns in 
a general equilibrium model", -Journal of Public Economics, 13:25-49. 



Ch. 29: Planning 1509 

Champsaur, P. (1976), "Neutrality of planning procedures in an economy with public goods", Review 
of Economic Studies, 43 :293-300. 

Champsaur, P., J. H. Dreze and Cl. Henry (1977), "Stability theorems with economic applications", 
Econometrica, 45:273-295. 

Chichilnisky, G. and P. Kalman (1979), " Comparative statics of less neoclassical agents", Interna­
tional Economic Review, Feb. 

Chichilnisky, G. and G. M. Heal (1980), " Incentives to reveal preferences: The case of restricted 
domains", University of Essex Discussion Paper 19. 

Cremer, Jacques (1977), "A quantity-quantity algorithm for planning under increasing returns to 
scale", Econometrica, 45. 

Cremer, Jacques (1983), " The discrete Heal algorithm with intermediate goods", Review of Economic 
Studies, 50:383-391. 

Dasgupta, P. S., P. J. Hammond and E. Maskin (1979), " The implementation of social choice rules: 
Some general results on incentive compatibility", Review of Economic Studies, 46:185-216. 

Dreze, J. H. and D. della Vallee Poussin (1971), "A tatonnement process for public goods", Review of 
Economic Studies, 38:133-150. 

Dyker, D. A. (1976), The Soviet Economy. London: Crosby, Lockwood, Staples. 
Green J. and J. J. Laffont (1977), "Characterisation of satisfactory mechanisms for the revelation of 

preferences for public goods", Econometrica, 45 :427-439. 
Groves, T. and J. Ledyard (1977), " Optimal allocation of public goods: A solution to the free rider 

problem", Econometrica, 45:783-811. 
Hayek, F. A. von (1945), " The use of knowledge in society", American Economic Review, 35 :519-530. 
Heal, G. M. (1969), " Planning without prices", Review of Economic Studies, 347-363. 
Heal, G. M. (1971), " Planning, prices and increasing returns", Review of Economic Studies, 281-295. 
Heal, G. M. (1973), The Theory of Economic Planning. Amsterdam: North-Holland. 
Henry, Cl. (1972), " Non linear evolution equations on mathematical economics", Techniques of 

Optimisation. 
Henry, Cl. (1973), "An existence theorem for a class of differential equations with multivalued right 

hand side", Journal of Mathematical Analysis and Application. 
Henry, Cl. (1977), " The free rider problem in the M.D.P. procedure", Discussion Paper. Paris : 

Laboratoire d'Econometrie, Ecole Polytechnique. 
Henry, Cl. and A. Zylberberg (1976), "Planning algorithms to deal with increasing returns", Review of 

Economic Studies, forthcoming. 
Hori, H. (1975), "The structure of equilibrium of points of Heal's process", Review of Economic 

Studies, 42:457-467. 
Hurwicz, L. (1969), " On the concept and possibility of informational decentralisation", American 

Economic Review, Papers and Proceedings. 
Kornai, J. (1967), Mathematical Programming of Structural Decisions. Amsterdam: North Holland. 
Lange, 0. (1936), " On the economic theory of socialism", Review of Economic Studies, 4:53-71, 

123-142. 
Loeb, M. and W. A. Magat (1978), "Success indicators in the Soviet Union: The problem of incentives 

and efficient allocations", American Economic Review, 68. 
Malinvaud, E. (1967), " Decentralised procedures for planning", in: E. Malinvaud and M. 0. L. 

Bacharach, eds., Activity Analysis of Growth and Planning, pp. 170-211. London: Macmillan. 
Malinvaud, E. (1971), "A planning approach to the public good problem", Swedish Journal of 

Economics, 73:96-112. 
Malinvaud, E. (1972), " Prices for individual consumption, quantity indicators for collective consump­

tion", Review of Economic Studies, 384-407. 
Nemirovsky, A. S. and D. B. Yudin (1984), Problem Complexity and Method Efficiency in Optimiza­

tion. New York: Wiley-Interscience. 
Roberts, D. J. (1976), " Incentives in planning procedures for the provision of public goods", C.O.R.E. 

Discussion Paper 7611. Louvain: Universite Catholique de Louvain. 
Samuelson, P. A. (1954), " The pure theory of public expenditure", Review of Economics and 

Statistics, 26:387-389. 
Taylor; F. M. (1929), " The guidance of production in a socialist state", American Economic Review, 

19. 



1510 Geoffrey Heal 

Tulkens, H. (1976), "Dynamic procedures for allocating public goods: An institution-orientated 
survey", Mimeographed. Louvain: C.O.R.E. 

Uzawa, H. (1958), " Iterative methods for concave programming", in: K. J. Arrow, L. Hurwicz and 
H. Uzawa, eds., Studies in Linear and Non-Linear Programming. Stanford: Stanford University 
Press. 

Weitzman, M. L. (1974), Review of G. M. Heal, "The theory of economic planning", Journal of 
Economic Literature, 12:499-500. 

Weitzman, M. L. (1976), "The new Soviet incentive model", Bell Journal of Economics, 7:251-258. 



LIST OF THEOREMS 

Arrow's Impossibility Theorem 1078 
Arrow's Social Welfare Function 1076 
Bergson-Samuelson's Social Welfare Function 

1074, 1 147, 1198 
Borda Rule 1150 
Coding Theorems of Information Theory 

1368-1370, 1373, 1375, 1437 
Condorcet Condition 1077 
Envelope Theorem 1228 
Euler Equations 1325, 1336 
Field Expansion Lemma 1080 
General Possibility Theorem (GPT) 1074, 1078, 

1088 
Group Contraction Lemma 1080 
Groves Mechanisms 1378, 1385-1386, 1455-1463 
Hammond's Equity Axiom 1116 
Harsanyi's Impersonal Choice Utilitarianism 

1122 
Harsanyi's Utility Sum Theorem 1123 
Implicit Function Theorem 1332, 1336 
Independence of Irrelevant Alternatives Axiom 

1077 
Interpersonal Rank-Order Rule (IROR) 1151 

Kuhn-Tucker Theorem 1208, 1243, 1486 
Lange-Lerner Price Mechanism 1378, 1384, 1397, 

1444, 1485 
Lindahl Scheme for Public ' Goods 1444, 1445, 

1451 ,  1465 
Lindahl Social Choice Rule 1450 
Noiseless Coding Theorem (Shannon) 1368-1370, 

1373, 1375, 1437 
Person-By-Person Satisfactoriness Theorem 1378, 

1379, 1385 
Pontijagin's Maximum Principle 1238 
Ramsey Pricing Scheme 1252, 1253 
Rawl's Maximin Criterion 1115 • 
Samuelson's Condition for Optimal Public Goods 

Supply 1275, 1276, 1445, 1454 
Samuelson's Correspondence Principle 1338 
Sen's Leximax Criterion 1117 
Sen's Leximin Criterion 1115-1118 
Slutsky's Symmetry Condition 1226, 1240 
Suppes Principle 1116, 1118 
Turnpike Theorems 1281, 1298, 1315, 1321, 1328, 

1330, 1334, 1336 
Weak Invisible Hand Theorem 1268, 1269 



INDEX 

Accumulation path 1285 
Acyclicity 1079, 1086 
Additively separable utility 1271 
Adjustment processes 1389-1431, 1442 

continuum 1398 
discrete 1398-1423 
informational efficiency 1405-1410 

Adjustment processes in organization design 1389 
one-step designs 1362, 1375, 1387, 1396, 1399 
pre-equilibrium 1424 
tatonnement 1384 

Adverse selection 1184, 1185 
Allocation in social choice 

efficient 1106 
egalitarian-equivalent 1109 
equitable 1108 
fair 1106, 1108 

just 1110 
see also Pareto principle 

Allocation mechanisms 
see resource allocation mechanisms 

Almost decisive group 1078, 1079 
Anonymity 1083, 1093, 1116, 1121 
Arrow, K.J. 1485 
Arrow's Impossibility Theorem 

see impossibility theorem 
Asymmetric information 1183, 1189 

adverse selection 1184, 1185 
hidden action 1184, 1185 
hidden information 1184 
incentive compatibility 1185, 1450, 1506 
incentives 1441, 1499 
monitoring 1190, 1193, 1504 
moral hazard 1184, 1190, 1242 
principal-agent 1183-1195 
self selection 1187 
signalling 1188 
see also information, 

revelation mechanisms 
Asymptotic convergence of optimal paths 1307, 

1316 
Auctions 1187 

Balance condition 1465 
Base relation of choice function 1095, 1098 
Bentham, Jeremy 1073 
Binariness of choice function 1098 
Blocks 1368 
Borda, J.C. 1073, 1074 
Borda rule 1150 
Bounded paths 1298, 1302 

Bounded rationality 1271, 1361 
Boundedness assumption 1285 

Calculus of variations 1281 
Cantor process 1324 
Capital accumulation 1281 

see also growth theory, investment, 
paths of capital accumulation 

Catastrophe theory 1204 
Catches up to 1286 
Centralization 

see decentralization, planning 
Choice function 

see social choice function 
Citizens' sovereignty 1081 
Clockwise cycle of preferences 1142 
Closed utility function 1285 
Coding theorems of Information theory 1368 
Coinsurance 1190 
Collective impotence 1082 
Collective rationality 1079, 1084, 1152 
Comparability of utilities 1111-1114, 1122, 1123, 

1126, 1127 
Comparative dynamics 1281, 1331 

near stationary states 1344 
Comparative statics 1335 
Compensated demand function 1226, 1254 
Competitive fringe 1257 
Competitive mechanism 1391, 1392, 1395 
Completely feasible implementation 1470, 1475 
Computational aspects of tax theory 1244 
Computational complexity in organizational de-

sign 1367, 1377 
Computing cost 1406, 1422, 1430 
CON 1231 
Condorcet condition 1077 
Condorcet, M. de 1073, 1074 
Connectedness 1407 
Consistency 1135 

inter-profile 1083 
standard contraction 1097 
standard expansion 1097 

Constant elasticity (t) transforms 1127 
Constant public output rule 1271 

see also allocation, public firm 
Contestable markets 1268 
Continuum adjustment processes 1398 
Convergence 1307, 1316, 1483, 1490, 1497 
Convex, non- 1484, 1490, 1496, 1503 
Convexity, non- 1490 
Correspondence Principle of Samuelson 1338 



1514 

Covers E 1365, 1392 
Cross-subsidization 1260, 1269 
Cyclical indifference 1144 
Cyclically mixed preferences 1142 

Decentralization 
incentive aspects 1441 
organization design 1382, 1383, 1391, 

1430-1435 
planning 1483, 1485 
vs. centralization 1431-1435 
see also information, 

resource allocation mechanisms, 
revelation mechanisms 

Decision rule for public firm 1270 
Decisive 

almost decisive 1078, 1079 
group 1078 
semi-decisive 1085-1087 

Decomposability 1144 
Decreasing ray average cost 1269 
Design of organizations 1359, 1365, 1375 

see also information structures, 
informational efficiency 

Detector 1366 
Device 1367 
Dictator 

invisible 1082 
non-dictatorship 1078 
pair-choice non-dictatorship 1093 
reverse dictatorship 1082 
single profile 1149 

Differentiable model 1325, 1326, 1331 
Dimension of message spaces 1393 
Discounted utility 1282 
Discrete adjustment processes 1398-1423 
Dodgson 1074 
Domain restrictions 1137, 1143 

centres 1141 
number-specific 1140 
unrestricted domain 1093 

Dominance equilibrium 1453 
Dominant agent 1270 
Dominant diagonal blocks 1327 
Dominant strategy 1131, 1453, 1506 
Dual problem in tax theory 1239 
Dual variables 1486 
Duality 1486 
Dynamic regularity 1350 
Dynamic second-best theory 1277 

Economic environment 1441 
Efficiency and social choice 1106 
Efficiency of competition and welfare 1262 
Efficient accumulation path 1290 
Egalitarian-equivalent allocation 1109 
Entropy 1368, 1370, 1372, 1374 
Envelope condition 1237 
Envelope theorem 1228 

Environmental characteristic 1390 
Envy 1108 
Equal-error condition 1409 
Equity 1108 

Hammond's axiom 1116 
minimal 1118 

Error probability 1372 
Euler condition 1326, 1331 
Euler equations 1325, 1336 
Expansible stock 1298, 1300, 1302 
Extremal restriction (ER) 1139 

Facet 1317, 1318 
Fairness 1106, 1108 
Fee function 1188 
Field expansion lemma 1080 
Filter 1090 
Finite ranking rules 1 1  S 1 
Flat space 1287 
Free disposal 1298, 1302 
Free rider 1497, 1506 

Game mechanism or game form 1446 
Game theoretic 

dominance equilibrium 1453 
dominant strategy 1131, 1453, 1506 
game form 1446 
game mechanism 1446 
leximax 1117 
leximin 1115-1118 
maximin 1115 
minimax 1500 
Nash equilibria 1134, 1447, 1467, 1501 
quasi-game 1466, 1467 
strategy-proofness 1130, 1133 

General-choice Pareto principle 1103 

Index 

General Possibility Theorem (GPT) 1074, 1078, 
1088 

proof 1080 
Gini coefficient 1198 
Global turnpike 1330 
Globally unique optimal stationary path 1342 
Good quality 1106, 1110 
Gradient process 1426 
Grid structure 1403 
Gross performance measures 1362, 1405 
Group 1078 

see also decisive 
Group contraction lemma 1080 
Groves mechanism 1378, 1385, 1386, 1455-1463 
Growth theory 1281 

Hammond's Equity Axiom 1116 
Harsanyi's Interpersonal Choice Utilitarianism 

1 122 
Harsanyi's Utility Sum Theorem 1123 
Hidden action 1184-1185 
Hidden information 1184 
Hierarchies 1435, 1436 
Hmwicz, L. 1485 



Index 

Imperfect competition 1262 
Implements (mechanism) 1447, 1448 
Implicit function theorem 1332, 1336 
Impossibility theorem 1974, 1078 

see also general possibility theorem, 
pair relational general possibility 
theorem 

Incentive compatibility 1185, 1450, 1506 
see also information 

Incentives 1441, 1499 
see also information 

Income distribution 1198, 1254 
Increasing returns to scale 1252 
Incremental costs 1261 
Independence 1147, 1152 

of irrelevant alternatives (I) 1077 
m-ary choice 1096 
m-ary relational 1096 
pairwise choice 1095 
pairwise relational 1077 
path 1119 
relational 1119 

Individual rationality 1189, 1449, 1499 
Individualistic social welfare function 1076 
Information 

non-utility 1137, 1153 
posi tiona! 1 150 
public vs. private 1199, 1215 
see also asymmetric information, 

decentralization, 
information structures, 
planning, 
resource allocation mechanisms, 
revelation mechanisms 

Information costs 1365-1375 
Information structures 1359, 1375, 1376 

decentralization, incentive aspects 1441 
efficiency 1393, 1405, 1411, 1419, 1423, 1443 
organization design 1359, 1375, 1489 
privacy-preserving 1390, 1395, 1442 
value of information f380 

Information technology 1365-1375 
Information theory 

entropy 1368, 1370, 1372, 1374 
noise 1363, 1371-1374 
noiseless coding theorem 1368-1370, 1373, 

1375, 1437 
person-by-person satisfactoriness theorem 

1378, 1379, 1385 
Shannon 1368 

Informational efficiency of designs 1360, 1443 
dimension approach 1393, 1405, 1411, 1419, 

1423 
discrete adjustment processes 1405-1410 

Informationally decentralized planning proce-
dures 1483 

Input requirement function 1444 
Insurance 1 185, 1188, 1190 
Interest-aggregation 1129 

Interim action 1425 
Interpersonal rank-order rule (IROR) 1151 
Interpersonal utility comparisons 

see comparison of utilities 
Inter-profile consistency 1083 
Interval order property 1088 
Invariance requirements 1111, 1112, 1128 
Invertible Jacobian 1327 
Investment by public firm 1277 

1515 

Investment with adjustment costs 1343, 1351 
Invisible dictators 1082 

Judgment-aggregation 1129 
Just allocation 1110 

Kuhn-Tucker Theorem 1208, 1243, 1486 

Lange-Lerner price mechanism 1378, 1384, 1397, 
1444, 1485 

Language 1363, 1389, 1398, 1441 
Learning 1277 
Leximax 1117 
Leximin 1 115, 1 116, 1118 
Liberty 1147 
Limited agreement (LA) 1140 
Lindahl scheme 1444, 1445, 1465 

see also public goods 
Lindahl mechanism 1451 
Lindahl Social Choice Rule 1450 
Local stability 1336 

correspondence principle 1338 
sufficient conditions 1343 

Local turnpike 1328, 1336 
Lump-sum income transfers 1252 
Lump-sum taxation 1197 

m-ary choice independence 1096 
m-ary relational independence 1096 
m-dimensional population 1240 
Majority decision method 1121 
Majority rule 1091 
Malinvaud, E. 1488 
Managerial effort 1504 
Manipulable 1130 
Marginal consumer price 1233 
Marginal cost pricing (MCP) 1271 
Marginal productivities 1499, 1501, 1504 
Marginal social utility of income 1225 
Maximal path 1286, 1290 
Maximal subset 1091 
Maximin criterion 1115 
M.D.P. procedure 1497, 1498 
Measurability of utilities 1111 
Memory 1 365, 1428 
Message 1363, 1392, 1396, 1441 
Message mechanism 1443 
Midcontour 1407 
Mill, John Stuart 1193 
Minimal equity 1118 



1516 

Minimal liberty (ML) 1155 
Minimax strategy 1500 
Monitoring 1190, 1193, 1504 
Monopolistic pricing 1263 
Monopsony pricing 1263 
Moral hazard 1 1 84, 1190, 1242 
Morgenstern, 0. 1 1 89 
Multi-product firm 1252, 1253 

Nanson 1074 
Nash equilibrium 1134, 1188, 1191, 1447, 1467, 

1501 
Natural monopoly 1252 
Neighborhood turnpike theorem 1315, 1321 
Neumann, J. von 1189 
Neutrality 1076, 1116, 1121, 1147 

independence cum monotonicity (NIM) 1086 
single-profile 1149, 1153 

No-alien property 1408 
Noise 1363, 1371-1374 
Noiseless Coding Theorem of Information Theory 

(Shannon) 1368-1370, 1373, 1375, 1437 
Non-convex 

see convex, non­
Non-dictatorship (D) 1078 

see also dictator 
Non-imposition (NI) 1081 
Non-paradoxical stationary optimal path 1341 
Non-suppression (NS) 1082 
Non-utility information 1137, 1153 

Observational report· form 1400 
Oligarchic SDF 1085 
One-dimensional population 1228 
One-step designs 1362, 1375, 1387, 1396, 1399 

observational report form 1400 
standard form 1396 

Optimal path 1286 
Optimal stationary stock 1324 
Optimality function 1405 
Optimization 1483 
Organization design 1359, 1375, 1489 

teams, theory 1375, 1387 
see also information structures, 

informational efficiency 
Organizations 1489 
Outcome function 1389, 1442, 1446 
Output rule, constant public 1271 

see also allocation, public firm 
Overtaking criterion 1286 

Pair relational general possibility theorem (GPT*) 
1078 

proof 1080 
Pair-choice non-dictatorship 1093 
Pair-choice Pareto principle 1093 
Pairwise choice independence 1095 
Pairwise relational independence 1077 
Paretian liberal 1155 

Pareto indifferent rule 1075 
Pareto optimality 

see Pareto principle 
Pareto principle 

general-choice 1103 
indifferent rule 1075 
pair-choice 1093 
strong 1075 
stronger 1115 
weak 1075 

Pareto-acceptable for E 1448 
Pareto-extension rule 1084 
Pareto-inclusive swf 1075 
Pareto-optimal in e 1448 
Pareto-transitivity 1144 
Participation constraint 1189 
Path independence 1103, 1104 
Paths of capital accumulation 1285 

asymptotic convergence 1307, 1316 
bounded 1298, 1302 
catches up to 1286 
efficient 1290 
globally unique stationary 1342 
maximal 1286, 1290 
non-paradoxical stationary 1341 
optimal 1286 
overtaking criterion 1286 
potentially maximal 1291, 1292 
reachable 1297 
regular stationary 1336 
smooth 1327 
variation of 1345 

Payoff function 1446 
Performance correspondence 1443 
" Person-by-person satisfactoriness" 

1378, 1379, 1385 
Planning 1483 

informationally decentralized 1483 
planning board 1493 
price mechanism 1484, 1491 
quantity mechanism 1483, 1491 
see also decentralization 

Planning board (CPB) 1493 
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Price- and command-procedure 1491 
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Samuelson condition 1275, 1276, 1445, 1454 

Public investment 1277 
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Reachable path 1297 
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incentive aspects 1441 
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Lindahl scheme 1444, 1445, 1465 
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price mechanism 1385-1387, 1410, 1428, 1484, 

1491 
shadow price 1385 
tatonnement 1384, 1442 
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Selector 1366 
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Separability 1116 
Separable costs 1269 
Separable utility 1340, 1341 
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Single-caved preferences 1138 
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Social choice rule 1446 
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Social choice theory 1073, 1485 
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Social decision function (SDF) 1079 
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Social intransitivity 1083 
Social marginal utility of income 1226 
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comparative dynamics 1344 
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Transitive strict preferences (TSP) 1142 
Transitivity 1079, 1084 
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Uniform value loss 1309 
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Utility 
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see also value loss 
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Value of information 1380 
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Variation of optimal path 1345 
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Weak regularity 1338 
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Welfare economics, fundamental theorem 1210 
Welfare weight 1225, 1226 
Welfarism 1076 


