INTRODUCTION TO THE SERIES

The aim of the Handbooks in Economics series is to produce Handbooks for
various branches of economics, each of which is a definitive source, reference, and
teaching supplement for use by professional researchers and advanced graduate
students. Each Handbook provides self-contained surveys of the current state of a
branch of economics in the form of chapters prepared by leading specialists on
various aspects of this branch of economics. These surveys summarize not only
received results but also newer developments, from recent journal articles and
discussion papers. Some original material is also included, but the main goal is to
provide comprehensive and accessible surveys. The Handbooks are intended to
provide not only useful reference volumes for professional collections but also
possible supplementary readings for advanced courses for graduate students in
€conomics.
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PREFACE TO THE HANDBOOK

The field of mathematical economics

Mathematical economics includes various applications of mathematical concepts
and techniques to economics, particularly economic theory. This branch of
economics traces its origins back to the early nineteenth century, as noted in the
historical introduction, but it has developed extremely rapidly in recent decades
and is continuing to do so. Many economists have discovered that the language
and tools of mathematics are extremely productive in the further development of
economic theory. Simultaneously, many mathematicians have discovered that
mathematical economic theory provides an important and interesting area of
application of their mathematical skills and that economics has given rise to some
important new mathematical problems, such as game theory.

Purpose

The Handbook of Mathematical Economics aims to provide a definitive source,
reference, and teaching supplement for the field of mathematical economics. It
surveys, as of the late 1970’s, the state of the art of mathematical economics.
Bearing in mind that this field is constantly developing, the Editors believe that
now is an opportune time to take stock, summarizing both received results and
newer developments. Thus all authors were invited to review and to appraise the
current status and recent developments in their presentations. In addition to its
use as a reference, the Editors hope that this Handbook will assist researchers and
students working in one branch of mathematical economics to become acquainted
with other branches of this field. Each of the chapters can be read independently.

Organization

The Handbook includes 29 chapters on various topics in mathematical economics,
arranged into five parts: Part 1 treats Mathematical Methods in Economics,
including reviews of the concepts and techniques that have been most useful for
the mathematical development of economic theory. Part 2 elaborates on Mathe-
matical Approaches to Microeconomic Theory, including consumer, producer,
oligopoly, and duality theory. Part 3 treats Mathematical Approaches to Competi-
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tive Equilibrium, including such aspects of competitive equilibrium as existence,
stability, uncertainty, the computation of equilibrium prices, and the core of an
economy. Part 4 covers Mathematical Approaches to Welfare Economics, includ-
ing social choice theory, optimal taxation, and optimal economic growth. Part 5
treats Mathematical Approaches to Economic Organization and Planning, including
organization design and decentralization.

Level

All of the topics presented are treated at an advanced level, suitable for use by
economists and mathematicians working in the field or by advanced graduate
students in both economics and mathematics.
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Our principal acknowledgements are to the authors of chapters in the Handbook
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provided advice on the organization and content of the Handbook and reviewed
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Chapter 22

SOCIAL CHOICE THEORY *

AMARTYA SEN
All Souls College, Oxford

1. Social welfare functions
1.1. Distant origins

The origins of social choice theory can be traced to two rather distinct sources,
and it so happens that the theory is nearly in a position to celebrate the
bicentenary of each of its two origins. One source is the study of normative
analysis in terms of personal welfare (extensively explored in modern welfare
economics), and the origins of this, through utilitarianism, can certainly be traced
at least to Jeremy Bentham (1789). The other is the mathematical theory of
elections and committee decisions, which is comfortably traced to Borda (1781)
and Condorcet (1785). The influences of these two different origins will become
clear as the modern developments in social choice theory are reviewed.

No approach to welfare economics has received as much support over the years
as utilitarianism. If U;(-) is the utility function of person i defined for each
person i=1,...,n, over the set X of alternative social states, then on the
utilitarian approach any state x is at least as good as another y, denoted xRy, if
and only if X7_,U(x) > X7_,U(»).

It is clear that utilitarianism uses cardinality and interpersonal comparability of
personal utilities. Both these practices received severe reprimand in the 1930’s,’

* The first version of this paper was written during 1978-79. While the paper has been now revised,
I have not tried to bring it “up to date” regarding more recent publications. (There are some
references to later publications, but most of these were in fact available in pre-print form earlier.) My
greatest debt is to Kenneth Arrow, Michael Dummett and Peter Hammond for extremely helpful
comments and suggestions on the earlier version of this paper. I have also benefited greatly from the
comments of Brian Barry, Charles Blackorby, Julian Blau, Graciela Chichilnisky, Peter Coughlin,
Bhaskar Dutta, Alan Feldman, Wulf Gaertner, Louis Gevers, Geoffrey Heal, Michael Intriligator,
Jocelyn Kynch, Tapas Majumdar, John Muellbauer, Prasanta Pattanaik, Robert Pollak, Ariel
Rubinstein, Maurice Salles, David Schmeidler, Margaret Sjoberg, Steven Slutsky, Kotaro Suzumura,
and H. P. Young.

! The most influential attack came from Robbins (1932).

Handbook of Mathematical Economics, vol. 111, edited by K.J. Arrow and M.D. Intriligator
© 1986, Elsevier Science Publishers B.V. (North - Holland)
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with the rebuke drawing sustenance from a single-minded concern with basing
utility information on non-verbal behaviour only, dealing with choices in the
absence of risk. It thus appeared that social welfare must be based on just the
n-tuple of ordinal, interpersonally non-comparable, individual utilities. This infor-
mational restriction would, of course, make the traditional utilitarian
approach —and a great many other procedures — unworkable.

This “informational crisis” is important to bear in mind in understanding the
form that the origin of modern social choice theory took. In fact, with the binary
relation of preference replacing the utility function as the primitive of consumer
theory, it made sense to characterize the exercise as one of deriving a social
preference ordering R from the n-tuple of individual orderings { R;} of social
states.

The other source, dealing primarily with election methods, had in any case the
tradition of concentrating on the information given by an n-tuple of individual
orderings — reliant on an informational framework that was much less ambitious
than utilitarianism. Borda, Condorcet, Dodgson (Lewis Carroll), Nanson and
others had pursued various results of voting, and had discussed the superiority of
some voting systems over others.? Economists did not, however, take much notice
of this literature, or of the problem studied in them, until the “informational
crisis” sent them searching for other methods.

The union produced modern social choice theory. The big bang that char-
acterized the beginning took the form of an “impossibility theorem”, viz. Arrow’s
(1950, 1951) “General Possibility Theorem”. It appeared that some conditions
that look mild-and are indeed satisfied comfortably by utilitarianism when
translated into its cardinal interpersonally comparable framework (see Section
6) — cannot be fulfilled by any rule whatsoever that has to base the social ordering
on n-tuples of individual orderings. This theorem, which had a profound impact
on the way modern social choice theory developed, will be discussed in Section 2.3

1.2.  The Bergson—Samuelson social welfare function

The concept of a social welfare function was first introduced by Bergson (1938).
This was defined in a very general form indeed: as a real-valued function W(-),
determining social welfare, “the value of which is understood to‘depend on all the
variables that might be considered as affecting welfare” (p. 417). If the relevant
information about the social states in set X can be obtained, then such a social
welfare function-swf for short--might as well be thought to be a real-valued

2For an excellent account of the literature, see Black (1948, 1958).
3Another important contribution to the early development of modern social choice theory was
Kenneth May’s axiomatization of the majority rule [see May (1952, 1953)].
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function defined on X. If the issue of numerical representation is not emphasized,
this really amounts to an ordering R of X.

While the idea of a social welfare function came from Bergson, the uses to
which such a swf can be put were definitively investigated by Samuelson (1947).
His exercises made use of many criteria that a swf may be required to satisfy.*
One of them is the old Pareto criterion. This can be defined in many forms, and
since the differences will turn out to be of some significance, we might as well
seize this opportunity of distinguishing between them (though not all these
versions were, in fact, used by Samuelson).

Let P and I be the asymmetric and symmetric factors of the social preference
relation R (“at least as good as”), standing respectively for “strictly better than”
and “indifferent to”. And let the corresponding individual preference relation and
its asymmetric and symmetric factors for any person i be R;,, P, and I,
respectively. The different versions of the Pareto Principle may now be stated.
The following are all defined with the universal quantifier Vx, y € X (“for all x, y
in X”):

Condition P (weak Pareto principle)
(Vi: xP,y)=xPy.

Condition P° (Pareto indifferent rule)
Vi: xI,y)= xIy.

Condition P* (strong Pareto principle)
(Vi: xR, y)=xRy. And if to the antecedent is added 3i: xP,y, then the
consequence is x Py.

It is obvious that Condition P* implies both Conditions P and P°, but is not
implied by them even jointly.

If a swf satisfies Condition P*, we shall call it a Pareto-inclusive swf. It may be
remarked that, given the form in which Bergson defined a swf, it may or may not
be possible to check whether it is Pareto-inclusive or not, since there is no
obligation to specify the individual preferences in defining a Bergson W(-).
However, from the motivating discussion of Bergson (1938, 1948) and more so
from the operations chosen by Samuelson to demonstrate the use of such a swf, it
appears that the intention is to take note of individual preferences at least to the
extent of being Pareto-inclusive.’

“*For excellent examples of application and use of Bergson—Samuelson and social welfare functions,
see Dasgupta and Heal (1979), Atkinson and Stiglitz (1981), and Dasgupta (1982).

5In using utility for such social criteria (Pareto optimality, equality, justice, etc.), one source of
ambiguity is the possibility of defining them either in terms of ex post utilities, or in terms of ex ante
utilities. On this see Starr (1973). Also Hammond (1983).
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Sometimes a Bergson—Samuelson social welfare function is described as “indi-
vidualistic”. There is an ambiguity in this expression which is worth clarifying
since it has been the source of some confusion. A swf can be individualistic in the
sense of reflecting the preferences of all the individuals in the society taken
together when such preferences do not conflict, in ranking any -pair of social states.
In this sense, an individualistic swf is simply a Pareto-inclusive swf. There is a
second interpretation, which makes social welfare W a function of the vector of
individual utilities u irrespective of the non-utility characteristic of the social
states from which the utilities emanate: W = W(u); see Samuelson (1947, pp.
228-229, 246), Graaff (1957, pp. 48-54), and Bergson (1948, p. 418), among
others. This is a version of a condition of “neutrality” (sometimes called
“welfarism’), which relates closely to Arrow’s result (Section 2.1), and which will
be further examined in Sections 6 and 9. In effect, it asserts the neutrality of the
social ranking towards non-utility features, which can then affect the social
ranking only through their influence on individual utilities, or preferences. It is
easily checked that neither does Pareto-inclusiveness imply this condition of
neutrality, nor the converse, and these two interpretations of individualism are,
thus, completely independent of each other.

Finally, none of the conditions that Samuelson imposed on a swf for his
exercises happened to specify how the social ordering might alter if different
n-tuples of individual orderings were considered. If any n-tuple of individual
preference orderings is called a “profile”, then his exercises —and those consid-
ered by Bergson —were all “single profile” problems (see Section 9).

1.3.  The Arrow social welfare function

Arrow (1951) defined a social welfare function—henceforth SWF (to be dis-
tinguished from the Bergson—Samuelson swf) —as a functional relation specifying
one social ordering R for any given n-tuple of individual orderings { R;}, one
ordering for each person,

R=f({Ri})' (1-1)

Note that if a Bergson~Samuelson swf is defined as a social ordering R, then
an Arrow SWF is a function the value of which would be a Bergson—Samuelson
swf. Arrow’s exercise, in this sense, is concerned with the way of arriving at a
Bergson—Samuelson swf. Alternatively, if the Bergson—Samuelson swf is taken as
a function W(-), defined over a particular profile of individual ordinal utilities,
then a Bergson—Samuelson swf fits into the form (1.1). The Arrow exercise can,
then, be seen as a way of extending the set of single-profile formulations into one
consistent multiple-profile function, specifying correspondences between the re-
spective values of R (or parts thereof) for different n-tuples { R,}.
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Arrow proceeded to impose a variety of conditions that a reasonable SWF
could be expected to satisfy. One of them deals specifically with the multiple-pro-
file characteristics of a SWF: the independence of irrelevant alternatives. For
stating this condition, Arrow used the notion of a choice function for the society,
C(-), which was defined with respect to the binary relation R, satisfying what is
sometimes called the “Condorcet condition” [Condorcet (1785)]. For all subsets
S of X,

C(S)=[x|]xeS&VyeS: xRy]. (1.2)

Condition I (independence of irrelevant alternatives)

For any two n-tuples { R;} and { R} in the domain of f, and for any S C X, with
the choice functions C(-), and C’(-) corresponding to f({R,}) and f({R}}),
respectively,

[Vi: (Vx,y€S: xR,y = xR} y)| = C(S) = C(S).

This condition requires that as long as individual preferences remain the same
over a subset S of X, the social choice from that subset should also remain the
same.

The property of independence can also be considered in purely relational terms
as well, without invoking a choice function at all.”

Condition I? (pairwise relational independence)
The restriction of the social preference relation over any pair { x, y} is a function
of the n-tuple of restrictions of individual preferences over that pair,

R|o2Y = fry({R(=0))). (1.3)

$The “Condorcet condition” is sometimes defined specifically for the majority relation only, which
relates to Condorcet’s (1785) own original concern. On these issues, see Black (1958), Fishburn
(1973a), and Young (1977).

"Given the binary specification of the choice function for society, as in (1.2), it is easily checked that
this relational independence condition I? is exactly equivalent to Arrow’s choice-functional indepen-
dence condition I In the proofs that will be presented in Section 2.1, Condition I? will be used,
because it simplifies matters, and makes Arrow’s theorem entirely relation-theoretic. However,
Conditions I and I? are not generally equivalent. When the choice function for the society cannot be
represented by a binary relation (to be investigated in Section 4 below), Condition I can be used
without implying Condition 12, and vice versa. Indeed, in a purely relation-theoretic framework with
the use of Condition I2, it need not even be assumed that a choice function for the society exists.
Similarly, in a purely choice-oriented framework, the relation-theoretic notions (including Condition
12) can be entirely dispensed with. Finally, it is possible to define the binary relation of social
preference just in terms of choices over pairs, i.e. xRy if and only if x € C({ x, y }), which will make
Condition I? strictly weaker than Arrow’s choice-functional independence condition . This avenue,
which will be explored in Section 4.2, will be useful in interpreting some recent results on collective
rationality, and in demonstrating that Arrow had proved a more general result than he had claimed.
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2. Arrow’s impossibility theorem
2.1. The general possibility theorem

Arrow’s General Possibility Theorem asserts the inconsistency of some mild-look-
ing conditions imposed on social welfare functions, viz. Conditions P and I as
defined in the last section and the following two additional ones.?

Condition U (unrestricted domain)
The domain of the SWF, i.e. f(-) defined by (1.1), includes all (logically) possible
n-tuples of individual orderings of X.

Condition D (non-dictatorship)
There is no individual i such that for all preference n-tuples in the domain of
f(+), for each ordered pair x, y € X, xP; y = x Py.

Denoting the set of individuals in the society as H, and the cardinality of the set
X of social states as #JX, the General Possibility Theorem can be stated thus.

General possibility theorem (GPT)
If H is finite and #X = 3, then there is no SWF satisfying Conditions U, I, P
and D.

This result has been the prime mover in getting the discipline of social choice
theory started, and though recently the focus has somewhat shifted from impossi-
bility theorems to other issues, there is no doubt that Arrow’s formulation of the
social choice problem in presenting the GPT laid the foundations of social choice
theory. In seeking a demonstration of the GPT, Condition 12 can be used rather
than Condition I to get a fully relation-theoretic statement, which can be used
with or without the further assumption of binary choice.

Pair relational general possibility theorem (GPT *)
If H is finite and #X > 3, then there is no SWF satisfying Conditions U, 12, P
and D.

In establishing the General Possibility Theorem, it is convenient to go via two
lemmas that are of interest in themselves. We shall call a set G of persons a
“group” G (but-beware—no “group theory” is involved!). We define a group G
of persons “decisive” over the ordered pair { x, y }, denoted —D_G(x, y), if and only
if xPy whenever x P,y for all i in G. Group G is “almost decisive” over that

8 This version of the GPT was presented in the 2nd edition of Arrow’s book [Arrow (1963, pp.
96-100)]. An error in Arrow’s (1950, 1951) original presentation was noted and rectified by Blau
(1957).
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ordered pair, denoted Dg;(x, y), if and only if x Py whenever x P,y for all i in G
and yP;x for all i notin G, i.e. forall i in H— G. Obviously decisiveness implies
almost decisiveness, but in general not vice versa.

The first lemma applies not merely to SWFs, but to a broader class of
transformations from individual preferences to social preferences, relaxing the
requirement of full transitivity of social preference relation R.

Transitivity
R is transitive on X if and only if Vx, y,z€ X, (xRy & yRz)= xRz.

Quasi-transitivity
R is quasi-transitive on X if and only if Vx, y,z € X, (xPy & yPz)=xP:.

Acyclicity
R is acyclic on .X if and only if there is no cycle of strict preference: that is, no
subset (x;,x,,..., x,) of X such that x,Px,, x, Pxs,..., x,_;Px,, and x,Px;.

Obviously, in this framework, transitivity implies quasi-transitivity, but not vice
versa, and quasi-transitivity implies acyclicity but not vice versa. Where the line
of “collective rationality” is to be drawn depends partly on what use is to be
made of the social preference relation R. While we have for the moment kept
aside the question of whether or not to base social choice entirely on a binary
relation — as given by (1.2) —it is relevant to note that for a reflexive and complete
preference relation, acyclicity is the necessary and sufficient condition for the
choice set C(S), as defined by (1.2), to be non-empty for every non-empty, finite
subset S of X.° We may call a choice function that has a non-empty C(S) for
every non-empty, finite S C X, a “finitely complete choice function”.

If it is required that the binary relation of social preference should provide a
minimally sufficient basis for a finitely complete choice function, then it is natural
to confine the range of the function f(-) to preference relations that are reflexive,
complete and acyclic. Such a function will be called a social decision function
SDF. If the range is further restricted to reflexive, complete and quasi-transitive
preference relations, then f(-) will be called a quasi-transitive social decision
function QSDF (a transferred epithet to be sure, but it need not cause any
confusion). If the range is further restricted to preference relations that are
reflexive, complete and transitive, then we are back to the case of Arrow’s social
welfare functions SWF. It is trivial that a SWF is a QSDF, and a QSDF is a SDF,
but in general not vice versa.

9For infinite sets, acyclicity would require supplementation by other conditions for guaranteeing the
existence of a best element. This supplementation has been investigated in different ways. See
Herzberger (1973), Smith (1974), Bergstrom (1975), Suzumura (1976a), Birchenhall (1977), Mukherji
(1977), and Walker (1977). See also Aizerman, Zavalishin and Piatnitsky (1976), and Aizerman and
Malishevski (1980).
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Field expansion lemma .. . oy .

For any quasi-transitive social decision function (QSDF) satisfying Conditions U,
I2 and P, with #X >3, if any group is almost decisive over any ordered pair of
social states, then it is decisive over every ordered pair of social states,

[3x, y € X: Dg(x,y)] = [Va, b€ X: Ds(a,b)].

To see clearly how this works, it may be useful to consider the case of four
distinct states x, y, a and b. Let the preference ordering-in strict decreasing
order —of every i in G be a, x, y, b and let everyone not in G strictly prefer a to
x, y to b, and y to x, leaving the ordering of a and b completely unspecified. By
the weak Pareto principle aPx and yPb. Further, since D;(x, y), clearly x Py.
Thus, by quasi-transitivity, aP b. By Condition 72, this must depend only on the
individual orderings of a and b, of which—in fact - only the orderings of those in
G have been specified. Hence Dg(a, b).

By virtue of the Field Expansion Lemma, there is no difference between a
group being almost decisive over some ordered pair and being decisive over every
ordered pair. Let such a group be called a decisive group.

Group contraction lemma

For any social welfare function (SWF) satisfying Conditions U, 1% and P, with
#X > 3, if any group G, with #G > 1, is decisive, then so is some proper subset of
that group.

To prove this, partition a decisive group G into two non-empty proper subsets
G, and G,, respectively. Let the preference orderings of the three groups be the
following in strict descending order, over some triple {x, y,z}: Gi:x,y,z;
G, y,z,x; H—G:z,x, y. By the decisiveness of G, it follows that y Pz. Clearly,
either x Pz, or zRx, by the completeness of R. Hence it follows from y Pz that
xPz or yPx, by the transitivity of R. Hence either G, is almost decisive over
{x,z}, or G, is almost decisive over { y, x}. By the Field Expansion Lemma,
either G, or G, is, thus, decisive.

Now Arrow’s General Possibility Theorem (GPT).

Proof of GPT *

By the weak Pareto principle, the group of all persons H is decisive. By the
Group Contraction Lemma, we can go on persistently eliminating some members
in each contraction, still leaving the rest decisive. Since H is finite, this would lead
ultimately to some individual being a dictator.

Proof of GPT
By (2), Condition I implies I?. Hence GPT* entails GPT.
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2.2. Variants

In the original version of the General Possibility Theorem, Arrow (1950, 1951)
had not used the Pareto principle, and had used instead a pair of conditions
which he had called “citizens’ sovereignty” and “positive association”. The
former is a requirement of “non-imposition”, asserting that social preference
should not be imposed from outside irrespective of the preferences of the
members of the community, while the latter is, in fact, a weak condition of
“monotonicity” [see Murakami (1968)], requiring non-negative response of social
preference to individual preferences. Let R = f({ R;}) and R’ = f({ R}}).

Condition NI (non-imposition)
For no pair of social states {x, y} it is true that xRy for every possible n-tuple
{R;} in the domain of f(-).

Condition M (weak monotonicity)

For any two n-tuples {R;} and {R}}, for a given social state x, if for all
individuals i, for all states y, xI; y = xR/ y, and x P, y = x P/ y, and for all states
a and b both distinct from x, aR;b < aRb, then xPy = xP’y.

The original version of the impossibility theorem [Arrow (1950, 1951)] was
concerned with showing the irreconcilability of Conditions U, I, M, NI and D for
any SWF. In fact, for a SWF, Conditions U, I, M and NI together imply the weak
Pareto principle, and thus the earlier version would be a corollary of the GPT
presented in Arrow (1963), and thus of the GPT*.

There was, however, another difference in the original presentation of Arrow
(1950, 1951). A weaker domain condition was used, requiring only that the
domain of f(-) must include all n-tuples of individual orderings consistent with
ordering a particular triple { x, y, z} in any way whatsoever (but not necessarily
ordering the whole X in any way). This proved insufficient for the impossibility
result, and required strengthening as Blau (1957) showed, and hence the domain
requirement was tightened to Condition U.1° An alternative way of obtaining the
impossibility is found in leaving the domain condition in its weaker form, while
strengthening the non-dictatorship condition by ruling out Jocal dictators over the
specified triple { x, y, z} on which individual preferences could be freely varied
according to the weaker version of the domain condition.!!

10The logical problem was absent in one of the earlier versions of Arrow’s theorem [viz. Arrow
(1952)], which did not, however, go into “field expansion” beyond a triple. Blau’s contributions (1957,
1971, 1972, 1976) have brought out the “neutrality” implications of Arrow’s framework for social
choice by clarifying the full “field expansion” consequences of that framework.

11See Murakami (1961, 1968) and Pattanaik (1971).



1082 Amartya Sen

A great many other variations in the theme of Arrow’s impossibility theorem
have been explored in the literature. Some of the variations will come up in the
discussion of specific issues in later sections, and here I shall confine myself to a
few remarks only. Recently Kelly (1978) has provided an excellent account of the
main lines of development since Arrow’s pioneering contribution.!?

First, some versions of the result use neither the Pareto principle nor any
condition of non-negative responsiveness. Consider the following requirement,
which rules out “reverse dictators”.

Non-suppression (NS)
There is no individual i such that for every preference n-tuple in the domain of
f(+), for each ordered pair x, y€ X, xP;y= yPx.

Conditions U, I, NI, NS and D are inconsistent for a social welfare function
[see Wilson (1972b) and Binmore (1975); for related results, see Murakami (1968),
Hansson (1969a, 1969b), Wilson (1972a), Fishburn (1974a), Binmore (1976),
Monjardet (1979), and Kim and Roush (1980a)]. In fact, given unrestricted
domain and independence of irrelevant alternatives, the possibilities that are open
are (i) dictatorship, (ii) reverse dictatorship, and (iii) collective impotence. Either
one person’s strict preferences are fully reflected in social rankings of all pairs
(positively or negatively), or not even everyone put together can influence social
preference over some pair. The weak Pareto principle eliminates collective im-
potence as well as reverse dictatorship, leaving us only with the possibility of
dictatorship (as in the version of the GPT presented in the last subsection).

Second, when the set of individuals is infinitely large, Arrow’s conditions are
mutually consistent, even though the permitted decision procedures are not very
attractive [see Fishburn (1970b), Hansson (1972, 1976), Kirman and Sondermann
(1972), Brown (1974), Schmitz (1977), and Armstrong (1980)]. There is, however,
no “approximate” consistency for “very large” communities, and the impossibil-
ity result continues to hold exactly for all finite communities no matter how large,
so that the practical relevance of the consistency possibility may not be very great.
Furthermore, the Field Expansion Lemma and the Group Contraction Lemma
both continue to hold for infinitely large communities and decisive sets can be
endlessly curtailed, effectively disenfranchising nearly everybody [leading to such
“limit” concepts as the existence of “invisible dictators”, to use Kirman and
Sondermann’s (1972) description].

Third, McManus (1975, 1978, 1982, 1983) has investigated important issues of
inter-taste consistency and inter-profile welfare comparisons, continuity condi-

12Gee also Murakami (1968), Pattanaik (1971), Fishburn (1973a), Brams (1976), and Plott (1976).
There is also an important Russian book, viz. Mirkin (1974), with an English translation (1979). On
closely related matters, see also Blin (1973), Brams (1976), Gottinger and Leinfellner (1978), Pattanaik
(1978), Laffont (1979), Mueller (1979), Feldman (1980a), Kim and Roush (1980a), Moulin (1983),
Suzumura (1983a), and Peleg (1984).
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tions imposed on social welfare evaluation, and related matters [see also Inada
(1964a) on an earlier study with a bearing on these issues]. He has provided both
impossibility results and positive possibility theorems involving various combina-
tions of these conditions. He has also provided reasons for not requiring the
“independence” conditions, making positive possibilities that much easier.

Fourth, Chichilnisky (1976, 1980a, 1982a, 1982b) has established a set of
important impossibility results without the use of the “independence” condition.
For a class of social aggregation problems satisfying unanimity (a weak version of
the Pareto principle) and anonymity, she shows the absence of continuous rules of
transforming n-tuples of individual preferences into social preferences. Continuity
too is a condition of “inter-profile consistency”, but of a very different sort from
“independence”. She has investigated various general properties of individual and
social choice [Chichilnisky (1979, 1980a, 1980b, 1981, 1983)], and also explored
the possibilities of generalizing her original impossibility results by systematic
relaxation of specific restrictions, such as non-satiation, preference ordinality, etc.
[Chichilnisky (1980c, 1982a, 1983)].

Fifth, the formulation of social choice problems can be broadened by bringing
in lotteries on alternatives [see Zeckhauser (1969), Shepsle (1970), Niemi and
Weisberg (1972), Fishburn (1972b, 1973a, 1975b), Intriligator (1973, 1979), Nitzan
(1975), Barbera (1979), Kalai and Megiddo (1980), Machina and Parks (1981),
Coughlin and Nitzan (1981, 1983), and Heiner and Pattanaik (1983)]. This opens
up new possibilities. If the problem is reformulated as demanding a lottery over
social preferences (rather than over the alternatives to be chosen), based on
n-tuples of individual orderings of social states, then Arrow-like impossibilities
re-emerge in the form of arbitrary distribution of power (the exclusion of which
would appear to be reasonable); see Barbera and Sonnenschein (1978),
Bandyopadhyay, Deb and Pattanaik (1979), McLenan (1980), and Heiner and
Pattanaik (1983).

Sixth, another variation that has been recently investigated is the eschewal of
the assumption of completeness of the social preference. Arrow’s impossibility
result can be adapted for such an extended framework with only a little loss of
power [Barthelemy (1983) and Weymark (1983)]. These analyses are, in fact,
closely related to results dealing with admitting social intransitivity (see Section 3
below), since intransitivity can be given the particular form of dropping complete-
ness.

Finally, many variations of the way of setting up the problem of social choice
will be examined in some detail in the following sections: admitting non-transitive
social preference (Section 3); admitting non-binary social choice (Section 4);
seeking the acceptable rather than the best (Section 5); enriching the input of
utility information (Section 6); restricting the domain of social choice procedures
(Section 8); and weakening the independence condition and enriching the use of
non-utility information (Section 9). While the focus very often will not be on the
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specific issue of avoiding Arrow’s impossibility result, the implications of these
different approaches for that problem will be, inter alia, clarified.

3. Non-transitive social preference
3.1.  Quasi-transitivity

There has been speculation for some time as to whether the impossibility results
of the type pioneered by Arrow could be avoided by weakening the requirement
of collective rationality. There have been broadly two approaches to this question.
One retains the Arrovian focus on a social preference relation R, but weakens the
consistency requirement of R from the full dose of transitivity to milder condi-
tions. The other dispenses with the notion of social preference as such and
formulates the problem in choice functional terms. In this section the use of
the first approach is discussed, while the second approach will be taken up in
Section 4.

In establishing Arrow’s theorem, two lemmas were used in the last section. The
Field Expansion Lemma requires no more than quasi-transitivity of social prefer-
ence, while the Group Contraction Lemma cannot be derived from quasi-transi-
tivity alone, and was, in fact, established by using full transitivity of social
preference. The latter result is crucial to deriving dictatorship from Arrow’s
Conditions U, P and I (or 1?), and if that result is nullified by relaxing the
requirement of consistency of social preference to quasi-transitivity only, the
Arrow impossibility result will fail to hold. On the other hand, quasi-transitivity is
more than sufficient for generating a finitely complete choice function from a
reflexive and complete social preference relation. Thus the avoidance of the
Arrow impossibility result can be shown to exist strictly within the limits of
Arrow’s search for a preference-based social choice procedure satisfying Condi-
tions U, P, I and D [see Sen (1969, 1970a) and Schick (1969)]. A simple example
of such a procedure is a social decision function that yields the “Pareto-extension
rule”, with x being socially preferred to y if and only if everyone prefers x to y,
while x and y being socially “indifferent” if either they are Pareto-indifferent or
Pareto-non-comparable [Sen (1969); for an axiomatic examination of the Pareto-
extension rule, see Pollak (1979)]. The unattractiveness of such a social decision
procedure (despite its providing a formal route to escape the Arrow impossibility)
led to the question as to whether or not the Arrow conditions were in an
important sense “too weak” rather than “too strong” [Sen (1969)].

The Pareto-extension rule gives everyone a “ veto”, and if anyone prefers x to y
strictly, he can guarantee that x is socially at least as good as y. Allan Gibbard
showed in an unpublished paper [discussed in Sen (1970a)] that the existence of a
veto is a necessary result of resolving the Arrow problem through weakening the
transitivity of social preference to quasi-transitivity. Define a person i as “semi-
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decisive” over some ordered pair {x, y} if xP, y implies xRy. A person has a
veto if and only if he is semi-decisive over every ordered pair. A SDF is called
oligarchic if and only if there is a unique group G of persons such that G is
decisive and every member of G has a veto.

Quasi -transitive oligarchy theorem
If H is finite and #X > 3, then any QSDF satisfying Conditions U, P and I°
must be oligarchic.

Just like the Field Expansion Lemma, which continues to hold, it is possible to
establish a “Veto-Field Expansion Lemma” asserting that any person who is
almost semi-decisive over some ordered pair must be semi-decisive over all
ordered pairs, i.e. must have a veto. (Almost-semi-decisiveness of i over x, y is
defined as the requirement that x P,y and, for all j+#i, yP,x must together
imply xRy.) Now take a smallest decisive group G of persons, which must exist
by the weak Pareto principle and the finiteness of H. Split G into any unit set {i}
consisting of one person i and the rest G —{i }. Assume the following preference
orderings (shown in strict descending order) over a triple x, y, z: G —{i}:x, y, z;
{i}:y,2z,x; and H— G:z,x, y. By the decisiveness of G, we have yPz. By G
being a smallest decisive group, G —{i} cannot be decisive. But if xPz, then it
will be almost decisive over this ordered pair, and thus by the Field Expansion
Lemma, must be decisive. So zRx. If we now have x Py, this together with y Pz
and zRx will contradict quasi-transitivity. Hence yRx. But then i is almost
semi-decisive over some ordered pair, and thus by the Veto-Field Expansion
Lemma has a veto. This can be shown for every member of G. The proof is
completed by noting that no group other than a superset of G can be decisive
since every member of G has a veto.!?

The replacement of transitivity by quasi-transitivity has translated the possibil-
ity of dictatorship to oligarchy with veto powers, and while the existence of
vetoers may be less unattractive than that of a dictator, it is unappetizing enough
not to provide a grand resolution of the Arrow problem.

In fact, even the dictatorship result reappears if the conditions imposed are
supplemented by the requirement of “positive responsiveness” —a stricter version
of the weak monotonicity condition (M) defined earlier. Positive responsiveness is
defined below in a framework that incorporates independence of irrelevant
alternatives. Denote R = f({ R;}), and R’ = f({ R}}).

Condition PR (positive responsiveness)
For any x, y € X, if for all i, (xP,y=xP/y & xI, y= xR’ y), and for some i,
(xI;y & xP/ y)or (yP;x & xR’ y), then xRy = xP’y.

13This theorem was first established by Gibbard, and in different ways by Schwartz (1972),
Mas-Colell and Sonnenschein (1972), and Guha (1972). Guha noted a hierarchy of oligarchies with a
stricter version of the Pareto principle such that indifference by an oligarchic group would lead to a
fresh oligarchy among the rest.
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Quasi-transitive positive - responsive dictatorship theorem
If H is finite and #X > 3, then there is no QSDF satisfying Conditions U, 1%, P,

D and PR.

This theorem, established by Mas-Colell and Sonnenschein (1972), shows that
transitivity can be weakened to quasi-transitivity of social preference if a stricter
version of the monotonicity requirement is imposed.

3.2.  Acyclicity

Quasi-transitivity may also be thought to be too demanding a condition, espe-
cially since acyclicity —a weaker requirement than quasi-transitivity—is sufficient
for generating a finitely complete choice function based on the binary relation of
social preference. Mas-Colell and Sonnenschein (1972) have a veto-result with
acyclicity as such. (It can, in fact, be shown that the result goes through even with
the weaker condition of “triple acyclicity”, i.e. no cycles over triples.'*)

Triple -acyclic positive - responsive vetoer theorem

For H finite, #H >4, and #X >3, any SDF (even with the requirement of
acyclicity relaxed to triple acyclicity) satisfying Conditions U, 12, P and PR, must
yield someone with veto.

An alternative way of generating the vetoer result is to use the weaker monotonic-
ity condition M (essentially, non-negative responsiveness), but marry it with a
requirement of neutrality towards the nature of social states. Combining neutral-
ity with independence (in the form of 1?) and monotonicity (in the weak form)
yields the following:

Condition NIM (neutrality, independence cum monotonicity)
For any x, y,a, b€ X, if for all i, xP,y=aP/b, and xI;y = aR’b, then
xPy=aP’b.

The following theorem was established by Blau and Deb (1977).

Acyclic neutral monotonicity vetoer theorem
If #X > #H, with a finite H, then any SDF satisfying Conditions U and NIM
must yield someone with a veto.!®

14See Blair, Bordes, Kelly and Suzumura (1976).

15See also Schwartz (1974). The cycle involved in the proof is that of the (n — 1)-majority rule. On
related matters, see Dummett and Farquharsen (1961), Murakami (1968), Craven (1971), Pattanaik’
(1971), Fishburn (1973a), Ferejohn and Grether (1974), Deb (1976), Blau and Brown (1978),
Nakamura (1978), Peleg (1978, 1979b), and Suzumura (1983a).
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To establish this, suppose —to the contrary - there is no vetoer. So there is no
one who is semi-decisive over all pairs. By the neutrality and monotonicity
properties of NIM, there is thus no one who is almost semi-decisive over any pair.
(If someone were, then by monotonicity he will be semi-decisive over that pair,
and by neutrality a vetoer.) So everyone loses over any pair if unanimously
opposed by others. With this in mind, consider the following n-tuple of prefer-
ence orderings (in descending order) over a subset { x;, x,,..., x, } of X, for the n
individuals 1,..., n.

1: X1y Xgseres Xy 15 Xps
2: Xy, Xgseees Xy X1,
n: Xy Xpseees Xy 0, X, 1

Clearly, x,Px,, x,Px;, ..., x,_1Px,, and x, Px,. This violation of acyclicity
shows the falsity of the contrary hypothesis.

Thus, even acyclicity does not help very much in delivering us from the Arrow
problem. A weaker consistency condition combined with other properties leads to
a weakening —rather than elimination-of the dictatorship result, in the form of
the existence of vetoers. And acyclicity is necessary for binary choice using the
Condorcet condition.

Recently, Blair and Pollak (1982, 1983) and Kelsey (1982, 1983a, 1983b) have
established various extensions of these impossibility results. Blair and Pollak have
shown in particular that even without neutrality, some of the sting of the veto
power remains in the form of an individual being semi-decisive over (m —n +1)
(m —1) pairs of states, where m and n are respectively the numbers of states and
individuals. Given the individuals, when larger and larger sets of states—without
bound —are considered, the proportion of pairs over which the individual is
semi-decisive approaches unity [Blair and Pollak (1982)]. Kelsey (1982, 1983a,
1983b) has established similar—though weaker — arbitrariness of power (semi-
decisive or anti-semi-decisive) over a large proportion of pairs of states-—ap-
proaching 1 as more and more states are considered — without neutrality and even
without the Pareto principle.

3.3.  Semi-transitivity, interval order and generalizations

I turn now to a somewhat different question. From quasi-transitivity to move to
acyclicity is an act of weakening. What about the act of strengthening in going
from just quasi-transitivity to semi-orders (and similar structures) without moving
all the way to full transitivity? Would the Arrow impossibility result hold with full
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force in such “intermediate” ground? The answer seems to be: yes, in a lot of that
intermediate ground, and some areas outside it.
A semi-order satisfies the two following properties:!®

Semitransitivity
For any x, y, z,a€ X, if xPy and yPz, then xPaor aP:.

Interval order property
For any x, y,a,b€ X, if xPy and aPb, then xPb or aPy.

Each of these properties implies quasi-transitivity for a complete R. Arrow’s
impossibility result can be established with either of these less demanding
properties, and with still weaker structures, and recently Blair and Pollak (1979)
and Blau (1979) have provided elegant proofs of these—and further — extensions.
[For earlier contributions to this question, see Blau (1959), Schwartz (1974),
Brown (1975b), and Wilson (1975).]

General possibility theorem for semi-transitivity
If H is finite and #X >4, then there is no SDF satisfying Conditions U, 1%, P
and D, and yielding semi-transitive social preference.

In establishing this theorem, it may be first noted that since semi-transitivity
implies quasi-transitivity, the Field Expansion Lemma still holds. The Group
Contraction Lemma can also be re-established. Let G be a decisive group, which
is partitioned into two non-empty subsets G; and G,. The following preference
orderings are postulated:

G, x,y,z,a,
G,: a,x,y,z,

H-G: z,a,x,y.

By the decisiveness of G, xPy and yPz. By the semi-transitivity of R, xPa or
aPz. In the first case, G, is almost decisive over { x, a}; in the second case, G, is
almost decisive over {a, z}. By the Field Expansion Lemma, therefore, some
proper subset of G is, thus, decisive. This establishes the Group Contraction
Lemma. The rest of the proof is the same as with the GPT, presented in Section 2.

General possibility theorem for interval order property
If H is finite and #X > 4, then there is no SDF satisfying Conditions U, 1%, P
and D, and yielding social interval orders.

16For discussions of the properties of semi-orders, see Luce (1956), Scott and Suppes (1958),
Fishburn (1970a, 1975a), Chipman et al. (1971), Jamison and Lau (1973, 1977), Sjoberg (1975), and
Schwartz (1976).
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In this case the following preference orderings are considered:

Gl: X,y,a,b,
Gz: a,b,x’y’
H-G: y,a,b, x.

By the decisiveness of G, xPy and aPb. By the interval order property, x Pb or
aPy. In the first case G, is decisive; in the second, G,. The rest of the proof is
unaltered.

Since a semi-order is both semi-transitive and an interval order, clearly it is,
a fortiori, adequate to sustain the Arrow impossibility result fully. While for an
ordering even one strict preference “filters through” one indifference PI = P and
IP= Pie. (xPy & yIx)=xPzand (xIy & yPz)= x Pz, for a semi-order it is
only the combined force of two strict preferences that is guaranteed to filter
through one indifference, i.e. P21 = P, IP? = P, and PIP = P. Generalizing, let
s-and-t-order only guarantee P°*IP‘= P. The Arrow impossibility result translates
intact to this case in general, provided #X > s +¢+2. Since an s-and-f-order
need not be quasi-transitive, it is first established that for a SDF satisfying
Conditions U, I? and P, and yielding an s-and-z-order must lead to quasi-transi-
tivity of social preference. Then the proof can follow a variant of the Group
Contraction Lemma for s-and-z-order (in the same way as the proofs for
semi-transitivity and interval orders), and then the final result, much like GPT*
and GPT.

In the case of orderings, originally studied by Arrow, s + ¢ is 1, and it works
for #X = 3. In case of semi-orders, s + ¢ is 2, and it works for #X > 4. In the
general finite case, s and ¢ can be any positive integer or zero, and it works if
#X > s+t +2. For an infinite X, the range of the SDF may be confined to the
doubly infinite union of sets of all s-and-z-orders.

3.4.  Prefilters, filters and ultrafilters

Let £ be the class of decisive sets of individuals —a subset of the power set of H.
Since this is considered pair by pair and since no distinction is made between
decisiveness over one pair and that over another, the structure studied has
features of independence and neutrality. Consider the following properties:

(1) HeQ,
(2) [Ge&GcI]=J€eQ,
(3) [G4,6G,,...,G, e fork finite] =N G, # /0,
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(4) [G,Je@]=GNJEL,
(5) [GeQl=H-G=2Y

2 is a prefilter if and only if it satisfies (1), (2) and (3). It is a filter if and only
if it, additionally, also satisfies (4)."® It is an wltrafilter if and only if it satisfies all
these conditions, i.e. (1) to (5).

Brown (1973, 1974, 1975a), Hansson (1972, 1976) and others have studied the
properties of the class of decisive groups as a function of the regularity properties
of individual and social preferences.!® Consider the transformation function f:
{R;} — R. Each R; and each R are taken to be reflexive and complete and, in
addition, they are required to satisfy some regularity condition of consistency (the
same for R; as for R). It has been shown that for f(-) satisfying Conditions U, P
and I:

{D acyclicity implies that £ is a prefilter;
(I1) quasi-transitivity implies that {2 is a filter;

(III)  semi-order properties imply that {2 is an ultrafilter;

(IV)  transitivity implies that  is an ultrafilter.?’

These results can be used to derive the various dictatorship and veto results
studied in the earlier subsections. In particular, in Arrow’s case of full transitivity,
2 is an ultrafilter. If non-dictatorship were to hold, then each unit set of persons
must be non-decisive, and thus by (5) in the community with n people, all sets
with n —1 people would be decisive. But this class of decisive sets has an empty
intersection, thereby contradicting (3), and also (4). The proof extends readily to
semi-orders, given result (III).

In the case of acyclicity, 2 is a prefilter, and by virtue of (3), there is a group of
persons—Brown calls it a “collegium” —such that every member of it belongs to
every decisive set of persons.?! With quasi-transitivity 2 is a filter, and by (4) the
collegium would be decisive and thus define the oligarchy.

17 These relations can be seen as features of “simple games”; see von Neumann and Morgenstern
(1947), Guilbaud (1952), Monjardet (1967, 1979, 1983), Bloomfield (1971, 1976), Wilson (1971, 1972a),
Nakamura (1975, 1978, 1979), Salles (1976), and Peleg (1978, 1983, 1984).

181n fact, given the other conditions, (3) will now be automatically fulfilled.

19See also Ferejohn (1977), Jain (1977a), and Monjardet (1979, 1983).

20See Brown (1973, 1974, 1975a, 1975b), Hansson (1976), Blau (1979), and Blair and Pollak (1979).
See also Chichilnisky (1982b).

21Ferejohn (1977) points out that this does not in itself imply that every member of the collegium
has a veto, since the social decisions induced by the prefilter may have to be supplemented by other
procedures when some members of the collegium are indifferent. The gap can, however, be closed by
further use of the neutrality property.
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4. Non-binary social choice
4.1. Cycles and transitive closures

Arrow formulated the problem of social choice in relational terms with the social
welfare function determining a binary relation of social preference—in fact, an
ordering. It has often been taken for granted that Arrow’s impossibility result
relates crucially to having a binary choice function for the society, i.e. on the
choice function satisfying the so-called Condorcet condition (1.2) presented in
Section 1. It will be argued presently that this is not the case (see Section 4.2), but
for the moment let us not dispute this and examine instead what types of escape
routes can emerge if a non-binary formulation of social choice is chosen.

In a great many contributions in recent years a non-binary formulation of the
social choice problem has been preferred [see, particularly, Hansson (1969a),
Schwartz (1970, 1972), Fishburn (1971, 1973a, 1974a), Campbell (1972, 1976),
Plott (1972, 1973, 1976), Bordes (1976)].2* And it has been found that the
non-binary formulation can cope better with at least some of the problems that
arise with strict preference cycles. Whether this leads to an escape from Arrow’s
impossibility problem is, thus, an interesting issue.

Take the classic example of the “paradox of voting”, with three persons having
the following strict orders: (1) x, y, z, (2) », z, x, and (3) z, x, y. The majority
rule?® leads to xPy, yPz, and zPx, a strict preference cycle. Faced with the
choice over {x, y, z}, it is tempting to conclude that there is “nothing in it”, and
any state is as good as any other. This converts a set with strict preference cycle
into an indifference class. This can be done through several alternative procedures
using transitive closures, and here we concentrate on two, which we may call,
respectively, Weak Closure Maximality and Strong Closure Maximality. While
the two methods lead to the same result in this simplk case, they differ in other
choice situations, as we shall presently discuss. But before defining these proce-
dures, it is useful to remind ourselves of the definitions of “transitive closure” and
“maximality”.

If B is a binary relation, then its transitive closure B* is defined in the
following way: x B* y if and only if there is a sequence z,Bz,, z, Bzs,..., z,_,Bz,,
with z; = x, and z, = y.>* If B is a binary relation, then the maximal subset of a
set S is the undominated subset of S with respect to the asymmetric factors B

22See also the formulation of the social choice problem as simple games in Monjardet (1967, 1979,
1983), Wilson (1971), Bloomfield (1971), Nakamura (1975, 1978), Peleg (1978, 1979b, 1983, 1984),
Salles (1976), Salles and Wendell (1978), and others.

23The majority relation R is defined thus: xRy if and only if the number for whom xR, y holds is
at least as large as the number holding y R; x. The strict majority relation P is the asymmetric factor
of R.

24B* is often called “the ancentral” of B [see Quine (1940) and Herzberger (1973)], a term that
goes back to Whitehead and Russell and the concept at least to Frege.
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of B, x B4y being defined as x By and not y B x,
M(S,B)=[x|x€S&notIyeS: yB x]. (4.1)

The choice C(S) from any subset S is identified in the following way under the
two procedures, respectively (R* is the transitive closure of R, and P* that of P,
the asymmetric factor of R):

Weak closure maximality: ~ C(S)= M(S, R*).
Strong closure maximality: C(S)=M(S, P*).

T o illustrate with the case of the paradox of voting, over {x, y, z}, the weak
transitive closure R* of the majority relation makes aR* b hold for every pair
a,b € {x, y,z}, and also the strong transitive closure P* makes aP*b hold for
every pair a, b€ (x, y,z}. Thus neither aR**b nor aP*#b hold for any
a,b€{x, y,z}. Hence C({x, y,z})={x, y,z} for both the weak and strong
closure methods in this special case.

But the two methods are not in general equivalent, consider the following
binary relation with P being - as before— the asymmetric factor of R: xPy, y Pz,
zR x, and x Rz. Clearly the transitive closure of R defines the following relations:
aR*b for all a, b€ {x, y, z}, while the transitive closure of P defines: xP*y,
xP*z, and yP*z Hence M(S, R*)={x, y, z}, while M(S, P*)= {x}. Indeed,
in general, M(S, P*)C M(S,R*).”

These closure methods have been directly used or indirectly entailed in several
contributions to the resolution of the Arrow dilemma through non-binary choice
procedures, in particular, Schwartz (1970, 1972), Bloomfield (1971), Campbell
(1972, 1976, 1980), and Bordes (1976).2° It can be seen that the Schwartz rule
amounts to the uniform use of strong closure maximality for all social choices. In
contrast, Bloomfield (1971), Campbell (1972, 1976), and Bordes (1976) use Weak
Closure Maximality for social choice.?’

In what sense do these solutions resolve the Arrow paradox? Instead of
demanding a social welfare function it is possible to demand a “social choice
function”,?® g(S,{R;}) which specifies a non-empty subset g(S,{R;}) C S, for
every non-empty, finite S C X. This is essentially equivalent to making the value
of the function f({R,}) a finitely complete choice function C(-) for the society,
and not—as with social welfare functions or social decision functions—a social

25Deb (1977, proposition 1).

261n fact, Campbell used a version of the Weak Maximality Closure which is consistent with binary
choice at the expense of weakening the independence condition. The trade-off between binary choice
and independence is examined in Section 9.

27Deb has helpfully analysed the relations between these two closure methods.

28See Fishburn (1973a).
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preference relation R,
c(-)=f({R}). (4.2)

For such a function f(-), which we may call a functional collective choice rule,
FCCR, the Arrow conditions can be readily translated in several distinct ways.
The translation that has been typically used (the limitations of which will be
discussed later), takes the form of restricting choices over pairs only.

Condition U (unrestricted domain)
The domain of f(-) includes all logically possible n-tuples of individual orderings
of X.

Condition P (pair-choice Pareto principle)
For all x, y € X, (Vi: xP,y)={x}=C({x, y}).

Condition D (pair-choice non-dictatorship)
There is no individual i such that for all n-tuples in the domain of f(-), for each
ordered pair x, y€ X, x P, y={x}=C({x, y}).

The non-dictatorship condition can, in fact, be strengthened to a non-vetoer
condition, and further extended to a condition of full “anonymity”.

Condition A (anonymity)
If {R,} is a permutation of { R}}, then f({R;}) = f({ R}}).

These conditions can now be combined with Arrow’s independence of irrelevant
alternatives (Condition I), which was already defined in choice-functional terms.
To tighten up the real possibility result further, the conditions of “positive
responsiveness” (PR) and “neutrality, independence cum monotonicity” (NIM)
can be similarly translated from relational to choice-functional terms, PR and
NIM, constraining choices over pairs corresponding to the binary relations.

Choice - functional positive possibility theorem
For #H > 2, there is a FCCR satisfying Conditions U, I, P, D, A, and NIM.?

The theorem is established by considering a particular example, e.g. the
procedure generated by Weak Closure Maximality or by Strong Closure Maxi-
mality, applied to the majority rule relation R. The same operations can also be
applied to other Pareto-inclusive, non-dictatorial; non-acyclic relations, of which
there are plenty.

2The case of #H =1 is not covered for the simple reason that in a one-person community the
Pareto principle conflicts with non-dictatorship, which—I hope—would give food for thought to this
lonely individual.
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The satisfaction of these conditions are obvious enough, with the possible
exception of Condition I. In order to satisfy that condition, it is important to
define the transitive closure R* of R over the subset S from which the choice is
being made, i.e. in the definition of R* given above, all the elements z,, z,,..., 2,
must belong to S. To avoid ambiguity R* used for the choice over S, derived
from preferences over S, may be denoted R¥, and the Weak and Strong Closure
Maximality procedures can be clearly seen as consisting in identifying M (S, R¥)
and M(S, Pg), respectively. It is obvious that Condition I will be fulfilled. But
since R¥ and P will vary with S even as far as the restrictions over some given
T C S is concerned, the choice function covering different subsets will not in
general be representable by one binary relation. For example, in the case of the
“paradox of voting”, either procedure applied to the majority relation will
identify the following choices: C({x, y,z})={x,y,z}, C{x, y})={x},
CH{y,z})={y}, C{z,x})={z}. This choice function is, of course, defiantly
non-binary.*°

Since the above theorem is not too challenging the conditions may be tightened
by demanding other conditions as well, and all the advocates of this class of
solutions have offered other desirable conditions that the chosen rules will satisfy.
Whether these good qualities are adequate for what may be called a satisfactory
resolution of the Arrow problem will be discussed in Section 4.3, but before that
an interpretative analysis of the nature of the Arrow problem from the non-
binary perspective should be useful.

4.2. The unimportance of binariness in Arrow’s impossibility

Consider the distinction between (i) using the social aggregation procedure to
yield a binary relation of social preference, and (ii) using that binary relation of
social preference to determine the choice function. Arrow (1950, 1951, 1963) did,
in fact, endorse both, but while (ii) does play a crucial motivational part in the
Arrow exercise (since he identified the meaning of the social preference relation in
terms of the choice function), it has no role whatsoever in the genesis of -the
impossibility result. Indeed, the choice-theoretic interpretation of the social
preference relation remains, strictly speaking, a separate issue that need not be
brought into the impossibility theorem at all once the independence condition has
been redefined to pairwise relational independence (Condition 1?), leading to
GPT* (see Section 2.1).

It is no less important to recognize that choice-theoretic interpretations of the
Arrow result can themselves take several different forms. Perhaps the simplest is

300n the factorization of necessary and sufficient conditions for binariness—or “normality” or
“basic binariness”—of a choice function, see Sen (1971) and Herzberger (1973).
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to give the social preference relation R the interpretation of being the “base
relation” R . of the choice function C(-), defined for choices over pairs only,

Vx,y € X: xRy ifandonlyif xe C({x, y}). (4.3)

Using this interpretation of R has the effect of not telling us anything whatsoever
about how choices should be made from sets larger than pairs. In the choice-func-
tional formulation of f(-) given in (4.2), all we need do is to replace the
requirement of C(-) being finitely complete by the requirement that C(-) be
complete over all pairs, and that for all x, y,z€ X, if xeC({x,y}) and
y€C({ y,2}), then x € C({x, z}). Such a FCCR cannot satisfy Conditions U, P,
D, and the condition of independence I weakened to 12 to apply to choice over
pairs only. (The restriction of R over a pair {x, y} is denoted R|{*7})

Condition I} (pairwise choice independence)
For any pair of social states x, y € X, C({x, y}) = f(*?}{R,|*?))).

Base -relational general possibility theorem X X
If H Ais finite and # X > 3, then there is no FCCR satisfying Conditions U, Ié, P
and D, with R transitive.

The important point here is not the assertion that this theorem is valid, which it
is, but that this is indeed Arrow’s own theorem with an interpretational twist. The
same proof suffices.

Recently, binariness of choice has been subjected to severe criticism, and
Fishburn (1971), among others, has forcefully argued that “social choice from
among more than two feasible alternatives should not be based on social choice
from two alternative subsets” (p. 133). This contrasts sharply with Arrow’s (1951)
view that “one of the consequences of the assumptions of rational choice is that
the choice in any environment can be determined by a knowledge of the choices
in two-element environments” (p. 16). This is, of course, a question of much
interest on its own, but Arrow’s impossibility theorem does not depend on the
answer to this question, and can be established without making any statement
whatsoever on how choices over sets larger than pairs be made.

This recognition raises one immediate question: how can such procedures as
the use of Weak Closure Maximality or Strong Closure Maximality provide any
escape from the Arrow impossibility since these procedures doctor choices only
over subsets larger than pairs? If the Arrow result is about choice over pairs and
the escape routes under examination leave that completely untouched, then how
can escape conceivably take place? In fact, the escape routes must be seen not as
methods of avoiding Arrow’s impossibility problem with its concentration on
choices over pairs, but as methods of softening its implications for choices over
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sets larger than pairs. The distinction can be brought out by considering the
contrast between two issues raised by pairwise inconsistency of choice. Suppose x
is chosen in the choice over the pair {x, y}, and y in the choice over the pair
{ », z}, but in choosing over the pair {x, z}, x is rejected and z chosen. This can
be regarded as unsatisfactory for two rather different reasons. First, the choices
over the pairs themselves may appear to be contrary, even uncanny. (Cf. “be-
tween Bermuda and Honolulu, I will choose Bermuda; between, Honolulu and
Pago Pago, it must be Honolulu; and between Pago Pago and Bermuda, I think
Pago Pago”.) Second, it augurs badly for the choice over the triple { x, y, z}.

The escape routes under examination are concerned exclusively with the second
issue. This is no mean task, and thus the methods used deserve to be examined
seriously as choice procedures for larger sets; this will be done in the next
subsection. But this leaves the first issue completely untouched.

Before turning to questions of choice over more than two-alternative sets, a
possible source of misunderstanding should be cleared up. In an important paper,
Blau (1971) has shown that in Arrow’s framework for social choice, what he calls
“binary” independence is exactly equivalent to “m-ary” independence for any
m < #X, and that all these independence conditions are equivalent to Arrow’s
demanding condition.3! Doesn’t this indicate, it might be asked, that to focus on
pairwise choice independence 12 is equivalent to focussing on Arrow’s own
Condition I dealing also with choices over larger sets? Does it, then, make any
difference at all whether we look at choices over pairs only, or over larger sets of
social states?

To sort out this ambiguity it is useful to distinguish between what we may call
“m-ary relational independence” and “m-ary choice independence”.

Condition I™ (m-ary relational independence)
For any S C X such that #S = m, for f(-) given by (1.1), R|S= S R,|5)).

Condition I (m-ary choice independence)
For any S C X such that #S = m, for f(+) given by (4.2), C(S)= fS({R,5)).

Blau (1971) simply observed that for Arrow’s social welfare function, i.e. given
(1.1), what he called “binary” independence (i.e. our pairwise relational indepen-
dence 1?) implies “m-ary” relational independence, and proceeded to prove the
converse—a deep result—that “m-ary” relational independence for any m < #X
also implies “binary” (i.e. pairwise relational) independence. This is a relational
theorem —important on its own—but establishes nothing whatever about the
correspondence between pairwise choice independence and the class of m-ary
choice independence, unless choice is defined in binary terms, e.g. in the form of
the Condorcet condition (1.2). So once the binary property of choice is eschewed,

31See also Murakami (1968), Fishburn (1974a), Binmore (1975), and d’Aspremont and Gevers
1977).
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i.e. (1.2) denied and (1.1) replaced by (4.2), the equivalence result of Blau becomes
unavailable. Thus, I% can be asserted without commitment to I for m > 2, and
vice versa. Base-relational GPT stands as a theorem about the impossibility of
consistent social choice over pairs without affirming or denying that social choice
be binary.

4.3. Consistency of social choice

A FCCR generates a choice function C(-). To be able to choose from any
non-empty finite subset S of X, C(-) is taken to be finitely complete. In addition,
conditions of “consistency” of choice would have to be considered. Consistency
conditions of choice used in the literature can be classified or factorized into
requirements of two essentially different types, viz. contraction consistency and
expansion consistency [Sen (1970a, 1977a)]. The former deals with requirements
of the kind that insist that something chosen from a set must—under certain
conditions to be specified—continue to be chosen when the menu offered is
contracted. The latter, on the other hand, insists that something chosen from a set
must —under circumstances to be specified — continue to be chosen when the menu
offered is expanded.

The most used contraction consistency condition is called Property a (also
called the “ Chernoff condition’), while the natural complement of that condition
is a requirement of expansion consistency which is called Property y [Sen (1971)].
The set of definitions that follows are specified for all x, y € X and all §,7T C X.

Property a (standard contraction consistency)
[xeC(S) & xeT CcS]=xeC(T).

Property vy (standard expansion consistency)
[x € C(S)) for all S; in any class of subsets of X]= x € C(U,S)).

The two together make the choice function essentially binary in the sense that
its informational content can be exactly captured by a binary relation R defined
on X. The “Condorcet condition” defined in Section 1.3 had specified how a
choice function may be constructed from a binary relation R, and this is restated
below with C(S, R) standing for the choice set of S as constructed from the
relation R,

C(S,R)=[x|]xeS &VyeS: xRy]. (1.2)

Consider now the opposite problem of constructing a binary relation of prefer-
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ence from a choice function.? There are at least two distinct natural claimants to
this role, viz. the “revealed preference relation” R, given by choices over all
subsets of X containing the pair that is being ranked in any particular case, and

the “base relation” R given by the choice exactly over that pair, already defined
in (4.3).

Revealed preference relation .
xRy if and only if 3S: [x €C(S) & y €S].

Base relation
xRy if and only if x€ C({x, y}).

It is obvious that xRy => xRy, but in general not vice versa, and that
Property a does imply the converse, i.e. guarantees R = R c-

A choice function C(+) is “binary” (or “normal”, or “rationalizable”) if and
only if the revealed preference relation R . generated by it is adequate to generate
back the choice function C(-) itself [using (1.2")]. C(-) is “basic binary” if and
only if the base relation ﬁc generated by it can generate back C(-) through
(1.2).

Binariness of a choice function
C(S)=C(S,R,) forall Sc X.

Basic binariness of a choice function
C(S)=C(S,R;)forall SC X.

Binariness lemma
A finitely complete choice function is binary if and only if it is basic binary, and
also, if and only if it satisfies Properties a and v.33

There are some alternative conditions of expansion consistency. A few are
considered here.

Property B
[x, y€C(S) & ScT]=[yel(T)=x€C(T)]

32 The word “preference” has some ambiguity in the individual context, since it can have ar least
two primitive meanings, viz. the reflection of choice behaviour and the reflection of well-being (or
utility). To identify the two would provide a very limited model of behaviour (see Sen (1977c) and
Schick (1978)]. A similar problem may arise for the concept of “social preference” as well, since it can
be defined either in terms of characterisation of social choice or the concept of social welfare. Here the
first meaning is taken as the primitive.

3See Sen (1971) and Herzberger (1973). As Kanger (1975) points out, binariness in this sense is a
very limited interpretation of “choice based on preference”, and more generally the chosen elements
from a set A can be made to depend on a binary relation Py, that depends on the specification of a
“background” set V. Binariness, as defined here, corresponds to taking V' = 4. Kanger (1975) provides
a rich analysis of the more general case of “choice based on preference”.
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If both x and y are chosen in S, a subset of T, then one of them (say, y) can’t
be chosen in T without the other (i.e. x) being also chosen. This condition can be
strengthened to Property B* by relaxing the antecedent in such a way that x
being chosen in S in the presence of y (whether or not y is chosen in S) should
entail the same consequent, i.e. y mustn’t be chosen in T without x being also

chosen.

Property B
[xeC(S)& yESCT]=[yeC(T)=xeC(T))

And Property B8 can be weakened through replacing the consequent by de-
manding only that y be not chosen exclusively in T, whether or not x is among
the chosen elements of 7.

Property 8
[x, yEC(S)& SCT]={y}#C(T).

Finally, a weakening of Property a to Weak a« requires only that a state x
chosen from any set S and belonging to a subset T of S must be chosen from 7' if
it is not rejected in the choice over any other subset of S.

Property weak «
[xeTcS &forall Y€ Ssuchthat Y+ T: x€ C(Y)]=xe€ C(T).

The following lemmas, among others, are useful in establishing possibility
results for social choice.

Sundry choice - functional lemmas
For any finitely complete choice function C(-):

(1) [« & B] < [C(-)isbinary and R, = R, is transitive]| ;

(2) [a &y & 8] = [C(-) isbinary and R .= R . is quasi-transitive| ;
(3) B =[B&y&3d];

(4) B* e R is transitive;

(5) [Weak a & 8] = R, is transitive;

(6) [Weak a & 8] = R, is quasi-transitive;

(7) a= R isacyclic, i.e. there is no strict P-cycle;

8) Weak a= R is triple-acyclic, i.e. there is no strict P-cycle over any triple.
c p Y feg
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Since (1)-(4) and (7) have been proved elsewhere?* and have been widely used,
I shall concentrate here on establishing (5), (6) and (8). First, consider (5) and
take xRy and yRcz, but the contrary supposition, i.e. not xR 2. Since C(-) is
finitely complete, {z} = C({x,z}). If ze C({x, y, z}), then by Weak a, clearly
{y,2)=C({y,2}), and thus by B, y € C({x, y, z}). Then by Weak a, {x, y} =
C({x, »)}), and thus by B, x € C({x, y, z}). So by Weak a, x € C({x, z }), which
is a contradiction. So z & C({ x, y, z }), and therefore, either x or y or both are in
C({x, y,z}). These possibilities in turn lead to the same contradiction with
{z}=C({x, z}), as shown above. Hence xR - z.

Taking up (6) next, consider x Py & y P, z. If, contrary to the quasi-transitiv-
ity of R, not xP.z, then zR.x. If now z€ C({x, y, z}), then by Weak a,
z€ C({y,z)}), which is a contradiction of yP.z. Hence z & C({x, y, z}). The
hypothesis that y € C({ x, y, z}) would imply, by Weak a, y € C({ x, y }), which
is a contradiction of xP.y. So by the finite completeness of C(-), we must have
{x}=C({x, y,z}), and by Weak a, also x € C({x, z}). So xI.z, and thus by
Property 8, z€ C({x, y,z}) or y € C({x, y, z}), which has already been proved
impossible. Thus x P, z.

Finally (8). Suppose not. Consider a cycle over the triple {x, y, z}: xP_C ¥,
yP.z, and zP.x. Note that x cannot belong to C({x, y, z }), since this would
contradict x & C({ z, x}) given Weak a and x € C({ x, y}). For similar reasons,
nor can y or z. Since C(-) is finitely complete, the contrary supposition is,
therefore, unsustainable, and hence Weak a does imply triple acyclicity of the
base relation.

These lemmas permit us to translate the theorems obtained earlier into corre-
sponding choice-functional results.

Choice- functional general possibility theorem (CFGPT) X X
If H is finite and #X > 3, then there is no FCCR satisfying Conditions U, 12, P
and D, and generating choice functions satisfying Weak « and S.

In view of lemma (6) above, this reduces to the “Base-Relational General
Possibility Theorem” discussed in Section 4.2. An immediate corollary is that no
FCCR satisfies these conditions and generates choice functions fulfilling « and S.

34 For proofs of (1) and (2), see Sen (1971); of (3) and (4), Bordes (1976); and of (7), Blair, Bordes,
Kelly and Suzumura (1976). For related results, see Arrow (1959), Chipman, Hurwicz, Richter and
Sonnenschein (1971), Hansson (1969a), Sen (1969, 1970a, 1971, 1977a), Schwartz (1970, 1972, 1974,
1976), Batra and Pattanaik (1972b), Herzberger (1973), Fishburn (1973a, 1974b, 1974c), Aizerman,
Zavalishin and Piatnitsky (1976), Blair, Bordes, Kelly and Suzumura (1976), Bordes (1976, 1979),
Parks (1976b), Richelson (1977, 1978), Suzumura (1976a, 1983a), Ferejohn and Grether (1977a,
1977b), Kelly (1978), Sertel and Van der Bellen (1979, 1980), Aizerman and Malishevski (1980),
Grether and Plott (1982), and Matsumoto (1982), among other contributions.
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While this corollary is very often taken to be the choice-functional “translation”
of Arrow’s result, it follows from the discussion in the last subsection that this
interpretation is unduly restrictive, and CFGPT is a finer version.

If attention is shifted from the base relation R to the revealed preference
relation R, then the picture is much more “positive”.

Choice- functional positive possibility theorem with transitive social preference
For #H > 2, there is a FCCR satisfying Conditions U, I, P, D, A and NIM,
generating choice functions that meet expansion consistency properties 8, vy, 8
and B7, and inducing transitive revealed preference relations R .

An example used for the “Choice-Functional Positive Possibility Theorem”
(presented in Section 4.1) will do for this also. Bordes (1976) has demonstrated
that his procedure of basing choice on Weak Closure Maximality applied to the
majority relation satisfies 8*, and thus by lemma (4) above, must yield a
transitive R ., and by lemma (3) above, must fulfill Properties 8, y and 8 also.

But even weak doses of contraction consistency creates problems when added
to some expansion consistency, and also when used on its own.

Choice - functional oligarchy theorem X X
If H is finite and # X > 3, then any FCCR satisfying Conditions U, 12 and P,
and generating choice functions satisfying Weak a and § must be oligarchic.

This follows directly from lemma (6) above and Gibbard’s oligarchy theorem
(presented in Section 3.1, called “Quasi-transitive Oligarchy Theorem”), given the
re-interpretation outlined in the last subsection.

Choice - functional positive - responsive dictatorship theorem i X
If H is finite and # X > 3, then there is no FCCR satisfying Conditions U, 1%, P,

D and f’ﬁ, and yielding choice functions that fulfill Weak « and 8.

This follows from Mas-Colell and Sonnenschein’s (1972) “Quasi-transitive
Positive-Responsive Dictatorship Theorem” (presented in Section 3.1), in view of
lemma (6) above, given the base relation interpretation. It is more general than
the Choice-Functional General Possibility Theorem (CFGPT) established above
in using a weaker condition of expansion consistency of social choice (8§ rather
than B), but is less general in having to use the additional requirement of positive
responsiveness PR.

Similarly, using the “Acyclic Positive-Responsive Vetoer Theorem” [Mas-Colell
and Sonnenschein (1972)), its “ triple-acyclic” extension, and the “Acyclic Neutral
Monotonic Vetoer Theorem” [Blau and Deb (1977)], the following results can be
immediately derived from lemmas (6), (7) and (8) above, through the “base
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relation” interpretation of the relational framework (outlined in the last subsec-

tion).>
Choice - functional vetoer theorems

For a finite H, a FCCR satisfying Condltlons U, 12 and P, must have a vetoer, if:
either # X = 4, the FCCR must satisfy PR and the choice function must fulfill

Weak a;
# X > #H, the FCCR must satisfy NIM and the choice functlon must

fulfill a.

or

Similar translations can be made for the results on “prefilters, filters and
ultrafilters” obtained by Brown (1973, 1974, 1975a), Hansson (1972, 1976),
Monjardet (1979, 1983), and others.

These results bring out a contrast between the respective effects of contraction
and expansion consistency. The former raises rather serious problems, even when
used on its own without any expansion consistency requirement, whereas the
latter seems typically satisfiable unless coupled with some contraction con-
sistency. Property 8* is a strong condition of expansion consistency (subsuming
the other conditions 8, y and &, all operating in that direction), but it causes in
the present context no problem at all. Property «, however, has a wrecking
impact, and so has even Weak a.

One reason for the contrast lies in the way the regularity conditions are defined
in this framework. The Pareto principle, the non-dictatorship condition, positive
responsiveness, neutrality, independence cum monotonicity, and veto conditions,
are all defined in terms of pairwise relations, which translate in a natural way into
conditions on choice over pairs. Inconsistencies thus generated over pairs rule out
consistent choice over larger sets when contraction consistency is insisted on. But
expansion consistency does not carry over these inconsistencies to larger sets,
since it can be met by arbitrarily enlarging the choice set.>¢ Thus the contrast is,
to a great extent, presentational.

If this interpretation of the contrast is accepted, it is natural to expect that the
impossibility results can be regenerated in a non-binary framework without being
dependent on contraction consistency if the regularity conditions are defined not

35See Sen (1977a). These theorems can, of course, also be derived independently of the earlier
relational results. See Blair, Bordes, Kelly and Suzumura (1976) and Kelly (1978). See also Ferejohn
and Grether (1977b), Bordes (1979), Suzumura (1983a), Grether and Plott (1982), and Matsumoto
(1982).

31t is worth noting in this context that “contraction consistency” conditions are various require-
ments of retaining the inclusion of elements in the choice set as the menu is contracted, and are
equivalent to the corresponding conditions on retaining the exclusion of elements from the choice set
as the menu is expanded. Similarly, expansion consistency conditions are requirements of the inclusion
of chosen elements as the menu is expanded and of the exclusion of unchosen elements as the menu is
contracted [see Sen (1977a, pp. 65-68)].



Ch. 22: Social Choice Theory 1103

for choices over pairs but for choices over subsets of any size. For example, the
weak Pareto principle can be redefined in the following non-pair-choice form.

Condition P (general-choice Pareto principle)
For all x, y € X, [Vi: xP,y]=[VSC X: x€S= y&C(S)]

It is easily checked that this Condition P conflicts directly with such rules as
Weak Closure Maximality and Strong Closure Maximality based on the majority
relation, through which escape from preference cycles have been often sought (see
Section 4.1). Consider the following set of strict preference orderings of three
persons over four states [suggested by Ferejohn and Grether (1977a)]: (1) x, y, z, w,
2) y,z,w, x, 3) z,w, x, y. This leads to the majority relation strict cycle, x Py,
yPz, zPw, wPx. Either of the two “closure” methods would now suggest
{x,y,z,w}=C({x, y, z,w}). But w is Pareto inferior to z, and its choice thus
violates Condition P.%"

Through this procedure of defining the regularity conditions that deal directly
with choices other than pairs, inconsistencies can be precipitated without relying
on contraction consistency. While only a few such results have been formally
derived,® it is quite clear that pair-choice inconsistencies can quite generally be
translated in a natural way into choices over larger sets of social states.

It was argued in the last subsection that binariness of choice was unimportant
for the impossibility results, and that it was sufficient to concentrate on choices
over pairs only (without saying anything about choices over sets larger than
pairs). The last analysis shows that while that is indeed the case, it is also possible
to obtain — alternatively — the impossibility results by redefining all the conditions
in terms of choices over sets larger than pairs without saying anything about
choices over pairs as such. This can be done in a variety of different ways [see
Fishburn (1974a), Matsumoto (1982), Grether and Plott (1982), and Sen (1982)].
The impossibility results following from Arrow’s work are robust enough to
surface in widely different formulations of the problem of consistency of social
choice.

4.4. Path independence

Among the various justifications considered by Arrow for the condition of
transitivity of social preference is the argument that it “will insure” the “indepen-

3As Suzumura (1983a) has noted, this particular case can be effectively dealt with by using the
transitive closure over the Pareto optimal subset of the set of states, but there are other difficulties that
are less easy to deal with in the “general-choice” interpretation of the Arrow conditions.

38See Hansson (1969a, 1973), Sen (1970a, section 6.3), Batra and Pattanaik (1972b), Fishburn
(1973a, 1974a), Ferejohn and Grether (1974, 1977a, 1977b), Binmore (1975), Bandopadhyay (1983),
and Suzumura (1983a).
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dence of the final choice from the path to it” [Arrow (1963, p. 120)]. It is clear,
however, that binariness of social choice with a transitive social preference
relation is an overly strong condition for path mdependénce as Plott (1973) has
noted. He has provided a characterization of path independence, and there have
been a number of important contributions on possibility results using some
variant or other of path independence as the condition of consistency of social
choice.

The commonest characterisation of path independence is the followmg, defined
for any class of subsets S/ cX:

Property PI (path independence)
CU;S,)=CU,C(S))).

This implies that no matter how a set is split up for “divide and choose”, the
final outcome must be the same.

Weaker conditions of path independence have also been studied by Parks
(1971), Plott (1973), Schwartz (1974, 1976), Suzumura (1976a), and Ferejohn and
Grether (1977a, 1977b), among others. Here two complementary conditions are
noted, which together make up Property PI.

Property PI* (upper path independence)
C(U;S;) € C(U,C(S))).

Property *PI (lower path independence)
Cc;s))2 C(U;C(S))).
Obviously, PI & (PI* & *PI).

Many interesting results have been derived using some version or other of path
independence.®® A few of these are noted here, mainly aimed at their use in
possibility results of the Arrow type.

Path independence lemma
For any finitely complete choice function C(-):

(1) PI*ea=[R.= R, acyclic];
(2) PI=[R =R isquasi-transitive] ;

(3) [Binariness of choice function & R . quasi-transitive] < [ P & v];
C

39See Plott (1973), Parks (1971, 1976b), Schwartz (1974), Blair (1975), Blair, Bordes, Kelly and
Suzumura (1976), Bordes (1976, 1979), Suzumura (1976b, 1983a), Ferejohn and Grether (1977a,
1977b), Kelly (1978), Schofield (1978), Kalai and Megiddo (1980), Machina and Parks (1981), and
Matsumoto (1982).
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(4) *PI and B are independent of each other;
(5) B*+=*PI

The following results follow from these lemmas and from results presented in
the last subsection.

Path-independent positive possibility theorem . i X
For #H > 2, there is a FCCR satisfying Conditions U, I, P and D, and also
generating p ath-independent choice functions.

Path-independent dictatorship theorem i o
For a finite H and #X > 3, there is no FCCR satisfying Conditions U, 12, P, D
and PR, and generating path-independent choice functions.

Path-independent oligarchy theorem
For a finite H and #X > 3, there is no non-oligarchic FCCR satisfying Condi-
tions U, IZ and P, and generating path-independent choice functions.

Upper path-independent vetoer theorems i i
For a finite H, a FCCR satisfying Conditions U, IZ and P, and generating upper
path-independent choice functions (fulfilling PI*), must have a vetoer, if:

either #H > 4, #X > 3, and the FCCR must satisfy T’T{;
or #X > #H and the FCCR must satisfy NIM.

Lower path-independent possibility theorem with transitive social preferenL

For #H > 2, there is a FCCR satisfying Conditions U, L P, D, A and NIM, and
generating lower path-independent choice functions (fulfilling *PI'), and inducing
transitive revealed preference relation R.

There is some ray of hope in the last, which is an extension of theorems noted
by Bordes (1976) and Ferejohn and Grether (1977a), and is established by the use
of the “closure” methods. Choices based on Weak Closure Maximality applied to
the majority relation satisfy 8%, and thus reveal a transitive social preference
(without the choice function being binary), and the choices over | pairs permit the
fulfillment of such pair-choice conditions as P, D and NIM. Ferejohn and
Grether (1977a) have argued forcefully in favour of the view that lower path
independence, which they call “Weak Path Independence”, is the proper reflec-
tion of Arrow’s (1963, p. 120) justification for path independence. They note,
however, that such choice prqcedures can go against the general-choice version of
the Pareto principle (called P in the last subsection). Indeed, the possibility of
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generating impossibility results by redefining the regularity conditions for choices
over sets larger than pairs remains real (as discussed in the last subsection).

Finally, upper path independence PI*, which is equivalent to the contraction
consistency condition a [see Path Independence Lemma (1)*°], will immediately
translate the inconsistencies of choices over pairs into inconsistencies for choices
over larger sets. This range of issues was extensively discussed in the last
subsection.

5. Efficiency and fairness
5.1.  Good quality?

While the exercises outlined so far deal with the problem of social choice in rather
comprehensive terms, there are some approaches that aim to do no more than
separate out a subset of the set X of social states for special commendation. The
specified subset is seen as good, but there is no claim that they represent the
“best” alternatives, all equally choosable. There is no attempt to give an answer
to the overall problem of social choice, and the exercise is quite different from the
specification of a social preference over X (as with social welfare functions or
social decision functions), as well as from the identification of a choice function
specifying in each non-empty finite subset S of X, the optimal subset C(S) of S
(as with social choice functions or FCCRs generating finitely complete choice
functions). This general approach, which we may call the “good quality” ap-
proach, has been extensively used in the context of such concepts as Pareto
optimality, the core, equitability and fairness.

Is this, in any sense, a “superior” approach? In presenting his analysis of
“fairness” based on “equity” and “efficiency”, Varian (1974) makes the following
critical comment on “standard” social choice theory.

“Social decision theory views the specification of the social welfare function
as a problem in aggregating individual preferences. Its chief results are of the
form ‘There are no reasonable ways to aggregate individual preferences.’
...Social decision theory asks for too much out of the process in that it asks
for an entire ordering of the various social states (allocations in this case).
The original question asked only for a ‘good’ allocation; there was no
requirement to rank all allocations. The fairness criterion in fact limits itself
to answering the original question. It is limited in that it gives no indication

40This important result was first established by Parks (1971) in an unpublished paper, and analysed
and further studied by Plott (1973). See also Blair (1975).
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of the merits of two nonfair allocations, but by restricting itself in this way it
allows for a reasonable solution to the original problem.” (pp. 64-65)*

While Varian addresses his criticisms to the search for a social ordering —and thus
to social welfare functions only-the reasoning applies equally well to social
decision functions and social choice functions, for they too seek a complete
solution of the problem of social decision (or of social choice).

Efficiency provides a classic example of a “Good Quality” approach. Some
binary relation of dominance D is used, e.g. in the case of “technical efficiency”
the vector dominance of output (with inputs taken as negative outputs), and the
maximal set with respect to that dominance relation is declared as “efficient”.
Taking the dominance relation D in the “weak” (reflexive) form, let D# be its
asymmetric factor,

E(S)=[x|xeS &fornoyeS: yD x]. (5.1)

Since the dominance relation D is a quasi-ordering (weak partial ordering), the
maximal set E(S) is not to be interpreted as a choice set of “best” elements. A
complete social ranking R of which the dominance relation D is a sub-relation
can order the efficient points in any way whatsoever.*

While “technical efficiency” is a common concept in the resource allocation
literature, in welfare economics the more common notion of efficiency is that of
so-called Pareto optimality, where the dominance relation D is that of weak
dominance of utility ranking, or weak unanimity of individual preference: x Dy
if and only if Vi: xR, y.*® It is sometimes referred to—more sensibly—also as
“Pareto efficiency” or “economic efficiency”. Often— merciless to the reader —also
as “efficiency”.

The notion of “the core”, which is thoroughly studied elsewhere in this
Handbook, extends the approach of Pareto efficiency in one particular direction,
viz. that of equilibrium (of all groups as well as of individuals).** A different
extension, with a clearer ethical relevance, relates to supplementing Pareto
efficiency, which pays no attention to the equity of distributions, with explicit

“lAnother important line of criticism of the formulation of the choice problem in social choice
theory deals with the way the “menu” is specified. Braybrooke (1978) emphasizes the limitation of a
fixed menu which gives no room for “issue processing and transformation of issues”. The question
relates also to the long-standing debate on the relevance of log-rolling in the formulation of social
choice problems, the importance of which has been emphasized by Buchanan and Tullock (1962) and
extensively discussed in the literature on political processes. For a defence of the formulation used in
social choice theory, see Arrow (1963, pp. 108-109) and Wilson (1969, 1971).

“2See Arrow (1963, pp. 64—68), extending a result of Szpilrajn (1930).

43For a powerful use of Pareto optimality as the basis for public decisions, see Buchanan and
Tullock (1962).

44For motivational discussions, see Hahn (1973) and Dasgupta and Heal (1979).
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criteria of equitability, yielding tests of “fairness”. This approach is looked at in
the next subsection.

5.2. Envy, equity and fairness

If no individual prefers the bundle of good enjoyed by another person to his own,
then that allocation is called equitable. If an allocation is both Pareto optimal and
equitable, then it is called fair.*® This concept, introduced in the modern
literature by Foley (1967), has been extensively explored recently.*® Much of the
literature has been concerned with problems of existence and consistency.

Some rather negative conclusions have been established even with the “stan-
dard” assumptions of production and exchange — convex production possibilities,
convex preferences, self-seeking choice, no externalities.’ In economies with
production, fair allocations need not exist [see Pazner and Schmeidler (1974) and
Varian (1974)). Pareto optimal equilibrium conditions may require that the more
productive should work harder and be paid more. And the leisure-loving more
productive may, in this situation, envy the unhurried less productive, while the
income-loving less productive may envy the opulent more productive. Further-
more, without production, i.e. in a purely exchange economy, fair allocations may
not exist if individual preferences are not all convex.

Even with convex preferences and even in the context of pure exchange,
equitable endowment allocations can lead to non-equitable competitive equilibria
through trade which happens to be profitable for all [see Feldman and Kirman
(1974) and Goldman and Sussangkarn (1978)]. It is possible to construct exam-
ples in which the diversity of tastes guarantees that none of the parties envies the
commodity basket of any other before trade, but after a mutually advantageous
trade, at least one person envies the basket that another ends up with. Pareto
improvements may, thus, conflict with the preservation of equitability, and this
type of conflict between equity and Pareto efficiency may arise with great
generality.

45There seems to be some non-uniformity of terminology in the literature. Sometimes “fair” is
defined simply as “equitable”, e.g. in Pazner and Schmeidler (1974) and Feldman and Kirman (1974).

46See Kolm (1969, 1972), Schmeidler and Yaari (1970), Schmeidler and Vind (1972), Pazner and
Schmeidler (1972, 1974, 1978), Feldman and Kirman (1974), Varian (1974, 1975, 1976a, 1976b),
Daniel (1975), Crawford (1977, 1979), Gardenfors (1975), Allingham (1976), Pazner (1977), Svensson
(1977, 1980), Goldman and Sussangkarn (1978), Archibald and Donaldson (1979), Crawford and
Heller (1979), Feldman and Weiman (1979), Sobel (1979), Champsaur and Laroque (1981), and
Suzumura (1983a), among others.

“TNote that the concept of “envy” used in these models is one of “preferring” the position of
another, and not-as in another interpretation of envy- “suffering from” the superior position of
another. It is only in the former sense that envy can be present without “‘externality”!
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Partly under the influence of such negative results, but also for their own
interest, other rival concepts of fairness have also been explored. In the case of
“wealth fairness”, the concept of equity is reduced to non-envy of the “complete”
position of any other person including his commodity bundle, his leisure, as well
as his production. This criterion is formulated in such a way that “if it is
impossible for agent i to produce what j produces”, then the equity condition is
“vacuously satisfied for these two agents” [Varian (1974, p. 73)]. Fair allocations,
in this sense, do exist under standard assumptions, but the criterion may appear
to be morally quite arbitrary, and many would share Pazner’s (1977) inability “to
see any possible moral justification for this concept in the case of innate (or, more
generally, exogenous) productivity differentials” (p. 459).

Another concept is “income-fairness” where the object of envy is another
person’s income, not his commodity bundle.*® This leads to the requirement that,
at efficiency prices corresponding to the allocation, there must be equalisation of
potential income, i.e. equalisation of the value of each person’s commodity-cum-
leisure bundle [see Pazner and Schmeidler (1972) and Varian (1974, 1975, 1976a),
Feldman and Weiman (1979)].*° While income-fair allocations do not involve
logical problems of existence under standard assumptions, it is remarkably
exacting in terms of its institutional implications.*®

Other variants of the concept of fairness make the criteria typically a good deal
less exacting, but in the process also make the “good quality” rather ad hoc. An
“egalitarian-equivalent” allocation is one in which the distribution of personal
utilities could have been generated by an equal division of some —not necessarily
feasible —vector of goods [see Pazner and Schmeidler (1978) and Crawford (1979),
among others]. Egalitarian-equivalence is consistent with Pareto efficiency even in
situations in which fair allocations may not exist (e.g. with production under
standard assumptions, or in a pure exchange economy with some non-convexity
of preference). But the use of equal distribution of some purely hypothetical
commodity vector to identify a good quality of an actual distribution may appear
to be quite arbitrary. It also goes thoroughly against the rationale of Arrow’s
condition of “independence of irrelevant alternatives”.>’ One may have to pay
dearly for one’s dislike of some particular good of little importance in the actual
basket if it looms large in some hypothetical basket.

481t may be argued that the envy of someone’s income may be a more cogent basis of judging
relative advantage than the envy of someone’s commodity bundle. Cf. the old story of the father—son
conversation: “Dad, I wish I had the money to buy an elephant.” “Why, son, what will you do with
an elephant?” “Don’t be daft— why should I buy an elephant with that money?”

49See also Archibald and Donaldson’s (1979) criterion of economic equality in terms of identical
sets of bundles to choose from (what they call “identical choice sets”, not to be confused with “choice
sets” as defined here).

0Sufficiency conditions for envy-equitable, Pareto-optimal allocations under competitive equi-
librium have been investigated by Champsaur and Laroque (1981).

5lFor various motivations underlying the independence condition, see Arrow (1951, 1963), Ray
(1973), Mayston (1974, 1975), and Plott (1976).
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As a final example, consider Daniel’s (1975) criterion of a “just” allocation as
one satisfying (i) Pareto optimality, and (ii) being “balanced” in the sense that
“the number of people who envy a person is equal to the number of people that
he envies” (p. 102). Daniel establishes the existence of such “just” allocations
under standard assumptions, but it is not altogether clear whether being “bal-
anced”, in this sense, can be described as a “good” quality. A situation in which
everyone envies everybody else —hardly a “nice” society —is clearly “ balanced”.

There are other variants of the fairness criteria—many of these have been
critically surveyed by Pazner (1977) —but the tension between avoiding extremely
exacting requirements and eschewing arbitrary discrimination is widely observed.
This raises some general questions about the extent to which these procedures
have been able to provide a more satisfactory approach to social decisions than
traditional social choice theory has offered. This issue is taken up in the next
subsection.

5.3.  Good quality approaches vs. traditional social choice formulations

There is little doubt that the “good quality” approaches have provided a
worthwhile field for investigation. The ambitiousness of the traditional social
choice formulations in seeking a social ordering, or a finitely. complete choice
function (specifying the optimal subsets for each choice problem), causes not a
little problem, and here the Good Quality approaches have some potential
advantage. On the other hand, it is difficult to agree on a particular quality as
especially good (irrespective of other qualities), and partitioning the set of
possibilities into good and bad subsets based on any of these qualities suffers
from some arbitrariness.

As it happens the more comprehensive good qualities, taking into account
consideration of both Pareto efficiency and equitability, have also raised serious
problems of existence of good subsets (e.g., satisfying “fairness” based on the
requirement of Pareto optimality of equitable allocations without envy). Even
when “existence” has been guaranteed in principle, the practical relevance of the
partitioning has been constrained by the fact that one side of the partition has
been occupied only by allocations that are truly demanding (e.g. Pareto-efficient
equal distributions of income-no less!). While Varian (1974) may be right to
criticise traditional social choice approaches by arguing that “there was no
requirement to rank all allocations”, still an approach that “gives no indications
of the merits of two nonfair allocations” (p. 65) may not take us a great distance
when fair allocations don’t exist, or require conditions so exacting that they are
unlikely to be practically achievable in the near future. The traditional social
choice approach, in contrast, can offer more, since it discriminates more —even
between the bad and the worse!
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The chief contribution of the “fairness” literature has rested elsewhere. First, it
has shown the relevance of informational parameters that the traditional social
choice approaches have tended to ignore in the single-minded concern with
individual orderings of complete social states. Comparisons of different persons’
positions within a state have been brought into the calculation, enlarging the
informational basis of social judgments.>

Second, in raising rather concrete questions regarding states of affairs, the
fairness literature has pushed social choice theory in the direction of more
structure. Criteria such as “unrestricted domain”, or “independence”, or “non-
dictatorship”, are very general requirements of good social choice procedures,
while requirements of “fairness” or “equity” make the demands more specific.
There is some obvious gain in this extension.

6. Social welfare functionals

6.1. Invariance requirements: Measurability and comparability of utilities

The informational base of the traditional social choice approaches can be
enriched by making the social preference relation R, or choice function C(-), not
a function of the n-tuple of individual orderings {R;}, but the n-tuple of
individual utility functions {UJ(-)}. Such formulations are, of course, not new,
and indeed the classical utilitarian characterization of social welfare (in the works
of, say, Edgeworth, Marshall, Pigou, or Ramsey) is only a special case of such a
form.’* However, the difficulty with this way of formalizing the functional
relations arises from the fact that given the measurability and comparability
assumptions of individual utilities, the utility function has to be represented not
by one n-tuple of individual utilities, but by a set of n-tuples of individual utilities
which are informationally identical (for the given assumptions of measurability
and comparability). This problem is met in the approach of social welfare
functionals through imposing a class of invariance requirements [Sen (1970a,
chapters 7-9, 1974, 1977a) and Roberts (1977, 1980b)], which demand the same
outcome for each of the n-tuples of utility functions that could reflect the same
underlying reality.

A social welfare functional SWFL specifies exactly one social ordering R over
the set X of social states for any given n-tuple {U(-)} of personal utility
functions, each defined over X, one for each person i=1,..., n. The invariance

52As Varian (1974) has argued, “[traditional] social decision theory does not put enough into the
aggregating process” (p.65). See also Svensson (1977).

53Harsanyi’s (1955) well-known axiomatic derivation of utilitarianism also uses a general form of
this kind. See also Kolm’s (1969, 1972) extensive studies of justice and equity.
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requirement takes the general form of specifying that for any two n-tuples in the
same comparability-set I, reflecting the assumptions of measurability and inter-
personal comparability of individual utilities, the social ordering generated must
be the same,

R= F((U)). RV

Invariance requirement _
For any two n-tuples {U;} and {U;* } belonging to the same comparability-set L,
F{U})=F{U*}).

The specification of the measurability—comparability assumptions takes the
form of characterizing L. Depending on the assumption of measurability, each
person i has a family L, of (essentially equivalent) utility functions: each a
positive, monotonic transformation of any other in the family in case of ordinal-
ity; each a positive, affine transformation of any other in the family in case of
cardinality; each a positive, homogeneous linear transformation of any other in
the family in case of ratio-scale measure; etc. The Cartesian product of the
n-tuple of families of utility functions { L;} is the measurability-set L =11"_ L,
specifying all possible n-tuples of individual utility functions consistent with the
measurability assumption.

If there is no interpersonal comparability at all, then there is no further
restriction, and L = L. If, however, interpersonal comparability of any type is
permitted, then L c L.>* For example, with full comparability, if a transforma-
tion () permitted by the measurability assumption is applied to one person’s
utility function in moving from one n-tuple {U;} to another {U,* }, then the same
transformation y(-) must have been applied to everyone’s utility function as a
necessary and sufficient condition for {U;} and {U*} to belong to the same
comparability-set L. Some distinguished cases of measurability—comparability
assumptions are considered below [see Sen (1970a, 1974), Hammond (1976a,
1977b), Maskin (1978, 1979b), d’Aspremont and Gevers (1977), Deschamps and
Gevers (1978), Gevers (1979), Blackorby and Donaldson (1979), and Roberts
(1980a, 1980b)].

Alternative measurability — comparability frameworks _
For any utility n-tuple {U;*} belonging to L, it is required that L must consist of
exactly all n-tuples {U,} such that for some n-tuple of transformations {y,}

4For various interpretations of interpersonal comparisons, see Vickrey (1945), Little (1950),
Harsanyi (1955), Arrow (1963), Suppes (1966), Sen (1970a, 1973, 1979a), Jeffrey (1971), Rawls (1971),
Waldner (1972), Hammond (1977a), and Borglin (1982).
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satisfying the following alternative restrictions, U, = {,(U;*) for all i:

ordinal non-comparability (ONC): each ¢, is a positive, monotonic transforma-
tion;

cardinal non-comparability (CNC): each ¢, is a positive affine transformation,
¥,(-)=a;+b,-(+), with b, > 0,

ratio-scale non-comparability (RNC): each i, is a positive, homogeneous linear
transformation, ¥ (-) = b;-(-), with b, > 0;

ordinal level comparability (OLC):>* for all i, ¥,(-) = ¥(-), a positive, monotonic
transformation;

cardinal full comparability (CFC): for all i, ¥,(-) = ¥(-), a positive, affine trans-
formation, Y (-)=a+ b-(-), with b> 0;

ratio-scale full comparability (RFC): for all i, ¢,(-)=4(-), a positive, homoge-
neous, linear transformation, ¢(-)=b-(-), with b > 0; %

cardinal unit comparability (CUC): each y; is a positive, affine transformation,
Y,;(:)=a; + b-(-), with b > 0, the same for all i;

cardinal level comparability (CLC): each ; is a positive, affine transformation,
Y, (-)=a; + b;(-), with b, > 0, and there is a positive, monotonic transformation
¢ () such that U,(x)= ¢(U;*(x)), for all x € X, for all i;

cardinal unit and level comparability (CULC):%" each ¢, is a positive, affine
transformation, §,(-)=a;+ b-(+), with b > 0, the same for all i, and there is a
positive, monotonic transformation ¢(-) such that U,(x)= ¢(U;*(x)), for all
x € X, for all i.%®

The invariance restriction applied to these respective cases will be denoted as
ON, CN, RN, OL, CF, RF, CU, CL, and CUL, respectively. For example, ON is
the invariance restriction for the case of ordinal non-comparability ONC. Note

also that the less the precision of information, the wider the set L, and the more

55This can, in fact, be called “ordinal full comparability” as well, since ordinal intrapersonal
comparisons can be fully extended here to interpersonal comparisons.

56Utility values have to be confined to being non-negative in this case, to avoid perversity; see
footnote 74 in Section 6.7 below. _

57This is a somewhat wider class of I than under cardinal full comparability, thereby inducing a
more demanding invariance restriction than under the latter, and represents less usable information
than with cardinal full comparability. The difference will depend on X and the actual utility
configurations. Gevers’ (1979) case of “almost co-cardinal” (ACC*) corresponds to CULC except for
requiring that the common monotonic ¢(-) function should apply not necessarily to the whole of X
but to each pair of utility vectors separately. ACC* is in this sense still more demanding than CULC,
requiring invariance over a wider class, and thus represents less informational availability.

38 Other cases can be correspondingly specified, e.g. ratio-scale level comparability.
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demanding is the invariance restriction. With less information more signals are
indistinguishable.

It will be convenient later to consider comparability cases that are not fully
specified, e.g. levels being comparable whether or not anything else is. Let L(L)
and L(U) be comparability sets with ordinal level comparability and cardinal
unit comparability respectively.

Level-plus comparability (L*C) is defined at L € L(L), and unit-plys compara-
bility (U*C) as L C L(U), respectively, in each case. The invariance restriction
applied to these measurability—comparability frameworks will be denoted as L*
and U™, respectively.

6.2. Arrow’s impossibility result and richer utility information

For a SWFL the Arrow conditions can be readily redefined.

Condition U
The domain of F(-) includes all logically possible n-tuples of utility functions
{U;}, defined over X.

Condition I?
For any pair of social states x, y € X, R|{*} = F{=»}({U(x), U(y)}), so that
if U;(a)=U,*(a) for all i, for a= x, y, then xF({U;})y if and only if xF({U;*}) y.

Condition P
For any pair x, y € X, [Vi: U(x)>U(y)|= xPy.

Condition D
There is no individual i such that for all x, y € X and for all {U;} in the domain
of F(+), U(x)>U(y)= xPy.

Since Arrow (1963) dealt with the case of ordinal non-comparability, the
General Possibility Theorem translated to SWFLs yields the following:

Arrow’s theorem for SWFL o
For a finite H and #X > 3, there is no SWFL satisfying Conditions U, 1%, P, D,
and the invariance restriction ON.

This is established by noting that witlz ON, a SWFL is, in fact, a SWF, and
observing that in this case Conditions U, I2, P and D imply U, 12, P and D
applied to the SWF to which the SWFL is reduced.
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In fact, the impossibility result extends readily to the case of cardinal non-
comparability as well [Sen (1970a, theorem 8*2)].

Arrow’s theorem extended to cardinal non-comparable utilities ;
For a finite H and #X > 3, there is no SWFL satisfying Conditions U, 12 P, D,
and the invariance restriction CN.

This is established by taking any two n-tuples of utility functions {U;} and
{U;*} such that each individual ranks the set X in the same way in the two cases.
For every pair x, y € X, by exploiting the two degrees of freedom in an affine
transformation, an n-tuple of positive, affine transformations {,;} applied to
{U;*} yields U’(z) = ¢,(U*(z))=U(z), for z=x, y, for all i. By the indepen-
dence condition I?, xF({U,}) y if and only if xF({U Dy,and by CN, xF({U/})y
if and only if xF({U*})y. Since this holds pair by pair, clearly F({U,})=
F({U*}), so the SWFL is, in fact, a SWF. The rest of the proof is the same as
with Arrow’s original theorem.

A similar impossibility result can be obtained by replacing the pair-relational
independence condition 12 by the m-ary relational independence condition 17,
since Blau’s (1971) result about the equivalence of pair-relational independence
and me-ary relational independence for social welfare functions can be extended
to social welfare functionals as well [see d’Aspremont and Gevers (1977)].3°

While cardinality without interpersonal comparability does not change matters
as far as the Arrow impossibility result is concerned,®® interpersonal comparabil-
ity without cardinality does, however, make a real difference. With ordinal level
comparability, Conditions U, 14 P and D are perfectly consistent, and an
example of these conditions being fulfilled along with the invariance restriction
OL is provided by the so-called Rawlsian “maximin” criterion (interpreted in
terms of individual utilities). The stronger Pareto principle P*, which is violated
by maximin, can also be satisfied, if we use the lexicographic version of the
“maximin” rule [Sen (1970a) and Rawls (1971)], often called “leximin”.®* Let

39Kalai and Schmeidler (1977) have presented another impossibility result permitting cardinal
utility with a weakened dictatorship condition, but involving some additional requirements, most
notably continuity. For other impossibility results with cardinality, see Schwartz (1970), DeMeyer and
Plott (1971), Fishburn (1972b), and Chichilnisky (1980c).
01f, however, “independence” is not required, then various possibilities exist, notably the Nash
bargaining solution. On “Nash social welfare functions”, see Nash (1950), Luce and Raiffa (1957), Sen
(1970a), Kalai and Smordinsky (1975), Harsanyi (1977b), Kaneko and Nakamura (1979), Kaneko
(1980) Kim and Roush (1980a), Coughlin and Nitzan (1981), and Binmore (1981).
81Strong Pareto principle (P*): Vx, y € X, [Vi: xR, iy &3i: xP, y]=xPy,and [Vi: xI, y]=x1Iy.
For general discussions of the Rawlsian approach see Rawls (1971, 1982), Sen (1970a, 1976b,
1977b), Arrow (1973, 1977), Barry (1973), Phelps (1973, 1977), Dasgupta (1974), Daniels (1975), Barry
and Rae (1975), and Yaari (1981), among others. See also the literature on axiomatic derivation of
maximin and leximin, discussed below.
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r(x) be the rth worst-off person in state x; in case of more than one person
having the same utility level, rank them in any arbitrary strict order.

Leximin

For any x, y € X, if there is k, 1 < k < n, such that U,,,(x) > U,,,(y), and for
all r <k, U,,,(x)=U,,,(»), then x Py.If, on the other hand, for all r,1<r <n,
Uo(x)= U.»(), then xIy.

Leximin satisfies Conditions U, 12, P* D and OL (and obviously “level plus”
L™ invariance restrictions —with utility information richer than OL such as CL,
CUL, CF, REF, etc.). It also satisfies several other conditions that have been
proposed in the literature, such as Anonymity, Neutrality, Separability, Suppes’s
(1966) “grading principle of justice”, and several “equity” criteria including
Hammond’s (1976a) demanding Axiom E.

Condition A (anonymity)
If {U;} is a re-ordering (permutation) of {U;*}, then F({U,})= F({U;*}).

Condition N (neutrality)

If p(-) is a permutation function applied to X, and p[R] is the ordering R
modified by the same permutation p(-), and if for all i, U,(x) = U*(u(x)) for all
X € X, then F((Uj*))=p[F({U,}))

Condition SE (separability)

If the set H of individuals partitions into two proper subsets H; and H, such that
for all i in H,, U(x)=U*(x) for all x in X, and for all i in H,, U(x)=U,(y)
and U*(x) =U*(y), for all x, y in X, then F({U;})=F({U*}).

Condition S (Suppes principle)

If p(-) is a permutation function applied to the set H of individuals, and if for
any x, y € X, U(x)2U,,(y) for all i then xRy. If additionally, for some i,
U(x)>U,;(y), then xPy.

Condition HE (Hammond’s equity axiom)
For any x, y € X) if for some pair 8 he H’ Ug(y) > Ug(x) > Uh(x) > Uh(y)a and
for all i # g, h, U(x)=U,(y), then xRy.

Anonymity states that permuting the utility functions among the people does
not affect the social ordering. Neutrality asserts that permuting the social states in
individual orderings permutes the social states in the social ordering in exactly the
same way. Separability says that if the utility numbers for all states remain
unchanged for all non-indifferent individuals, then the social ordering should not
change either. The Suppes principle extends the Pareto principle by using



Ch. 22: Social Choice Theory 1117

dominance in an anonymous way. First, dealing with weak ranking, if each person
in x is at least as well off as the corresponding person in y, then xRy. If,
additionally, someone in x is strictly better off than the corresponding person in
y, then x Py. Hammond’s equity principle demands that if person 4 is worse off
than person g in both x and in y and if A prefers x to y while g prefers y to x,
with all other persons indifferent between x and y, then xRy.

Both maximin and leximin can be seen as incorporating the dictatorship of a
particular “rank”, viz. the rank of being worst-off. While ordinal level compara-
bility provides an adequate informational base for escaping Arrow’s impossibility,
it is interesting to enquire whether the escape must take the form of rules that
incorporate dictatorship of some rank (e.g. of the worst-off, the best-off, the kth
worst-oft). Certainly the Arrow conditions imposed on a SWFL satisfying invari-
ance for ordinal level comparability push us in that direction, and all other
possible rules — typically rather odd ones —can be weeded out by strengthening the
condition of non-dictatorship to anonymity [see Gevers (1979) and Roberts
(1980a)]. With anonymity, in the presence of the other conditions, “rank”
remains an invariant and usable signal (personal identity does not), and the
absence of cardinality and of comparability of units makes rank effectively the
only such invariant signal. This permits the translation of the Arrow-type
reasoning about personal decisiveness to a corresponding reasoning about rank
decisiveness, moving from the decisiveness of all ranks put together (guaranteed
by the weak Pareto principle) to the decisiveness of some particular rank (as
under the “Group Contraction Lemma”).

Rank dictatorship theorem

For a finite H and #X > 3, a SWFL satisfying Conditions U, 12, P, A, and the
invariance restriction OL, must be rank-dictatorial, i.e. there will be a rank k such
that for all x, y € X, Uy(,,(x)>Up,(,,(y) = xPy.%?

Leximin implies not only the dictatorship of the worst-off, but a whole
hierarchy of dictatorial powers so that each rank has dictatorial power when the
lower ranks are all “indifferent”. Leximax defines the opposite hierarchy, with the
best-off being the unconditional dictatorial rank, and the other ranks enjoying
dictatorial powers conditional on the higher ranks being indifferent. The defini-
tion of leximax is the same as that of leximin but for the change that the
condition refers to » > k in place of r < k. The rank dictatorship result can be
modified to precipitate either leximin or leximax [see d’Aspremont and Gevers
(1977)], by demanding separability and replacing the weak Pareto principle by the
strong Pareto principle P* (corresponding to P*, as P does to P).

62 For this and related results, see Roberts (1977, 1980a, 1980b) and Gevers (1979). Also Deschamps
and Gevers (1979).
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Leximin —leximax theorem o
For a finite H and #X > 3, a SWFL satisfying Conditions U, 12 P*, A, SE, and
the invariance restriction OL, must be leximin or leximax.

6.3. Axiomatic derivation of leximin

The Suppes principle, which like the Pareto principle builds on dominance of
utilities (but does this in an anonymous way and is thus remarkably more
extensive than the Pareto principle), can be stated in many different forms. Two
weakenings are considered next, before proceeding to the interesting subject of
the axiomatic derivation of the leximin rule. One weakening confines the “anony-
mous” comparisons to permutations between exactly two persons only, and the
other concentrates on indifference only (correspondingly to the Pareto indif-
ference rule).

Condition S, (2-person Suppes principle)

For any x, y € X, if for any two persons g, h € H, either U(x)=U;(y) for
J =8 h, or Uy(x) 2 U,(y) and U,(x) = U,(y), while for all i # g, h, U(x) =U(»),
then x Ry. If, furthermore, at least one of the two inequalities > holds strictly
>, then xPy.

Condition S° (Suppes indifference rule)
For any x, y € X, if for some permutation function p(-) applied to the set H of
individuals Uj(x) = U,;,(y) for all i, then x1y.

Condition S§ (2-person Suppes indifference rule)

For any x, y € X, if for two persons g, h € H, U,(x)=U,(y) and U,(x) =U,(y),
while for all i#g,h, U(x)=U(y), then xIy. Also the Pareto indif-
ference rule holds.

Hammond’s equity condition can also be weakened to what d’Aspremont and
Gevers (1977) have called “minimal equity”, to derive leximin axiomatically.

Condition M E (minimal equity)
The SWFL is not the leximax principle.

Finally, since the Blau (1971) result on the equivalence of pair-relational
independence with m-ary relational independence holds (as has already been
remarked), we might as well simply take the general relational independence.
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Condition I (relational independence)
For any subset S C X, if for all i, for all x € S, U(x) =U*(x), then F{U,})|S=
FAU*DI®.

Leximin has been neatly axiomatized by Hammond (1976a), Strasnick (1976,
1978), and d’Aspremont and Gevers (1977), and further by Maskin (1979b),
Deschamps and Gevers (1978, 1979), Roberts (1977, 1980a, 1980b), Arrow (1977),
Sen (1977b), and Gevers (1979). The main results can be put in the form of a
rather comprehensive theorem. In this theorem—and indeed throughout Section
6 —it is assumed that # X > 3 and that H is finite.

Leximin derivation theorem

A SWFL satisfying unrestricted domain U and independence of irrelevant
alternatives T must be leximin if it satisfies invariance for level-plus comparability
L™, and one of the following set of conditions:

[1] P* A, SE, ME and OL;
[2] S, SE, ME and OL;

[3] P* A and HE;

[4] P*, S° and HE;

[5] P, SS and HE;

[6] S and HE;

[7]1 S, and HE.

The last set, viz. [7], is taken up first. One way of establishing the result is
through a reduction technique used in Sen (1976b, 1977b). It reduces the problem
of getting leximin for n-person judgments to getting leximin for 2-person judge-
ments (with the rest indifferent).53

First define leximin-k as the leximin principle applied to ranking any pair of
states over which there are exactly k non-indifferent persons. One of the unap-
pealing features of leximin is that it permits the interest of one person (if
relatively badly off) to override the interests of a great many others, possibly a
billion of them. This possibility can be eliminated by confining the application of
leximin to cases of a small number of non-indifferent persons. But it can be
shown that such a programme of constraining leximin would be hopeless for a

53 Hammond (1979b) has shown that this 2-to-n person correspondence of principle applies not
merely to leximin, but to a whole class of principles. This also yields an alternative way of deriving
leximin from set [7] by establishing first S from S, in the presence of U and I. Ulph (1978) has
extended the correspondence.
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SWFL satisfying unrestricted domain and independence because of the following
result:

Leximin from Inch to Ell ) 3
For any SWFL satisfying Conditions U and I, leximin-2 implies leximin.

The proof of this proposition, which will not be presented here, can build on
showing first, that leximin-2 implies leximin-1, and then that leximin-1,..., lexi-
min-(r —1) together imply leximin-r [Sen (1977b, theorem 8)]. In view of this
result, the leximin derivation by route [7] can be done via the following lemma:

Leximin-2 derivation
A SWFL satisfying invariance for level-plus comparability L*, and fulfilling
Conditions U, I, S, and HE, must satisfy leximin-2.

In proving this proposition, the “Paretian” comparisons subsumed by leximin-2
cause no problems, since they are subsumed by S, as well. So we need be
concerned with only the non-Paretian comparisons. Take first the case of two
rank-ties: U;(x)=U,(y), and U,(x)=U;(y). Again, directly from S,, it follows
that x Iy, which is what leximin-2 requires. Similarly, with exactly one rank-tie,
say, U;(x) = U,(y), there is again an immediate application of S, ranking x and
y entirely by the ranking of U,(x) and U;(y), and this corresponds exactly to
leximin-2. That leaves only the case of two non-indifferent, non-rank-ties. But
again if the two inequalities point in the same direction, say U;(x) > U,(y) and
U,(x) > U,(y), the xPy by S,, which is exactly what leximin-2 demands. Thus,
the only case that is not immediate is one in which there are two inequalities
pointing in opposite directions.

Without loss of generality, consider U;(x) > U,(y) and U,(x) <U,(y). Noting
that U,(x) # U,(y), since 2 is non-indifferent, again without loss of generality,
take U,(x) > U,(y). To establish leximin-2, we have to show that x Py. Consider
a third state z, and an n-tuple {U*} such that U(a)=U*(a) for all i and
a=ux,y, U*(z)=UX(x)=U*(y) for all i #1,2; U*(z) > U,*(z) > U,*(»); and
U*(a)>U*(z) for a=x, y, and all i, other than the particular combination
a=y and i = 2. It follows from Hammond’s Equity Axiom HE, that zR*y. From
the 2-person Suppes principle S,, we have x P*z. Hence by transitivity of R,
x P*y. By independence x Py. This establishes leximin-2.

Due to the above result, leximin in its full force follows from the same axioms
in view of Leximin from Inch to FIL

Obtaining leximin from the alternative set [5] is similarly done, since in the
presence of the other conditions, P* and S5 imply S,. Sets [3], [4] and [6] are
similarly covered since each of these sets implies S,. None of these combinations
of conditions relies on the measurability—comparability framework to be re-
stricted to ordinal level comparability. If that restriction is imposed, then leximin
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can be axiomatized on the basis of the Leximin-leximax Theorem. This covers
the combinations given by [1] and [2]. Anonymity and the strong Pareto principle
follow from the Suppes relation S. Minimal Equity ME eliminates leximax. That
leaves only leximin.

6.4. Strong neutrality and strong anonymity

It was mentioned earlier that Leximin satisfies the conditions of neutrality and
anonymity. In fact, it satisfies a stronger version of each condition. So do
utilitarianism and many other procedures. Before proceeding further it is useful to
consider these stronger versions of neutrality and anonymity.

Condition SN (strong neutrality)

For any two pairs of social states {x, y} and {a,b}, and any two n-tuples of
utility functions {U;} and {U*}, if for all i, U(x) =U*(a) and U,(y)=U*(d),
then x F({U,}) y if and only if a F({U;*}) b.

Condition SA (strong anonymity)

If for any pair of utility n-tuple {U;} and {U;*}, there is a permutation function
p(-) over the set H of persons such that for some x, for all i, U(x)=U,,(x),
and for all y # x, for all i, U(y)=U*(y), then F{U,}) = F({U*}).

Strong neutrality implies neutrality N and independence 12, and is indeed
equivalent to the combination of the two. It permits neutrality to be applied pair
by pair, and asserts that the utility information regarding any two social states is
all that is needed for ranking that pair. Strong anonymity asks for invariance not
merely when utility functions are permuted between the persons, but also when
the utility values for any particular state x are permuted between the persons
without doing anything to the utility values for other states. Clearly, such
permutations can alter the list of preference orderings embedded in an n-tuple of
utility functions, and ordering-based rules such as the Method of Majority
Decision, while satisfying anonymity (and strong neutrality), do not in general
fulfil strong anonymity.

Given strong neutrality, social welfare W can be seen as a function of the
individual utility vectors u, bringing us back to a classic formulation of the
Bergson—Samuelson social welfare function,®*

W=W(u). (6.2)

With strong anonymity added to this, the function W(-) is symmetric.

64See Samuelson (1947, pp. 228-229, 246), Bergson (1948, p. 418), and Graaff (1957, pp. 48-54).
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For SWFLs satisfying unrestricted domain and independence of irrelevant
alternatives, the Pareto indifference rule P° implies strong neutrality, and the
Suppes indifference rule S° implies both strong neutrality and strong anonymity.5

Strong neutrality theorem
For any SWFL fulfilling Conditions U and 1%, P° < SN.

Strong anonymity theorem
For any SWFL fulfilling Conditions U and 1%, S° < (SN & SA).

For proofs, see Sen (1977b).

6.5. Utilitarianism: Harsanyi’s theorems

Harsanyi’s (1955) axiomatic treatment of utilitarianism provided a classic contrast
to the ordering-based social welfare judgments in Arrow’s social welfare function
and related structures. A richer base of utility information permitted Harsanyi to
consider the class of weighted sum of individual utilities—a class that could not
have been accommodated within social welfare functions, or for that matter in
structures permitting only ordinal level comparability.

Harsanyi (1955) established two — essentially independent - results about
utilitarianism. One, which I shall call Harsanyi’s “Impersonal Choice Utili-
tarianism”, requires any individual’s social welfare function —reflecting his ethical
judgments—to be based on what his preferences about the social states would
have been if he had an equal chance of being in the position of anyone in the
society.®® With consistent choice the von Neumann—-Morgenstern (1947) pos-
tulates are assumed to be fulfilled. Then the social welfare from a state can be
seen as the “ utility” of an as if lottery, having a probability 1/n of being anyone

65 Neutrality in a milder form — involving only strict (antisymmetric) individual orderings— played an
important part in Arrow’s (1951) impossibility theorem, and this was explicitly noted by Blau (1957).
(See the Field Expansion Lemma in Section 2 above.) The first explicit version of the Strong
Neutrality Theorem (applied to social decision functions with quasi-transitive social preference) was
presented by Guha (1972) and Blau (1976) The theorem as presented here, dealing with the wider
informational framework of SWFLs, is due to d’Aspremont and Gevers (1977). Roberts (1980b)
provides an alternative derivation with the weak Pareto prmuple P rather than P° through the use of a
continuity axiom. The Strong Anonymity Theorem figures in various forms in Hammond (1976a,
1979b), d’Aspremont and Gevers (1977), Roberts (1977, 1980b), and Sen (1977b).

%60n this way of characterizing social welfare, see also Vickrey (1945). For a critique of the moral
acceptability of the approach, see Diamond (1967), and the controversy on that and related issues in
Harsanyi (1975, 1977a) and Sen (1976b, 1977d). For other types of critiques, see McClennen (1978)
and Blackorby, Donaldson and Weymark (1980). The broader ethical issue of “impersonal choice” as
the basis of moral judgments—going well beyond the status of the utilitarian form-has been
illuminatingly discussed by Harsanyi (1958) in his model of “ethics in terms of hypothetical
imperatives”. See also Harsanyi (1977b, 1979).



Ch. 22: Social Choice Theory 1123

in that state. If W,(x) is the utility of the “prize” i (i.e. of being person i, in state
x) in the von Neumann—Morgenstern scale, then clearly

W(x)=% Zn: W, (x) forall xeX. (6.3)

i

For a given population size, (6.3) is not essentially different from the straight-
forward utilitarian formula for social welfare.

The other result, which I shall call Harsanyi’s “Utility Sum Theorem™ has less
of a moral basis, but is analytically more assertive. If in a given situation, (a) the
family of individual utility functions of each person i is cardinal, given by a class
of positive affine transformations, (b) the social welfare function is also cardinal,
given by a class of positive affine transformations, and (c) the Pareto indifference
rule is assumed, i.e. U;(x)=U,(y) for all i must imply W(x)= W(y), then social
welfare must be a linear weighted sum of individual utilities,

W(x)=2n:aiU,.(x) forall xe€ X. (6.4)

i=1

In recent discussion on utilitarianism, it is Impersonal Choice Utilitarianism,
(6.3), that has received most attention [see, for example, Arrow (1973)]. This is a
theorem about utilitarianism in a rather limited sense in that the von
Neumann-Morgenstern cardinal scaling of utilities covers both W, and W within
one integrated system of numbering, and the individual utility numbers W, do not
have any independent meaning other than the value associated with each “prize”,
in predicting choices over lotteries. There is no independent concept of individual
utilities of which social welfare is shown to be the sum, and as such the result
asserts a good deal less than classical utilitarianism does.

Consider, for example, the case in which a person’s ethical judgments —and his
“impersonal” choices—are based on maximizing the sum of independently mea-
sured,” ratio-scale comparable (RF) individual utilities (uniformly non-negative)
raised to the power # (a constant),

W=% _él(q(x))’ for all x.5 (6.5)

With ¢ <1 social welfare is strictly concave on (and thus non-utilitarian in terms

67See Krantz, Luce, Suppes and Tversky (1971).

58 Mirrlees (1971) uses this formulation of social welfare [but see also Mirrlees (1982)]. This
formulation is axiomatically analysed and discussed by Roberts (1977, 1980b), and Blackorby and
Donaldson (1977, 1979).
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of) the independently measured utilities U,. It would, however, appear to be
utilitarian within the von Neumann-Morgenstern scaling system, since that
scaling would allow W,= (n/t)(U(x))!, the whole scaling being unique up to
positive affine transformations of these. Since the only role of W, is to predict the
person’s choices under uncertainty, this is a rather superficial form of utili-
tarianism. As it happens (6.5) permits a whole class of non-utilitarian rules (for all
cases other than ¢=1),*" and by making ¢ go to minus infinity “Rawlsian”
maximin or leximin can also be covered,’® for the independently scaled utilities.

Harsanyi’s Utility Sum Theorem does not, however, suffer from this problem,
and is in this sense a good deal more assertive. But it is primarily a “representa-
tion theorem”. It deals only with single-profile exercises and,does not claim that
the constants a; in (6.4) will remain the same when the individual utility functions
change (i.e. when a family L; of positive affine transformations alters).”" Not
only, therefore, does it not establish that all the a; must equal each other as under
the utilitarian formula (indeed for the axioms specified they can even be negative),
but it does not even require that the set of @; will be invariant with respect to
changes in individual utility characteristics (as opposed to representational change
within a given positive affine family).

The upshot of this discussion is that there is need for an axiomatic derivation of
utilitarianism despite Harsanyi’s theorems. What is needed is an axiomatization
that (1) permits independent formulation of individual utilities, and (2) which has
the invariance property of having the set of a; determined independently of the
utility functions to be aggregated (and in particular having a, =1). Such axiomatic
results have recently been presented, and will be taken up in the next subsection.
But before closing the discussion on Harsanyi’s framework, it is worth asserting
unequivocally that the failure to provide a fully-fledged axiomatic derivation of
utilitarianism does not render Harsanyi’s results useless. Indeed, far from it. The
representation theorem is of much interest in itself, and Harsanyi’s framework of
impersonal choice has proved to be one of the most fruitful ones in social ethics.

6.6. Ultilitarianism: Axiomatic derivations

Define a utilitarian SWFL as one which for any n-tuple of individual utility
functions, for any x, y € X, declares x Ry if and only if 7_ U (x) > X7_ U(y).”?
The following theorem, established by d’Aspremont and Gevers (1977, theorem
3), uses the invariance requirement for cardinal wnit comparability CU in

$*Note that U;(-) and (U,(-))" cannot belong to the same positive affine class unless of course ¢ =1.

70Ct. Atkinson (1970), Arrow (1973), and Hammond (1975).

"1 This issue has been illuminatingly discussed by Nader-Isfahani (1979).

2Yaari (1978) defines “the utilitarian form” less restrictively, using a weighted-sum formula, with
the weights being endogenously determined. One set of assumptions is shown to lead to the
equivalence of Rawlsian and utilitarian SWFLs. Yaari, thus, provides an axiomatic (and also intuitive)
analysis of a much wider class of rules than utilitarianism, as it is normally defined.
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addition to other conditions to eliminate rules rival to utilitarianism. As in
Sections 6.2—-6.4, it is assumed that H is finite and # X > 3.

Utilitarianism derived with unit comparability
A SWFL satisfying Conditions U, I, P*, A and CU must be utilitarian.

It is first checked that a utilitarian SWFL must indeed satisfy these conditions.
This is immediate for U, I, P* and A. Regarding CU, it need only be noted that
translating anyone’s utility function by adding a constant (positive or negative) to
it must leave all the differences [U,(x)— U,(y)] unaffected. And multiplying each
U, by the same constant leaves the relative differences unchanged. So we need be
concerned only with establishing that these conditions together do not permit any
other kind of a SWFL.

It follows from the Strong Neutrality Theorem that the SWFL in question must
be strongly neutral. Since given unrestricted domain, independence and anonym-
ity, the Pareto indifference rule implies Suppes indifference rule, the SWFL must
also be strongly anonymous by the Strong Anonymity Theorem. So in ranking
any pair x, y €Y, we need be concerned only with the utility vectors for x and y,
and we can permute the utility values among the individuals for any state without
changing the social ranking.

Take, first, a case in which the individual utility sums for x and y are equal; we
have to show x7y. Permute the utility numbers among the persons in each state
separately in such a way that we have the utility order in line with the individual
numbers: U,(a)=2U,_,(a)= --- 2U,(a) = U, (a), for a= x, y. Now deduct from
each U,(a) the minimal of the two values {U(x), U/(y)}. (Note that this is a
permitted transformation under CU, being a translation of individual origins,
which can be freely done.) After the deductions permute the individual utilities
again in each state to get them in line with individual numbers: U}(a) > U} (a)
> --- >Uy}(a) = Ul(a). This yields {U'}. By repeating this process, for some r,
we shall get U;"(a) =0, for all i and for a = x, y. By the Pareto principle, xIy for
this utility n-tuple {U"}, and by CU this must be the case for all {U;} in L.
Hence x1y.

If, instead, we started with the individual utility sum being larger for x than for
y, then we would have reached U/(y) > 0, for all i, with U,"(x) > 0 for some i. So
by the strong Pareto principle, x Py. And this establishes that the SWFL is indeed
utilitarian.

Various other axiomatizations of utilitarianism have also been presented [see
Deschamps and Gevers (1978, 1979), Maskin (1978), Blackorby and Donaldson
(1977, 1979), Roberts (1980b), Myerson (1983), Blackorby, Donaldson and
Weymark (1984)], without making the levels non-comparable as in d’Aspremont
and Gevers’ (1977) method.”

BFor a very different route to the axiomatization of utilitarianism, see Ng (1975). See also
Danielson (1974) and Mirrlees (1982).
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Maskin’s axiomatisation supplements the imposed conditions by separability
(Condition SE) and a requirement of continuity, to wit, that W(-) in (6.2) be
continuous.

Utilitarianism derived with separability and continuity
A SWFL satisfying Conditions U, I, P*, A, SE, continuity, and the invariance
requirement for cardinal full comparability CF, must be utilitarian.

It follows from the application of Debreu’s (1960) theorem on additive sep-
arability, that due to U, I, P* and SE, it must be the case that there exist
continuous functions v/-) such that xRy if and only if Z;;lv,-(Ui(x)) >
Z;’=1vi(l/i( y)). By anonymity, for all i, v,(-) = v(-). Maskin completes the proof
by demonstrating (with the help of the invariance requirement CF, and continu-
ity, in addition to U, T and P*) that v(-) must be a positive affine transformation.
That establishes that the SWFL is utilitarian.

Deschamps and Gevers (1978) have proved a theorem that provides another
route to axiomatic derivation of utilitarianism-—strictly speaking a slightly
weakened version of it. A SWFL will be called “utilitarian-type” if it yields a
utilitarian strict preference for all cases in which the utility sums to be compared
are different; it may or may not declare two equal-utility-sum states as indifferent.

Joint characterization theorem
A SWFL satisfying Conditions U, I, P*, A, SE, ME, and the invariance condition
CF, must be either leximin or of the utilitarian-type.

We know from the Leximin Derivation Theorem, in particular case [1] of it,
that these conditions with the additional requirement of invariance for ordinal
level comparability OL will lead to leximin. By broadening the utility informa-
tional framework to cardinal full comparability, the only additional rules that are
admitted must be of the utilitarian-type. If now leximin is excluded by some
axiom, and there are many “mild” axioms that will do this, the class of
utilitarian-type rules would have been axiomatized. The advantage of this route
lies in the fact that it demands neither continuity, which may not be accepted to
be an intuitively “basic” social welfare property (though satisfied by utili-
tarianism in particular), nor the informational limitation of CU, which renders an
important parameter (viz. comparative utility levels) unavailable for use. On the
other hand, the Joint Characterization Theorem delivers a little bit less, viz.
utilitarian-type rules rather than the utilitarian rule, and also this route requires
some additional exclusion, notably something to knock out leximin.

Myerson (1983) derives utilitarianism from Pareto optimality and a linearity
condition, but-more importantly —shows that Pareto optimality, independence
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and a concavity condition together ensure that the social welfare rule must be
either utilitarian or egalitarian—a remarkable elimination of all other rules.

6.7. Other informational structures

While ordinal non-comparability, cardinal non-comparability, ordinal level com-
parability, cardinal full comparability and cardinal unit comparability have been
the informational assumptions that have been most used (as in the results
discussed above), other alternative informational structures have also received
some attention. Indeed, recently the various alternative possibilities have been
fairly thoroughly investigated by Roberts (1977, 1980a, 1980b), Gevers (1979),
Blackorby and Donaldson (1979), and Blackorby, Donaldson and Weymark
(1984).

While space will not permit a discussion of the different possibilities, the
particular case of ratio-scale full comparability must be briefly mentioned. Using
axioms similar to those used to arrive at utilitarianism for cardinal full compara-
bility, Roberts (1980b) has established that with ratio-scale full comparability, the
SWFL must be of the more general class specified by (6.5) above, ie. with
constant elasticity (¢) transforms of individual utilities being added to arrive at
social welfare W. The value of ¢ is unspecified. To obtain the special case of
utilitarianism, viz. ¢=1, would require some additional restriction, e.g. the
invariance requirement for cardinal full comparability, which is a good deal more
restrictive than ratio-scale full comparability. An alternative route towards
utilitarianism has been pointed out by Blackorby and Donaldson (1979) by
considering negative as well as positive utility values and demanding that social
welfare be quasi-concave on individual utilities.”*

Another possibility that seems important is the case of “partial” compara-
bility and “partial” measurability. For example, if L(1) and L(0) are
comparability sets respectively for cardinal unit comparability and cardinal
non-comparability, then a case of “partial unit comparability” is one in which the
comparability set L lies somewhere in between the two, i.e. L(1)<c L C L(0). The
partial nature of the comparability assumption reflects a certain amount of
“vagueness” about the way individual utility units can be compared with each
other. It leads to quasi-orderings (reflexive, transitive, but not necessarily com-
plete) for such rules as utilitarianism —the quasi-ordering getting monotonically

74Note also that with some ratio-preserving transformations that are commonly used in economic
exercises, the consideration of negative utilities would cause problems. As Blackorby and Donaldson
(1979) note, in the negative utility orthant, the Atkinson (1970) measure of inequality based on means
of order r would react perversely to a Lorenz curve improvement. In these cases, the argument for
imposing boundary conditions on utility functions guaranteeing non-negativity may well be
strong- indeed overwhelming.
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extended as the fuzziness diminishes, and a defined “degree” of partial compara-
bility rises systematically from 0 to 1 [see Sen (1970a, chapter 7*; 1970c)]. Other
partial comparability cases can also be considered, e.g. partial level comparability.
Measurability parameters can also be taken to be partial, e.g. partial cardinality.”

An important contrast between the results dealing with such “partial” frame-
works and the results of “pure” types reported earlier relates to the output of the
aggregation exercise and correspondingly to the way the invariance requirement is
defined. If the demand is for a complete social ordering, as with SWFLs, it is
natural to require that if some rule leads to x Ry for some n-tuple {U;} in L, and
to yPx for some other n-tuple {U;*} in the same L, then that rule is to be
rejected altogether. This is what the invariance requirement specified in Section
6.1-and used in most of the literature—does. This can be called “global”
invariance requirement. The alternative—the “local” requirement—is less restric-
tive and works especially well for cases of partial comparability. It insists only on
the social preference being a quasi-ordering, and in the case of an inconsistency
over some pair—as in the example above-it leaves that pair unranked. Only
those pairs that are consistently ranked by all {U,} in L are then ranked in the
social preference. The contrast between the two approaches can be illustrated by
remarking that with utilitarianism and ordinal non-comparability, the global
approach will record an inconsistency, while the local approach would simply
assert the Pareto quasi-ordering.”® While the global approach has received a good
deal more attention than the local one, there is much to be said for the wasteless
use of available information that the local approach permits.”” Since completeness
of social ordering is a demanding requirement —as we have discussed earlier—a
more thorough exploration of the local avenue might well be rewarding.’®

7. Informational availability and manipulation

7.1. Problem types

Under the broad hat of “aggregation” in social choice theory rest problems of
quite distinct types. Among various bases of classification, one concerns the

>See Sen (1970a, chapter 7*; 1979a), Blackorby (1975), Fine (1975a), Basu (1979), and
Bezembinder and van Acker (1979). There are some similarities with Levi’s (1974) treatment of
“indeterminate probabilities”.

7$The contrast was explored in Sen (1970a), where the global approach was the one used in
Chapters 8 and 8* and the local approach in Chapters 7 and 7*.

"1t is also possible to relax the requirement of consistency of social preference from transitivity to
quasi-transitivity or acyclicity, and to consider non-binary formulations of social choice, in line with
the procedures considered in Sections 3 and 4.

78Another important problem concerns combining an n-tuple of “extended orderings” (including
each person’s interpersonal comparisons). The problem was first investigated by Suppes (1966), and it
has received attention from Sen (1970a, chapter 9*; 1977b), Hammond (1976a), Roberts (1977,
1980b), Kelly (1978, chapter 8), Mizutani (1978), Suzumura (1983a), Gaertner (1983), and others.
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interpretation of individual preferences R; (or utilities U;). These could reflect a
person’s conception of his own well-being, or —alternatively — his idea of what is
good for the society [see Harsanyi (1955), Suppes (1966), Sen (1977c)]. To assert
the distinction is not to deny that a person’s conception of his own well-being
may well take note of the welfare of the others in the society, but still the
questions “what is best for the society?” and “what is best for me?” are different
ones, even though they are clearly interrelated.

At the risk of oversimplification we may distinguish between an exercise of
“interest-aggregation” — wherein different people’s personal interests are aggre-
gated—and that of “judgment-aggregation” —wherein different persons’ judg-
ments about what is good for the community are aggregated.”” The typical
formulation, of the problem of the “fair division” of a cake among a group of
cake-loving individuals illustrates the former.! On the other hand, Borda’s
famous method of aggregating different views on the “merits” of a candidate to
membership of the Academy of Sciences (later denounced — effectively — by a new
member called Napoleon Bonaparte) was clearly addressed to the problem of
aggregation of judgments.

In an interest-aggregation exercise, the informational base of the individual
orderings of the social states is particularly limiting, and it can be sensibly
supplemented by additional information about rankings of different persons’
positions in a given state (see Section 5) or by straightforward interpersonal
comparisons of well-being and of gains and losses from change (see Section 6).
This is the typical framework for economic planning [see, for example,
Dobb (1955), Malinvaud and Bacharach (1967), Chakravarty (1969), Arrow and
Kurz (1970), Heal (1973), Dasgupta and Heal (1979), Dasgupta (1982), and
Majumdar (1983)]. Even when one person does the personal exercise of finding
out what his “ethical preferences” should be [see Harsanyi (1955)], he may have
to go well beyond just the rn-tuple of individual orderings, bringing in interper-
sonal comparisons of utility, perhaps placing himself in the position of others [see
Vickrey (1945), Harsanyi (1955), Rawls (1958), Suppes (1966), and Arrow (1963,
pp. 14-15)].%! On the other hand, in judgment-aggregation exercises, especially in
such institutional contexts as committee decisions, or elections, it may be very
difficult to have room for anything other than mechanically recording people’s
preference rankings (or declared preference rankings). There the exercise may
have to make do with the n-tuple of individual orderings only. If this - admittedly
oversimplified — dichotomy is accepted, then it may well be the case that the

79The distinction is explored in Sen (1977a). There could, of course, be mixed cases in which the
aggregation exercise takes into account both judgments and interests of the people involved; for an
example, see Graaff (1977). See also Bose (1975).

80See Luce and Raiffa (1957, section 14.9) for a discussion of fair mechanisms for cake division. A
different type of norm and a different class of ideas on fairness can be found in various concepts of
“ex]ploitation”, on which see Roemer (1982).

8TRecent contributions include Kern (1978) and Leinfellner (1978), among others.
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Arrovian informational format is more relevant for some exercises— typically
aggregation of judgments—while the richer informational structures analysed in
Sections 5 and 6 are more relevant for others — typically aggregation of interests.

Even when the Arrovian informational base of n-tuples of individual orderings
is taken as appropriate, and institutional mechanisms are geared to this informa-
tional format, there remains the important problem of getting hold of the “true”
orderings of social states by the individuals.®? If the procedure for collecting this
information is some type of voting mechanism, then the problem of guaranteeing
“sincere voting” arises. This problem of “strategy-proof” voting procedures has
been much investigated recently, and in the rest of this section this question is
examined.

7.2.  Manipulability and dominant strategies

That the characterisation of social choice in terms of social welfare functions
abstracts from the “game aspects” of the problem was noted by Arrow (1951),
conjecturing that “once a machinery for making social choices from individual
tastes is established, individuals will find it profitable, from a rational point of
view, to misrepresent their tastes by their actions” (p. 7).2* A firmer conjecture
about the potential manipulability of social choice mechanisms-with a persua-
sive defence — was presented by Vickrey (1960).%* And Dummett and Farquharson
(1961) made a universalized conjecture: “It seems unlikely that there is any
voting procedure in which it can never be advantageous for any voter to vote
‘strategically’, i.e., non-sincerely” (p. 34, italics added).®®> The recent investigation
of the manipulability of voting mechanisms —starting with the contributions of
Murakami (1968), Gibbard (1973), Pattanaik (1973) and Satterthwaite (1975) — has
essentially confirmed these pessimistic conjectures.

A voting scheme picks one social state x from a given set X of social states for
any logically possible n-tuple of reported preference orderings (or ballots, for
short) of X. A voting scheme is “manipulable” (not “strategy-proof”) if and only
if for some n-tuple of true individual preference orderings, there is at least one
person k who can improve the outcome for himself by reporting a preference

8 Much insight has been gained recently by experimental studies of behaviour and response [see
Plott (1979), V. L. Smith (1979), Ordeshook (1980), and other recent contributions].

83For an early conjecture of the manipulability result, see Hoag and Hallett (1926, pp. 396-397). I
am indebted to Duff Spafford for this interesting reference.

84 Majumdar (1956) presented reasons for expecting widespread manipulability of “issues”, i.e. the
possibility of gain from sponsoring unfavoured alternatives for strategic reasons. This type of
manipulability has not yet been analysed as much as it seems to deserve. See, however, Luce and
Raiffa (1957, section 14.8) and Pattanaik (1978, chapter 9), and on related problems of agenda
manipulation, Campbell (1979) and Plott and Levine (1978).

85See also Farquharson (1956, 1969).
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ordering different from his true one when others report true preferences. More
formally, a voting scheme V({R;}) = x is manipulable if and only if for some
{R;}, some k, and some R}, V({R¥})P,V({R;}) when R¥ =R, forall i #k. A
voting scheme is dictatorial if and only if there is a person i such that whichever
element of the range of V() he ranks highest in his ballot is invariably the
element that is chosen by the voting mechanism.

Gibbard - Satterthwaite manipulability theorem
Every non-dictatorial voting scheme with at least three distinct outcomes is
manipulable.

Gibbard (1973) establishes this theorem as a corollary of another one dealing
with “game forms” in general, of which voting schemes are special cases. A game
form does not restrict the strategies to be chosen by the individuals to the
orderings of social states, i.e. to ballots, and each person i’s strategy set S; can be
any set of signals. A game form specifies an outcome x from a given set Y for
every n-tuple of strategy choice (sy,...,s,) with s; €S, for all i (that is, a game
form is a mapping from the Cartesian product of strategy sets of individuals to
the set Y of outcomes). A voting scheme is a game form such that the strategy set
S; of each person is a set of declared orderings (ballots) of a set X of social states
including the set Y of outcomes. A game form is “straightforward”8¢ if for each
person i and for any preference ordering of the outcomes that he might have, he
has a dominant strategy, ie. a best strategy with respect to his ordering of the
outcomes irrespective of what the strategies of others might be. A game form is
dictatorial if there is a person k such that for every outcome x, there is a strategy
s,(x) for k such that if k& chooses s,(x), then the outcome must be x, no matter
what others choose. (It is readily checked that a dictatorial voting scheme must be
a dictatorial game form.) Gibbard’s theorem about game forms in general — rather
than about voting schemes in particular —is the following;

Gibbard’s non-dominance theorem about game forms

No non-dictatorial game form with at least three possible outcomes can be
straightforward, i.e. in every non-dictatorial game form, there is at least one
person who does not have a dominant strategy for some preference ordering of
the outcomes.

The existence of dominant strategies for everyone for every possible preference
n-tuple would, of course, be a pretty demanding requirement, so the Non-domi-
nance Theorem is not really counter-intuitive. But, as Gibbard notes, the Manipu-

86 This concept, like many others in this part of the literature, was introduced by Farquharson (1956,
1969). One of the other notions introduced by Farquharson, viz. “sophisticated voting” (based on
successive elimination of dominated strategies), has been very fruitfully investigated recently by Brams
(1975), Pattanaik (1978), Moulin (1979, 1983), and others.
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lability Theorem follows immediately from this Non-dominance Theorem. If the
voting scheme were non-manipulable, then everyone must have a dominant
strategy, viz. recording his true preference irrespective of what others do. Since
Gibbard establishes—most elegantly— the Non-dominance Theorem, he obtains
the Manipulability Theorem directly from it.%”

The analytical connection between the Gibbard—Satterthwaite theorem and the
Arrow theorem has been widely noted. It is possible to define social preference R
with respect to a voting scheme such that for a voting scheme to be strategy-proof,
that social preference relation R has to be determined by an Arrovian social
welfare function satisfying pair-relational independence 12. The demand for a
non-manipulable, non-dictatorial voting scheme with at least three outcomes can
then be translated as the demand for a social welfare function satisfying Arrow’s
conditions U, P, I and D. Since the latter demand cannot be met, neither can the
former.?®

This close correspondence between impossibility results on the existence of
reasonable social decision procedures and impossibility results about manipula-
bility of voting schemes applies also to extensions and variations of the Arrow
impossibility result. This has been investigated for cases involving many varia-
tions, such as non-transitive social preferences, non-binary social choice, prob-
abilistic social preference, cardinal individual utilities, infinite set of voters,
restricted domain of social welfare functions, etc., and a number of striking
correspondence results have been established.?

7.3.  Manipulability with multiple outcomes and with counterthreats

The Gibbard—Satterthwaite Manipulability Theorem is constrained by two rather
limiting features of the chosen characterization of manipulability. First, the voting
schemes (and more generally the game forms) are characterized as having a
unique outcome x for any combination of ballots (more generally, strategies).
Second, the formulation of the optimum choice of strategy does not give any
room to strategic responses by others and considerations of “counterthreats” are
not brought in.

87For other proofs of the Gibbard-Satterthwaite manipulability theorem, and related matters, see
Satterthwaite (1975), Gardenfors (1976), Jain (1977b), Pattanaik (1978, chapter 5), Schmeidler and
Sonnenschein (1978), Batteau and Blin (1979), Chichilnisky and Heal (1979), Dasgupta, Hammond
and Maskin (1979), Barbera (1980b), Batteau, Blin and Monjardet (1981), Moulin (1983), and Peleg
(1984).

88See Gibbard (1973), Satterthwaite (1975), Schmeidler and Sonnenschein (1978), and Pattanaik
(1978). In fact, the correspondence applies not merely to voting schemes but also to the more general
case of game forms, and Gibbard established his Non-dominance Theorem by using the Arrow
impossibility result.

9The literature is quite vast. For good accounts of the main results, see Kelly (1978), Pattanaik
(1978), Kim and Roush (1980a), Moulin (1983), and Peleg (1984).
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Gibbard’s (1973) investigation of manipulability was, in fact, paralleled con-
temporaneously by a similar exploration by Pattanaik (1973), who did not
however insist that the voting scheme must yield a unique outcome x, but rather
that it could specify a non-empty subset C(X), the choice set of X. Pattanaik’s
results were indeed much less negative—in fact, he established some positive
possibility theorems requiring that voting schemes should be able to specify a
subset C(X), rather than invariably a single state, and he used “maximin”
behaviour in choosing over subsets of outcomes.*®

Once non-unique outcomes are admitted, there is need for supplementing the
voting mechanism by specification of (i) rules about how to break ties, and (ii)
characterization of how the people involved would behave faced with uncertainty
about the final outcome (from the subset specified by the voting mechanism).
Gibbard (1977) has extended the manipulability result to the case of a pure
lottery mechanism in selecting a Pareto efficient final outcome, and a behaviour
pattern that relies entirely on expected utility maximization. A similar result
about the impossibility of a non-dictatorial and non-manipulable mechanism can
also be arrived at by a much weaker requirement on behaviour under risk
provided the mechanism satisfies a rather stringent condition of “positive re-
sponsiveness” of the subset C(X) to individual preferences [see Barbera (1977a)].™*

Since “positive responsiveness” of mechanisms as well as individual behaviour
based entirely on expected utility maximization are both demanding assumptions,
the investigation has been continued into cases with less stringent specification. A
variety of impossibility results have emerged under alternative combinations of
requirements, with specific attempts to make the restriction on behaviour as weak
as possible [see especially Barbera (1977b), Pattanaik (1978), Maclntyre and
Pattanaik (1981), and Peleg (1982)]. The main message to emerge from all this
literature is that while the original manipulability result does need substantial
revision when the voting mechanism is not required to yield unique outcomes, the
pessimism about finding non-dictatorial and non-manipulable mechanisms re-
mains well-grounded.

The same general message emerges from the investigation of manipulability
defined more stringently by taking into account counterthreats. Various alterna-
tive ways of characterizing behaviour in the presence of response of others has led
to different formulations of “strategy-proofness”,”? but in each case the pessi-
mism about non-manipulable and non-dictatorial voting mechanisms seems to

9See also Gardenfors (1976, 1979), Gardner (1977), Kelly (1977), Pattanaik (1978), and Sengupta
(19804a).

91See also Barbera and Sonnenschein (1978), Kelly (1978), Pattanaik (1978), Barbera (1979, 1980a),
Feldman (1979, 1980b), Dutta (1980b), and Sengupta (1980a).

92 See Pattanaik’s (1978) distinctions between Types II, III and IV of strategy-proofness (Chapter 6).
Type 1 is strategy-proofness or manipulability in the absence of any response, or counterthreats, by
others. See also Pattanaik and Sengupta (1980).
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re-emerge in the reformulated format [see, especially, Pattanaik (1976b, 1976c,
1978)]. The impossibility of reasonable voting procedures that would be non-
manipulable seems to survive a good deal of variation in the requirement of
reasonableness of such procedures and in the characterization of non-manipula-
bility.”

7.4. Equilibrium, consistency and implementation ,

The focus on “honest” revelation of preferences in the literature surveyed above
has come under serious scrutiny in recent years. If the object of the exercise is
effectiveness in the sense of getting an appropriate outcome (rather than having
the moral glory of everyone being perfectly honest in reporting their preferences),
then the thing to investigate is the existence of an effective mechanism rather than
a strategyproof one. If, for example, a non-strategy-proof voting mechanism
yields an equilibrium of dishonest behaviour that produces the same outcome as
honest revelation of preferences would have, then the mechanism could well be
regarded as successful in terms of effectiveness.

Various alternative ways of characterizing an “equilibrium” have been consid-
ered. Obviously, there is no advantage in asking for a dominant strategy equi-
librium, for the Gibbard Non-dominance Theorem is exactly concerned with this
case.” Perhaps less obviously (but obviously enough), there is not much point in
asking for a voting mechanism that yields truthful ballots as Nash equilibria. If
such a mechanism were to exist, then everyone’s honest strategy would be his best
strategy given the honest strategy choice of others, and these latter could be any
set of strategies at all. Thus a mechanism that guarantees that any n-tuple of
honest strategies must be a Nash equilibrium, would also guarantee that honest
strategies must be dominant strategies. Since the latter requirement would lead to
impossibility, so would the former.

Hence, in this framework, if the solution concept is based on Nash equilibrium,
then one must admit dishonest strategies as well, and be content with Nash
equilibria such that they yield the same outcome as the true preferences would.

9See also Sengupta (1978a).

94 Gibbard’s (1973) “Non-dominance Theorem” is, of course, not a result concerned with honesty as
such. It translates into a theorem about manipulability only because with ballots as strategies, an
honest strategy has to be a dominant one. For general game forms, truth may not require dominance
in this sense. For example, in seeking implementation rules for optimum allocation of public goods the
strategies in the Groves-Ledyard mechanism in the form of declaration of “the increment (or
decrement) of each public good the consumer would like to add (or subtract) to the amount requested
by others” [Groves and Ledyard (1977, p. 796)] must make the truthfulness of such strategies
dependent on the declaration of others. The absence of non-dominant strategy equilibrium as
identified by Gibbard’s Non-dominance Theorem, in this more general context, implies nothing about
an equilibrium of sincere strategies. See also, Green and Laffont (1979), Dasgupta, Hammond and
Maskin (1979), Laffont and Maskin (1981), Chichilnisky and Heal (1981), for various aspects of
incentive compatibility.



Ch. 22: Social Choice Theory 1135

Peleg (1978) calls a voting mechanism to be “exactly consistent” if and only if
“for each profile of true preferences of individuals, it possesses a Nash equi-
librium point which yields the same social choice as that corresponding to the
profile of true preferences” (p. 153).”® It turns out that a very wide class of voting
mechanisms are exactly consistent in this sense, as demonstrated by Dutta and
Pattanaik (1978). Voting mechanisms that are exactly consistent and furthermore
not distorted by manipulation of preferences by coalitions are called by Peleg
“exactly and strongly consistent”. The score here is much more divided, and the
existence of exactly and strongly consistent voting mechanisms depends on the
minimal number of persons in a coalition that makes it a “winning” group,
compared with the numbers of persons and social states [see Peleg (1978)].%¢ If
there are at least as many states as there are persons, then at least one person
must have a veto.

It is possible to broaden the format of the problem by permitting the use of a
game form G different from the function F used for making the normative
judgment (e.g. the social welfare function or social choice function). The problem
can then be formulated as that of finding a game form G such that for any
preference situation, the best social state as judged by F would be yielded by G,
as an equilibrium outcome [see Pattanaik (1978), Maskin (1978, 1979a), and
Roberts (1979)]. The parallel literature on public goods and “revelation of
preferences” has been concerned with variants of this type of formulation.®’

Gibbard (1978) has presented, in this type of format, an impossibility result
which parallels Arrow’s theorem. Gibbard permits the normative judgment to be
based on richer information than Arrow-type social welfare functions, and indeed
in effect takes a social welfare functional SWFL satisfying unrestricted domain,
the weak Pareto principle and the absence of a “weak dictator” (i.e. non-existence
of a vetoer), and yielding a social ordering of judgments. However, the game form
used for implementation defines a “social choice function” SCF that —by virtue of
the combination of two postulated axioms—is made to relate social choice over
each pair to individual preferences over that pair. Thus, despite the cardinality of
the individual utility function, a condition much like pair-choice independence
(Condition 1%) holds for the implementation mechanism (not necessarily for the
SWFL). Assuming that there are at least four distinct social states, Gibbard

% See also Dummett and Farquharson’s (1961) characterization of “majority games”. Exact con-
sistency is quite a mild requirement. There can be many Nash equilibria, only one of which might be
“desirable” (in terms of true preferences), and most of which could be terrible. Contrast Hurwicz and
Schmeidler’s (1978) insistence on at least Pareto optimality of all Nash equilibria.

%See also Dutta and Pattanaik (1978), Pattanaik (1978), Maskin (1979a), Dutta (1980b, 1983),
Pattanaik and Sengupta (1980), Peleg (1982), and Moulin (1983).

97 Dasgupta, Hammond and Maskin (1979) have provided an extensive treatment of this class of
problems. See also the literature cited there on the related problem of incentive compatibility, starting
with the pioneering contribution of Hurwicz (1962).
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demonstrates that it is impossible for such a social choice function to guarantee
that only those elements that are optimal with respect to the SWFL will be
chosen.

Note that the approach used here dissociates the discipline of social judgment
from the act of marshalling individual utility information to pick what would be
regarded as best points according to that procedure of social judgment.®® The
richer informational structures used in Section 6 —involving interpersonal com-
parisons —are in principle admissible for making social judgments, but in fact
they can’t be used in implementation because of the limitation of the signalling
device of individual preferences pair by pair. These signals reflect individual
choices “ when players who are guided by their true utilities interact strategically”
[Gibbard (1978, p. 158)]. Despite the different formulation of the exercise, the
impossibility result turns out ultimately to be rather similar to Arrow’s impossibil-
ity theorem in the version involving non-comparable cardinal utility (presented in
Section 6.2). As Gibbard (1978, p. 163) puts it:

“...if we take the conditions needed for a cardinal version of the Arrow
theorem (Sen, 1970 [1970a here], p. 129), there are only two differences. One
is that Arrow’s non-dictatorship condition is weaker than the condition of
No Weak Dictator given here. The other, more crucial difference is that
Arrow has a strengthened version of the condition of Optimality. Optimality
here requires that all members of the choice set of the SCF be best feasible
alternatives; Arrow requires in addition that all best feasible alternatives be
included in the choice set.”

I end with some less discouraging remarks. First, various other types of
“implementation” problems can be and have been considered, e.g. implementing
social choice correspondences rather than specifically social choice functions, and
some of these offer positive possibilities for both Nash equilibrium and strong
equilibrium [see Moulin and Peleg (1982), Peleg (1982), and Moulin (1983)].
Second, procedures such as “voting by veto” [Mueller (1978)], while unattractive
in some respects, do offer scope for true revelation of preferences [Barbera and
Dutta (1982)] as well as for exact and strong consistency [Dutta (1983)]; see also
Moulin (1983). Third, domain restriction can play an important part in making
manipulability less of a problem. Indeed, the requirement of unrestricted domain
is very limiting in many economic contexts, e.g. when people can be relied upon
to prefer more to less. [On implementational possibilities with domain restriction,
see particularly Dasgupta, Hammond and Maskin (1979).] In the more traditional
format in which strategies take the form of preference rankings, the necessary and
sufficient conditions for strategy-proofness have been identified by Maskin (1976a),

98 A similar approach was used earlier by Campbell (1976), as Gibbard notes.
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Kalai and Muller (1977), and Ritz (1981). In the format of “consistency”, with
strategies restricted to preference rankings, but with various different solution
concepts (such as Nash equilibrium, the core, exact and strong consistency, etc.),
Dutta (1980b), Peleg (1982) and others have provided extensive investigations of
the domain restrictions that are adequate for the purpose at hand.

Further, a consequence of combining unrestricted domain, the weak Pareto
principle and —in the particular context of implementation—independence, is to
produce a “neutrality” result (see the Field Expansion Lemma in Section 2, and
the Strong Neutrality Theorem in Section 6). This has the effect of ruling out any
essential use of non-utility information for implementable social welfare judg-
ments. Since many public decision procedures are based on direct use of non-util-
ity information (e.g. in providing social security to the hungry, the ill, or the
unemployed) rather than on expressed utility information (e.g. basing social
security on expressions of disutility from hunger or joblessness), the informational
base for practical decision-taking is indeed a good deal wider than is allowed by
the implementation mechanisms characterized in these exercises.

Finally, the assumption that each individual’s choice depends exclusively on the
pursuit of personal utility or preference in a strategic way, irrespective of other
considerations, may not be very realistic [see Johansen (1976), Sen (1977c)].
Indeed, within the limits of such an assumption there is some difficulty in
explaining why people are ready to take the trouble of voting at all in large
elections.!® The assumption is particularly galling when the social choice exercise
is taken to be one of aggregation of judgments about what is best for society,
rather than of aggregation of personal interests.

8. Domain restrictions

8.1. Restricted preferences and voting outcomes

After establishing the impossibility theorem, Arrow (1951) had proceeded to
suggest an escape route through a domain condition that is called “single-peaked
preferences” [see also Black (1948)]. If individual preferences happen to be
single-peaked and if the number of voters happens to be odd, then the method of

99 The famous Arrow-Black condition of “single-peaked preferences” turns out to be inadequate for
strategy-proofness [see Blin and Satterthwaite (1976)]. See also Moulin (1980).

100 Op various aspects of this complex problem, see Downs (1957), Barry (1965, 1970), Olson (1965),
Tullock (1968), and Riker and Ordeshook (1968, 1973), among others. The possibility of a single voter
affecting the outcome is related to the probability of “ties”, and this probability is very low for large
communities. Chamberlain and Rothschild (1981) show that in an election with 2n +1 voters, the
probability that any one voter casts the decisive ballot is of the order 1/n.
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majority decision would yield transitive social preference [Arrow (1951, theorem
4)]. Roughly speaking, single-peakedness requires that the set of social states can
be so arranged on a line that the utility curve (“intensity of preference”) of
everyone would be unimodal - either monotonically rising, or monotonically
falling, or rising up to a maximum and falling thereafter. Such a condition looks
plausible if everyone votes according to some one characteristic, e.g. how “left-
wing” the alternative is. If the states are lined up according to that characteristic
(the more left on the line, the more left-wing the alternative), then the voters’
preferences —under the postulated one-characteristic system of ranking-—-can be
represented ‘from left to right as rising uniformly (“the extreme right-wing
hyenas”), falling uniformly (“the extreme left-wing creeps™), or rising up to the
point of “optimum” left-wingness and falling thereafter (variants of “ wishy—washy
centrists™).

Since transitivity is a property of triples, it is immediate that the required
conditions can be weakened-without losing the result-by demanding single-
peakedness over triples even if the set of all alternatives cannot be so arranged.
Other extensions appear natural, e.g. having “single-caved preferences” [Vickrey
(1960), Inada (1964b), and Ward (1965)]. Indeed, this type of condition leads to a
generalized condition called “value restriction”. To motivate this generalization,
note that single-peakedness over a triple requires that if x, y, z is the order in
which they are arranged, then for anyone i for whom xR; y, it must be the case
that y P, z. But this condition is equivalent to demanding that for all i, not (xR; y
and zR,;y), and it can be seen as simply restricting y from being a “worst”
alternative in anyone’s preference order over that triple. Value restriction requires
that for any triple x, y, z, there is at least one alternative, say y, and at least one
“value” (viz., “worst”, “best” or “medium”) such that in no one’s preference
ordering does that alternative have that value. Since individuals who are indiffer-
ent over all three alternatives in a triple do not sway the majority voting outcome,
indifference over the triple need not be ruled out, and such people are called
“unconcerned” over that triple. Let H(x, y, z) be the set of people who are not
unconcerned (“concerned”) over that triple.

Value restriction (VR)

Individual preferences are value restricted over X if for every triple in X, there is
an alternative, say x, such that the following condition holds, denoting the other
two alternatives as y and z: [Vi € H(x, y,z): xP,y or xP;z] or [Vi € H(x, y, z):
yP.xorzP;x]or[VieH(x,y,z): (xP,y & xP;z) or (yP;x & zP,;x)].

Arrow’s theorem about single-peaked preferences, suitably generalized, can
cover all value restricted preferences [Sen (1966) and Majumdar (1969b)].
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Value restriction SWF theorem

If individual preferences are value restricted over X and the number of concerned
individuals for every triple is odd, then the majority rule is a SWF, yielding
(transitive) orderings.

Since the arbitrary condition of oddness of number is a bit of a peculiar
restriction, the following result is rather less ad hoc [Sen (1969)].

Value restriction SDF theorem
If individual preferences are value restricted, then the majority rule is a quasi-
transitive social decision function QSDF.

As far as full transitivity is concerned, a sufficient condition is Extremal
Restriction, requiring that if anyone /i has an antisymmetric (strict) preference
order over a triple, xP; y & yP,z, then no one j should partially oppose this by
preferring z to x without having exactly the opposite preference of i (that is,
either not z P, x, or 2P,y & yP;x).}"

Extremal restriction (ER)
Individual preferences are extremal restricted over X, if for every triple x, y, z € X,
(Fi: xP;y & yP;z)=[Vj: zP;x=(zP;y & yP;x)].

Not only is ER sufficient for transitivity of majority decision, it is also
necessary in an interesting sense. A domain restriction for some property of the
range (e.g. that social preferences be all transitive) is necessary, in this sense, if
every violation of the restriction leads to a list of preference orderings such that
some assignment of these orderings over some number of individuals would lead
to the violation of that property of the range (e.g. would lead to intransitive social
preference). The following theorem was established by Sen and Pattanaik (1969),
and an essentially equivalent result was proved by Inada (1969).1%

Necessary and sufficient preference restriction for majority rule (SWF)

The necessary and sufficient restriction of preferences for the majority rule to be a
SWF (in particular, to yield tranmsitive social preference relations) is extremal
restriction.

As far as the weaker demand of social decision functions are concerned,
yielding acyclic social preference relations, the required restriction is less exacting.

101while ER was proposed in this form in Sen and Pattanaik (1969), Inada’s (1969) “dichotomous
preferences”, “echoic preferences” and “antagonistic preferences” fogether cover exactly the same
ground.

192See also Inada (1970), Kelly (1974a), Kaneko (1975), and Chichilnisky and Heal (1983).
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It is necessary here to introduce a further condition, viz. one that demands that in
every triple there is a limited agreement to the effect that some pair is weakly
ranked by everyone in the same way.

Limited agreement (LA)
Individual preferences satisfy limited agreement over X if in every triple there is a
pair, say (x, y), such that for all i, xR, y.

3

Necessary and sufficient preference restriction for majority rule (SDF)

The necessary and sufficient restriction of preferences for the majority rule to be a
SDF (in particular, to yield acyclic social preference relations) is that either
extremal restriction, or value restriction, or limited agreement, be satisfied.!%®

Inada (1970) showed that the necessary and sufficient restrictions for a majority
rule QSDF are also exactly the same.

With strict (antisymmetric) preferences, the necessary and sufficient condition
in both cases is fulfilment of VR.1%*

Necessary and sufficient conditions for voting rules other than majority deci-
sion, e.g. multi-stage majority decision rule, non-minority rule, semi-strict major-
ity rule, and other variants, have also received much attention,'®® but they will
not be pursued here.

A limitation of the “restricted preference” approach, on which the above
results are based, may now be noted. The restrictions considered rule out certain
types of preferences and impose no other condition about the number of people
holding one type of preference or another.'% It is possible instead to investigate
the domain conditions that have to be satisfied taking into account actual
numbers of people holding different preference orderings. To this alternative
approach, I turn in the next subsection.

8.2.  Number-specific domain conditions

The credit for pioneering the approach of number-specific constraints should go
to Nicholson (1965) and Tullock (1967). Tullock’s sufficiency condition for

103Gen and Pattanaik (1969). See also Sen (1970a), Pattanaik (1971), Taylor (1971), and Fishburn
(1972a, 1973a).

104Sen and Pattanaik (1969), Sen (1970a), and Pattanaik (1971).

1055ee Pattanaik (1971), Kelly (1971, 1974a, 1978), Davis, De Groot and Hinich (1972), Fishburn
(1972a, 1973a), Blin (1973), Sloss (1973), Kramer (1973, 1977), Ferejohn and Grether (1974), Kuga
and Nagatani (1974), Saposnik (1974, 1975a, 1975b), Salles (1975, 1976), Blin and Satterthwaite
(1976), Deb (1976), Plott (1976), Schofield (1977a, 1983a, 1983b), Slutsky (1977), Peleg (1978, 1984),
Chichilnisky and Heal (1983), Kim and Roush (1980a), and Blair and Muller (1983).

1061n fact, the meaning of “necessity” is ambiguous in this context. For other characterizations, see
Pattanaik (1971) and Kelly (1974a), among others.
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transitive majority rule has been subsequently generalized - most powerfully by
Grandmont (1978) — and it may be useful to consider Tullock’s characterization in
some detail. Consider a real plane E2. For any voter i, let a,, a point in E?2,
represent his or her best alternative, all alternatives are ranked by i entirely on the
basis of their distance from a;. The indifference curves for everyone are, thus,
circles with centre a;, not necessarily the same for different individuals.'®” Tullock
assumes that the sets of a;, that is the “centres” (or best points), are symmetri-
cally distributed over a rectangle with centre a*. The majority relation must then
be transitive.

The Tullock conditions are suitable for generalization in many different ways.
First, the uniform distribution over a rectangle can be replaced by other distribu-
tions with similar effect, e.g. uniform distribution on the boundary of a rectangle
with centre a*, or on a disc (or on its boundary) with centre a*. Second, instead
of a plane, an m-dimensional characterization can be chosen, and the result
correspondingly generalised [see Davis, DeGroot and Hinich (1972)]. The im-
portant point about Tullock’s example is that every line through a* cuts the
distribution of voters (i.e. of a;) into two parts of equal measure, and every line
that does such an equal division goes through a*. These properties have been
generalized by Grandmont (1978).

For Grandmont, preference ordering R, is defined by a, belonging to an open
convex subset 4 of E". The family of the preference relations (R ), 4 satisfy a
weak continuity property H.1, viz. the set {a€ 4 | xR, y} is closed in A. There
is, in addition, the regularity condition H.2 that if a is a strictly convex
combination of &’ and a”, then R, must be “intermediate” between R, and
R ., in the sense that R, (resp. R,.) must be a subrelation of R, conditionally
on R . (resp. R, ) holding over the relevant ordered pair.'®® Finally, Grandmont
assumes that the distribution of individual preferences represented by the distri-
bution of a; satisfies the property that there exists some a* in A such that every
hyperplane through a* produces equal proportions of a; in the two closed half
spaces, and every hyperplane with that equal division characteristic goes through
a* (condition M.1).

1071t is tempting to think—and has been often suggested—that this is a generalization of Arrow’s
single-peaked preferences from a line to a plane. It is certainly true that both sets of conditions satisfy
the condition that on any line from the most preferred point, the further away one goes the less one
likes the alternative. On the other hand, while that is all that is required in the case of single-peaked
preferences, with Tullock’s condition two points at the same distance from the most preferred
alternative must be indifferent, irrespective of the direction in which one moves (in the case of
single-peaked preferences which permits movements in two opposite directions, no such requirement is
imposed). Furthermore, the circular shape of indifference curves has to be supplemented by some
assumption about uniform distribution of a;, to get Tullock’s result.

198 That s, for any x, y, given xR, y, (xR, y = xRy) & (xP,. y = xPy), and given xR, y,
(xR, y=xRy) & (xP,y= xPy). Grandmont’s own statement is somewhat different, but
equivalent.
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Grandmont’s theorem on intermediate preferences
Conditions H.1, H.2 and M.1 imply that the majority preference relation must
coincide with R,..

As an immediate corollary, the transitivity of the majority relation follows from
the transitivity of R,., when individual preferences are taken to be transitive.

In interpreting Grandmont’s result, it should be noted that unlike in- Tullock’s
example (with circular indifference curves) the structure of individual preferences
is given a great deal of latitude here, requiring only that the family of such
preferences should satisfy a weak continuity property and the “intermediate
preference” condition. On the other hand, condition M.1 retains the demanding
numerical requirement that every hyperplane through a* would split the voters
in two equal halves. However, Grandmont shows that this condition can be
relaxed substantially.!®

Another interesting feature of Grandmont’s result is that it produces a distribu-
tion of voters such that all preference orders except R,. in effect either cancel
each other out in a majority contest, or reinforce R,. by pulling in opposite
directions. This idea of preference order combinations neutralizing each other,
leaving an intermediate ordering ruling the roost, has been explored by other
writers as well [e.g. by Nicholson (1965), Plott (1967), Saposnik (1975a), Slutsky
(1977, 1979), Gaertner and Heinecke (1978), and Matthews (1978)]. Saposnik
(1975a) shows the sufficiency (and under special conditions, also the necessity) of
“cyclical balance” in which the same number of individual preferences belong to
the “clockwise cycle” (xRyRz, yRzRx, zRxRy) as the number belonging to
the “counter-clockwise cycle” (xRzRy, zRyRx, yRxR:z). Gaertner and
Heinecke (1978) have analysed “cyclically mixed preferences”, which is a gener-
alization of Saposnik’s notion of cyclical balance. They show that the majority
decision relation is transitive if and only if it is cyclically mixed.

Using a somewhat similar approach, Slutsky (1977) has provided a complete
characterization of preference profiles that lead to consistent majority decision.
The technique of analysis involves showing the equivalence of actual preference
profiles to some hypothetical ones that are easier to analyse. The “transitive strict
preference” (TSP) equivalence is constructed by replacing preferences with indif-
ference by a corresponding set of strict (i.e. antisymmetric) preferences. The
profiles are reduced to the “equivalent irreducible society” by jettisoning groups
of persons whose combined preferences would lead to indifference among all the

1%Grandmont also demonstrates that individual preferences being single-peaked or single-caved
implies that the family will satisfy H1 and H.2, and furthermore with an odd number of voters a
relaxed version of condition M.1 (viz., his condition M) will also be fulfilled. Thus this provides an
alternative way of proving Arrow’s theorem about single-peaked preferences, and the corresponding
theorem about single-caved preferences.
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alternatives for that group under majority decision.!’® With these translations
from actual to hypothetical preference profiles, in the “equivalent irreducible
society”, agreement among the members of a winning coalition dominates the
social ranking and gives it the required consistency.

These studies—and others—have substantially enriched our understanding of
the consistency problems of majority rule and related decision procedures.

Finally, two general comments on the number-specific approach to domain
restriction may be worth making. First, even the domain conditions in the
“exclusion” form of “restricted preference” can be given number-specific inter-
pretations, so that the line between the two approaches may be less sharply drawn
than it may at first appear. For example, with single-peaked preferences and an
odd number of concerned voters, when the median voter (in terms of the position
of his “best” alternative) is identified, then it can be said that the number of
people on “one side” of him is exactly equal to the number on the “other”. Thus
the single-peakedness characteristic can be translated into a condition requiring
that such statements are well-defined (and true). Indeed, even Black’s (1948)
original theorem about single-peaked preferences took the form of asserting that
the best alternative for the median voter will win [see also Black (1958, pp.
16-17)].11

Second, in order to make the exercise worthwhile, the number-specific condi-
tions must have some intuitive meaning that helps the interpretation of the nature
of the preference configurations. Otherwise, there is the danger of merely translat-
ing the formal requirement of transitivity (or acyclicity) of the majority relation
into a more elaborately stated—but equivalent—number-specific form. When
N(x, y) is the number of people who prefer x to y, clearly a condition that
asserts that for all x, y, z, [N(x, ) = N(», x) & N(»,z) > N(z, y)|=[N(x,z) >
N(z,x)], is a number-specific requirement for transitivity —irresistably necessary
and sufficient, and obviously no less “general” than any other condition! The
merit of the conditions proposed and the characterizations provided rests in their
ability to capture patterns that have independent interest and interpretative value.

8.3. Domain conditions for Arrovian social welfare functions

While the majority rule is an interesting social choice procedures, it is by no
means uniquely so. This leads to the interesting question as to what domain

110 Gaertner and Heinecke (1978) undertake a similar “reduction”.

11 This, in fact, corresponds very closely to the form of Grandmont’s Theorem on “intermediate
preferences” discussed above, and it is for this reason that Grandmont (1978) could
claim - correctly— that “the transitivity of the majority rule when preferences are single-peaked is
indeed a particular case of the analysis of this paper” (p. 326). See also Fishburn (1972a), Denzau and
Parks (1975), Saposnik (1975a), Hinich (1977), and Gaertner and Heinecke (1978).
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conditions will be adequate when we are not confining our attention to majority
rule only. In fact, the domain conditions for majority rule were arrived at in Sen
and Pattanaik (1969) by arguments involving only certain characteristics of the
majority rule, e.g. only strong neutrality and non-negative responsiveness in the
case of value restriction. The method could be applied to various other types of
choice procedures [see Pattanaik (1971)].11? Salles (1975) posed a more general
problem—using a game-theoretic framework developed by Wilson (1972a) and
Bloomfield (1971)-by asking for necessary and sufficient ‘domain restrictions for
a SWF satisfying certain general conditions, including independence and
“Pareto-transitivity” (xRy and y unanimously preferred to z must together
imply x Pz), and found the answer to be the fulfilment of either “value restric-
tion” or a rather demanding condition which he called “cyclical indifference”.!!?

A crucial question concerns the required domain restriction for a SWF satisfy-
ing Arrow’s other conditions (viz., I, P and D), which can take the form of many
rules other than majority decisions. For a particular class of restrictions, the
necessary and sufficient conditions for this have recently been obtained by
Maskin (1976a) and Kalai and Muller (1977).'** Let 2, be the set of all
orderings of X, the set of social states. The class of domain restrictions considered
are characterized by specifying a subset % of Z, and restricting the domain of
the SWF to £7", i.e. the SWF is required to specify a social ordering R for any
n-tuple { R,} with each R, € #.1'> Maskin and Kalai and Muller concentrate on
strict (antisymmetric) orderings only.

The investigation is immensely simplified by a remarkable reduction result
established by Maskin (1976a) and by Kalai and Muller (1977). It asserts that an
n-person SWF (for any »n > 2) satisfying I, P and D exists for a particular domain
(in the class specified) if and only if such a 2-person SWF exists for that domain.
This result permits an exact characterization, independently of n, of the permissi-
ble domain for SWFs satisfying Arrow’s Conditions P, I and D [see Maskin
(19764, pp. 22-24) and Kalai and Muller (1977, pp. 462-463)], and this necessary

and sufficient condition has been called “decomposability”.!1¢

12 For various results related to domain conditions, see Craven (1971), Pattanaik (1971), Blin
(1973), K. Fine (1973), Fishburn (1973a), Sloss (1973), Ferejohn and Grether (1974), Rosenthal (1975),
Saposnik (1975b), Deb (1976), Kelly (1978), Salles and Wendell (1978), Slutsky (1979), Coughlin
(1981), Brams and Fishburn (1983), and Chichilnisky and Heal (1983).

113 Cyclical indifference requires that for any triple x, y, z, either all individual preferences are of the
form al; b & bP,c, or all of the form aP;b & bl c, with a,b,c € {x, y,z}, all distinct. See also
Salles (1976).

114Gee also Kalai and Ritz (1980). See also Kaneko (1975), Nakamura (1978), Monjardet (1979), and
Peleg (1982).

13Note that this restricts the permissible individual preferences rather than leaving them free but
restricting permissible combinations of individual preferences. In this respect the Maskin-Kalai—-Muller
conditions are quite different from conditions such as “extremal restriction”, “value restriction”, or
“single-peaked preferences”, which — following Arrow’s lead — investigate “similarity” (in a very broad
sense) among the preferences of different individuals.

116Gee also Dasgupta, Hammond and Maskin (1979) and Kalai and Ritz (1980).
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It appears that the domain restriction needed for a non-dictatorial and non-
manipulable voting mechanism (discussed in Section 7) is also exactly the same,
viz. decomposability [see Kalai and Muller (1977, pp. 467-468) and Maskin
(1976b)]. This identity helps to highlight the exact correspondence of the Arrow
impossibility theorem about SWFs satisfying U, P, I and D and the Gibbard-
Satterthwaite impossibility theorem about strategy-proof, non-dictatorial voting
mechanisms."”

Having said that, however, it is worth mentioning that the domain restrictions
have somewhat different roles in the two problems. In the context of Arrow’s
impossibility, the domain restriction is a statement about what actual preferences
people can, in fact, have. If a similar restriction is applied in the context of all
preferences in the manipulability exercise, then one is restricting not merely the
preferences that people can actually have, but also the strategies that they are
permitted to adopt. Even if a restriction (e.g. decomposability or value restriction)
were reasonable as a description of actual preferences, it does not follow at all
that such a restrictions would make sense in confining people’s strategic choices
of ballots (i.e. reported preferences). If the restriction of domain in the manipula-
bility exercise is applied to the true preferences without constraining the ballots in
any way, then the relevant domain restrictions become a good deal more
stringent.!1®

8.4. Most unlikely?

There is quite an extensive literature on the “probability” of transitivity of the
majority relation and the existence of a majority winner.'’® The calculations are
typically based on assuming that every preference pattern is as likely as any other,
and they tend to lead to most discouraging results, especially for societies with
many people and —-much more importantly—in choice situations with many
alternative states. For large communities choosing over a large set of social states,
the “probability” of a majority winner seems minute.'® But, it can be argued,

17See also Blin and Satterthwaite (1976), Chichilnisky and Heal (1979, 1983), Kim and Roush
(1980a), Satterthwaite and Sonnenschein (1981), Moulin (1983), and Peleg (1984).

118Gee Dutta (1977), Pattanaik (1978), Sengupta and Dutta (1979), and Pattanaik and Sengupta
(1980).

119Gee Guilbaud (1952), Riker (1961), Campbell and Tullock (1965, 1966), Williamson and Sargent
(1967), Garman and Kamien (1968), Niemi and Weisberg (1968), DeMeyer and Plott (1970), Fishburn
(1973a), Kelly (1974b, 1978), Gehrlein and Fishburn (1976, 1979), and Fishburn, Gehrlein and Maskin
(1979).

120However, the probability that there is a majority winner is “substantially larger” than the
probability that the majority preference relation be transitive. Indeed, the ratio of the latter to the
former goes to zero rapidly as the number of voters is increased—a point that was established by
Graaft (1965).
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that this is an odd way of going about checking the actual probabilities, since
individual preference n-tuples are results of social processes involving intercon-
nections, and preferences are not formed in real societies by an equal-chance
lottery mechanism. Given such interconnections, the plausible preference n-tuples
can quite possibly be more conducive to consistent majority decision.

This is fair enough, but analyses of plausible preference patterns in many
common circumstances have been hardly more encouraging. Kramer (1973)
established an important result by taking a case in which the set X of alternatives
can be seen as points on a multi-dimensional real space (e.g. commodity space or
policy space). If individual preferences are representable by quasi-concave dif-
ferentiable utility functions, even a very modest extent of heterogeneity of tastes
would imply that value restriction (VR), limited agreement (LA) and extremal
restriction (ER) will all be violated. Since these restrictions together constitute the
necessary and sufficient conditions for a majority rule SDF in the approach of
“restricted preferences” (see Section 8.1), the result seems damaging. In fact,
similar problems can occur even without the assumption of quasi-concavity and
even when the set X has no Euclidean metric properties at all, but has instead the
structure of a differentiable manifold [see Chichilnisky (1976) and Schofield
(1977a)]. Other decent burial grounds for majority rule have been found, and
possibilities of total cycles involving all social states have been identified.'?!

Pessimism reigns. But it is not altogether clear whether so much pessimism is
appropriate. Consider the distinction between the interest-aggregation exercise
and the judgment-aggregation exercise (discussed in Section 7.1). The assump-
tions about individual preferences made in models such as those of Kramer
(1973) and others are reasonable enough for the interest-aggregation exercise; this
is indeed how individual utility functions over private and public goods are
typically characterized.!?”? But —as was argued earlier — for the interest-aggregation
exercise the Arrow formulation of the problem may be informationally unduly
restrictive, since it rules out the use of interpersonal comparisons of utility as well
as the use of non-utility information except in very special circumstances.!? In
particular, the majority rule may be a very odd way of doing resource allocation

1215ee McKelvey (1975, 1976, 1979), Schofield (1977, 1978, 1980, 1983a, 1983b), and Rubinstein
(1979, 1980b). The literature on majority decision on multi-dimensional space (with or without
probabilistic voting, and with both “global” and “local” formulations) has developed vigorously in
recent years, following Plott’s (1967) pioneering formulation of the problem. For various distinct
problems within this general approach, see Kramer (1973, 1977), Heal (1973, chapter 2), Kramer and
Klevorick (1974), Nitzan (1975), Wagstaff (1976), Fishburn and Gehrlein (1977b), Hinich (1977),
Kalai, Muller and Satterthwaite (1977), Slutsky (1977, 1979), Matthews (1979), Ordeshook (1980),
Cohen and Matthews (1980), Coughlin (1981), and Couglin and Nitzan (1981), among others.

122 classical burial ground for majority rule is the cake division problem with strictly monotonic
preferences, with each preferring any division with more cake for himself. It is easy to show that with
three or more people when all divisions are considered, extensive majority cycles will occur in this
case.

123Gee Sen (1973, 1977b), Hammond (1976b), and Gevers (1979).
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or economic planning,'** and richer informational structures may be needed (see
Section 6). On the other hand, while the Arrow format might well be more
appropriate for the exercise of aggregating judgments of different people as to
what is good for society (e.g. whether “positive discrimination” should be
pursued, whether tax systems should be more progressive, or whether multi-
national investments should be encouraged in developing countries), it is not at
all clear that these preferences would have the characteristics on which the
negative results were based. It is, therefore, possible to argue that while the
negative results are of much analytical interest, they may not be altogether
devasting either for the judgment-aggregation exercise, or for the exercise of
aggregation of interests.

9. Independence, neutrality and liberty

9.1. Independence and Bergson—Samuelson impossibilities

In the preceding discussion various modifications of Arrow’s social welfare
functions SWF have been investigated, including — among other structures —social
decision functions SDF (permitting non-transitive social preference), social choice
functions SCF or functional collective choice rules FCCR (permitting non-binary
social choice), and social welfare functionals SWFL (permitting the use of richer
utility information). But the case of the Bergson—-Samuelson social welfare
function SWF, briefly outlined in Section 1, has not yet been further examined
here. This lacuna is particularly important to fill since it has been repeatedly
claimed that the Arrow impossibility theorem and related results do not affect the
existence of Bergson—Samuelson social welfare functions in any way [see Little
(1952) and Samuelson (1967a, 1967b, 1977)].

It has been pointed out that since the Bergson—Samuelson exercise is based on
“individual tastes as being given”, conditions of inter-profile consistency such as
independence of irrelevant alternatives, are not to be imposed on the SWF in this
case. And, it is argued, since the Arrow impossibility result is crucially dependent
on the independence condition, the result can hardly affect the Bergson-
Samuelson SWF. Indeed, “Arrow’s work has no relevance to the traditional
theory of welfare economics, which culminates in the Bergson—Samuelson formu-
lations™ [Little (1952, pp. 423-425)]. “For Bergson, one and only one of

124Under majority rule with self-seeking non-satiated preferences, social “improvements” can be
persistently carried out by cutting the income of one person and dividing the loot among the rest (two
or more), and this “improving” process can go on until the fall-guy has no income left! See Sen
(1977a). For examples of more standard economic and political problems, see Downs (1957), Frey
(1978, 1983), and Usher (1981).
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the...possible patterns of individuals’ orderings is needed” [Samuelson (1967a,
pp. 48-49)]. Hence, “it is not true, as many used to believe, that Professor
Kenneth Arrow of Stanford has proved the ‘impossibility of a social welfare
function’” [Samuelson (1967b, p. vii)].!® In a formal sense that last statement,
applied to Bergson-Samuelson SWF, is entirely correct, but it may be useful to
examine why odd beliefs like this could flourish at such places as Stanford.

For a SWF to be impossible some restrictions, obviously, would have to be
imposed on it. Until these are specified, “the impossibility of the traditional
Bergson welfare function of economics”, which Samuelson (1967a) rightly holds
to be false (p. 42), is hardly worth commenting on. It does not appear to be
Samuelson’s intention to deny the need to fulfill the condition of unrestricted
domain since the pattern of individuals’ orderings “could be any one, but it is
only one” (p. 49). Nor is the Pareto condition to be dispensed with since so many
of the Bergson—Samuelson exercises seem to use this principle [see Samuelson
(1947, chapter 8)]. Indeed, as Johansen (1970) pointed out in his illuminating
examination of the relevance of Arrow’s theorem for economic planning, “a
Bergson welfare function is essentially nothing but such a social preference
ordering which is positively associated with the individual preference orderings in
the ... Paretian sense” (p. 42). If this is all that is required of a Bergson—
Samuelson SWF, then the question of its existence would be quite trivial since the
Pareto quasi-ordering—like any other quasi-ordering—can be completed into an
ordering. But this completion can be done in so many different ways, and the
question would arise as to whether a “reasonable” Bergson-Samuelson SWF
should not fulfill some additional conditions. Arrow (1951) presumably thought
that independence and non-dictatorship would be such conditions, while Samuel-
son does not find independence reasonable in this context since he does not wish
to impose any inter-profile consistency condition.!?

It appears, however, that the Bergson-Samuelson SWF has often been com-
bined with the requirement of “strong neutrality” within a given profile of
individual preferences, and the so-called “individualistic” version of SWF makes
social welfare a function of the vector of individual utilities: W= W(u), viz. as in
(6.2) presented in Section 6.4 [see Samuelson (1947, pp. 228-229, 246), Bergson
(1948, p. 418), and Graaft (1957, pp. 48—54)]. But as was noted in establishing

125Samuelson (1967a) denies that the Bergson-Samuelson SWF need not satisfy the independence
condition: “ my formulation builds it from the beginning into Axiom 1” (p. 47). But this appears to be
the result of a misunderstanding, to wit: “if the ordering is transitive, it automatically satisfies the
condition called ‘independence of irrelevant alternatives’ (p. 43). Not at all so.

126Note that even when independence is dropped from the Arrow framework, impossibility results
can be generated by other types of inter-profile conditions. For a novel and interesting example of an
impossibility theorem without the use of the independence condition, see Chichilnisky (1976, 1982a,
1982b), who uses continuity as the inter-profile link. See also McManus (1975, 1978, 1982), and
Ferejohn, Grether, Matthews and Packel (1980).
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Arrow’s impossibility theorem, one of the main uses of the independence condi-
tion (along with unrestricted domain and the Pareto principle) is precisely to
precipitate a neutrality result (see Sections 2.1 and 6.4). In the “individualistic”
case, it is handed on a plate. Even when the scope of the equation W =W (u) is
restricted in a way consistent with the absence of inter-profile conditions, it still
follows that if in a given profile x and y have exactly the same utility
characteristics as a and b respectively (for x, y, a, b € X), then the social order-
ing of x vis-a-vis y must be the same as the social orderings of a vis-a-vis b, for
that given profile. Given the use of non-comparable ordinal utilities in the
traditional Bergson—Samuelson framework, this limited neutrality condition can
be formulated in this way.

Condition SPN (single-profile neutrality)

For any given n-tuple { R;} of individual preference orderings, for any x, y, a, b
€ X, not necessarily all distinct, if for all i, xR,y < aR;b and yR,;x < bR;a,
then xf({R;})y < af ({R,})b.

What is the effect of imposing single-profile neutrality on a social welfare
function f(-) which is also required to satisfy weak Pareto principle P and have a
domain with some diversity of preferences? It is that the social welfare function
will be dictatorial in a “single-profile” sense, viz. there will be a person j such
that all his strict preferences will be reflected in the social preference, for that
profile. A variant of this result was first established by Parks (1976a), and others
by Kemp and Ng (1976), Hammond (1976b), Pollak (1979), Roberts (1980c), and
Rubinstein (1981). A “single-profile dictator” can, of course, have the same
preference as everyone else. This won’t then be a disturbing result and can indeed
be a consequence of the Pareto Principle. Some of the authors establish their
theorems with domains that have built-in “diversity” because of dealing with the
space of income vectors, or of commodity distributions, or with directly-specified
diversity.'?’

The proofs of these single-profile results go through easily enough —a good deal
more easily than the proof of Arrow’s impossibility theorem. Much of the effort in
proving Arrow’s theorem rests in establishing “neutrality”, which is the main part
of what we have called the Field Expansion Lemma (see Section 2.1), and this is
simply given here by virtue of taking social welfare as a function of the vector of
individual utilities (i.e. by assuming the social welfare function to be “indi-
vidualistic”).}?® The independence condition is used in Arrow’s case to establish

127See Rubinstein (1981) on the logical correspondence between single- and multiple-profile results.
Note also that single-profile impossibility results do involve choosing a profile from the domain
(unrestricted, or restricted to a permissible class). The fact that such a choice is involved must not be
confused with the simultaneous use of several profiles (as in proving Arrow’s multiple-profile
impossibility theorem; see Section 2.1).

128 From the exchange between Kemp and Ng (1976, 1977) and Samuelson (1977), it would appear
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this property, but since the property is given here, it does not have to be
established. And since the end-product to be obtained is a single-profile dictator-
ship result (and not—as in Arrow’s case—the much stronger multiple-profile
dictatorship result), there is no further need for the inter-profile condition of
independence.

9.2. The Borda rule and the use of positional information

With ordinal, non-comparable utilities, the single-profile neutrality condition took
the coincidence of utility characteristics over two distinct pairs { x, y} and {a, b}
to imply that the society should rank {x, y} in the same way as {a, b}. In this
description, no attention is paid as to whether or not there are
other — “irrelevant” — alternatives in between x and y, or in between a and b.
One way of avoiding the impossibility result is to enrich the description by taking
note of the position of other alternatives (including “intermediate” states between
any pair) in each person’s preference. Neutrality can be redefined to demand that
x and y be ranked in the same way as a and b if they occupy the same position
vis-a-vis each other and vis-a-vis other—“irrelevant” —alternatives. Then the
dictatorship consequence will be avoided.'® Indeed, this relaxation will yield
enough freedom to demand the fulfillment also of some other appealing condi-
tions.!* The merits of rules that take note of such positional information, are not,
of course, confined to avoiding Arrow’s impossibility result.!*! [Borda (1781), who
put forward the first known formal rule based on such information, had presum-
ably not lost any sleep on Arrow’s paradox.]

The Borda rule can be seen as based on attaching a number to any alternative
equal to the sum of its ranks in each person’s preference ordering (e.g. in a
3-person, 3-state world, if x is first in one person’s ordering and third in the other
two persons’, then the “Borda count” for x is 3+1+1=5). The Borda rule ranks
the states socially in the inverse order of these numbers. Recently, the Borda rule

that it is not—indeed never was— Samuelson’s intention to insist on neutrality. It is certainly the case
that Samuelson (1947) made critical comments on this “extreme assumption” (pp. 223-224), and
while this did not stop him from dealing extensively with cases in which this condition is fulfilled (pp.
228-247), the traditions of economic theory do not, of course, permit one to deduce belief from
extensive use.

1290n issues raised by the case for relaxing independence, see Hansson (1973), Ray (1973), Mayston
(1974, 1975, 1980), Kamni and Schmeidler (1976), Osborne (1976), Packard and Heiner (1977), Kelly
(1978), and Pattanaik (1978), among others.

1301ndeed the eschewal of independence permits the use of a social welfare function based on
Nash’s (1950) solution of the bargaining problem; on this see Kaneko and Nakamura (1979) and
Kaneko (1980). See also Luce and Raiffa (1957), Sen (1970a), DeMeyer and Plott (1971), Yaari (1978),
and Mayston (1982).

131See, for example, Moon (1976), Rubinstein (1980b), Nitzan and Rubinstein (1981), and Mayston
(1982).
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has been nicely axiomatized involving a variable electorate [see Young
(1974a, 1974b, 1975), and also Gardenfors (1973), Smith (1973), Fine and Fine
(1974), Fishburn and Gehrlein (1976), Hansson and Sahlquist (1976), Gardner
(1977), Farkas and Nitzan (1979), and Nitzan and Rubinstein (1981)].

Gardenfors (1973) and Fine and Fine (1974) have provided a thorough
exploration of positional rules. These include “finite ranking rules”, which are
based on attaching weights according to the position occupied by an alternative in
each person’s ordering (the weights being non-decreasing function of ranks,
applied in the same way to everyone’s ordering, i.e. anonymously). The social
ranking is made to reflect the ranking of the sum of weights on the different
states. A special case of this is the Borda method. Another is utilitarianism with
“utilities” taken to be reflected by positions. The intersection of all finite ranking
rules yields a quasi-ordering exactly reflecting rank-dominance R®, when xRP y,
if and only if for some interpersonal permutation x occupies at least as high a
position in each person’s ordering as y does in the corresponding person’s
ordering,13? The axiomatic structure of various positional rules analysed in recent
contributions have enriched our understanding of the nature and operation of
these important classes of decision procedures.!*?

Positional discrimination can also be combined with the use of ordinal level-
comparable utilities, and the weights can be based on the rank of a “station”
(x, i), i.e. that of being person i in state x, in an interpersonal order of the entire
Cartesian product of X and H. While the general format will be that of ranking
social states according to the sum of weights on all stations involving that state,
the interpersonal rank-order rule IROR corresponds exactly to the Borda rule, in
making the weight on each station equal its rank number from bottom upwards.'**
If, for example, the ranking of nine stations involving three states and three
persons is given by the following: (x,1), (»,2), (2,3), (x,2), (»,3), (z,1), (x,3),
(»,1), (2,2), then the majority rule will yield a preference cycle, the Borda rule
will yield universal indifference, but IROR will yield the strict ordering xPy &
y Pz While this coincides with the Rawlsian maximin (defined on utilities), a
conflict between the two can be brought about by switching the positions of (x, 3)
and (z,2), which would leave the IROR ranking unchanged, but exactly reverse
the Rawlsian ordering to zPy & yPx. It is perhaps worth mentioning that the
“Rank-Dictatorship Theorem” (with Arrow-like conditions married to the invari-
ance restriction under ordinal level comparability OL), which was presented in
Section 6.2, would not conflict with the possibility of interpersonal positional
rules under OL because of the violation of the independence condition in these
rules.

132 Fishburn (1973a) has discussed such “permuted dominance” for strict orderings. Fine and Fine
(1974) have provided extensive analysis—and axiomatic derivation - of rules of this type.

13As a contrast, see also Brams and Fishburn’s (1978, 1983) definitive exploration of “approval
voting”, which is a flexible voting procedure without use of positional data.

134Sen (1977b, section 5), Mizutani (1978), and Gaertner (1983).
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In the last case, i.e. with interpersonal positional rules, the positional informa-
tion is used, as it were, to convert ordinal level comparability into some kind of a
devised cardinal full comparability based on ranks in the extended ordering of
X X H. In the case of ordinary positional rules, including the Borda rule, the
positional information is used, as it were, to convert non-comparable ordinal
utility information into assumed cardinal full comparability by building on the
ranks in each person’s ordering taken separately. It is the arbitrariness of
translating rank values into numerical weights that is typically found to be the
weakest aspect of both these classes of rules. Indeed Arrow’s (1951) defence of the
condition of independence rested partly on the need to avoid such arbitrariness.

9.3.  Independence versus collective rationality

There are two ways of defining the Borda rule depending on whether the Borda
counts are based on the ranks in the total set X, or in the set S from which the
choice C(S) is to be made, with S C X. It can be easily checked that while the
former, which may be called the “broad” Borda rule violates independence but
yields a transitive social ordering, the latter, which may be called the “narrow”
Borda rule, satisfies the independence condition but can yield non-binary choice
functions. The “narrow” version has the merit of providing a social choice
function — possibly non-binary —satisfying all of Arrow’s conditions, viz. U, P, I
and D. In this respect, the “narrow” Borda rule is a serious rival of social choice
functions based on the transitive closures of the majority rule, investigated by
Schwartz (1970, 1972), Bloomfield (1971), Campbell (1972, 1976), Bordes (1976),
and Deb (1977), and discussed earlier in Section 4.1.

Just as modifying the Borda rule from its usual broad version to its narrow
variant takes one across the independence-binariness line, similarly changing the
majority closure methods from their usual “narrow” formulations to the corre-
sponding broad variants will take one across the same line in the opposite
direction. The broad version of the Weak Closure Method is defined by obtaining
the transitive closure R¥% of the majority relation over the entire set X, and then
identifying the choice set C(S) for any non-empty S C X as the maximal set
M(S, R*) of S.*° This process identifies a social welfare function in the sense of
Arrow; R% is a (fully transitive) social ordering. It would, however, violate the

135 Campbell (1976) presents, inter alia, the “broad” formulation of the Weak Closure Method as
defining a “democratic preference function” satisfying the property of generating complete social
orderings and fulfilling other requirements. Independence is violated, which, Campbell argues,
“should be introduced, not as a normative restriction on the mapping of individual into social
preference, but as a technical requirement the force of which is to ensure that a social preference
function can be implemented by some iterative procedure” (p. 259).
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independence of irrelevant alternatives, since the choice set C(S) will depend on
individual preferences over the whole X, including X — S, and not merely over the
subset S. (A similar possibility exists through using the broad version of the Strict
Closure Maximality, based on P.)

The contrast between the narrow and broad versions of the familiar rules of
Borda and the majority closures bring out the fact that the Arrow impossibility
result is largely built on the tension between independence and collective rational-
ity over a large domain.!*® We can have independence or collective rationality
(but not both) from these rules, depending on whether we choose the narrow or
the broad version. There are other rules also of which narrow and broad versions
could be contrasted with the same division between independent and non-binary
procedures on one side and binary and non-independent procedures on the other.
Indeed, all complete positional rules (including finite ranking rules) can be thus
treated, as well as those variants of the majority rule that yield a complete but not
necessarily transitive relation [e.g. R, defined by Dummett and Farquharson
(1961) and extensively studied by Pattanaik (1971)].

9.4. Neuwtrality and the use of non-utility information

It was argued earlier —in Section 6 — that an escape from the Arrow impossibility
result could be found by enriching the information that could be used for social
choice. The General Possibility Theorem builds on combining poor utility infor-
mation (in particular, no interpersonal comparisons) with an effective ban on the
use of non-utility information (through the derived characteristic of neutrality).
The same applies to the single-profile versions of the Arrow theorem, tailored for
Bergson—Samuelson SWF (discussed in Section 9.1), in which poor utility infor-
mation was combined with a ban on any essential use of non-utility information
through the neutrality property of the SWF in the form W = W(u). The informa-
tional enrichment that was explored in Section 6 concentrated on the improve-
ment of the utility information, a possibility that was suggested by Arrow (1963)
himself, and the approach of SWFL with invariance restrictions [Sen (1970a)] was
based on that foundation. It is easy to recognize that the enrichment of the utility
information would have the same eliminating effect on the impossibility result in
the single-profile framework as well, and neutrality can indeed be combined with
interpersonally comparable utilities fulfilling the Arrow conditions on an ap-
propriately defined single-profile SWFL.

An alternative way of avoiding the impossibility problem in either framework
rests in relaxing neutrality and permitting the use of non-utility information,

136See Hansson (1972), Fishburn (1974a), Binmore (1976), Hammond (1977b), and Sen (1977a).
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instead of improving the utility information. Many acts of economic judgment for
the society (e.g. planning exercises) are based on taking explicit note of non-utility
information, e.g. data on hunger, or poverty, or inequality, or national income, or
violation of acknowledged rights (such as personal liberty).’*” What is less clear is
whether these non-utility data are used to get indirectly at utility information,'*
or whether selected non-utility data would have a status of its own even when
utility information is as rich as it can be. Support for the latter position from
diverse sources can be seen in Rawls’s (1971) focus on “primary goods”, the
importance attached to description of work and social relations in such analyses
as Marx’s (1875, 1887) treatment of “exploitation” and “alienation”, and in the
wide use of principles like “equal pay for equal work” in recent normative
discussions. The contrast will not be pursued further here; I have tried to do this
elsewhere [Sen (1979b, 1979¢)].1>*

It is, however, worth clarifying a distinction that seems to be sometimes
confused, partly because of the ambiguous use of the characteristic of a social
welfare function being “individualistic”. Individualism could mean
neutrality — indeed strong neutrality, so that two pairs of states {x, y} and {a, b}
must be socially ranked in exactly the same way when the individual utility
characteristics of x vis-a-vis y are exactly the same as those of a vis-a-vis b,
respectively. Alternatively, it could mean that the Pareto Principle—indeed the
Strong Pareto Principle-holds, and if x has at least as much utility as y in
everyone’s preference ordering, then x is socially at least as good as y, and if
furthermore at least one of the individual inequalities is strict, then so is the social
preference.’® Some conceptualizations of the principle that “individuals’ prefer-
ences are to ‘count’” seem to cover both characteristics [see Samuelson (1947, pp.
223-224, 228, 236) and Graaft (1957, pp. 9-10)], but it is easily checked that the
two requirements are completely independent of each other. A strongly neutral
social welfare function must satisfy the Pareto indifference rule P, but need not
fulfill the strong Pareto condition P* or for that matter the weak Pareto

137While the “ethical” measurement of inequality has been typically based on richer utility
information [see Kolm (1969), Atkinson (1970), Sen (1973), Blackorby and Donaldson (1978)], the use
of non-utility information has played a crucial role in the recent contributions to welfare-based
national income comparisons and to the measurement of poverty [see Sen (1976c, 1976d, 1979d),
Hamada and Takayama (1978), Blackorby and Donaldson (1978, 1980a, 1980b), Hammond (1978),
Takayama (1979), Thon (1979), Kakwani (1980a, 1980b, 1981), Anand (1983), Chakravarty (1983a,
1983b), Graaff (1983), Kundu and Smith (1983), Foster (1984)].

138 The problem of “recovering” utility information from non-utility data (such as incomes) may be
a very complex one in practice, because of variations of other parameters of the individual utility
functions [see Lindbeck (1983)].

139Gee also Williams (1973), Nozick (1974), Scanlon (1975), Dworkin (1978), Roemer (1982), and
Sen and Williams (1982).

140«1ndividualist” as an adjective seems misleading for both, since utility is scarcely the only
expression of one’s individuality. “Individual rights” are typically formulated taking explicit note of
non-utility information, and can also conflict with the Pareto principle (to be discussed in the next
subsection).
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condition P of Arrow, since it need not be strictly monotonic (positively respon-
sive). Similarly, a Pareto-inclusive social welfare function may still use non-utility
information for discrimination when the individual utility rankings do not coin-
cide over either pair { x, y } or {a, b}, but the individual utility rankings —individ-
ually divergent as they are—happen to be exact reflections of each other (x
vis-a-vis a, and y vis-a-vis b) in the two cases.

It seems natural to argue that of the two interpretations of an “individualistic”
social welfare function, neutrality is the more demanding. If social welfare is a
function of the vector of individual utilities only, it seems difficult to argue that it
need not be an increasing function. On the other hand, while the Pareto
indifference rule or the strong Pareto principle does lead to strong neutrality in
the presence of unrestricted domain and independence (see the Strong Neutrality
Theorem in Section 6.4), both these additional conditions are quite demanding. In
fact, traditionally the Pareto principle has appeared to be a very mild requirement
indeed, but it is clear that it has remarkable cutting power in excluding various
natural formulations of rights and liberties precisely because they make use of
non-utility information. This problem is discussed in the next subsection.

9.5.  The impossibility of the Paretian liberal

Various formulations of liberty have been based on identifying certain types of
“self-regarding” choices as being in a person’s “protected sphere”, on which that
person’s wishes should rule, and this has provided a common theme of diverse
libertarian writings from John Stuart Mill (1859) to Hayek (1960). For example,
what a person wears, or what he or she reads, may in many circumstances be
regarded as being in such a “protected” or “personal” sphere. When two social
states x and y differ only in this respect, it may be argued that libertarianism
should demand that the relevant person’s preference over this pair must be
reflected in the social preference. The requirements of liberty can be defined in a
mild form by demanding that everyone has a non-empty protected sphere, and
“minimal liberty” as a condition requires that at least two persons must have a
non-empty protected sphere each [Sen (1970a, 1976a)]. Define a person as
strongly decisive over {x, y}, if xP,y = xPy, and yP;x = yPx.

Condition M L (minimal liberty)
At least two persons are strongly decisive over one pair of social states each.!!

141 Whether these conditions are reasonable must depend, among other things, on what the set X of
social states consist of. If the variations between them involve only such “non-personal” differences as
British forces vacating Ulster, or wheat being stockpiled by the United Nations, clearly both L and
ML would be very unreasonable conditions, and in particular their non-fulfilment -would not imply
anything about the absence of libertarian decision procedures, as commonly understood. So the
usefulness of conditions of this type depends inter alia on the nature and the richness of the set X.
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The impossibility of the Paretian liberal
There is no SDF satisfying unrestricted domain (U), the weak Pareto principle (P)
and minimal liberty (ML).

For there to be two persons strongly decisive over one pair each, there have to
be at least three distinct social states. Consider first the case in which person 1 is
strongly decisive over {x, y}, while 2 is over { y, z}, with one state (viz. y) in
common. Consider the following individual orderings of the three states, viz. for
1, zP,x & xP,y; for 2, yP,z & zP,x; and for all i+1,2, zP;x. By strong
decisiveness of 1 and 2 over {x, y} and { y, z } respectively (i.e. by ML), it follows
that x Py and yPz. But by the weak Pareto principle, zPx. Thus the social
preference relation must violate acyclicity, and hence no SDF can satisfy these
conditions. Now taking the case in which the two persons 1 and 2 are strongly
decisive over {x, y} and {a, b}, when all four are distinct states, consider the
following strict orderings, in descending order:

i # 1,2 (partially specified)

(%))

Q< X |-
XS Q<N

By ML, xPy & aPb, and by the weak Pareto principle, yPa & bPx. This strict
preference cycle shows the impossibility of any SDF satisfying U, ML and P.

It is an immediate corollary of this result that there is no social welfare function
satisfying these conditions, since a SWF is also a SDF.

There are several interesting features of this theorem that are worth noting.
First, it is a single-profile impossibility result —established by considering one
profile—and applies immediately to a Bergson—-Samuelson SWF. In particular, it
makes no use of the inter-profile condition of independence.!*

Second, it makes no use of the requirement of transitivity (or of quasi-transitiv-
ity) of social preference, just of acyclicity.

Third, it can be easily extended to social choice functions, or functional
collective choice rules, by translating the pair-choice requirements to general
choice constraints. Redefine a person being “strongly decisive” over x, y as the
requirement that if xP; y, then y cannot be chosen in the presence of x, and if
yP;x, then x cannot be chosen in the presence of y, and let this convert

142 Note that both the Pareto principle and the libertarian ones have the characteristic of basing the
ranking of a pair of states on individual preferences over that pair only, which can be seen, in some
ways, as an “independence” property [see Blau (1975)]. But Arrow’s independence condition is
unnecessary for this result. Or any other condition of multiple-profile correspondence (except what
results indirectly from the Pareto principle and minimal liberty).
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conditions L and ML into L and ML. Also, consider the Pareto principle in the
general choice-functional form P presented in Section 4.3.

Choice-functional impossibility of the Paretian libertarian o
There is no functional collective choice rule FCCR satisfying Conditions U,

and ML.

While this translation is immediate [see Sen (1970a, pp. 81-82)], more complex
choice functional variants of this result can be derived by making the conditions
constrain choices over pairs only, but linking these choices with choices over
larger sets by consistency conditions of social choice [see Batra and Pattanaik
(1972b)].

Fourth, escape from this impossibility result can scarcely be found in enriching
the utility information, unlike in the case of the Arrow impossibility result
(Section 6). While some authors have considered the possibility that one’s right to
be able to do personal things without let or hindrance should be conditional on
one’s utility gain from this being large [see Ng (1971)], the libertarian approach is
to assert these rights on grounds of the nature of the choice-that they are
“personal” matters—and not on the basis of balancing the utility gains of the
person concerned against the utility losses of the nosey.!#* Liberty is, however,
one value among many, and it is possible to constrain libertarian rights by
making them conditional on not violating some elementary requirements of
utility-based justice such as Suppes’ (1966) “grading principle of justice”. How-
ever, it has been demonstrated by Kelly (1976a) that conditioning the libertarian
requirements in this way leaves the impossibility result virtually unaffected; see
also Austen-Smith (1980), Wriglesworth (1982b), and Suzumura (1983a).

Finally, the result is not based on ignoring non-utility information, as may
arguably be the case with the Arrow result (see the Field Expansion Lemma in
Section 2.1). Indeed, non-utility information is given an explicit role in the
libertarian conditions. In fact, it can be argued that unlike in the case of the
Arrow impossibility result, the basis of the impossibility of the Paretian libertarian
rests not on inadequate information, but on inconsistent use of information. The
Pareto principle insists on basing a class of social decisions exclusively on utility
information, while the libertarian principles insist on giving crucial role to
non-utility information in another class of social decisions, through the specifica-
tion of protected spheres.!* The impossibility result captures the tension between
the two.

143Cf. John Stuart Mill (1859): “...there is no parity between the feeling of a person for his own
opinion, and the feeling of another who is offended at his holding it; no more than between the desire
of a thief to take a purse, and the desire of the right owner to keep it. And a person’s taste is as much
his own peculiar concern as his opinion or his purse” (p. 140). See also Riley (1983) on Mill.

144For general studies of the analytics of a system of rights, see Kanger (1972) and Lindahl (1977).



1158 Amartya Sen

9.6. Rights and principles

Various extensions of the impossibility of the Paretian libertarian have been
discussed, and other issues in the normative theory of rights have been explored
in this context. Batra and Pattanaik (1972b) have been concerned with rights of
groups intermediate between individuals and the whole community, e.g. in a
federal country the rights of members of a state to do certain local things
irrespective of the wishes of people in other states. The “impossibility of Paretian
federalism” can be readily established on the same lines as the impossibility of
Paretian libertarianism so long as the groups involved are pairwise disjoint. The
proofs are virtually the same. Even when the groups are not disjoint, impossibili-
ties can occur if the within-group decision mechanism is not unanimity but some
other rule, e.g. the majority rule, unless the groups structure is severely restricted
[see Stevens and Foster (1978) and Wriglesworth (1982a)].

Gibbard (1974) has noted that even in the absence of the Pareto principle an
impossibility result could arise if individual rights are asserted not merely over a
non-empty protected sphere but generally over pairs for which the states differ
from each other in a respect “personal” to someone — other things given. A simple
example brings out the nature of the conflict that is envisaged. In a 2-person
community, let each person’s right to wear a hat of any design be accepted, and
the social preference is required to reflect a person’s preference about his own hat
other things given (in particular, given the other person’s hat). Now assume that
person 1 wants to wear a hat of the same design as the one worn by 2, while
person 2 wants a hat of a different design from the one worn by 1. It is easy to see
that an impossibility result can be constructed even without invoking the Pareto
principle. To assert libertarian rights consistently, they would have to be for-
mulated differently, e.g. by restricting the rights to “coherent” domains [see
Suzumura (1978)], or by making the rights conditional on “independent individ-
ual preferences” [see Gibbard (1974), Hammond (1981)].1 But even when the
rights are internally consistent, the conflict with the Pareto principle can easily
arise. (See the proof of the impossibility of the Paretian liberal, p. 1156.)

Other extensions have been presented, including a probabilistic version of the
impossibility of the Paretian libertarian [see Bandopadhyay, Deb and Pattanaik
(1979)] and its use in various game-theoretic contexts [see Aldrich (1977a, 1977b),
Miller (1977), Breyer and Gardner (1980), and Gardner (1980)].

Various ways of resolving the impossibility of the Paretian libertarian and
related results have been proposed in the literature. Some methods involve

1450n this, see Ng (1971), Gibbard (1974), Farrell (1976), Sen (1976a), Kelly (1978), Suzumura
(1978, 1983a), Hammond (1981), and Wriglesworth (1983a, 1983b).
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constraining the libertarian rights, or the exercise thereof; for formal results as
well as analyses of pros and cons of such procedures, see Gibbard
(1974), Bernholz (1974), Blau (1975), Seidl (1975), Buchanan (1976), Campbell
(1976), Kelly (1976a, 1976b, 1978), Ferejohn (1978), Karni (1978), Mueller (1979),
Austen-Smith (1980), Breyer and Gardner (1980), Gardner (1980), Suzumura
(1980, 1983a), Baigent (1981), Gaertner and Kruger (1981, 1983), Wriglesworth
(1982b, 1983a, 1983b), and Basu (1984). Other ways involve constraining the
Pareto principle, either by “amending” individual preferences, or by “counting”
only a subrelation of a person’s preference for the purpose of the Pareto
judgment, taking note of the underlying motivation behind the preferences; for
formal results, motivational analyses and assessment, see Sen (1970a, 1976a),
Farrell (1976), Suzumura (1978, 1983a), Hammond (1981, 1982), Austen-Smith
(1982), Rawls (1982), Wriglesworth (1982b, 1983a), and Coughlin (1983). Still
others have explored domain restrictions that would avoid the impossibility in
question [see Bergstrom (1970), Blau (1975), Fine (1975b), Seidl (1975), Breyer
(1977), Breyer and Gigliotti (1980), and Nalebuff (1981)]. Some have argued in
favour of limiting the scope of social choice theory through technical devices that
would amount to a refusal to pronounce judgments on choices that are personal
[see Ramachandra (1972) and Farrell (1976)]. Others have argued for incorporat-
ing rights not in the evaluation of states of affairs but as deontological constraints
on action in an essentially non-consequentialist framework; for presentations and
critiques of this approach, see Nozick (1973, 1974), Bernholz (1974, 1980),
Rowley and Peacock (1975), Buchanan (1976), Aldrich (1977a, 1977b), Miller
(1977), Perelli-Minetti (1977), Gardenfors (1981), Sugden (1981), and Chapman
(1983).

Constraints of space will not permit discussion of these various approaches
here [see, however, Sen (1983)]. It should, however, be obvious that the interest of
the “impossibility of the Paretian libertarian” and related results lies not so much
in their value as paradoxes and brain-teasers, but as grounds for re-examining the
usual formulations of individual and group rights and principles of decisions
usually accepted, including such allegedly non-controversial rules as the Pareto
principle. In the earlier sections of this paper I have tried to argue that a similar
remark can be made about the much deeper impossibility result contained in
Arrow’s General Possibility Theorem.

10. A concluding remark

It was argued earlier in this paper that under the broad hat of social choice theory
can be found quite a few different types of problems. Consider the following
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examples of “social choice” problems: choosing procedures for committee deci-
sions; fixing electoral rules; choosing a constitution for a newly independent
country; judging whether the government of a country has failed to serve the
interests of the nation; choosing methods of assessing fiscal policies; doing central
planning based on interests of the community; making systematic social welfare
judgments; constructing ethically significant indicators of national prosperity,
poverty or inequality. There are indeed things in common between these exercises,
but also fundamental differences. In a broad sense they are all “social choice”
problems, and all deal with methods of marshalling information, particularly
those relating to the people involved, to arrive at correct social judgments or
acceptable group decisions. But the nature of the possible informational inputs
vary, as do the required outputs of judgments or decisions or the required means
of settlement. The balance of moral and pragmatic considerations also varies with
the nature of the exercise. There are other differences, e.g. whether the procedures
can permit the use of discretion in interpreting individual utilities (e.g. in making
social welfare judgments) or must be rather mechanical (e.g. electoral procedures).

The nature of the exercise affects the appropriate specification of the “social
choice” format. This relates to distinctions between structures such as
social welfare functions (Sections 1 and 2), social decision functions (Section 3),
social choice functions or functional collective choice rules (Sections 4 and 7),
or social welfare functionals (Section 6). It also affects the appropriateness of
particular axioms within a given structure, e.g. whether the social welfare function
should satisfy the independence condition (Sections 6, 7 and 9), or what types of
interpersonal comparability —if any —should be used (Sections 5 and 6), or what
domain conditions would make sense (Section 8).

The relevance of the various results presented and discussed in different
sections of this paper depends on the particular nature of the exercise to which
application may be sought. It is important to bear this in mind in understanding
the rather bewildering collection of results that three decades of social choice
theory have produced. They do not all deal with the same type of exercise.
Between them they cover vastly different types of problems with only a very
general “social choice” character in common. Indeed, the richness of the subject
owes much to this diversity.
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AGENCY AND THE MARKET*
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A very widespread economic situation is that of the relation between a principal
and an agent. Even in ordinary and in legal discourse, the principal-agent
relation would be significant in scope and economic magnitude. But economic
theory in recent years has recognized that analogous interactions are almost
universal in the economy, at least as one significant component of almost all
transactions.

The common element is the presence of two individuals. One (the agent) is to
choose an action among a number of alternative possibilities. The action affects
the welfare of the other, the principal, as well as that of the agent’s self. The
principal, at least in the simplest cases, has the additional function of prescribing
payoff rules, that is, of determining in advance of the choice of action, a rule
which obliges him or her what fee to pay as a function of his or her observations
on the results of the action. The problem acquires interest only when there is
uncertainty at some point, and, in particular, when the information available to
the two participants is unequal. The main but not only case in the literature is
that where the agent’s action is not directly observable by the principal and where
in addition the outcome is affected but not completely determined by the agent’s
action. (If the latter were not ture, the principal could in effect infer the agent’s
action by observing the outcome.) In technical language, the outcome is a random
variable whose distribution depends on the action taken.

More generally, there may be many agents for a single principal. Each takes an
action, and the output of the system is a random function of all the actions. The
principal cannot observe the actions themselves but may make some observations,
for example, of the output and possibly others. Again the principal sets in
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advance a schedule stating the fees to be paid to the individual agents as a
function of the observations made by the principal.

A similar but not identical principal-agent relation occurs when the agent
makes an observation not shared with the principal and bases his/her action on
that observation. The action itself may be observable, but the principal does not
know whether or not it is the most appropriate.

The principal-agent theory is in the standard economic tradition. Both prin-
cipal and agent are assumed to be making their decisions optimally in view of
their constraints. Intended transactions are realized. The function of this theory
has the dual aspect usual in economic theory; it can be interpreted both
normatively and descriptively. It can be interpreted as advice in the construction
of contracts to guide and influence principal-agent relations in the real world, in
short, as a foundation for social engineering. It can also be interpreted as an
attempt to explain observed phenomena in the empirical economic world, particu-
larly exchange relations which are observed but not explained by more standard
economic theory.

Before specifying the model more completely, it is useful to give a few examples
of each of the two kinds of principal-agent problems. As will be seen, many
situations that are not classified under that heading in ordinary discourse can be
considered as such. I will call the two types of principal-agent problems hidden
action and hidden information, respectively. In the literature, they are frequently
referred to as moral hazard and adverse selection. These terms have been
borrowed from the practice and theory of insurance and are really applicable only
to special cases.

The most typical hidden action is the effort of the agent. Effort is a disutility to
the agent, but it is at the same time a value to the principal in the sense that it
increases the random outcome (technically, the distribution of the outcome to a
higher effort stochastically dominates that to a lower effort, i.e. the probability of
achieving any given level outcome, or better is higher with higher effort). The
physician—patient relation is a notorious case. Here, the patient is the principal,
and the physician is the agent. The very basis of the relation is the superior
knowledge of the physician. Hence, the patient cannot check to see if the actions
of physician are as diligent as they could be.

A second non-obvious example that of torts. One individual takes an action
which results in damage to another, for example, one automobile hitting another.
The care which the first driver takes cannot easily be observed, but the outcome is
very visible indeed. Although it may seem an odd use of language, one has to
consider the damager as the agent and the one damaged as the principal. Again,
in pollution control, society may be regarded as the principal, and the polluter,
whose actions cannot be fully monitored, as the agent.

An example of very special economic importance is the relation between
stockholders and management. The stockholders are principals, who certainly
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cannot observe in detail whether or not the management, their agent, is making
appropriate decisions. A very similar relation formally, though in a different
context, is that of sharecropping; the landlord, the principal here, prefers a
relation which supplies incentives for better production as against a straight wage
payment, since the landlord cannot directly observe the tenant’s diligence; on the
other hand, the tenant, too poor to bear excessive risks, wants to avoid a fixed
rent, which would maximize incentives but would expose him or her to all the
risks of weather and price. Fire insurance dulls incentives for care and even
creates incentives for arson; this is the origin of the term, “moral hazard”. Health
insurance creates similar problems, though with less moral overtones; payment of
medical fees by the insurer reduces risks to the insured but creates an incentive to
excessive medical care, more than the patient would have if he or she had to pay
the entire price. The employment relation, in general, is one in which effort and
ability acquired through training and self-improvement are hard to observe. This
has led to a theory which explains the existence of firms as a device for measuring
effort.

These have been examples of the hidden-action type of principal-agent rela-
tion. There is another class, sometimes discussed under different headings, the
hidden-knowledge type. Here the agents differ from the principal in having made
some observation which the principal has not made. The agents use (and should
use) this observation in making their decisions; however, the principal cannot
check whether or not the agents have used their information wisely from the
principal’s viewpoint. A case much studied from different points of view in the
economic literature is that of a decentralized socialist economy. The knowledge of
productivity cannot be centralized. Hence, the individual productive units have
information about the possibilities of production not available to the central
planning unit. The question arises, how this information can be tapped. The
productive units may well have incentives not to reveal their full potentiality,
because it will be easier to operate with less taxing requirements. A similar
problem occurs in decentralization within a firm. This branch of the literature has
acquired the name of “incentive compatibility”.

The original problem of “adverse selection” is drawn from insurance of several
kinds, of which life insurance is typical. The population being insured is heteroge-
neous from the viewpoint of probability of risk, say of death. In some cases, at
least, the insured have better knowledge of this probability than the insurance
company which is unable to differentiate. If the same premium is charged to
everyone, then the high-risk individuals will purchase more insurance and the
low-risk ones less. This will lead to an inefficient allocation of risk-bearing
[Rothschild and Stiglitz (1975)). Public utilities, such as telephones, also face
heterogeneous populations, though again, as in insurance, the utility provider
cannot know to which class the purchaser belongs. Nevertheless, as has been
pointed out in recent literature, some differentiation can be made by offering
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alternative rate schedules and letting the customers choose which to follow. In
these cases, the insurance company or the public utility is the principal, the
customer, with more knowledge not available to the principal, is the agent [Spence
(1977), Roberts (1979), and Maskin and Riley (1983)].

To illustrate the theoretical issues for the hidden-knowledge model, consider a
monopolistic public utility facing two types of customers, labelled H and L for
high and low demanders, respectively. Assume the absence of income effects. Let
U,(x) be the money equivalent of amount x of the public utility for type ¢
(t=H,L) so that U(0)=0, and characterize high and low demand by the
condition that U{(x) > U{(x) for all x. It is assumed that the characteristics of
the product preclude resale.

The public utility knows the proportion of high demanders but not the identity
of these individuals. It offers a total payment schedule, 7(x), a function of the
amount purchased. Assuming a constant marginal cost of production, ¢, the
monopolists’ markup for x units is

M(x)=T(x)-cx.

For convenience, let V,(x)=U,(x)- cx, the consumer’s surplus over social cost.
Since V§(x) > V{(x), all x, there is a difference in willingness to pay which the
monopolist can exploit.

Since individuals are free to refrain from purchase, no offer by the company
can yield a negative consumer’s surplus. The monopolist can try to extract all
consumer’s surplus by all-or-none offers. Let X, maximize V,(x). If the monopo-
list can identify the types of the consumers, it will offer buyers of type ¢ X, units
and charge a markup of M, =V,(X,).

In the absence of identification, this scheme breaks down. If the monopolist
offers the consumer a choice of these two offers, the high demanders will always
choose (X, My ). Since V{(x)>V{(x), it follows that Vi (%) >V, (X, )= M,,
so that type H individuals get a positive consumer’s surplus by choosing the offer
appropriate to type L individuals and only zero by the alternative choice. To
induce type H individuals to buy X, the markup demanded must be reduced so
that they are no worse off than they would be choosing (x, M), i.e. the markup
demanded must satisfy the condition

Vﬂ(fﬂ)_MI(J{:VH(fL)—ML- (C)

This can be accomplished without identification by choosing M(x)= M, for
x <X, and M(x)= Mf for x> Xx;.

This allocation is Pareto efficient, since all consumers are paying marginal cost.
The monopolist is extracting all surplus from the low demanders but not from the
high demanders. However, the allocation does not yield maximum profits to the
monopolist. To do so requires creation of inefficiency. The amount to be bought
by the low demanders will be reduced by a small amount. This will reduce the
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surplus to be extracted from them. On the other hand, the constraint imposed on
extraction of surplus from the high demanders to prevent them from switching to
the offer intended for the low demanders will become less binding. It turns out
that the loss is second-order in the reduction in purchase amount while the gain is
first-order. In symbols, let the amount to be purchased by type L consumers be
reduced from x; to x; —dx. This is enforced by locating the discontinuous
increase in markup at that point. The markup must be reduced correspondingly;
choose M*=V;(x, —dx). Since V| is maximized-at X, it must be that the
difference M* — M, is of the second order in dx.

To induce the type H consumers to choose xy; rather than (x; —dx, M{*), the
markup to them must be set so that

Via(Fg) — Mg =V (XL —dx)— M.
By comparison with (C), it is seen that
My — My = (le - ML)+ [VH(XL)_VH(EL —dx)].

The first term on the right is, as stated, of the second order in dx. But, since
V’(x.)>0, the second term is positive and of the first order. Hence, for dx
sufficiently small, the loss in markup from the type L consumers is of the second
order, the gain in markup from the type H consumers is of the first order, and
there is a net gain. This is true no matter what the proportions of the two types of
consumers are, though of course the optimal policy of the monopoly depends on
them. The optimal monopoly policy can be enforced without identification of the
types of consumers by letting M(x)= M* for x < X, —dx, and M(x)=MJ for
x>X; —dx.

Constraints such as (C), which ensure that the different types are induced to
accept the allocations allotted to them, are referred to as self-selection constraints.
The example illustrates a very general principle in hidden-knowledge models; the
optimal incentive schedule typically requires distortions (deviations from first-best
Pareto-optimal) at all but one point.

Two further illustrations of hidden knowledge in economic decision-making are
as diverse as auctions with private information [Vickrey (1961), Maskin and Riley
(1984), and Milgrom and Weber (1982)] and optimal income taxation [Mirrlees
(1971)]. Consider bidding for oil leasing when the bidders are each permitted to
engage in exploratory drilling and other geophysical studies. Each then has an
observation unknown to the others and to the seller, most usually the government
in the United States today. The problem is to design auction rules to achieve some
objective. Much of the current literature is devoted to maximizing the seller’s
revenues, rather than social welfare in some broader sense. The problem of
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optimal income taxation is that any income tax creates a distortion of the choice
between labor and leisure. This deficiency could in principle be overcome
completely if the social price of leisure (ie. the productivity or wage rate of the
individual) were observable. But in general, this information is available to the
taxpayer but not to the government. In one case the geophysical estimates of oil
field size, in the other case individual wage rates are private information and
therefore hidden knowledge to the principal.

The above discussion of hidden-knowledge principal-agent problems has con-
centrated on the case of a single principal. Further complications arise when
principals compete for agents [Spence (1973), Rothschild and Stiglitz (1975), and
Riley (1975)]. To take the opposite extreme, suppose there are a large number of
potential principals who will enter the market to exploit any profitable alterna-
tive. Consider, for example, an insurance market with a large number of compet-
ing insurance compal}iés, each of which, because of risk pooling, is approximately
risk-neutral. As argued earlier, any premium per dollar of coverage will be more
attractive to those with higher loss probabilities; insurance companies will then
have an incentive to sort risk classes by offering lower premiums per dollar
coverage to those willing to accept higher deductibles. However, in contrast to the
monopoly case, each insurance company must now take into account the effect of
other available alternatives on the type of individuals attracted to its own
offerings. To use Spence’s terminology, it is not enough that low risk classes are
able to “signal” their differences by accepting larger deductibles; such signals
must also be competitively viable.

The issue of what kind of signalling survives competitive pressures turns out to
be a delicate one. In general, there does not exist a Walrasian (or Nash)
equilibrium with the property that no principal has an incentive to introduce new
profitable alternatives. However, recent work by Wilson (1977) and Riley (1979)
has argued that equilibrium can be sustained if principals rationally anticipate
certain responses to their behavior.

Let me now turn to a simple formulation of the hidden-action model. The agent
(for the moment, assume there is only one) chooses an action a. The result of
his/her choice is an outcome x, which is a random variable whose distribution
depends on a. The principal has chosen beforehand a fee function s( x) to be paid
to the agent. For the simplest case, assume that the outcome x is income, i.e. a
transferable and measurable quantity. Then the net receipts of the principal will
be x —s(x). The principal and agent are both, in general, risk averters. Hence,
each values whatever income he or she receives by a utility function with
diminishing marginal utility. Let U be the utility function of the principal, V' that
of the agent. Further, let W (a) be the disutility the agent attaches to action a. It
will be assumed separable from the utility of income, i.e. the marginal utility of
income is independent of the action taken (the amount of effort). Note that the
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action is taken before the realization of the uncertainty and is therefore not
uncertain to the agent, though it is unknown to the principal.

Since, even for a given action, the outcome x is uncertain, both principal and
agent are motivated to maximize the expected value of utility. Given the prin-
cipal’s choice of fee function s(x), the agent wishes to maximize the expected
value of V[s(x)]— W(a). In effect, therefore, the principal can predict the action
taken for any given fee schedule. The choice of fee schedules is, however,
restricted by competition for agents. The agent has alternative uses for his or her
time. Hence, the utility achievable by the agent with the principal under consider-
ation must be at least equal to that achievable in other activities. The fee schedule
chosen by the principal must then satisfy this constraint. (The literature has
usually referred to this condition as that of “individual rationality”, a term first
used by J. von Neumann and O. Morgenstern, but this name is easily misinterpre-
ted. The term, participation constraint, has come into use recently and seems more
appropriate.)

It is interesting to note that the principal-agent relation defined as here by a
fee function is a significant departure from the usual arm’s length fixed-price
relation among economic agents postulated in economic theory. The principal
does not buy the agent’s services at a fixed price set by the competitive market nor
does the principal simply buy output from the agent. The relation is not even
describable by a contingent contract, in which payments and services rendered
are agreed-on functions of an exogenous random variable; the principal observes
the outcome but cannot analyze it into its two components, the agent’s action and
the exogenous uncertainty. Even though the underlying principles are impeccably
neoclassical, in that each party is acting in its self-interest and is subject to the
influence of the market, the variable to be determined is not a price but a
complicated functional relationship.

The principal-agent problem combines two inextricable elements. One is
simple risk-sharing; even if there were no problem of differential information,
there would be some sharing of the outcome if both parties are risk-averse.
Indeed, if the agent were risk-neutral, the principal-agent problem would admit
of a trivial solution; the agent would bear all the risks, and then the differential
information would not matter. That is, the principal would retain a fixed amount
for him/herself and pay all the remainder to the agent, who therefore has no
dilution of incentives [Shavell (1979)]. In the terminology used above, the fee
function would equal the outcome less a fixed amount, s(x)= x — ¢, where the
constant c¢ is determined by the participation constraint. Thus a landlord renting
land to a tenant farmer would simply charge a fixed rent independent of output,
which in general depends on both the tenant’s effort, unobservable to the
landlord, and the vagaries of the weather. However, this solution ceases to be
optimal as soon as the agent is risk-averse. Since all individuals are averse to



1190 KennethJ. Arrow

sufficiently large risks, the simple solution of preserving incentives by assigning all
risks to the agent fails as soon as the risks are large compared with the agent’s
wealth. The president of a large corporation can hardly be held responsible for its
income fluctuations. ‘

In the general case of a risk-averse agent, the fee will be a function of the
outcome, in order to supply incentives, but the risk will be shared. If the ability of
the agent to affect outcomes approaches either zero or infinity, then the efficiency
level which could be achieved under full irformation to the principal can be
approached with an optimally chosen fee function. More generally, there is a
trade-off between incentives and efficiency of the system considering both prin-
cipal and agent [Shavell (1979)].

For an application, consider the case of insurance with moral hazard. There
will be some insurance written, but it will not be complete. In the terminology of
the insurance industry, there will be coinsurance, that is, the insured will bear
some of the losses against which the insurance is written. Coinsurance is customary
in health insurance policies, where the insured has considerable control over the
amount of health expenditures. Similarly, in a system of legal liability for torts, in
the absence of insurance, the payment should increase with the amount of
damages inflicted, to provide incentive for avoiding the inflicting of damages, but
by an amount less than the increase in damages, so that there is a sharing of the
unavoidable risks.

More recent literature has stressed the possibility of monitoring. By this is
meant that the principal has information in addition to the outcome, an observa-
tion y. If y conveys any information about the unobserved action a, beyond that
revealed by x (technically, if x is not a sufficient statistic for the pair x, y with
respect to a), then one can always improve by making the fee depend upon y as
well as x. In the case of torts, the information used in a negligence standard
represents additional knowledge beyond the outcome, though the last is all that is
required for a strict liability standard. It turns out that if the liable party (the
agent in this interpretation) is risk-neutral, then strict liability is optimal. But
otherwise an appropriate negligence standard is an improvement [Shavell (1979)
and Holstrom (1979)). Harris and Raviv (1978, 1979) have argued that the custom
of paying lawyers (in most circumstances) by time as well as by a contingent fee
illustrates monitoring. If this idea were applied to health insurance, it would
suggest that an improvement could be achieved by making insurance payments
depend on some measure of the amount of medical services, such as frequency of
visits.

It has been shown that if the monitoring information is essentially an imperfect
measure of the action taken, i.e. y =a+ u, where u is a random variable with
mean zero, then an optimal fee policy takes the form of paying a very low figure,
independent of outcome, if the measured action is sufficiently low, and paying
according to a more complicated schedule otherwise.
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The whole discussion, to this point, has concentrated on a single agent and a
single time period. New possibilities for incentives arise when there are many
agents for a single principal or repeated relations between agent and principal.
The many-agent case offers new opportunities for inference of hidden actions (or
of hidden information) if the uncertainty of> the relation between the action (or
the agent’s observation) is the same for all the agents. In that situation, an
estimate of the uncertainty can be obtained by comparison of the performances of
the different agents, and therefore the individual actions can be approximately
identified. One can meaningfully compare the performance of each agent with the
average, for example, or use the ordinal ranking of the agents’ outcomes as a basis
for fees [Holmstrom (1982)].

A different and as yet only slightly explored problem can arise in the case of
many agents with a single principal. Suppose the principal cannot observe the
outcome of each individual but only the output of the group of agents as a whole.
This is obviously an important case in production carried out jointly, with many
complementary workers. Even in the case of certainty in the relation between
actions and collective outcomes, there are difficulties. Holmstrom (1982) has
considered the problem of a team, whose output depends on the unobservable
actions of all members. Each team member has a disutility for his or her action.
Assume for simplicity that utility is linear in the output. Then one can speak of a
social optimum, that vector of actions which maximizes total output minus the
sum of disutilities for actions. The question is, can the team devise some incentive
scheme which will induce the members to perform the socially optimal actions.
This will necessarily be a game, since the reward to each is a function of the
output and therefore of the actions of all. When there is no uncertainty, an
incentive scheme can be devised with the desired outcome in mind. Let a, be the
action to be chosen by individual i, x(a,..., a,) the production function which
gives the output of the team as a function of the actions of all members, and
W;(a;) the disutility of individual i as a function of his or her action. Then the
socially optimal set of actions is that which maximizes x(a,..., a, Vy—-LW(a -
Call the actions so defined, af,..., a}, and let x* = x(a},..., a¥) be the output at
this optimum. Choose any set of lump-sum rewards, b,,..., b,, which add up to
x*, subject to the condition that b, > W,(a}) for each i. Then set up the following
game: Individual i chooses a,. If the result of all these actions is to produce an
output which is less than optimal, no one receives anything. If the total output,
x(ay,...,a,) is greater than or equal to x*, thenindividual i receives b,. It is easy
to see that a Nash equilibrium of the game is for each individual to choose the
appropriate action, a*; that is, for each individual i, choosing a} is optimal given
the payoffs, providing each other individual j chooses a}. But the proposed game
is hardly satisfactory. It involves in effect collective punishment. More analyti-
cally, there are many Nash equilibria, of which (a},..., a}) is only one. If some
individuals shirk a little, it pays the others to work somewhat harder to achieve
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the same output. Hence, the scheme does not enforce the optimal outcome,
though it permits it.

When there are repeated relations between a principal and an agent, there are
new opportunities for incentives. Experience rating in insurance illustrates the
situation; the premium rate charged today depends on past outcomes. In effect,
the information on which the fee function is based is greatly enriched. Radner
(1981) has demonstrated the possibilities for achieving almost fully. optimal
outcomes in hidden-action situations. Suppose the principal has a desired level of
action, a*, that the agent is to implement. In any one trial, the action is hidden,
in that the outcome differs from the action by a random variable, ie. x,=a,+ u,,
where the random variables u are identically and independently distributed, with
mean zero. If the agent is in fact performing the desired action a*, then the
distribution of the x’s is known. Hence, if enough are observed, the principal
should be able to detect statistically whether or not the agent is performing
actions below the desired level. Specifically, the principal can keep track of the
cumulative sum of the outcomes. If it ever falls below a known function of time,
then the principal can assume that the performance of the agent is below that
desired. More exactly, the principal imposes a very severe penalty if there is some
time 7" such that

T
Y x,<Ta*—kloglogT.

t=1

For properly chosen k, the probability of imposing a penalty when the agent is in
fact carrying out the desired action can be made very low, while the probability of
eventually imposing the penalty if the agent is shirking is one.

I have sketched some of the leading ideas in the rapidly-burgeoning literature
on the economic theory of the principal-agent relation. We may step back a bit
from the pure theory and ask in a general way to what extent our understanding
of economic processes has been enhanced. On the positive side, there is little
question that a good many economic relations inexplicable in previously standard
analysis can now be understood. Contractual relations are frequently a good deal
more complicated than the simple models of exchange of commodities and
services at fixed prices would suggest. Sharecropping, incentive compensation to
executives and other employees, the role of dismissal as an incentive, coinsurance,
and other aspects of insurance all find a place in this literature not found in
standard economic analysis.

But it is perhaps more useful to consider the extent to which the principal-
agent relation in actuality differs from that in the models developed to date. Most
importantly, the theory tends to lead to very complex fee functions. It turns out to
be difficult to establish even what would appear to be common-sense properties of
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monotonicity and the like. We do not find such complex relations in reality.
Principal-agent theory gives a good reason for the existence of sharecrop con-
tracts, but it is a very poor guide to their actual content. Indeed, as John Stuart
Mill pointed out long ago, the terms tend to be regulated by custom. They are
remarkably uniform from farm to farm and from region to region. Principal-
agent theory would suggest that the way the produce is divided between landlord
and tenant would depend on the probability distribution of weather and other
exogenous uncertainties and on the relation between effort and output, both of
which certainly vary from one region to another; the latter has varied over time as
well. Similarly, the coinsurance provisions in health insurance policies are much
simpler than could possibly be accounted for by principal-agent theory.

In some cases where principal-agent theory seems clearly applicable, there is
very little trace in reality. In many respects, the physician—patient relation
exemplifies the principal-agent relation almost perfectly. The principal (the
patient) is certainly unable to monitor the efforts of the agent (the physician). The
relation between effort and outcome is random, but presumably there is some
connection. Yet the fee schedule is in no way related to outcome. (It is true that
liability for malpractice serves in a way as a modification of the fee schedule in
the direction indicated by principal-agent theory; but it is not applicable to what
might be termed run-of-the-mill shirking, and it requires very special kinds of
evidence.) In general, indeed, compensation of professionals has only mild traces
of the complex fee schedules implied by theory.

Even when there are compensation systems that seem closer in form to the
theoretical, there are significant differences. Consider the incentive compensation
schemes for corporate executives. They invariably have a large discretionary
component. What is the purpose of this? Why should the incentive payment not
be based entirely on observable magnitudes, profits, rates of return, and the like?

These difficulties can be explained within the terms of the principal-agent logic
but in a way that points beyond the usual bounds of economic analysis. One basic
problem is the cost of specifying complex relations. There is a large, though not
easily defined, cost to a contract which specifies payments which depend on many
variables. There is a cost to the very statement of the contract, a cost to
understanding it and its implications, and a cost to verifying which terms apply in
a given situation. Hence, there is a pressure for simple contracts, the more so
since in fact any of our models are much too simple to capture all the aspects of a
relation which those in it would deem relevant.

A second aspect of reality is the variety of means of monitoring and the
difficulty of defining exactly what they are. The world is full of performance
evaluations based on some kind of direct observations. These evaluations may not
always be objective, reproducible observations of the kind used in our theories
(perhaps the only kind about which it is possible to construct a theory). Execu-
tives are judged by their superiors and students by professors on criteria which
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could not have been stated in advance. Outcomes and even supplementary
objective measures simply do not exhaust the information available upon which
to base rewards.

A third limitation of the present models is the restricted reward or penalty
system used. It is always stated in terms of monetary payments. Actually, the
present literature has already begun to go beyond this limit by considering the
possibility of dismissal. Still further extensions are needed to capture some
aspects of reality. Clearly, there is a whole world of rewards and penalties in
social rather than monetary form. Professional responsibility is clearly enforced in
good measure by systems of eth%e)s, internalized during the education process and
enforced in some measure by formal punishments and more broadly by reputa-
tions. Ultimately, of course, these social systems have economic consequences, but
they are not the immediate ones of current principal-agent models.

All three of these limiting elements, cost of communication, variety and
vagueness of monitoring, and socially mediated rewards, go beyond the usual
boundaries of economic analysis. It may be ultimately one of the greatest
accomplishments of the principal-agent literature to provide some structure for
the much-sought goal of integrating these elements with the impressive structure
of economic analysis.
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Chapter 24

THE THEORY OF OPTIMAL TAXATION

J. A. MIRRLEES
Nuffield College, Oxford

1. Economic theory and public policy

A good way of governing is to agree upon objectives, discover what is possible,
and to optimize. At any rate, this approach is the subject of optimal tax theory.
From this point of view “optimal tax theory” is an unduly narrow term to
describe the subject, but it is neater than “theory of optimal public policy”. In
any case, 1 shall not be discussing the optimization of macroeconomic models,
which are used to treat several aspects of public policy. Much —though not all - of
what has so far been done in optimal tax theory uses the standard model of
competitive equilibrium, with rational consumers and profit-maximizing, price-
taking firms. In this way one avoids debate about the dubious relationships of
disequilibrium macroeconomics or oligopoly theory, and concentrates on essen-
tials.

The central element in the theory is information. Public policies apply to
individuals only on the basis of what can be publicly known about them. There is
little difficulty about paying the same subsidy to every individual in the economy:
there is not much more difficulty in making the subsidy depend on age. Uniform
positive taxes may be a little more difficult. Taxes and subsidies proportional to
trade in specified goods or services may also be difficult to administer with perfect
accuracy. But, subject to some minor imperfections, we can take it that most such
taxes use information that is cheaply and publicly available. Not all conceivable
public policies have this convenient property. One of the basic theorems of
welfare economics asserts that, where a number of convexity and continuity
assumptions are satisfied, an optimum is a competitive equilibrium once initial
endowments have been suitably distributed. To make distribution requires, in
general, complete information about individual consumers, for the transfers must
be lump-sum in character, that is, independent of the individual’s behaviour. It is
generally agreed by economists that the lump-sum transfers necessary to achieve
an optimum are scarcely ever feasible.! There is no way of obtaining the

!Hahn (1973) asserts that lump-sum taxation has in fact been used. This is true, though his
examples are bad ones; but it is beside the point. The question is whether optimal lump-sum transfers
are possible.

Handbook of Mathematical Economics, vol. 111, edited by K.J. Arrow and M.D. Intriligator
© 1986, Elsevier Science Publishers B.V. (North- Holland)
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information about individuals that is required except in a society of individuals
who are truthful regardless of selfish considerations. A theorem supporting this
view is given in Section 3 below.

Widespread agreement among economists that optimal lump-sum taxation is
impossible in practice came long before analysis of optimal non-lump-sum
taxation. This is surprising. Possibly too many economic theorists were chiefly
interested in the supposed merits of the undistorted competitive price system; but
socialist economists did not fill the gap. Perhaps distaste for the welfare function
was a more effective barrier to progress. It is true that Bergson and Samuelson
used welfare functions in their work on the fundamentals of welfare economics.
But those more closely concerned with policy issues would not have thought the
welfare function, embodying interpersonal comparisons of welfare, a practical
tool of analysis. In this century, economists have usually preferred to analyse
empirical propositions of doubtful validity rather than analyse the consequences
of value judgements, even when these might have been expected to command
more widespread agreement.

There are, it seems to me, only two promising approaches to making well-based
recommendations about public policy. One is to use a welfare function of some
form and develop the theory of optimal policy. The other is to model the existing
state of affairs in some manageable way, and on that basis to display the likely
effects of changes in government policy, these effects being displayed in sufficient
detail to make rational choice among alternative policies possible. If a welfare
function were used to evaluate the changes predicted, the second approach would
come fairly close to the first, and in fact there is then a close theoretical
relationship. But the second method could concern itself with presentation of
effects rather than their evaluation. For example, the effects of policy changes on
income distribution can be presented graphically. This approach is open to many
objections as it is practised, and it is not easy to see how these faults could be
avoided. In the first place, the particular way of presenting effects is not the
outcome of systematic analysis, but is chosen quite informally. Secondly, the
presentation is liable to divert attention completely from matters that could be
important. In the income-distribution example, people presented with income-
distribution pictures are unlikely to consider how these judgements should be
affected by differences in relative prices. Thirdly, summary variables may be used
which no plausible welfare judgements would validate. The use of Gini coeffi-
cients in the presentation of income-distribution effects is, I think a case in point.?
The user of such figures is all too likely to regard bigger as better. The fact that
the summary variable is precisely intended not to be a welfare function, or
argument in a welfare function, is no help in avoiding misuse.

There are then some practical arguments in favour of using welfare functions to
analyse public policy. But unless there are stronger cases for some welfare

2Sen (1973, pp. 29-34) makes a moderate case for this measure.
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functions than for others, the formal derivation of properties of welfare-maximiz-
ing policies is a pointless exercise. It turns out that some of these properties are
independent of the welfare function; but optimal policies are not. For much of
the theory, one must bear in mind what kind of welfare function is likely to be
satisfactory. Furthermore, some of the most interesting results obtainable in this
area are numerical calculations for specific welfare functions. For this reason, too,
optimal tax theory is a field where econometric work is of considerable interest to
the theorist, and the needs of theory a guide to the econometrician.

The models to be discussed are firmly based on a distinction between public
and private information. The government deals with an economy of consumers,
producers, and possibly other corporate institutions, such as charitable bodies.
These private individuals and institutions may know things the government does
not know, such as a specific person’s income-earning potential. The simplest
assumption is that, in respect of such individual characteristics, the government
either observes and knows the precise truth, or knows nothing to distinguish the
individual from anyone else. Thus we usually exclude the realistic possibility that
the government could at a cost improve its information; or that the government
has information about individuals that is not completely reliable. But the theory
can be expected to throw light on the magnitude of the gain from additional
information of this kind. Something will be said about the use of imperfect
lump-sum taxation, based on individual characteristics observed with errors, in
Section 3.

Another aspect of public policy omitted from the basic models is the evasion
and enforcement of government policies. From one point of view, the problem of
enforcement is one of getting information. A firm reports its profits and pays tax
accordingly: the profit tax is a policy tool that relates tax payment to reported
profits. Actual profits may or may not be equal to reported profits; so there are
other rules relating tax payments—this time known as fines and imprison-
ment —jointly to reported profits and a more accurate measurement of actual
profits made, at a cost, by government agents. Again, in certain countries, what
the government servants report actual profits to be may be influenced by bribes.
This brings in another set of considerations, where transactions are necessarily
personal, unlike transactions in the standard competitive model. Since, in the
basic optimal tax models, states of information are fixed, personal transactions,
whose terms are specific to the individuals involved, need not be considered. But
transactions of this kind — which are common in the real world, particularly in the
capital market—would be an important subject of study in a complete theory of
the administration, enforcement and evasion of the tax system.?

3A more straightforward treatment of administrative costs has been initiated by Heller and Shell
(1974).



1200 J. A. Mirrlees

The range of public policy contemplated in optimal tax theory is quite wide.
Besides taxes and subsidies themselves, which may be related to any transactions
between individuals, firms, other corporate bodies, foreign countries and individu-
als, and government and its agencies, the theory should also be prepared to
encompass the use of quantity controls and restrictions, and the control of
information flows, for example in training programmes or public advice. Also the
government and its agencies can make expenditures or set up productive activities
itself. Public expenditures may be undertaken to meet international obligations,
or to benefit individuals, corporate bodies, or groups of these. A first requirement
of the theory is that one finds a convenient, simple notation that will encompass
all such policy variables without unduly complicating the analysis. In fact, despite
the range of possible policies, the basic relationships are usually quite simple and
similar. It is good to cultivate the art of seeing specific policy instruments as
instances of the general possibilities of policy whose modelling we are to discuss.

It will be noticed that the list of policy instruments in the previous paragraph
does not include certain policies which rely for their operation on disequilibrium
states of the economy. Deficit finance, price control, wage and income policies are
instances of non-equilibrium policies. It should be possible to apply the methods
of optimal tax theory also to models allowing disequilibrium.* This seems to be
an interesting area for further research.

In the next section, the common mathematical form of optimal tax problems
will be explained, and certain basic features and issues discussed. In subsequent
sections, we shall look at a variety of cases. After dealing with lump-sum taxation
in Section 3, we examine linear taxation in Sections 4 and 5. Sections 6 and 7 are
devoted to the theory of income taxation and non-linear taxation generally. The
discussion is concluded largely in terms of taxes and subsidies. Models with
individual uncertainty about the effect of policies are discussed briefly in Section
8. Some remarks and results about computation and approximation are collected
in Section 9. After some concluding remarks, constituting Section 10, Section 11
provides some brief notes on the literature.

This paper does not contain a thorough survey of the literature on optimal tax
theory. Neither the time nor the facilities for such a survey were available. It is
rather an account of what seem to me the fundamental parts of the theory, with
emphasis on the mathematical problems. Much of the published literature deals
with economies in which all individuals are identical. Since this case does not
seem to me especially interesting or useful, it will not be given much attention.
Interesting and important areas which are neglected are the analysis of an
international economy, where the impossibility of lump-sum transfers should have
many interesting consequences; and the study of variable population.

4 Dixit (1976) has looked at some issues in a temporary equilibrium model.
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2. Optimization subject to maximization constraints

Problems in optimal tax theory have a characteristic form. To bring this out,
consider three typical models.

In the first, the government sets commodity taxes ¢ = (t,,..., t,,) proportional to
trade in the n commodities. Producers face prices p =(py,..., p,), and their
production activity is uniquely determined by these prices. Writing y for the
aggregate net production vector, and x” for the net demand vector of consumer A
(there being H consumers), market clearing requires

H

2 x"=y(p). (2.1)

h=1

At the same time, consumers maximize utility, and we have for h=1,2,..., H,

x" maximizes u"(x)
subjectto (p+1t)-x<b"(p) s (2.2)
and x€ X,

where b, is the profit income of the consumer, which in the absence of profit
taxation is simply a function of p; and X, is the consumption set of consumer #,
u” his utility function.

A rather general form for the welfare function that government seeks to
maximize is

wi(x', x%,...,x").

In the problem outlined, W is to be maximized subject to the constraints (2.1)
and (2.2). The first of these constraints is of familiar type. The second group of
constraints looks quite unlike those encountered in elementary constrained maxi-
mization problems, for it involves maximization itself with respect to some of the
variables, in this case the x”, while other variables p and ¢ are parametric.

It will be noticed that, when the u” are strictly concave and the X, convex, the
apparently complicated form of (2.2) is of no great consequence, because we can
write

xt=x"(p+1,6"(p)),

just as the supply functions y( p) may be derived from profit maximization. This
feature is specific to problems with linear taxation.

The second problem makes a common, but generally unsatisfactory, assump-
tion that all consumers react in the same way to the government’s policy
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variables. The government provides a facility, such as education, to some homoge-
neous groups of consumers. The supply of the facility is measured by a real
number z which happens to be equal to its cost. The cost is met from the taxes
paid by the beneficiaries, and taxes T, obtained from the rest of the community.
The tax paid by the beneficiaries is a function T;(y), of their labour supply y.
This function is to be taken as given. The welfare function has as arguments the
utility #(y, z) of beneficiaries, and the tax T; paid by the rest of the community.
Thus the problem is

maximize W(u(y,z),T,), (2.3)
»,2,Tp

subjectto z=Ty+T,(y), (2.4)

and y maximizes u(y, z). (2.5)

This problem is a rather special and artificial one, but shows how naturally a
maximization constraint arises. In this case there would be no reasonable pre-
sumption that u be strictly concave in y for all z, and therefore no reason to
suppose that we can replace (5) by writing y = y(z).

The third problem is that of optimal income taxation, where there are two
commodities, a consumption good and labour, and the population is an infinite
one where individuals are characterised by a continuous parameter A, distributed
with density function f. The income tax takes a net amount #(wy) of consump-
tion good from a consumer who supplies labour y, the wage rate being w.
Consumer 4 has utility u(x, y, h), x being his consumption, and x = wy — t(wy).
The welfare function is

W= [ulwy=t(wy),y,h)f(h)dh. (2.6)
This is to be maximized subject to the constraints that

y(h) maximizes u(wy —t(wy), ), (2.7)
for all A; and the production constraint

f[wy—t(wy)]f(h)dhsG(/yf(h)dh). (2.8)

Furthermore, the wage is the marginal product of labour,

w=G'([yf(h)dh). (2.9)

In this formulation it has been assumed that all profits go to the government:
otherwise the consumer’s budget constraint would have to be modified.
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Each of these problems can be written in the form

maximize W(x, z)

subjectto (x,z)€ 4
. . (2.10)
and x maximizes U(x’, z)

subject to  x’ € X(z)

Generally, the set A4 represents technological feasibility, and the relationship
between production and prices. The maximization constraint represents consumer
and producer behaviour. The set X(z) is the intersection of the set of definition of
the function U(., z) and other constraints imposed by government.

There could be many maximization constraints, but in each of the above
problems they can be written as one. For instance, in the third example, the
function y(h) is chosen to maximize

Julwy —t(wy), y) £(h)dh,

and this single maximization encompasses the behaviour of all consumers. This is
possible because of the absence of consumption externalities. It will also be
noticed that in this case the constraint imposed on consumers by taxation is
incorporated into the utility function, and the set X(z) is simply the set of y(h)
that are consistent with non-negative consumption and labour, i.e. that satisfy
0 < y(h), t(wy(h)) <wy(h). It usually seems best so to transform a problem that
the sets X(z) reflect only consumption feasibility, and can often be understood
implicitly from finiteness of the function U. It will be seen below that transforma-
tions of problems into convenient form play an important part in the theory. The
first and third problems, as set out above, are not in a good form for mathemati-
cal analysis: in fact they are much simpler than they look when the economics is
first set up mathematically.

In some cases the control variables z and the behavioural variables x are
numbers or vectors in finite-dimensional vector space. In other cases, such as our
third problem, they are functions. (z might even be a subset of finite- or
infinite-dimensional space, but I know of no problem that has been analysed
directly in this form.)

Granted that (2.10) is the form of problems in optimal tax theory, we have to
deal with two issues. The first is that concavity of W and convexity of A4 are not
usually implied by the natural assumptions of the problem. Therefore theorems of
concave programming are not applicable; and first-order conditions for optimal-
ity are unlikely to be sufficient conditions. These issues will be taken up as they
appear in the various models: the optimal tax theorist must always bear them in
mind, and look for ways of circumventing them.
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The second issue is the nature and treatment of the constraint that [leaving
X(z) to be understood]

x maximizes U(x’, z). (2.11)
If U is differentiable and strictly concave, (2.11) is equivalent to
U.=0, - (2.12)

which can be handled as a normal set of constraints, although it is unlikely to
define a convex set. But that takes us back to the first issue. In many interesting
cases, U is not concave in Xx, at least not for all z: this is so for the second and
third examples above.

There are two ways of handling (2.11). We could replace (2.11) by the rather
large set of constraints, with new variables,

U(x,z)=(x,z), allx’ (2.13)

In almost all interesting cases, this is an uncountable infinity of inequalities,
which may therefore be delicate to handle: but the reduction to (2.13) can be
useful. The alternative method is to examine directly the set of (x, z) defined by
(2.11).°

It may be helpful to do this first for a special case (which has no economic
significance).

Example 1

x and z are scalars.

Find z to maximize — (x —1)*— (z —2)
subject to x maximizes U(x,z)=ze <+ 4e-(—1°

We begin by describing the constraint set. The first-order condition for maximi-
zation with respect to x is

z(x +1)e*<"+1)2+(x —1)e‘("*1)2= 0,

5The recently developed branch of differential topology known as catastrophe theory (based on
work of R. Thom) studies the set of (x, z) such that U, = 0, and particularly the set of z for which the
local behaviour of x satisfying U, = 0 is especially noteworthy. The study of the set of (x, z) such that
x maximizes U is in some ways closely related. Brocker (1975, p. 145) refers to the Maxwell convention
as describing this kind of problem. But the features of these sets that are of interest in optimization
are, by and large, quite different from those that are of interest in the dynamic analysis of systems,
which has so far been the main motivation of catastrophe theory. In particular, the catastrophe points z
at which det U_, = 0 are rather unimportant optimizations.
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i.e.

_1=x 4
z=1 % (2.14)
For x between 0.344 and 2.903 there are three values of x satisfying (2.14), and it
still remains to discover which of them actually does the maximizing.

To settle this, we observe that

U(z, x)_U(Z, - _x) = (Z __1)(6—(x+1)2__e_(x_1)2)
= —(z-1)(e**—1)e~ >+,

so that for fixed z >1, U is less for positive x than for negative; while if z <1, U
is greater for positive x than for negative. Therefore the maximum of U occurs
for positive x when z <1, for negative x when z >1. In either case (as is readily
verified) this identifies the desired solution of (2.14) uniquely. The points of the
locus (2.14) for which x maximizes U form two closed connected subsets of the
locus. When z =1, U is maximized by x = +£0.957.

It is clear, by sketching contours (x —1)2+(z —2)? = constant in a diagram
that the solution of the maximization problem is

x =0.957, z=1.

This solution is not obtained if one treats the problem as a conventional
constrained maximization problem with the first-order condition (2.14) as con-
straint. The Lagrangian is then

eIV ()2 _1—x 4x
(x—=1)"=(z 2)+>\(z e )

whose derivatives are zero when

2(z-2) =,
2-
z(x_1)=;4_x_2_2 ax
(1+x)
_1“X 4x
z—1+xe i
ie. when
_1=x 4
z—1+xe ’
. R AY
2z(2—z) = (1-x7)

A+ x)(2x2-1)
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There are three solutions:

(1) x = 0.895, z=1.99;
(11) x =0.420, z=2.19;
(I)  x=-0980, z=1.98.

The first clearly gives the largest value for the maximand, —(x —1)% —(z —2)?,
but our previous analysis shows that x does not maximize U(x, z) for this value
of z. As a matter of fact, x is a local maximum, but not a global maximum. The
second solution is ineligible on all possible grounds: x is a local minimum of
U(x, z). The third solution, on the other hand, has the property that x is a global
maximum of U(x, z), so that it does satisfy the constraint of the original problem.
But it is not the solution of that problem, and indeed gives a much lower value of
the maximand than is actually possible.

This example shows that it is not legitimate to attempt to solve the problem by
substituting first-order conditions for the maximization constraint. Furthermore,
and this deserves emphasis, the example, though complicated, is in no sense
special. Any moderate variation of the functions involved yields a problem with
the same properties.

In order to understand the form of the set®

M = {(x, z): x maximizes U(x’, z)},

in general, we should take U to be a smooth (C*) function on (m + n)-dimensional
Euclidean space. We do not want to examine M for all possible smooth U, but for
“almost all” U, excluding pathological or special cases. In general, for each z, U
has a finite number of distinct maxima, x,(z) (i =1,...,r). Provided that the
matrix U, of second derivatives is of full rank m at each of these maxima, the x;
are smooth mappings of z. Then

U(x,»(z),z.)—U(xl(z),z)=O, i=2,...,r, (2.15)
and also
Ux(xi(z),z)=0, i=1,...,r. (2.16)

Regarding (2.15) and (2.16) as equations for z, x4,..., x,, we have r —1+ rm
equations and n + rm unknowns. That is to say, the set of (z, x,(z),..., x,(z2)) is
contained in the inverse image of (0,...,0) by the mapping

(z,x15-0rx,) > (U(x3,2)=U(xy, 2),...,U(x,,2) = U(xy, 2),...,
U/(xy,2z2),...,U(x,,2)),

$The discussion of M owes a great deal to discussions with Kevin Roberts, who formulated the
theorem about the essential maximum to the number of maxima recorded below.
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from E"*™ to E"~ 1% For almost all functions U, (0, ...,0) should be a regular
value of this mapping when x,,..., x, are distinct. Provided that is the case, there
will be a (n — r +1)-dimensional neighbourhood of (z, x;, ..., x,) that also maps
into (0,...,0). In other words the set of z for which U has r distinct maxima is of
dimension n — r +1; and the corresponding subset of M has the same dimension.
In particular, there are no z with r >n+1, i.e. more than » +1 maxima, for

general U.
In Mirrlees and Roberts (1980), written after the present chapter, the following
theorem was proved: .

For almost all” C* functions U, the number of distinct maxima is less than or
equal to n +2 for all z, and the dimension of the set of points of M correspond-
ing to z with r distinct maxima is less than or equal to n +1—r.

It should not be supposed that, since dimension falls with the number of
distinct maxima, points with a single maximum are almost certain to give the
answer in actual optimization problems. Points (x, z) corresponding to r maxima
essentially form the boundary to the set of (x, z) corresponding to » —1 maxima.
Thus, broadly speaking, the solution to an optimizing problem is just as likely to
be a value of z with many maxima as with few, subject to the overall bound
n+2.

The economic significance of this is that an optimum may well leave consumers
indifferent among several options, only one of which the government would like
to see chosen. Also the optimum can easily be something of a corner solution. To
bring this out consider how one would have to solve a general problem of the
form

maximize W(x, z)
subjectto G(x,z)=0 ). (2.17)
and x maximizes U(x, z)

Using the theorem stated above, we can express this in a more convenient form
for almost all U. Not only do we know that when x maximizes U(x, z),
U.(x,z)=0, but also there are only a finite number of x’ that maximize U, and
these also satisfy U, = 0. Thus x maximizes U if and only if U, =0 and

U(x,z)2U(x’,z), all x’

2.18
such that U,/(x’,z)=0 (218)

and we can have equality in the constraints (2.18) for at most n +2 values of x’.

7The set of such functions contains a countable intersection of open dense sets in the Whitney or
strong topology.
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In this way we can replace the constraint “x maximizes U ” by a finite number of
equations and inequalities. The problem can therefore be treated as a standard
Kuhn—-Tucker problem.

Provided that certain regularity conditions are satisfied, it is necessary for (x, z)
to be an optimum, that there exist a scalar A, an m-vector p, and scalars »’, one
for each x’ satisfying U, = 0, such that

L(x,z)=w+AG+U-p+ Y v {U(x,z)-U(x", z)} (2.19)

have zero derivatives with respect to x and z. The summation is over all x’
satisfying U, = 0, and each »’ > 0 with strict inequality only if U(x, z) = U(x’, z).
Differentiation of L yields

W, +AG, +U, -p=0, (2.20)

W,+ MG, + U, -p+ 2 v'{U(x,2z)-U(x’,z)} =0. (2.21)

(2.20) has simplified because the last terms drop out, as U, (x, z) and U,(x’, z)
both vanish.

In principle, the equations we have found are enough to determine a finite
number of solutions, one of which is the optimum. The chief difficulty is that the
set M and its structure must be known before (2.21) can be found explicitly. To
use the Lagrangian method, we would need to try successively z for which the
maximim is unique (when the last terms drop out), then z with two maxima, and
so on until all possibilities have been tried. Unfortunately, the determination of
the set M of maxima for every z must usually be difficult and require much
computation.

Nevertheless, certain lessons can be drawn. Granted the difficulties in handling
the general problem, it is important to find conditions under which it simplifies,
particularly under which one can be sure that the optimum occurs where there is a
unique maximum for U. It is also important not to be lulled into believing that
solutions in these cases have a character that is universally applicable.

One of the most striking features of these problems is that, as the number of
control variables (the dimension of z) increases, the possible extent of consumer
indifference in the optimum increases. This suggests that when the government
policies are functions, i.e. infinite-dimensional, it can be optimal for consumers to
have continuous ranges of indifference. It can even be the case that this idea
simplifies the task of solution, because indifference over a range determines the
form of optimal policy over the range; just as knowledge that the optimum is at
an (n + 2)-maximum virtually determines optimal z in the class of problems we
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have been discussing. On occasion it is possible to discover quite easily conditions
sufficient to imply that the optimum has this form.

3. Lump-sum transfers

In this and the following sections, a common model will be used. It will be useful
to establish notation.

x" = net demand vector (i.e. consumption net of endowment) of consumer,

ul, Xh= utility function and consumption set of consumer A.

Either there are a finite number of consumers H, or 4 is continuously distributed
and non-negative with density function f.

y = aggregate net supply vector of private producers,

Y = aggregate production set,

y/ =net supply vector of producer j,

Y/ =production set of producer J,

z =net supply vector of government, being the public production vector
minus the public consumption vector,

Z = set of feasible z,

q = prices faced by consumers,

J4 = prices faced by private producers.

It will be assumed that u” is differentiable and concave and X" convex. This is
rather stronger than assuming convex preferences, but convenient. Private pro-
duction sets are convex unless otherwise stated. Each #” is a strictly increasing
function of its arguments.

Let the welfare function be individualistic, i.e.

w=0(u,...,u") (3.1)

in the case of a finite population. W is smooth and an increasing function of all
u” Tt is interesting first to analyse the problem when all possible policies are
available to government, partly because we can introduce some techniques that
prove useful later. If all policies are possible, the government can impose on each
consumer separately a budget set B"(p), and have each producer maximize
profits. (There is no interest here in considering more general forms of production
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control.) Then the constraints in the optimization are

x" maximizes u"(x) } (3.2)
subjectto x€B*(p)n X"/’ |
»7 maximizes p-y.}, (3.3)
subjectto ye€Y/

Yxh=Yyl+e, (3.4
h J

zEZ. (35)

By the fundamental theorem of welfare economics, it is known that the solution
to this complicated looking problem takes the simple form (when every consumer
is in the interior of his consumption set at the optimum)

B"(p)={x:p-x—b"}, (3.6)

where the scalars b" satisfy

Yo=Y p-y +p-z¥, (3.7)
h

J
y7* and z* being the optimal values of y/ and z.
Using the indirect utility function, we state a rule for the optimal lump-sum

transfer b”. Let

v*(q, b") =max{u"(x): g-x<b", xe X"}, (3.8)
and

V(g,b',...,b")=2(v'(z,bY),...,07(q, b™)). (3.9)
Then optimal b* = (b%",..., b¥") maximizes

V(p, b) subject to the constraint (3.7). (3.10)
The first-order condition for this is that

v/ /b =X\, h=1,...,H, (3.11)

for some scalar A. This familiar condition may also be expressed by using the
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expenditure function
E"(q,u") =max{q-x:u"(x)>u"}. (3.12)

With this notation we can say that optimal utility levels u* = (u'",...,u"")
maximize

Q2(u) subjectto Y E*(p,ut)<X p-y/"+p-z* (3.13)
h J

The assumption that u”(x) is a concave function implies that E* is a convex
function of u”: E! > 0. The first-order conditions for (3.13) are

02/ du* = \E™. (3.14)

The objections to assuming it possible to make " a function of 4 are, first, that
consumers may not choose to give the government correct information about their
utility functions; and, second, that, even if consumers were willing to tell the
truth, it would be costly to obtain the information. These objections will each be
formalised.

To capture the first objection we need a formulation of welfare with more
content. The most powerful welfare functions are those based on the idea that
individuals are basically the same, but vary in endowment, abilities, and sensibili-
ties. These differences can be taken to be differences in the significance of trade
for utility. A simple formulation (ignoring differences in material endowment) is

u"(x)=u(hxy,..., h,x,), (3.15)

with the consumer described by n parameters A,..., h,. If, for example, com-
modity # is labour, and labour has disutility, larger 4, means labour is harder, or
equivalently, the ability (or inclination) to provide labour is less. Similarly 4, can
represent the ability to appreciate wine. If individuals are identical, welfare ought
to be a symmetrical function of utilities. For concreteness and convenience, take
an additive function

2(u) = [uf(hy,.... h,)dhy,....dh,. (3.16)

If the government must rely completely on individual report for its knowledge
of an individual’s A, and individuals are truthful only when they do not lose by it,
either B” must be independent of 4 (so that the government does not use
observations of &), or u” must be independent of 4. We shall see below that,
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under some plausible assumptions, the latter is the better alternative. It may be
more interesting to suppose that the government can obtain information about A
by some form of testing. The leading examples are abilities, where an individual
can easily pretend to less ability than he truly has, but would find it difficult to
prove he has more. (Uncertainties of observation will be mentioned later.)
Supposing then that individuals can misreport A; only by claiming it is greater
than in fact it is, an h,dependent policy can be administered only.if, in the
outcome,

v(h)=u"(x*) (3.17)

is a non-increasing function of A;. The following result is then of interest.
Theorem 3.1

Let the utility function be (3.15), and the welfare function additive. In the
first-best optimum, v is an increasing function of A, if commodity i is always a
normal (i.e. not an inferior) commodity.

Proof (illustrating the convenience of the expenditure function in these prob-
lems)

We have seen that, at the optimum,
Ei(p,v(h))=A. (3.18)

With the utility function (3.15), E* takes the form

Eh(p,u)=E(ﬂ,...,&,u). (3.19)
Y

Therefore differentiation of (3.18) with respect to A; yields

dv P

uuﬁi_E _0,

E uiﬁ“

Thus

Pi

E

x¢

i

v _ P9
“oh, h,du

H

(3.20)

where x{=(9/dp,)E" is the compensated demand function for commodity i.
Normality means that (9 /du)x; > 0; and concavity of « implies E,, > 0. There-
fore (3.20) implies dv/dh;> 0 as claimed. O
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This theorem shows how unlikely it is that optimal lump-sum taxation is
feasible. But the constraint that v be a non-increasing function of the A; still
implies that all taxation should be lump-sum in character. It does not, in all
circumstances, imply that utility should be the same for everyone. The next result
includes one of the cases where equal uiility is optimal. We go back to a more
general form for u”.

Theorem 3.2

Let welfare be individualistic, and consumers be characterized by m parameters
hy,..., h,. If it is required that utility be a non-increasing function of the 4,, the
optimal budget sets have the form

Bh={x:p-x<b"}.
If m =1, and the marginal utility of income at constant prices is a non-decreasing
function of A, all consumers have the same utility at the optimum.

Proof (illustrating the use of indifference surfaces; and of convexity inequalities)

Let &(x,,..., x,,u, hy,..., h,) be the amount of commodity one required to
provide utility ¥ when x,,..., x,, are trade levels in the other commodities. £ = oo
if u is unattainable. £ = 0 if x,,..., x,, are already enough to provide more that u.
With this notation, the constraints in the optimization problem take the form

v(h)=v(hy,..., h,) isnon-increasing in all arguments, (3.21)
X=y+z, (3.22)
y maximizes p-Y, (3.23)
x1= [6(x3(),.o0 %, (), 0(h), h)f(R)dhy,....dh,, (3.24)
x,.=fx,.(h)f(h)dh1,...,dh,,, i=1,...n. (3.25)

We may as well assume that Y admits free disposal, since extra production can be
used to increase utility, and therefore welfare, without breaking constraint (3.21).
Fixing v and z at their optimal levels, consider x, defined by (3.24) and (3.25), as
the functions x,(.),..., x,(h) vary. We shall never obtain a point x — z in the
interior of Y, because if we did it would be possible to change v in such a way as
to increase welfare. Therefore the interior of Y does not intersect the set of points
x —z with x; > [¢fd"h, x;> [x,(h)fd"h. This latter set is convex, since prefer-
ences are convex. Therefore we can separate by a hyperplane yielding prices p.
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These prices satisfy (3.23), and we also have
pié(xy(h),...,x,(h),0(h),h)+ Y p,x;(h)= max, (3.26)
i=2 x

for almost all 4 at the optimum. We may as well satisfy it for all A. (3.26) implies
that d¢/dx; = — p;/p, (i=2,...,n), ie. that consumers maximize utility subject
to budget constraints of the form stated in the theorem.

To prove the second part of the theorem, introduce the expenditure functions
E(p,v(h), h), with a single parameter h. Let u* be the maximum constant utility
level consistent with the optimum output levels, and let v(.) be a non-increasing
function, which is also consistent with these output levels, consumers always
facing prices p. Then

fE(p,u*,h)fd"h=fE(p,u,h)fd"h. (3.27)
Since E is a convex function of v,

E(p,u*,h)—E(p,v(h),h) <E,(p,u*, h)(u*—0v(h)). (3.28)
Let h, be the largest value such that v(h)> u*. (If there is none such, u* yields

more welfare than v.) Then, since, by assumption, E,, is a non-increasing function
of h,

E,(p.u*, h)(u*—o(h)) < E,(p,u* ho)(u*—v(h)). (3.29)

Combining (3.28) and (3.29), and integrating over #,
JE(p,u*,h)fd"h ~ [E(p,v,h)fd"h
<E,(p,u*, h){fu*fd”h - fvfd”h},

Since, by (3.27), the left-hand side is zero, [u*fd"h> [vfd"h. Therefore, as
claimed, the optimum has constant utility. O

This last argument fails with more than one parameter because there may be no
h, for which (3.29) holds. Conditions can be found that imply constant utility,
but it looks as if there are cases where it is not optimal. When it is, the theorem
implies that it is better to have constant utility than any budget set that is the
same for all 4. I do not know whether this is always true.
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It is obviously unreal to suppose that a government can get perfect information
about individual characteristics even when individuals have nothing to lose by
reporting it. We can consider a model in which these characteristics are imper-
fectly observed by government.® For simplicity, suppose the population char-
acterized by a simple parameter, A. An individual seems to government to have
characteristic k, but knows he has characteristic 4. The distribution of 4 and k,
which is not degenerate, is described by a joint density function f(h, k). With an
additive welfare function, and indirect utility function v( p, b, h), welfare in a
competitive equilibrium is

W=/fv(p,b(k),h)f(h,k)dhdk. (3.30)

Aggregate demand is

J Jx(p,b(k), 1) £(h, k) dhdk. (3.31)

Theorem 3.3

Let v, be a strictly monotonic function of & (for each p and b); and let there be
a commodity, say i =1, for which x, is a strictly monotonic function of A. If the
frontier of Y is smooth, then no competitive equilibrium with only lump-sum
taxation is optimal.

Proof

We first determine optimal lump-sum transfers given that there are no other
taxes. The derivative of welfare with respect to b(k) is

W= [v,(p,b(k), h)f(h, k)dh.
The derivative of p-y with respect to b(k) is

P+ [x5(p, b(Kk), h)f(h, k)ah= [f(h, k)dh.

Since Y is smooth at y, transfers b are optimal if and only if W, is proportional
to [f(h, k)dh. Thus, for some A,

fub(p~b(k),h)f(h,k)dh=)\/f(h,k)dh. (3.32)

8 The material on imperfect lump-sum taxation is joint work with Peter Diamond.
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With optimal transfers, A is the change in W made possible (by changing b) if
p-y is changed by a unit.

It will now be shown that a change in p,; (corresponding to commodity
taxation of the first commodity), along with appropriate changes in b, can
increase welfare. The derivative of W with respect to p; is

[[(f—}:fdhdk=—ffva1fdhdk-

The derivative of aggregate demand is [ [(3/dp,)xfdh dk, whose value at prices
pis

p.ff%xfdhdk=—ffx1fdhdk.
1

It will be shown that

ffvalfdhdkaé}\/xlfdh dk. (3.33)

It follows that it cannot be optimal for p; to be the consumer price for
commodity one. This will prove the theorem.
To demonstrate (3.33), we use (3.32) to obtain

[ [(v,=N)x,fdhdk
=//(%‘M{%(P,b(k),h)—xl(p,b(k),hk)}fdhdk. (3.34)

where we can define h, by v,(p,b(k),h,)=A. Since v,— A is strictly mono-
tonic, and so is x;, for each k, the right-hand side of (3.34) is not zero. This
proves (3.33) and completes the proof of the theorem. O

The assumption that the private production set has a smooth frontier merely
excludes pathological cases. The general lesson is that imperfect information
normally implies that non-lump-sum taxation ought to be used. In the model
here, it would usually be desirable to use lump-sum transfers as well. There is one
problem with lump-sum taxation based on inaccurate information which is of
great practical importance and is hidden by the model, or at least the way it has
been handled. Suppose, to fix ideas, that consumer prices are p. One would
anticipate that for certain values of 4 and k there will be no feasible consumption
plan satisfying p-x <b(k). Men of high ability should pay large taxes: what
should be done about men of apparently high ability who are unable to earn
much, and how can those be distinguished who simply do not feel like it?
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Throughout this section, and throughout subsequent sections, it is assumed that
the government is well informed about the population, as a statistical aggregate.
The government may be unable to use information about an individual as a basis
for applying policy to him, but the construction of policies is based on knowledge
of his characteristics. This dichotomy between individual and statistical informa-
tion cannot be strictly justified. In a small population, any information an
individual gives affects his own fate. This leads to the theory of preference
revelation,” which is however of no value to the student of public policy, since it
uses only the uselessly weak criterion of Pareto efficiency. A welfare-theoretic
treatment of the issues, using a Bayesian formulation, would be of interest. But
for large populations, it seems reasonable to use a model in which there is fixed
prior information about the distribution of characteristics in the population. It is
unlikely that for most policy issues this will give misleading results.

It will now be assumed that there is no information basis for lump-sum
taxation, because we thereby concentrate attention on the central difficulties.
Lump-sum taxation is easily introduced into the theory. Something will be said
about this later.

4. Producers and efficiency

In the standard general model of competitive equilibrium, consumers are related
to producers in two ways, as traders, and as owners receiving pure profits. If there
are constant returns to scale in private production, equilibrium profits are zero.
We shall make this assumption for the present and return to it below. In the
absence of profits, consumers are completely described by their utility functions,
consumption sets, and budget constraints. If government has no information
allowing it to discriminate among individuals, the budget set B, consisting of
those demand vectors that are available to the consumer, is the same for all
individuals. For example, if there are commodity taxes proportional to trades and
a uniform lump-sum tax (often called a poll tax or subsidy), the budget set is

B={x:q'x<b}, (4.1)

where g = p + t. Notice the important point that we can regard ¢ and b as the
control variables rather than ¢ and b. In general, B can be taken to be the control
variable rather than B as a function of p.

In Sections 6 and 7 we shall analyse cases where the government is not further
constrained in its choice of B, which may be defined by linear inequalities as in
(4.1), or some more general set. In most of optimal tax theory, B has been

See Groves and Ledyard (1977).
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assumed subject to constraint, for example that it be linear, or even more severely
constrained, with some commodities untaxed. In the present section, the choice of
B is not the focus of interest, but the control of private producers and the choice
of government expenditures and production plans. The rules that should govern
these choices depend on the extent to which the government is constrained in the
control it can apply to consumers. One of the lessons of optimal tax theory that
matters most in practice is that optimal production rules are not as much affected
by the existence of constraints on consumer taxation, and in particular on
lump-sum taxation, as might once have been thought.

Theorem 4.1 (Efficiency Theorem for Linear Taxation)

Let the welfare function be individualistic. If the government is constrained to use
linear taxation, i.e. to choose a budget set of the form (4.1), then at the optimum,
y+z is in the frontier of the aggregate net production set Y + Z. This result is
true even if it is possible to subject producers to differential commodity taxation.

Proof (simple topology)
Suppose first that all production is under government control, so that the
optimization problem is

maximize W

subjectto Y. x"€Y+Z
g (4.2)

x" maximizes u”(x) for x € X*

and ¢g-x<b

Under our concavity assumption, the maximizing x” is a continuous function of
q and b. If the solution to the problem is ¢*, b*, no welfare-increasing variation
of g and b yields feasible aggregate demands. In particular if b > b* and g*
remains fixed,

Y xh(g*,b)EY+Z.
Since 2x" is continuous in b, it follows that
y*+z*=) x"(g*, b*) € frontier of Y + Z.

This implies that y* is in the frontier of Y, and, by convexity, that there exists p
such that y* maximizes p-Y. Therefore the optimum for problem (4.2) is also the
optimum for the more constrained optimizations where production is private and
competitive with or without differential taxation. This proves the theorem. O
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The proof of the theorem is pretty trivial. The result obviously holds whenever
the range of budget sets that can be imposed on consumers by government is
sufficiently wide that arbitrarily small expansions of any budget set are possible.
In particular, the addition of new tax and control possibilities leaves the conclu-
sion unaffected. The importance of the result is that it implies simple rules for
shadow prices. There are shadow prices s for z* in the frontier of Z if Z is
convex and s are support prices at z*, i.e. z* maximizes s- Z; or if the frontier of
Z is smooth at z*, and s defines a tangent hyperplane at z*. In either case we
have:

Corollary 4.2

Under the assumptions of Theorem 4.1, optimal public net production z* is in
the frontier of Z, and if shadow prices exist, there are shadow prices which are
equal to producer prices at the optimum.

The theorem and its corollary imply that, when the assumptions of constant
returns, competitive conditions for private production, unconstrained linear taxa-
tion, and individualistic welfare, are satisfied, there should be no taxation of
intermediate goods, i.e. of trade between producers, and that public and private
discount rates for production decisions should be the same.

It is interesting to enquire what happens to the efficiency result when the
assumptions of the theorem are relaxed. Individualistic welfare is not an issue: it
would be hard to devise interesting welfare assumptions for which the result did
not hold. I shall comment on non-constant returns, non-competitive conditions,
and tax constraints, in turn.

If private producers do not have constant returns, we can restore constant
returns by defining new dummy commodities, a fixed factor for each producer,
owned by consumers in the same proportions as they have shares in the firm.!° In
other words the firm is itself regarded as a commodity. Since these fixed factors
do not affect utility, utility functions are not strictly concave in terms of all
commodities, but supplies are continuous functions, provided we make the usual
assumption that consumers are prepared to supply even when the price is zero.!!
Then the theorem remains valid. This means that efficiency holds if the fixed

19Avinash Dixit has encouraged me to take this approach.

111f a firm that could exist does not, it may be hard for the government to take advantage of its
potential existence in setting taxes and subsidies. If it cannot, it is possible to construct examples in
which the optimum is inefficient. There are even examples where no optimum exists. See Mirrlees
(1972). In that paper, I also discuss briefly the case of what are there called managerial inputs. In the
terminology used above, it is assumed impossible to distinguish between the managerial input and the
fixed input for tax purposes. In this case efficiency is generally undesirable. Hahn’s (1973, p. 104)
argument to the contrary is fallacious because it ignores the effect of price changes on the marginal
profitability of managerial effort.
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factors can be taxed independently, or, equivalently, profit taxes are levied at
possibly different rates on different firms.

If all profits have to be taxed at the same proportional rate, the relative value of
different shares to the consumer is the same as the relative values of the firms,
measured in producer prices. Thus the budget sets that can be imposed on
consumers are constrained by the producer prices ruling. (Taxation on transac-
tions between firms can restore the effect of firm-specific profit taxation, but this
also violates the uniform treatment of firms.) A similar point might be made
about the difficulty of taxing labour income derived from different firms at
different rates, although labour for different firms should often be treated as
different commodities. The fixed-factor aspect of the issue is really beside the
point. In any case, profits can be interpreted as the return to the initial en-
trepreneur or inventor who set up the firm (and perhaps took his gains by floating
the firm as a corporation). Then they are returns to a variable factor, and not
particularly different from prices in any other market.

What comes out of this discussion is the importance of the assumption that
consumer prices (or equivalently tax rates) can be chosen independently of
producer prices. Governments do not act as though this were true. Then the
efficiency theorem is not valid — though it may be a good approximation.

Non-competitive behaviour by firms does not change the efficiency theorem,
but rather its interpretation, provided that any profits can be taxed as desired. In
this case Y should be interpreted not as the production set of private producers
but as the set of net supply vectors that can be elicited as producer taxation and
other government controls vary. Then shadow prices for government production
decisions can be obtained as the tangent hyperplane to the new set Y, and will not
in general be simply related to producer prices.

Constraints on the tax powers of government have been much analysed in the
literature.!> We have seen that they may be implied by uniform tax treatment of
producers. Many of the constraints dealt with in the literature are introduced
without any compelling reason. The non-taxability of certain commodities and
the imposition of profit constraints on public producers may be instanced. By and
large these constraints are a way of capturing administrative considerations rather
than limitations imposed by lack of information. Ideally, a theory of administra-
tion and implementation would be developed before considering what are the
most relevant and interesting constraints on taxation to model.

Another reason why tax constraints are important is that governments are often
prepared to seek advice on public production and expenditure decisions when
they are not prepared, in the medium run, to change a tax system whose form
they believe to be constrained by its political image, and perceived effect on

2Dasgupta and Stiglitz (1971). Guesnerie (1975) deals with non-competitive producer behaviour.
The shadow price theorem (Theorem 4.3) comes from Diamond and Mirrlees (1976).
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particular groups. The last result of this section gives some information about
shadow prices under circumstances where the efficiency theorem does not apply.
It takes as premise the optimality of efficiency within the public sector, which is
probably valid under very general circumstances, since some policy change would
almost always increase welfare if the resources were available, though no theorem
on this point seems to be available.

Theorem 4.3

Let policy possibilities be constrained only by producer prices (not quantities).
Suppose that for any optimum, z* is in the frontier of Z. If y° is the production
vector for a competitive, constant returns producer in the optimum, there exist
shadow prices s for z* such that

s-y°=0. (4.3)

Proof

Let 8 be a real number such that |#| < 1. If the producer who has been singled out
produced 0y° and the public sector produced z* +(1—8)y°, there would be no
change in policies and no effective change in equilibrium. Then welfare is
unchanged. The producer in question is perfectly willing to produce 8y° instead
of y°. Thus z* +(1— ) y° would be another optimum for public production if it
were feasible. It follows that

z*+(1— ) y° € frontier of Z, 6] <1.

Therefore there exists a tangent hyperplane at z* containing all vectors z* +(1 —
0)y°. Let the shadow prices defined by this hyperplane be s. Then s-y°=0, as
was claimed. O

This result is of use wherever there are a number of sectors which can be
adequately modelled as constant returns competitive sectors. It implies in particu-
lar that shadow prices of commodities traded at fixed prices in world markets are
proportional to border prices, a result useful in benefit—cost analysis. It must be
emphasized that (4.3) is not applicable if in the optimum the constant returns firm
should close down: it is not always valid to use y° derived from input-output
tables for an existing economy.

5. Linear taxation

As we have seen, there is no loss of generality in assuming that private-sector
producers have constant returns to scale. With this assumption, the efficiency
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theorem (Theorem 3.1) means that the optimal choice of linear taxation is
achieved by finding ¢* and b* that maximize V' (g, b) subject to x(gq, b)Y + Z,
where x(g, b) is the aggregate net demand function of consumers. It must be
emphasized that ¢ >0 in this optimization. If production sets had smooth
frontiers, there would be a unique shadow price vector s associated with x* =
x(g*, b*). Since in that case the aggregate production frontier is approximately
given by s-y = s-x* in the neighbourhood of the optimum, we would expect that
the derivatives V, and V, should be proportional to s-x, and s-x b at the
optimum, prov1ded the optimum is not on thé boundary in prlce space, i.e. ¢* is
strictly positive.

To obtain a general theorem yielding these conditions, we need certain regular-
ity conditions. A fairly simple one will be used here: we introduce the following
assumption, which says, in a rather strong way, that inefficiency is feasible in the
neighbourhood of the optimum:

(I) There exists y° in the relative interior of Y and continuously differentiable
functions ¢q°(8), b°(0) defined for 0 < 6 <1 such that ¢°(6) >0 and

x(q°(0),56°(0)) = (1-8)x* +6y°. (5.1)

Notice that ¢g°(0) = g*, b°(0) = b*. When g* >0 (i.e. ¢} >0 for all i), (I) is
implied simply by the assumption:

(J) The matrix (x,(g*, b*), x,(g*, b*)) is of full rank.

(J) implies that all x in a neighbourhood of x* correspond to some (g, b) with
q = 0; and (I) is therefore trivially satisfied, provided that Y consists of more than
a single point. This assumption (J) is a fairly acceptable one, which would be
satisfied in almost all cases,!? but it is insufficient when g* has zero components.
Assumption (I) is by no means the weakest assumption that would work in the
following theorem, but it yields a fairly simple proof, and problems not satisfying
it are unlikely to arise in practice.

Theorem 5.1

Let V and x be continuously differentiable functions of g and b for ¢ >0, and Y
a convex set. If g*, b* maximize V' subject to x €Y, and assumption (I) is
satisfied, there exists a non-zero vector s and a scalar A such that

x* maximizes s-Y (5.2)
Vq(q*,b*)SAs-xq(q*,b*), (53)
Vy(g*, b*) =As-x,(gq*, b*). (5.4)

13(Jy is not satisfied when there are fixed factors, but (I) generally is.
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Since V and x are homogeneous of degree zero in ¢ and b,

[Vq—s-xq]-q+[Vb—s-xb]b=O.

Therefore g* being non-negative, (5.3) and (5.4) imply that

14
g—q(q*, b*)=s-§qx—(q*,b*) when ¢*>0. (5.6)

i

Proof

We work in the smallest linear manifold L containing Y. Let C be the cone of
non-zero vectors s in L such that x* maximizes s-Y. Since y° is in the interior of
Yin L, s-y°<s-x* for all s in C. Now (5.1) implies, differentiating with respect
to @ and setting 6 = 0, that

x,(q*, 5*)q%(0)+x,(g*, *)b7(0) = y° — x*. (5.7)
q{(0) >0 for any i such that g?(0)=¢*=0. By multiplying ¢(8),b(8) by a
positive scalar if necessary [which does not change x(gq(8), b(8))], we can ensure
that ¢f(0)> O for all i. Thus (5.7) implies that there exists a° > 0 and a° such
that

xy-a®+x5a®=y°—x*.

Since s-y° < s-x* for all s in C, this implies that

s'xy-a®+s-xfa®<0, seC. (5.8)
This inequality will prove to be of crucial importance in the proof.

Consider smooth functions q(#), b(8) (0 <@ <1) such that g(0)= g*, b(0) =
b*,a=¢q’(0)=0,a= b'(0). If

V,(g* b*)-a+V,(g*, b*)-a>0, (5.9)
V(g(8), b(8)) > V(g*, b*) for all small 8. Consequently

x(q(8),b6(0)) &Y.

It follows that, for some s € C,

s-x,(g* b*)-a+s-x,(q* b*)a=0. (5.10)
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Thus (5.9) implies (5.10) for some s € C. Equivalently,

sex¥a+s-xfa<0, all s€C, and a=0, (5.11)
implies
V*a+V¥a<O0. (5.12)

Suppose it were only true that
s-x¥a+s-xfa<0, all s€C, and a=0. (5.13)

Then for any positive number vy, (5.11) is satisfied by a’=a+ ya® and o' = a +
va®. This follows from (5.8). Then (5.12) holds for a’ and «’. Letting y — 0, we
see that (5.12) also holds for a and a.

Since (5.13) implies (5.12), we can apply the duality theorem for convex cones
to deduce that the vector (V*, V;*) is in the closure of the cone

D= {(s-x;‘—d,s-x;}‘):sec,dZO}.
In other words, there exists a scalar A and s € C such that
Vr<As-x7, V= As-x}.

The scalar A must be inserted to allow for the (exceptional) possibility that A = Q.
O

Most of the literature on optimal commodity taxation is concerned with
manipulating and interpreting the first-order conditions of this theorem. Many
papers have been written on the case of identical consumers (with identical
endowments) with b = 0. Since it is hard to see why b must be zero, this case
seems to be of little practical interest. In the case of identical consumers, the
conditions obtained by using the direct utility function and constraining maximi-
zation by the first-order conditions for consumer choice, are of some interest,
particularly for additively separable utility,"* but the indirect utility approach
seems to be much more useful for the many-consumer economy.

The chief manipulations used in interpreting (5.3) and (5.4) are the following. If
welfare is individualistic,

V(q,b)=82(v'(q,b),...,v"(q,b)),
and, writing £ for 32/ dv",

V,= Y Qur=— Y Quix" == B,x", (5.14)

14Atkinson and Stiglitz (1972).
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where

B,= 'Qhull;

is often called the “welfare weight,” or “marginal social utility of income”. (5.14)
says that —V, is a weighted sum of demands. One also finds that

V,=3 B,. (5.15)

Thus -V, /V, is a weighted average of demands, and this interpretation encour-
ages one to divide (5.3) by (5.4).

The right-hand sides of (5.3) and (5.4) can be written, interpreting g — s =t as
tax rates

s'x,=—(g—s5)x,—x
=—%[t-x(s+t,b)—b], (5.16)
sxp==(g=5)x, +1
= —a—‘?b[z-x(sﬂ,b)—b], (5.17)
Writing
T(t,b,s)=t-x(s+1t,b)—b, (5.18)

for the net revenues of government, (5.16) and (5.17) can be written
s-x,=—T, 5-x,=—T,,

q

and the first-order conditions (5.3) and (5.4) become

Y B, x" = AT, (5.19)

Zﬁh = —AT,. (5.20)

Assuming ¢ > 0, A > 0 for emphasis, and dividing (5.19) by (5.20),

Zﬁhxh/Z:Bh= (ab/at) T constant* (521)
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In words, the welfare-weighted average of demands should be equal to the
constant-revenue effect of tax-rate changes on the general subsidy b.

Another manipulation should be mentioned, though it may have been over-
rated. Writing x°* for the compensated demand functions, we have

h

s-xp=—(g—s)xh—x"

=—t-x;"+t-x,')'x"—xh ©(5.22)
= - xf]"-t - (1 - t-x{,’)xh,
by Slutsky symmetry. Now x;"-t is, to a first-order approximation, the changes in
demands brought about by the introduction of taxes, provided income effects are
ignored. One can also interpret xfz"-t =[(8/360)x"(s + 0t,b)],_, as showing the

effects on compensated demand of intensification of the tax system. Thus (5.3)
implies that

Y{Bi—A1—t-x))}x" = Xxt. (5.23)

h h

The welfare weights on demands are here modified to take account of the revenue
effects of changes in the consumer’s lump-sum income. (5.4) implies that

Y A{Bi—A(1—t-x})}=0. (5.24)

h

It follows from (5.24) that the left-hand side of (5.23) is the covariance of x”, and
the adjusted weights (called the social marginal utility of income by Diamond)

) (529

Among the problems in this area that seem to be of theoretical interest,
mention should be made of separability questions, as to the conditions under
which some commodities should be untaxed, or groups of commodities taxed at
the same rates. In this connection, it is important to notice that in the model there
are always many equivalent tax systems. If g*, b* and s are optimal consumer
prices and subsidy, and shadow prices, it is optimal to set producer prices

p=ps,

and tax rates

t=vg*—pus,
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while paying a general uniform subsidy

b=wvb*.

This tax system is optimal for any positive p and ». In general, any commodity
can be made an untaxed commodity by suitable choice of p. and ». If the natural
interpretation of a problem, e.g. untaxed fixed factors representing the absence of
profit taxation, imposes part of the normalization, the tax system can no longer
be chosen so freely. This point has sometimes led to confusion and error.

It is also interesting to enquire how the optimal tax rules are altered when there
are constraints on the choice of linear tax systems, for example when certain
goods cannot be taxed. In such problems, the private producers may, and usually
should, face prices that are not proportional to shadow prices s, and it is useful to
speak of consumer taxes g — s and producer taxes p — s, although the constraint
may take the form of requiring that they be equal for certain commodities.

In the model discussed, there has been no dependence of consumer utilities on
public expenditures, that is, no role for what are called public goods. If such
expenditures are the sole responsibility of government, and their provision is not
associated with new controls on consumers, they are easily accommodated in the
model. We simply write V(q, b, g), x(q, b, g), where g is public consumption
expenditure. The same methods as were used to establish the first-order condi-
tions for optimal taxation prove that it is necessary for optimality that

Vg=)\(s-xg+s). (5.26)
If welfare is individualistic, this can be rewritten as before,
Y Bym"=A(- 1-X,+ 5),

where m" = —(3b"/38) 4 constant 15 the marginal value of the public expenditures
at constant g. Thus at the optimum

1
s=XZ,mah+t-xg. (5.27)
The revenue effect could in practice by very important. A revenue gain arising
from provision of the good strengthens the case for it.

15SDasgupta and Stiglitz (1971). This work is clarified, and to some extent corrected, by Munk
1977).
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6. Nonlinear taxation in a one-dimensional population

So long as the government is constrained to choose linear tax systems, consumers,
provided they have convex preferences, have well-defined consumption choices, so
that the maximization constraint defines a nice set. If there is no constraint on the
tax system, other than independence of individual information, it may be desir-
able to impose a budget set which leaves some consumers indifferent among
widely different consumption plans. For a finite population we intuitively expect
that this will be optimal. The most able consumer need be no better off than if he
did the same as the next most able consumer, but in general the government
would want him to do something different, i.e. choose a different point on the
same indifference surface.

The case of a large finite population seems unlikely to be of much interest,
because computation would be extremely demanding. Accordingly, we go to the
continuum case, where under some circumstances it is to be expected that the
optimum budget set can be defined by nice functions. The population is described
by a non-negative scalar parameter 4 with density function f. The allocations
that can be brought about by government policy are given by

x(h) maximizes u(x,h) for x€ X" N B, (6.1)

for some set B. The first task is to find more manageable control variables than
the set B. One way of doing this would be to single out a numeraire good and
express B by the inequality

x;<e(xy,000, %) (6.2)

This approach turns out to be extremely complicated, and an alternative must
be devised. The difficulty with using the function c in (6.2) as the control variable
seems to be that variations in it can have complicated effects on the variables of
the problem.

An approach that is manageable is to define the function

v(h)=max{u(x,h): x€ X" N B}, (6.3)

and use an “envelope theorem” for it. If the maximizing x is a differentiable
function of A, and x(h) is always in the interior of X*,

v(hy) = u(x(hy), by), (6.4)

at least for h, near h;. This is because, B being independent of h, x(h,) is
available to a consumer of type A; if he wants it. (6.4) implies that, as h, varies,
v(hy)—u(x(h,), h)) attains a local minimum (which happens to be zero) when
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h, = h,. It follows that
v'(h) =u,(x(h), h). (6.5)

If (6.5) were equivalent to (6.1) for some B, we should have reduced our
maximization constraint to a simple differential equation, which ought not to be
too difficult to handle; and is in any case the kind of constraint met with in
control theory.

The argument leading to (6.5) leaned heavily on the unwarranted assumption
that x(h), and consequently v(k), is a differentiable function of h. There were
also some loose ends about the consumption sets. A precise lemma is needed.
Before stating it, some standing assumptions about utility functions and con-
sumption sets are introduced. These lay down some standard properties, and
insist that as h increases the consumption set expands in a very regular way.

(C,) u is a continuously differentiable function of x and A, concave in x.

(C,) X" is a convex set; and for all h, k, k > h, the closure of X" is contained
in X*.

(C,;) For all x in X” there exists > 0 such that x € X* when |k — h| <e.
(B) X" N {x:u(x, k) <u(x° k)} is bounded if h < k, and x° € X*.

The first assumption requires no comment, nor does the first part of (C,). The
second part says that X" is a non-decreasing function of 4 and actually increases
along any “open” part of its boundary. (C;) requires that X" vary continuously
with & and that “closed” parts of the boundary remain fixed. The last assumption
is a little weaker than the requirement that indifference hypersurfaces be bounded.
It allows the possibility that the indifference hypersurface u(x, k)= u(x°, k) is
asymptotic to an “open” part of the consumption frontier, but only if that part of
the frontier is moving outwards, even at infinity.

The assumptions are satisfied, for example, by a function u satisfying (C,) with
Xh = {—h<x,<0,x;,20,i=2,...,n}, and all indifference surfaces cutting the
co-ordinate planes x; =0 when i =2,..., n. (Think of commodity 1 as labour.) In
effect, bigger h is now taken to mean greater ability, unlike the special cases in
Section 3 where it was convenient to use the opposite convention.

Assumption (B) is unduly strong, but it is hard to see how to prove the result
we want without something like it.

Lemma 6.1

Let the above assumptions hold. If there exists B such that for all A, x(h)
maximizes u(x, h) for x € X" N B, and v(h) = u(x(h), h),

v(h)—u(o)=[0"u,,(x(k),k)dk. (6.6)
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Proof
Let n > 0. It will first be shown that the set

A={(x(k),k’):0<k,k’<h+n}

is bounded. Let h;>h+ . Since for all k, x(k)E€ B, and x(k)e X" for
k<h+n,

u(x(k), hy) <u(x(hy), hy), k<h+nq.
Therefore
x(k)e X" 0 {x:u(x, hy) <u(x(hy), hy)},

and is bounded, by assumption (B). Thus the set A4 is bounded. It follows that the
partial derivative u,(x(k), k") is bounded in A4, and thence, by the mean value
theorem, that

a(k)=3{u(x(k),k+e)—u(x(k),k)}

is bounded for 0 <k <h, |e|<m, k+e=>0.
Since a (k) — u,(x(k), k) as e >0, Lebesgue’s theorem on bounded conver-
gence implies that

Eli_ir})/:ae(k)dk=[1huh(x(k),k)dk. (6.7)
Now
[a (k)dk= ["{u(x(k), k + &)= u(x(k), k) } dk
sf: (k+e)—v(k)}dk
[0 o(h+x)—o(n+x)}dx.
Therefore

lim —f{v(h+x)—v(n+x)}dx

e—>0+

> lim ae(k)dk

e—0

> lim —f{v(h+x)—v('n+x)}dx

e—>0—
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The left-hand and right-hand limits exist and are both equal to v(h)—v(7), since
v is a continuous function. Therefore, from (6.7), we have

o(h)=o(n) = ["uw,(x(k), k) dk.

Finally we let n — 0, and the lemma is proved. O

The strategy that will now be followed is to use the lemma to prove that certain
conditions are sufficient for optimality. Naturally this can be proved only under
rather strong assumptions on the utility function; but, since sufficiency theorems
are of the first value in doing computations, the restrictions are worth their cost.
To motivate the sufficiency conditions, I shall first derive them in a rather
heuristic way.

We saw in Section 3 that, under plausible assumptions, the first-best optimum
requires that utility decrease with ability. This suggests that the constraint (6.6)
which (partially) expresses the constraint that B be uniform works as an in-
equality preventing v(h) from being too low in relation to v(0),

v(h)-—v(O)—/Ohu,,(x(k),k)deO. (6.8)

In this form it is a linear constraint in v. If we are to apply the ideas of
programming theory to obtain sufficient conditions, the left-hand side of the
inequality should be a concave function of the control variables. This suggests
that we treat v(.) as one of the control variables, and eliminate one of the
commodities. Specifically, let us treat commodity one as numeraire, denoting it by
¢, and write x’ for the vector of commodities 2 to n. Then £ is defined as a
function of x’, v and & by

=u(&,x',h). (6.9)

It is readily shown that (C,) implies that £ is a convex function of x’ and v, and a
differentiable function of all the variables.

With this transformation, v and x’ are to be regarded as the control variables.
The assumption that will let the sufficiency theorem go. through is

(CON’)  u,(&(x’,v, h), x’, h) is a convex function of x and v.
As it stands this is not in satisfactory form. It is equivalent to:
(CON) For any vector a, (d/dh)a-u,,(x,h)-a/ug(x, h))=0.

In words, this states that the degree of concavity of u (which is measured by
— a-u, a) does not increase, relative to the marginal utility of numeraire, when
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h increases. The condition is numeraire dependent. To have the best chance of
applying the sufficiency theorem successfully, one should choose as numeraire a
commodity such that u,, /u, is as large as possible, i.e. the commodity for which
d(u, /ug)/dh<0.

To prove that (CON’) and (CON) are equivalent, one makes a routine change
of variables. Writing w= (v, x’), x=(§,x’) and ¢(w, h)=u,(x, h), we have
Upex = Wy Yo" Wy + ¥,-w, . (subscripts denoting differentiation). It is easily seen
that § -w,, = (uy/ug)u,,. Thus ¢ is positive semi-definite if and only if

d
uhxx—(uhé/ué)uxx=u&%(uxx/ug)

is positive semi-definite. The equivalence of (CON) and (CON’) follows at once.
Assume an additive welfare function [vf dh, and consider the problem

maximize f vofdh
. (6.10)
subject to (6.8) and (/-S(x’, v, h)fdh, fx’fdh) €Y

Following our work on the linear problem, it should be legitimate to replace the
production constraint (6.10) by

f{ﬁ(x’,v,h)+s'-x'}fdh5a, (6.11)
where the shadow price of numeraire has been set at unity, and s’ are the shadow
prices of the other commodities.

If Lagrange’s method of undetermined multipliers is applicable, we can find
conditions for optimality by setting equal to zero the derivatives of the Lagrangian

L=fvfdh—}\f{$+s’-x’}fdh+/u(h){v(h)—v(O)—thuhdk}dh,

where A should be positive. The sign of w(h) will be considered later. If we
reverse the order of integration in the double integral, we obtain

L= f”{(u - Aé— Asf.x/)f+ po— ”U(O)—foo‘u(k)dk‘”h} dh. (6.12)
0 v h
On differentiating with respect to x’(h) we have

}\(§X+s’)f+fhooudk(uh$$x,+uhx,)=0, (6.13)
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provided that £(h), x'(h) is in the interior of X”. If it is on the boundary we have
an inequality (e.g. for people who do not choose to work). Differentiation with
respect to v(h) yields

[oo}
(1=2g)f +p= [ ndk-ued, =0, (6.14)
and differentiation with respect to v(0),

fooudh=0. (6.15)
0

Consider the sign of p. In the light of (6.15), we cannot want to have p > 0. But
we see from (6.12) that L is a concave function of the control variables provided
that

M(h)=fmpdk20, (6.16)

for all A. This completes the heuristic derivation of first-order conditions, except
for some suggestive simplifications. We note that

§,=1/uy, (6.17)
gx’ == ux’/ug’ (618)

which suggests we define the marginal rates of substitution, or marginal consumer
prices as

g=q(&,x" h)=—¢.=u./u,. (6.19)

Also

d
uh€£X,+uhx,=u£%(ux,/u£)=u§qh. (6.20)

These formulas are used to obtain the conditions in the sufficiency theorem.
Theorem 6.2
Assume (C,), (C,), (C;), (B), and (CON). Let the allocation £*(.), x’*(.), and s’,

v and p(.) satisfy the following conditions:

(¢*(h),x*(h)) € X", forall h. (6.21)
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For all A, k, such that (¢*(k), x"*(k)) € X*,

u(&*(k), x"*(k),h) <u(¢*(h), x"*(h), h), (6.22)
(fg*fdh,fx'*fdh) maximizes (1,s’)-Y, (6.23)
{g(&*(h), x*(R), k)= s’} f(h) = uz‘qz‘fhmudk, . (6.29)

(for consumers in the interior of X*, and an appropriate boundary condition in
other cases),

u,’:‘g (%] 1
()= [“par= | L (629
ue h uf
o0
»>0, f;adkzo, all h, (6.26)
h
[°°;;dk=0. (6.27)
0

Then the given allocation is an optimum.
In this statement, » is 1 /A and p replaces g /A in (6.13)-(6.16).
Proof

The argument is a routine calculation based on the assumed concavity properties.
We consider an alternative allocation satisfying the constraints of the problem,
ie.

¢(h), x’(h) maximize u( ¢, x’, h),
subjectto (&,x’)€ X" N B, (6.28)

(]sfdh,fx'fdh)ey, (6.29)

and show that £*, x’* provides utility at least as great. [It is a feasible allocation
by (6.21), (6.22), and (6.25).]
Lemma 6.1 implies that

u(h)—u(o)—fo"u,,(g(k),x'(k),k)dk=0, (6.30)

v*(h)— u*(o)—jo"u,,(g*(k), x*(k), k) dk =0. (6.31)



Ch. 24: The /Themy of Optimal Taxation 1235

(6.30) follows from (6.28), and (6.31) from (6.22) [where the set B* consists
simply of all £*(h), x’*(h)]. Subtracting (6.31) from (6.30), multiplying by u(%)
and integrating from 0 to oo, we get

[{ (v—o*)— ,L[ -l dk}dh {v 0)—0*(0)}fpdk
=0 by (111).

Reversing the order of integration, we deduce that
f,u(u—v*)dh f f pdk(u, —ur)dh
@ e u’Tg * * k(.7 7%
> [ f pdk{ =2 (0 —v*)+ utgr(x’ — x'*)} dh, (6.32)
0 “n uf

by using (6.26) and (CON), and using our earlier calculations for the partial
derivatives of u, with respect to v and x’.
Combining (6.32) with conditions (6.24) and (6.25), we obtain

f(u—lz-—v)(v—v*)fdhZf(q*—s’)-(x’—x’*)fdh

> [q*(x' = x*)fdn+ [(¢~¢*)fdh,  (633)
by (6.23). Since £ is a convex function of v and x’,
- gr 2 £2(0— ) +EL (' —x7%)

1
= —(v—v*)—q*-(x’—x’*).
uf

Combining this with (6.33), we have finally
—uf(v—v*)fthO. (6.34)

Since » > 0, this implies that [v*fdh > [vfdh. O

The two problems with this theorem are, first, that (CON), expressing decreas-
ing concavity of u, is a little obscure though not implausible; and, second, that
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even when (CON) is satisfied, there may not exist any allocation satisfying the
conditions of the theorem. As to the first problem, it is useful to note certain
special cases where (CON) holds. If # has the form

u=u(x’,h)+u,(£),

convexity of u;, with respect to x’ is equivalent to (CON), and it is readily
checked whether or not this holds. If # has the form

u=u(x")+uy(¢ n),

it is sufficient for (CON) that u,, be an increasing convex function of £ (since £ is
itself convex in x’ and v).

In this context it is also interesting to note that the theorem can be generalized
by assuming a welfare function

W=fG(v)fdh,

with G concave, increasing; i.e. by taking a monotone transform of utility before
using Lemma 6.1. The only change in the theorem is that » is replaced by
vG'(v*(h)). By this transformation to a new utility function #, may sometimes be
made convex when it would not otherwise have been.

The second problem, that it may be impossible to satisfy the conditions of the
theorem, arises because there are allocations satisfying (6.6) that are not utility-
maximizing allocations. One would expect to be able to satisfy the conditions if
(6.6) replaced the stronger condition (6.21), but that may not be what one wants.

To check whether or not a particular allocation x(4) as & varies maximizes
utility for some constant budget set B, the following partial converse to Lemma
6.1 is useful:

Lemma 6.3

Suppose that for all A,

x(h)e X",
o(h) = u(x(h),h),
o(h)—v(0) = fO”uh(xw),k)dk,

u,(x(k), h) is a non-decreasing function of k, (6.35)
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for k such that x(k) € X*. Then there exists B such that, for all A,

x(h) maximizes u(x, h) for x& BN X",

Proof

It is sufficient to show that for all A, h, such that x(ho)€ X*, u(x(h), h)>
u(x(hy), h). Since u,(x(k), h) is non-decreasing in k, we have

u(x(h),h)—v(ho)=f:u,,(x(k),k)dkthhu,,(x(ho),k)dk

=u(x(ho), n)—u(x(ho), ho),

proving the lemma. O

When x is differentiable, a routine calculation shows that (6.35) is equivalent to

Gh(x(k), h)- 5 x'(k) 20.

It is interesting to compare this with a form of the second-order necessary
condition for maximization (also easily proved),

Gi(x(h), h)-<ex(h) 20.

In the two-commodity case, and particularly in the simple optimal income-tax
problem, x’ is a scalar. Suppose that & can be measured in such a way that
d(u,./u;)/dh <0. Then both necessary and sufficient supplements to the en-
velope condition (6.6) have the simple form that x’ be a non-increasing function
of h, and, equivalently, that £ be a non-decreasing function of 4. In general the
class of allocations consistent with the maximization constraint cannot be so
easily identified.

Suppose now that an attempt to apply the sufficiency theorem fails because we
cannot find a solution satisfying (6.22). Then it must be realized that we should
not have neglected the other constraints on maximizing allocations [besides the
condition (6.6) of Lemma 6.1]. It must also be the case that v(4) does not become
smaller than u(x(h,), h) as h increases from h;,. It might be optimal to have v(h)
just remaining equal to u(x(h;), h) over some interval [h, h,]. Then we must
allow for the additional constraint v(4) > u(x(h;), h) in our maximization prob-
lem. This introduces a new term f,f'fp(h){v(h)—(&(hl), x’(hy), h)}dh into the
Lagrangian, with p(h)> 0. If [A,, h,] is the whole interval on which the ad-
ditional constraint binds, we see at once that, since £(4,), x’(h;) occurs predomi-
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nantly in the new term of the Lagrangian,
hy
Lo (ryug(x(hy), ){g(x(R), h1) = a(x(hy), h)} dh =0, (6.36)
1

It is further found that condition (6.24) is unchanged, while condition (6.25)
becomes '

up [ 1
p(h)+p.(h)——;f udk=(-—*—v)f. (6.37)
uf ’n ug

One can prove in the same way as before that, if the conditions of the theorem
hold on intervals where v(h)> u(x(h;), h) and the modified conditions [(6.37)
replacing (6.25), and (6.36) added] hold on intervals where v(h) = u(x(h,), ), an
optimum has been found.

In the two-commodity case, v(h) = u(x(h,), h) and v’(h) = u,(x(h), h) gener-
ally imply that x(h) is constant. Thus these awkward intervals correspond to
bunching of consumers, many of whom choose the same demands. In the many
commodity case, this need no longer be so.

Returning to the conditions of the theorem, we see that (6.24) strongly suggests
that x(A4) is a continuous function of h. This seems to be correct under
assumption (CON). It appears that discontinuities occur only when assumption
(CON) is violated. When it is violated, we can no longer hope to use sufficient
conditions for an optimum, but must make do with necessary conditions. For
these we can rely on Pontrjagin’s Maximum Principle, suitably generalized to take
account of possible discontinuities.!® The conditions given in the theorem are
then necessary conditions for an optimum.

The conditions for optimal non-linear taxation are interesting in a number of
ways. Condition (6.24) is the most striking, for it not only shows that the effective
marginal tax rates on consumer 4 have the signs of dg/dh, but also gives a
simple formula relating different marginal tax rates,

ot
4 — S _ 4

q;—s;

(6.38)

The general principle is that the proportional marginal tax rate (g; — s/)/q;, or
equivalently (g; — s{)/s/, should be higher for commodity i than for commodity j
if and only if (d/0h)(u;/u;)> 0, ie. when the marginal rate of substitution

16Relevant results and methods can be found in Swinnerton-Dyer (1959).
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would be increased by an increase in h. This suggests a theorem of Atkinson and
Stiglitz, whose formal proof is omitted here.

Theorem 6.4

If utility takes the form

u(x, h) =U(uy(x"), u,(£, b)),

the optimal allocation can be obtained by imposing a budget constraint of the
form

p-x’<c(§). (6.39)

It is interesting to note that the analysis of this section can also be done in a
fully dual way,!” treating marginal prices ¢ and utility as control variables. We
can think of offering consumers a set of linear budget constraints C instead of a
set of demand vectors. Writing E(q,u, h) for the expenditure function, and
v(q, b, h) for the indirect utility function, we can set up the problem as maximiza-
tion of fu(h)f(h)dh subject to

qu(q(h),u(h),h)f(h)dheY

q(h), E(q(h),u(h), h) maximizes v(q, b, h) (°
subjectto (gq,b)C N Q"

(6.40)

where Q" is the set of linear budget constraints that are consumption-feasible.
The entire previous analysis can be applied to (6.40), and we obtain as
first-order conditions

iy [® 1
h)—— dk=|—-v»|f, 6.41
w(h) ugfh B (U: )f (6.41)
—sxif= v’gx,,pr. dk, (6.42)
h

where x, is the derivative of demands holding g and b constant. In fact (6.41) is
exactly the same equation as (6.25). (6.42) does not look the same as (6.24), but
the two can easily be shown to be equivalent, by using the equation

c =
Xy dn= " X

17This approach is due to Kevin Roberts.
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which can be obtained by differentiating the equations x°(q(x, k), u(x, h), h) =x
and x°(q,v(gq, b, h), h)= x(q, b, h) with respect to h.

Equation (6.42) has an interesting similarity to the first-order conditions for
optimal linear taxation, for they can be expressed [cf. (5.22)] in the form

—/s-x;fdh=%f(vb—s-xb)xfdh. (6.43)

If we write (6.42) in the form, obtained by using g-x; = 0 and Slutsky symmetry,
(o]

xf,-(q-S)=(vth udk)x;./f(h), (6.44)

it says that the approximate compensated effect on consumer h’s demands of
imposing the optimum tax system is proportional to the derivative of demands
with respect to the population percentile.

It is worth emphasizing that this dual approach to the problem provides a
technique that allows us to apply non-linear taxation to some groups of commod-
ities while applying only proportional taxes to others, for it is very easy to insist
that some g; be independent of 4.!%

Finally, to mention the obvious, (6.25) would in practice be treated as a
differential equation in [;°udk. It is written in the form above to allow for the
possibility that u is discontinuous, and that happens only where x is discontinu-
ous.

7. m-dimensional populations

Although the one-dimensional population is an extremely useful model for
computations and examination of particular issues, it is not, in that respect, an
accurate representation of reality. Theorem 6.2 can be generalized to the m-
dimensional case, with m parameters h,,..., h,, ranging over the non-negative

orthant. The function p(4) becomes an m-dimensional vector field, and the main
equations of the theorem become

= s’
(g—s)f= ugs; M= ugz - M,
N/

where

.Mj=/;Luj(hl,...,hj_l,k,hj+1,...,h,,)dk, (7.1)

18The problem was solved by a different method in Mirrlees (1976).
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and

Znu‘j_;};ufh'M=(uL£_V)f’ (72)

1

(ignoring corner solutions). In the case where p (and x) vary continuously, (7.2)
can be written

A-M- lugh-M= (l—v)f,
U, Ug

where A-M = ZHMI /0h; is the divergence of M. The boundary conditions in
terms of M (which should be non-negative for the sufficiency theorem to go
through) are

M;=0 when h;=0,

Mj—)O as h;—o00.

The above equations will not be derived here. Lemma 6.1 is easily generalized
to the m-dimensional case, carrying with it the important fact that u, is an
integrable vector field. Then the equation v(h)— v(0) = fohu n~dk is brought in as
a constraint in m different ways, following m different rectangular paths of
integration, to enforce integrability on the solution to the optimization problem.
The m Lagrangian functions p; correspond to these m constraints.

To find an optimum, we would look for a solution to the system of equations,
in the functions v, x’; M,,..., M, of h=(hy,..., h,):

ugspM=(q-s")f, (7.3)

A-M—lug,,-M=(l—v)f, (7.4)
Ug Ug

Av=u,, (7.5)

M;=0 when h;=0,00. (7.6)

M occurs in these equations only where it is shown explicitly. [(7.5) is the
generalized envelope theorem.] When m < n, i.e. the number of characteristics is
less than the number of commodities, (7.3)—(7.6) can be reduced to a second-order
partial differential equation for v with mixed boundary conditions specifying the
values of functions of v and Av where ;= 0, . To do this, we would first solve
(7.3) for x’ as a function x’(M, v, h) of M, v and A. In general this is a mapping



1242 J. A. Mirrlees

of full rank from M to x’, provided m <n; and so is the mapping from
x’,M,h,v to Av given by (7.5). Consequently the mapping from M to Av
obtained from (7.5) and x’(M, v, h) can be inverted, giving M as a function of
Av, v and h. Substitution in (7.4) gives the promised equation for v.

This procedure breaks down when m > n. In that case one can eliminate v and
x’ from (7.3) and (7.4) to obtain v as a function of A-M, m, and A. Substitution
in (7.5) yields a second-order system of m partial differential equations for the m
functions M;, with boundary conditions specified in (7.6). Even when m =n =2,
these look hard to handle. But there are many aspects of the solution one would
like to know about. Since the budget set frontier is (#n —1)-dimensional and
the population m-dimensional, any point (§, x’) is chosen by an (m —n +1)-
dimensional set of people. One would like to know what these sets are like. Since
(7.3) no longer gives any information about marginal tax rates if nothing is
known about M, it is now a much deeper question, how to characterize the
commodities that should be most heavily taxed. It would be interesting to enquire
what special structure of the utility function, as a function of A particularly,
would simplify the equations and yield information about the solution. One
would like to use that to indicate what should guide us in setting up one-parame-
ter models for practical work.

In the model with large m, the boundary conditions (7.6) seem to play a very
important part in determining the solution. This means that the economist’s
instinct to rely on differential first-order conditions to derive properties of the
solution is no help in these cases. I think this is the root difficulty in making the
m-dimensional model produce any results.

8. Consumer uncertainty

In all the models considered, consumers have been perfectly informed about
themselves and the possibilities open to them. There has been no uncertainty
about taxes or prices, or about the circumstances in which these taxes and prices
will apply. There is a large range of unexplored problems here. The only case for
which much is known is that in which individuals all make their decisions in
advance of knowing the states of nature that distinguish them. This is the case of
pure moral hazard. Denoting the initially unknown state of the consumer —his
future ability, health, or luck—by 6, and the observed outcome on which
government policy can be based -~wage, retirement date, or prize-by y, we
assume a functional relationship

y=2g(0,x), (8.1)
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where x is the consumer’s choice variable. On the basis of y, government delivers

z=¢(y) (8.2)
to the consumer, who chooses x to maximize
Eu({(g(8,x)),x). (8.3)

There is a resource (or revenue) constraint, which for a large identical population
with independent and identically distributed states § can be written in the form

En(y,¢(y),x)=0, (8.4)

where y is given by (8.1). The leading case is that in which expected utility is also
the government’s maximand, though other welfare functions are also of interest.

I shall not go into the methods of analysing this kind of problem. It is a
problem in which the general issues raised in Section 2 loom large; and one
further issue arises which I have not discussed earlier. Since the set defined by the
maximization constraint can be complicated and difficult to work with, it is best
to look for cases in which certain kinds of fairly simple solutions exist. There are
three (if the maximization constraint is not inessential).

(1) Problems where the solution is a function ¢ for which the expected utility
function is known to be a concave function of x. In such a case the maximization
constraint is equivalent to its first-order condition, and the optimization can then
be treated by Kuhn-Tucker methods. It is usually quite easy to see for what
functions {,Eu is concave in x: to get an adequately large class one may have to
specialise the utility function. The difficulty is to find conditions under which one
can be sure in advance that the optimum ¢ falls into this class. This requires a
direct argument that any other { can be improved upon.

(2) Following the discussion in Section 2 it is a real possibility that expected
utility should have up to m +1 global maxima, where m is the dimensionality of
the available set of policy functions §. If all functions (analytic, integrable or
whatever) are available, a continuum of global maxima is a possible optimum, not
only in exceptional cases. It is therefore a good idea to look for cases in which

Eu($(g(8,x)),x) =uo (8.5)

is a constant at the optimum. It may not be very difficult to find under what
conditions such a policy is optimal, and when it is, both computation and further
analysis are relatively easy.'’

19An example of special economic interest is treated by Diamond and Mirrlees (1977).
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(3) In cases where utility is unbounded, which may be useful approximations to
reality, it is possible that no optimum exists, because government can always
increase expected utility by reducing the level of reward to some low probability
set of possible outcomes. It is obvious that minimum reward is an optimal policy
when effort is then increased so that events with minimum reward do not occur.
In most of the interesting cases effort can never ensure that disastrous outcomes
will never happen. Yet it can be (nearly) optimal to impose extremely severe
“punishment” when these events do occur. Solutions of this form can occur in
perfectly reasonable models, which contrast sharply in this respect with models
where there is no consumer uncertainty. The possibility of providing incentives,
usually sticks rather than carrots, through the consequences of rare events is of
considerable interest, and should be examined in all cases.?®

These three possibilities seem to exhaust the manageable solutions to problems
with consumer uncertainty; but they do not by any means exhaust the possible
solutions. It may be that some of the most interesting results in this area will
come from identifying the borderlines between the different classes of optimum
rather than by attacking the optimization problem directly.

9. Computation and approximation

A major aim of optimal tax theory is to obtain numerical information about
optimal policies. In most of these problems, non-concavity is an important
intrinsic property, and first-order conditions may not determine the optimum
uniquely, even when the more intractable problems of non-connected constraint
sets explained in Section 2 do not occur. For example, in the simple linear
income-tax problem, where there are two tax parameters in a simple two-
commodity world, we have essentially a one-variable maximization, but it must be
carried out by explicit search over the possible range, not by hill-climbing, or
solving first-order conditions.?! As soon as additional parameters are introduced,
computational problems begin to be severe. Even the standard, and empirically
oversimple, linear expenditure system, when labour is included, leads to non-con-
cave problems. It would seem that optimal tax theory can contribute to the
computation of optimal commodity taxes chiefly by narrowing down the range of
tax rates it is sensible to try.

A major advantage of the non-linear theory is, therefore, that there is a
sufficiency theorem, such that solution of certain differential equations is sufficient
to give an optimum, provided a basic condition is satisfied. When the population

208ee Mirrlees (1974) for an example.
2Stern (1976) discusses and carries out computations for the optimal linear income tax.
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is more than one-dimensional, the computational problems again become severe.
However, one-dimensional models would seem to be a promising tool for comput-
ing optimal commodity taxes for many-commodity models, provided an em-
pirically acceptable model can be devised. Of course if the model of Theorem 6.4
is applicable, and on present knowledge it seems as good as any other, optimal
tax calculations are reduced essentially to a two-commodity income-tax problem,
which poses no insurmountable computational difficulties.

Since, in general, computation and simulation are not particularly easy (and
this is even more true of the models mentioned in Section 8), other techniques of
numerical exploration can be useful. It seems to be illuminating to set up a
number of questions as approximation problems, asking for properties of the
optimum when certain parameters are small. I have been able to obtain ap-
proximate formulae for optimal commodity taxes when the distribution of
characteristics in the economy has a low variance; and when the degree of
inaccuracy in observations used for lump-sum taxation is small; but there is not
space to develop these calculations here.

In a similar vein, it is interesting to analyse the asymptotic form of non-linear
optimal tax policies for very high (or very low) values of the characteristics. But
this often gives inaccurate, or even seriously misleading, information.?? Indeed it
is a general principle of work on approximations that one should try to discover
something about the accuracy of the approximations. It would be valuable to
show that certain classes of approximations are tolerably accurate by carrying out
complete calculations in a few representative cases. This may even be the best line
to follow for calculating optimal commodity taxes.

10. In conclusion

Computational and empirical issues seem likely to loom large in optimal taxation
in future. It is not always easy to devise simple models that are simple enough to
be manageable theoretically and rich enough to be empirically relevant. Like
growth theory and planning theory, to instance only two examples in the recent
history of economics, optimal tax theory has fairly quickly reached a stage where
good theorems may be hard to come by, while the theory contains many
suggestions or possibilities for practical implementation.

Yet there is still much theoretical work to be done, and the best theorems may
be still to come. The whole area of consumer uncertainty where consumers are not
identical remains to be explored. Little has been done on variations in population
size. Aspects of the real world, like overtime rates, discrete labour choices,
misperceptions, and, above all, disequilibria, could be incorporated in manage-

22The optimal income-tax problem analysed by Mirrlees (1971) provides examples of this.
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able models. International issues, such as tax agreements and treaties, or incen-
tives acting upon countries (e.g. aid agreements) could be examined. Problems of
tax evasion and administration have only begun to be looked at.

This account of optimal tax theory has by no means covered all the theoretical
work that has been done. On the contrary, it has concentrated on certain
fundamental models, and the methods for solving them, and has said rather little
about properties of the solutions. I conclude with a few notes on the literature, to
guide the reader to what has been said about the topics taken up here.

11. Notes on the literature

Optimal tax theory began with Ramsey (1927), who solved the problem of raising
revenue by commodity taxes from a single consumer. Pigou (1947) discussed
Ramsey’s solution, but the next contributions published were those of Boiteux
(1956), Corlett and Hague (1953-54) and Meade (1955). Boiteux still assumed
lump-sum taxation, as it happens quite unnecessarily, and looked at optimal
pricing by public enterprises subject to a budget constraint. This is essentially
equivalent to Ramsey, but Boiteux introduced the use of indirect utility functions.
Corlett and Hague considered a special case of the problem of improving matters
by introducing taxes where none were before, and Meade solved the correspond-
ing optimization problem. Work on discount rates for public investment during
the sixties often implicitly assumed imperfections, such as absence of lump-sum
taxation, but general models of optimal taxation seem not to have appeared
before 1970. Several contributions appeared at the beginning of the seventies:
Baumol and Bradford (1970), Diamond and Mirrlees (1971), Feldstein (1972),
and Kolm (1970) may be mentioned among many. Diamond and Mirrlees
introduced the many-consumer economy without lump-sum taxes, stated and
proved the efficiency theorem, provide a discussion of existence, and give a case
where the optimum can be obtained explicitly. An application of this work to the
measurement of national income is presented in Mirrlees (1969).

This work and later contributions are discussed in a brief survey by Sandmo
(1976), which includes a useful bibliography. Sandmo’s paper forms part of a
symposium in the July—August number of the Journal of Public Economics, which
contains several useful papers. Much of the recent work in optimal tax theory has
appeared in that journal.

I conclude with a few selected references for the individual sections. The
references provided are by no means complete, even for the period to 1977 when
the chapter was written. Two valuable books containing extensive accounts of
optimal tax theory have appeared, Atkinson and Stiglitz (1980), and Tresch
(1981).



Ch. 24: The Theory of Optimal Taxation 1247

Section 2

The material presented here has not previously appeared in print. Problems of the
type discussed were classified in Spence and Zeckhauser (1971). Some of the
difficulties arising from the maximization constraint were noticed in Helpman and
Laffont (1975). On evasion see Srinivasan (1973).

Section 3

The treatment of lump-sum taxation as based on individual information is related
to the work on ‘signalling’ and ‘screening’: Spence (1973) and Stiglitz (1976).
Some aspects were mentioned in Mirrlees (1974).

Section 4

Efficiency and other shadow-price results are important for cost-benefit analysis:
Diamond (1968), Little and Mirrlees (1974), and Dasgupta and Stiglitz (1974)
may be consulted. Efficiency when there are positive profits was first discussed in
Dasgupta and Stiglitz (1972). See also Mirrlees (1972).

Section 5

In addition to the works referred to above, the following should be mentioned:
Dasgupta and Stiglitz (1971), Atkinson and Stiglitz (1972), Diamond (1975), and
Atkinson and Stiglitz (1976). Dixit (1975) and Guesnerie (1977) discuss the
welfare effects of commodity tax changes.

Section 6

A special case of nonlinear taxation, with extensive results and numerical calcula-
tions, is given in Mirrlees (1971). Theorem 6.1 above generalizes the result that
underpinned that paper, a result that never seemed worth publishing for a special
case. The more general model is discussed under differentiability assumptions in
Mirrlees (1976). See also Atkinson (1973), Phelps (1973), Atkinson and Stiglitz
(1976), Sadka (1976), and Seade (1977). An interesting approach, not concerned
with optimality, but with bargaining, is Aumann and Kurz (1977).

Section 7
The optimality conditions were given in Mirrlees (1976). Mirrlees and Spence
have work in progress on special cases of optimization with many characteristics.

Section 8

The papers by Mirrlees (1974), where the inadequacy of treating first-order
conditions as constraints is not adequately appreciated, and Helpman and Laffont
(1975), referred to above, are relevant here. Diamond and Mirrlees (1977) give a
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fairly full explicit analysis of an interesting special case, where the consumer
chooses retirement, and the government the social insurance system.
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POSITIVE SECOND-BEST THEORY*
A Brief Survey of the Theory of Ramsey Pricing
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“One appoints inspectors of weights and measures but not prices.” Babylonian Talmud (Baba-
Bathra, 89A)

“The role of inspectors would be to assure that nobody sells at too high a price. The logic of the
situation indicates that this is unnecessary. If one merchant wants to charge a high price, another one
who needs money will give the merchandize cheaply and the customers will go to him. And so the first
one will have to sell cheaply as well.” Rabbi Shmuel Ben-Meier (1080-1160 A.D.) ob. cit.

1. Introduction

While understanding the favorable role of competition, the commentators of the
Talmud could hardly be expected to dwell on possible exceptions and the
consequent desirability of government intervention. In current theory, the most
familiar case of “market failure” is that of natural monopoly.

This paper surveys some issues in positive second-best theory, specifically the
theory of the optimal pricing of goods (private and public) produced by public
firms, that is, firms whose objective is the maximization of social welfare. It is
assumed that these firms, characteristically, display increasing returns to scale. In
these situations, first-best optima may require lump-sum taxes and subsidies. In
view of the size of the public sector in most industrialized countries; it is difficult
to imagine that public activities can be financed without distortionary effects
elsewhere in the economy.

It may be claimed, however, that the theory should be sufficiently general to
explain why first-best optima are infeasible rather than merely stating this as an

* Due to an error in the manuscript, the name of Kare P. Hagen as co-author has been omitted
in an earlier printing.
** Hagen’s contribution is based on his article, “‘Optimal pricing in public firms in an imperfect
market economy”’, Scandinavian Journal o f Economics, 81: 475-493 (1979).
*** ] wish to thank Roger Guesnerie for helpful discussions and Robert Aumann for the quotation
below.
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exogenous fact. That would be a rather ambitious task which is beyond the scope
of this survey. Here we ask a much more modest question. Given certain
structural facts which prevent prices from being set equal to marginal costs
everywhere in the economy, what would then be the optimal rules to follow for
public production and prices under public control? These price distortions may
be due to the infeasibility of lump-sum taxation, i.e., price distortion created by
the government, or they may arise due to monopolistic pricing in the private
sector which may have to be accepted for political reasons. Clearly this does not
imply that monopoly in some industry ought to be dealt with by pricing policy by
public firms. The analysis below merely shows what factors would be relevant to
take into consideration if price under public control were to be set on the basis of
economic efficiency, if the inviolability of monopoly has to be accepted for some
reason.

It is crucial for the second-best argument that the public firm considers its
economic environment as given, such that optimal pricing rules only cover aspects
under its control. On the other hand, it may be claimed that if these rules are to
be of any practical interest, they must not require the public firm to have
knowledge which, in practice, would be nearly impossible or extremely costly for
it to ascertain. In this respect we have to admit that the formulas for the
second-best pricing rules obtained here may be rather demanding from an
informational point of view. Indeed, the most interesting possibility for develop-
ment in the theory of “second-best” pricing rules seems to be the explicit
introduction of uncertainty into the “Ramsey pricing models”.

Throughout this chapter we have assumed perfect possibilities for lump-sum
income transfers in order to focus on the efficiency aspect of optimal pricing. If
lump-sum redistribution is impossible, deviations from marginal costs for prices
under public control may be motivated by distributional considerations; that is,
the government may want to use its excise tax power to improve the income
distribution.

The results reported here are not new and can be found scattered in the
economic literature (see bibliography). For the sake of unity, we thus start with a
general formulation that forms a basis for special cases which are analyzed in
more detail subsequently.

Section 2 is a general formulation of the pricing rule adopted by a multi-prod-
uct firm whose objective is the maximization of social welfare (“Ramsey prices”).
The firm’s technology is characterized by increasing returns to scale and thus a
financial constraint on profits (losses) may preclude attainment of the first-best
allocation. The “public firm” is viewed as a “Stackelberg leader”, competing in
some markets with private, profit-maximizing firms. Section 3 specializes the
analysis to the case where the private firms behave competitively. Section 4
discusses the questions of “‘cross-subsidization” and the conditions under which
undercutting the competition by the public firm is socially desirable. Section 5
analyzes the optimal pricing rule in imperfectly competitive markets. Section 6
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relates “Ramsey prices” to the issue of price sustainability in perfectly contestable
markets [Baumol et al. (1982)]. Section 7 looks at the possibility of more general,
credible decision rules for a dominant public firm, when private firms do not
necessarily take prices as given. As special cases, the marginal cost pricing rule is
favorably compared with the fixed output rule. Section 8 discusses the joint
decision for the optimal supply of public goods and the pricing problem analyzed
previously. Finally, Section 9 analyzes some issues in predation and Ramsey
pricing in a dynamic context.

2. Ramsey pricing

We consider an economy consisting of / individuals labelled A, m private firms
indexed j, and a public sector.! For simplicity, the public sector is assumed to
consist of one public firm. There are n +1 private goods indexed i =0,1...., n,
consumed or supplied by the individuals, the private firms and the public sector.

We use the following notations:

xh=(xh x{,...,x")=(n+1)-dimensional commodity vector representing con-
sumer A’s consumption plan,

y'=yds ¥t ---» ¥!)= (n +1)-dimensional commodity vector representing private
firm j’s production plan,

z =(zy,2y...,2,)=(n+1)-dimensional commodity vector representing the net
production plan for the public sector, i.e.. total public supply minus public
consumption.

We apply the sign convention that negative components in the consumption
plans represent the net supply of services, while net demand is measured in
positive quantities. As for production plans, output is measured in positive
quantities, while input is measured in negative quantities. In the subsequent
analysis the commodity with index zero will be used as a numéraire good.>

The index set E represents the set of goods whose prices are subject to public
regulation. Goods of which the public sector is the sole supplier or consumer
clearly belong to this set, although in order to control the price of a commodity, it
is not necessary for the government to have complete control of its supply or
demand.

Production in the public sector takes place using labor and other private goods
supplied by individuals and private firms as inputs. The public sector supplies

'The model generalizes Boiteux (1971) by allowing for private firms competing with the public firm.

2Note that we normalize both consumer and producer prices. This may be motivated by an
assumption of perfect competition in the market for the numeéraire. In any case, this normalization will
not matter since we assume perfectly redistributable incomes.
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consumer goods and intermediate goods to private firms. We assume that
technically efficient production plans for the public sector are defined by the
implicit production function

g(z)=0.

Moreover, we assume that for structural reasons which are exogenous to this
model, the activity in the public sector is subject to a budget constraint given by

b— Zpizi =0,

where p = ( pg, P1,---> Py) 15 @ (n +1)-dimensional price vector with p, =1.

A binding budget constraint for the public sector can of course be motivated by
increasing returns to scale in the public sector such that the amount of lump-sum
financing (b) is insufficient to cover the public deficit at a first-best optimum. If b
is equal to zero, we are imposing a zero profit constraint on the public firm
operating in the markets for private goods. This would mean that the public
sector had to be financed entirely through distortionary commodity taxation.

It may also be noted that we treat the public sector as an aggregate. In a model
with a disaggregated specification of the public sector, we would have many
public firms with different production technologies. However, in assuming one
overall budget constraint for the public sector, we must clearly have production
efficiency in the public sector at a second-best optimum. Hence, the optimal
pricing and production rules must be the same for all public firms so that the
method of treating the public sector in an aggregate fashion entails no loss of
generality.

For convenience of analysis and to focus on the efficiency aspect of optimal
pricing, personal incomes are assumed to be perfectly redistributable through
lump-sum transfers. By means of this assumption, we do not have to specify how
the public budget b is financed (if b <0), and we do not have to specify the
distribution of profits in the private sector. Also, compensated demand functions
have some nice properties which will be utilized repeatedly in the subsequent
analysis.

The decision variables under public control are the prices under public control
D.» € € E, the net production plan for the public firm denoted z, and the income
distribution {r"}, where r” denotes the non-labor income of individual .

Assuming that individual consumption plans are ranked according to the
strictly increasing and strictly quasi-concave utility functions U”(x"*) and that
only equilibrium values are relevant for social welfare, efficient rules for pricing
and production in the public sector and an optimal income distribution are
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obtained through solving the following constrained maximization problem:

max Y NU"(x"), h>0, Vh,
(Pe{r"}2) h
subject to (dual variables)
Yxl—z,—-Yy/=0, (a;,i=0,1,...,n),
h J
g(z)=0, (B),
b—Y pz;=0, ()

The necessary maximum conditions are

ay/

h h —_ ! =

2 Z AU —— 2 ( Z 3Pe E . +yz,=0, ec E, (2.1)

Ny yn O a.ax'h=0 h=1,...,1 2.2)
- ar h i larh 5 B s by

a,=Bg,—p;=0, i=0,1,...,n, (2.3)

where U* and g; denote partial derivatives of the functions U”(-) and g(-) with
respect to the ith argument.

Under the assumption that b exceeds the unconstrained profits (possibly
negative as in the case of increasing returns to scale in the public firm), y > 0.
Write V(— b) for the maximum value of 2, N"U”(x"). Then we have

y=31Ln})[V(—b+s)—V(—b)]/S-

Hence y measures the value of marginally relaxing the constraint.

Multiplying both sides of (2.2) by 1/Uy, observing that according to the
first-order conditions for consumer optima U*/Ug = p,, and using the property
of individual demand that 3, p,(9x"/dr")=1, the necessary condition (2.2) for
an optimal income distribution simplifies to

NS = Zaah, h=1,...,1. (2.4)

Substituting (2.4) into (2.1) and using the fact that for each h, X, p,(dx"/dp,) =
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x", the necessary conditions for an optimal price structure p, simplify to

ax" Ix! dy/
' L =) -Y =L |[=vz ecE. 2.5
;a,l:zh:(ape ear},) ?ape] Y2, ( )
We define
dp. 7\ 9p. ar*

representing compensated price derivatives of the private consumption demand
for commodity i. Similarly,

92, _ 0%,
=——-)

dp. dp.

ay/
ap,’

representing compensated price derivatives of the net market demand for com-
modity i.

We eliminate the dual variable 8 through the normalizations §; = a, /Bg, and
1 =v/Bg, Then we define ¢ = g,/g, Hence, ¢? denotes the marginal cost of
producing commodity i in the public sector if z;, > 0, or the marginal technical
rate of substitution between input i and the numéraire if z; <O0.

With these definitions, conditions (2.5) and (2.3) can be rewritten as

3z,
LG, ~he  eSF, (2.6)
8,=c—up;, i=0,1,...,n. (2.7)

We note from (2.7), §,+ p =1, and since §,> 0 from strict monotonicity of the
utility functions, we must have that 0 <p <1.

Substituting (2.7) into (2.4) and (2.6), we get

e Zeblaxtzort)
[V i h

_ , 2.8
NU/ Zc?( 8x,(/3r’)—p (28)

I
>
~

9z,
Z(CP—MP,-)a—p'=uze, e€E. (2.9)

i
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According to condition (2.8), an optimal income distribution is obtained by
equating, for any pair of consumers labelled / and A, the ratios of social weights
attributed to marginal income transfers in favor of / and A to the ratios of
marginal social costs associated with these transfers. If prices deviate from
marginal costs in the public sector and Engel elasticities differ among consumers,
the marginal social cost of income transfers will be different for different
consumers, which calls for setting MUy # NU{ for h # 1.

We define ¢/ = — dyd/dy/ as the marginal cost of producing commodity i in
firm j if y/>0, and if y/ <0, ¢/ denotes the marginal rate of substitution
between input i and the numéraire in firm j.

Subtracting (1 — p)X, p,( 32,/ dp,) on both sides of (2.9) yields

az.
Z(C?_Pi)a_;l=ﬂ-z

93,
' ) e—(l*M)ZP,-a-p:- (2.10)
14 14
Letting ¢/ denote the mark-up on the price of commodity i in firm j (which may
be negative), that is #/ = p, — ¢/, and writing x, = 2, x!, from well-known proper-
ties of compensated market demand functlons we have

ZZ

J

Trigs zp,;p—— LT

J

=_ZZtJ ZZ( —c’)ay’

p ap,’

i ape K ape

and substituting into (2.10) we obtain our central conditions for optimal pricing
of private goods in the public sector

(- p,)gp =pz,+(1- H)ZE( —c/)ape ecE. (2.11)

i

3. Competitive fringe

We see immediately from (2.11) that if the budget constraint for the public sector
is not binding and if the private sector is perfectly competitive (i.e., marginal costs
are set equal to prices throughout the private sector), efficiency will require
marginal cost pricing in the public sector. It should also be clear that if the budget
constraint is binding and/or there are price distortions in the private sector, we
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then have a second-best situation, in which case it will generally be optimal for
the public sector to deviate from marginal cost pricing.

In order to discuss one complication at a time, we begin by assuming that the
budget constraint for the public sector is binding and that the private sector is
perfectly competitive. In this case the optimal pricing rule (2.11) simplifies to

a2,
0_ i
Z(Ci pi) ap,

i

=pz,, ecE. ' (3.1)

Except for the dual variable p and the compensated nature of the demand
functions, conditions (3.1) are the same as the necessary conditions for profit-
maximizing prices for a monopolist endowed with a technology given by g(z)=0
and with control over the prices p,, e € E.

Hence, we have the well-known theorem: For all commodities e € E, the public
firm should, in the market for outputs, set prices as if it were a monopolist with all
the compensated demand elasticities inflated by a factor 1/p. In the markets for
inputs, the public firm should behave as a monopsonist with all the supply elasticities
inflated by the same factor 1/p. This implies that the public firm should use price
discrimination in the markets for both inputs and outputs whenever possible. The
inflating factor 1/p >1 is determined such that the budget constraint for the
public sector holds as an equality.

The intuitive reason for this result is clearly that as long as the budget
constraint for the public sector is binding, the shadow price of the numéraire will
be higher in the public sector than in the private sector.

Although the efficiency conditions (3.1) for the case where p =1 are formally
equivalent to the necessary conditions for profit-maximizing monopoly mark-ups,
it seems that, except in some rather special cases, no general conclusions can be
drawn with respect to the relationships between prices and mark-ups in the
efficiency case and in the monopoly case, i.e., the case where all goods were
produced and marketed by one large monopoly. As one such special case, assume
that all prices are under public control and that there are linear compensated net
market demand functions of the form

Zj=ZAji(p0i_pi)7 Jj=1,...,n, (3.2)

where the constants 4= 4,; from the symmetry conditions on net market
demand, and p, are the prices that simultaneously choke off compensated net
demand in all markets. Moreover, we assume constant marginal costs so that the
deviation of prices from marginal costs must be justified by the presence of a
fixed or overhead cost.
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Inserting into (3.1), using the symmetry conditions and rearranging terms, we
get

Z[(1+"")Pi—ctp—p'p0i]Aij=0’ Jj=1,...,n. (3.3)

From non-singularity of the Jacobian matrix |{4, ;|| the only solution to (3.3) is
given by (1+ p)p; — c? — pupy; =0, and hence the efficiency prices are given by
Pi=(c?+ppo;)/(Q+p) and the corresponding monopoly prices by p,= (c?+
Po:)/2. Clearly, po, > c?, Vi, and hence it is easily seen that p;,> p, Vi, when
p <1. The efficiency mark-ups are given by p;, — ¢? = p( po; — ¢?)/(1+ p) and are
hence proportional to the corresponding monopoly mark-ups so that, while
efficiency prices are always below the corresponding monopoly prices in the case
of linear compensated net market demand and constant marginal costs, mark-up
ratios between any pair of commodities (except the numeéraire) will be the same at
a second-best Pareto optimum and a monopoly profit maximum.® In the general
case, the solution of (3.1) would involve a fixed point problem and there is no
reason to expect any proportionality between efficiency and the corresponding
monopoly mark-ups.

Going back to the general optimality conditions (3.1) and making the simplify-
ing assumption that d2,/dp,=0, Vi # 0, e (in which case commodity e and the
numeéraire must be net substitutes), (3.1) simplifies to

((p.—<)/p.).=n, e€E, (3.4)
where

o 1| P 0%, || p 93¢

N.= 7, je ape _(1_ We)? Zj)ej ( Aej ape ) (35)

J

and w,=2,/%,, 0<m, <1, the share of the public sector in market e. The
left-hand side of (3.4) are sometimes called “Ramsey Numbers”. In the absence of
private firms in market e, $/=0,V; (i.e., m,=1), %, is the own (absolute value of
the) compensated price elasticity of demand for commodity e. If there are
constant own compensated price elasticities of demand in the above example, we
then get the well-known result in optimal taxation theory that the optimal relative
mark-up, or ad valorem tax, will be the same for all taxable commodities and in

3As would be the case when utility functions are linear in the numeéraire and homogeneously
separable in the taxed goods.
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particular, with unitary own compensated price elasticities of demand, it will be
equal to the normalized shadow price of the public budget constraint.

Willig and Bailey (1979) have calculated “Ramsey Numbers” in different
markets, testing the hypothesis that they are significantly less than unity (dis-
tinguishing a “socially desirable” Ramsey firm from a “socially undesirable”
profit-maximizing monopolist). Unfortunately, their tests take %, to be the
elasticity of market demand, thus disregarding relevant cases of competitive
fringe, as suggested in (3.4).

4. Market division and welfare aspects of competition

As a special case of the above discussion, consider an economy with two goods 1
and 2, and identical private firms which offer commodity 1 at a fixed price, p;,
Le, {P(p)IP1=01if p;<p;, 0<p;<00 if py=p;, and § =00 if p;> py}.
Private firms do not offer commodity 2. Thus, one may call market 1 the
competitive market and market 2 the (public firm’s) monopolized market. Under
what conditions is it socially optimal for the public firm to undercut the
competition in the competitive market?

This question, discussed by Arrow (1983), is related to the argument that public
firms tend to engage in cross-subsidization.* Specifically, these firms tend to
undercut competition, making up any losses on the competitive commodity by
increasing prices in monopolized markets so as to generate the required revenue.
Note that if the public firm would be an unregulated monopoly, there is no room
for this cross-subsidization because the monopolized markets already yield the
maximum possible profit. The argument about cross-subsidization for profit-con-
strained regulated public firms is based on the fact that, under regulation, there
are unexploited opportunities for monopoly profit. Therefore a loss in the
competitive market will lead to recoupment in the monopolized market.

We assume that costs of the public firm are subadditive [see Baumol, Panzar
and Willig (1982)], which is a natural interpretation of economies to scale in the
multi-product case. It is then never optimal for the public firm to share the
competitive market with the other firms. The comparison is thus between the case
when the public firm undercuts the competition and when it abandons the
competitive market.

4If “cross-subsidization” is to be forbidden, it should be welfare-diminishing. The natural defini-
tion, as noted by Arrow (1983), is that there is cross-subsidization from a monopolized to a
competitive sector if prices are higher in the former than they would be if the competitive market were
abandoned by the public firm. The reason is that from the social welfare point of view, all that matters
are the prices charged to consumers. So, if the price in the monopolized market is lower— as against
the situation if the competitive market were abandoned by the public firm— then the public firm
should stay in the competitive market.
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The profit constraint on the public firm may be written
P(zy,2,) = P12y + Pazy — (21, 2,) = b, (4.1)

where p,(z;), i =1,2, is the (inverse) demand for commodity i (i.e., demands are
assumed independent). If the public firm abandons market 1, the output of
commodity 2 would be determined by (4.1) with z, = 0,

P(0,, z¥) =b. (4.2)

Here, z¥ is the “stand-alone” output in market 2 (assumed to be unique). Under
what conditions can meeting the competition and satisfying (4.1) yield a lower
price for commodity 1 than a “stand-alone” policy? A lower price is equivalent to
a higher output. Let z; be the quantity demanded at the competitive price p,, i.e.,
P1= p:1(z,). The question is thus: z7, 24 satisfying (4.1) with z{ > z; and z§ > z3?

Suppose P(z{,z¥)>b. Then, if z, is increased, profits will eventually fall
below b, and therefore z5 > z¥ for which P(z{, z4) = b. Conversely, if P(z{, z¥)
< b, it is reasonable to suppose that profits will remain below b for larger values
of z,.> Hence, the condition that undercutting competition in market 1 yields a
lower priced commodity 2 is equivalent to the condition

P(z{, z:j") = j)l(z{)z{ + ﬁz(z;‘)z;‘ — c(z{, z;‘) > b. (4.3)

Now, since (4.2) can be written p,(z3¥)z¥ — ¢(0, z¥) = b, substitution in (4.3)
yields

pi(z1) 2 — I1Cy (21, 23) > 0, (4.4)

where IC\(z,, z,) =c¢(zy,2,)—¢c(0, z,), Vz,, z,, are the “Incremental Costs” of
commodity 1. '

The proposition is that a sufficient condition for undercutting competition to be
socially desirable is that revenues in the competitive market cover incremental costs
when output in the monopolized market is at the “stand-alone” level.

Similar propositions (i.e., necessary and sufficient conditions for undercutting
or abandonment of a competitive market) can be proved for a profit-maximizing
monopoly, instead of a Ramsey firm, and these can be used to test whether a
regulated firm diverges from the (constrained) social optimum or engages in
predatory pricing,.

5 There may conceivably be alternative regimes where profits exceed and fall below average costs.
We do not consider this possibility.
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Another question can be raised in this context: in “second-best” situations of
the kind discussed above, does “increased efficiency of competition” enhance or
decrease welfare? Specifically, suppose that private firms’ supply (demand) func-
tions, y/, depend on an efficiency parameter 6, as well as prices, y/= y/(p,8).
Let an increase in @ raise efficiency in some private firms and not-be detrimental
to any, i.e., dy//30 >0 if y/>0 (dy//38 <0 if y/ <0). The optimum level of
welfare, V, now clearly depends on 6: V=V (- b, 0).

It has been shown [Sheshinski (1983)] that increased efficiency in some active
private firms (ie., for a given j, y/>0 or y/<0 for some i) may yield
(dV/36) < 0. This result is not confined to the case where private firms are active
in the constrained optimum but are inactive in the first-best social optimum (i.e.,
the solution to the maximization problem in Section 2 without the profit con-
straint on the public firm). A characterization of the conditions under which
welfare decreases when the efficiency of a competitive fringe increases is as yet
unavailable.

S. Imperfectly competitive fringe

We next consider the problem of optimal pricing in the public sector in what is
perhaps a more interesting case where prices are not set equal to marginal costs
everywhere in the private sector. These price distortions may be due to a given set
of commodity taxes and subsidies which, for political or institutional reasons,
may be considered exogenous to the problem at hand, or they may be due to
monopoly pricing in the private sector. In fact, the actual reasons for price
distortions in the private sector are unimportant for the problem of optimal
pricing in the public firm, as long as these distortions are given for that firm.

It is seen from condition (2.7) that an optimal production plan for the public
sector is determined by equating marginal cost ¢? in the public firm to the
normalized shadow price §; for commodity i, plus the normalized shadow price of
the public budget times the market price for commodity i. With price distortions
in the private sector, shadow prices will deviate from market prices. Hence,
regardless of whether or not the public budget constraint is binding, it will
generally be the case that efficiency requires prices and marginal costs in the
public sector to differ. We note from (2.7) and (2.11) that this will be the case
regardless of whether the public firm controls the price or is a price-taker and
adjusts quantities at given prices.

To take a simple stylized example, assume that the pubiic firm produces
electricity, to be indexed e, and uses gas (indexed g) as one of its inputs (not
necessarily in the production of electricity). We assume that electricity is a
substitute for gas in the private sector and a complement to appliances which are
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indexed a. All its other cross-elasticities are assumed to be negligibly small.
Appliances are produced and used entirely in the private sector. For simplicity,
we assume that a changein p, does not change net market demand for gas so that
d2,/dp. = 0. Hence, by assumption, a change in the price of electricity will only
change the composition of net market demand for gas in the private sector.

The public firm controls only the price of electricity and from (2.11) the
optimal price is given by

_0_ Y 4 i\ 9y/9p.
pe=ci= g5 sap I L (pimdl) g5 5t (5.1)

Jj i=a,g

We see from (5.1) that the public firm should set the price under its control
different from marginal cost for two reasons. First, a compensated price change
will have an effect on the public budget and the second term on the right-hand
side of (5.1) measures the social value of this budget effect per unit change in the
production of electricity. From the assumption of strict convexity of individual
preferences and private production sets, we have d2,/dp,<0. Thus, as z,> 0
(output), the budget effect unambiguously calls for setting the price higher than
marginal cost. Second, we have a re-allocation effect as given by the last term on
the right-hand side of (5.1) which measures the social cost or gain resulting from
the re-allocation of resources in the private sector caused by a marginal com-
pensated price change for commodity e. As the consumption side is assumed to
be perfectly competitive, only the effect of a change in the prices under public
control on demand and supply of private firms will matter for this re-allocation
effect.

We note that p,> ¢/ with monopolistic pricing (y/>0) and p,<c/ for a
monopsony (y/ <0). This is also the case with commodity taxes and subsidies,
although for subsidies the inequality sign must be reversed. Moreover, if commod-
ities i and e are substitutes (complements) then dy//dp,> (<) O for outputs
and dy//dp, < (>) 0 for inputs. Hence, the re-allocation effect alone would call
for setting the price of electricity above (below) marginal cost if it is generally the
case that substitutes (complements) to electricity are subject to monopolistic
pricing or commodity taxation and complements (substitutes) are subsidized.

This result is quite instructive since, in the present model, the allocation of
resources is governed by the price mechanism. Thus, if a re-allocation of resources
to a monopolized sector increases social welfare, the government can do so by
raising the price of substitutes and lowering the price of complementary goods,
provided that these prices are under public control whereas the monopoly price is
not.

Returning to the specific example above, we may assume that the price of gas is
subject to a monopolistic mark-up. The government controls the price of electri-
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city but has no control over the price of gas. If we assume that the industry
supply of appliances is perfectly competitive, the re-allocation effect would
unambiguously call for setting the price of electricity above marginal cost. If
electrical appliances were subsidized, this would strengthen the re-allocation
argument for setting p, above marginal cost. However, if appliances were also
subject to mark-ups, the re-allocation effect in this particular market would pull
the optimal price for electricity in the opposite direction and the overall re-allo-
cation effect on the optimal price for electricity would be indeterminate.

The matter is complicated even further if a change in the price of electricity
changes the net demand (or supply) of gas in the private sector. In this case we
would have to add the term —(p, — cg)( 0z,/9p.)/(9z,/9dp,) on the right-hand
side of (5.1), in which case the optimal price for electricity would also depend on
the relevant shadow price for gas in the public sector. On the other hand, if the
government in this example controls the prices of electricity, gas and appliances,
we would be left with the conventional taxation problem where the optimal
solution is given by (3.1).

We now assume that the public budget constraint is not binding and that we
still have price distortions in the economy. In this case we cannot appeal to the
theory of optimal taxation to justify the existence of such distortions, as marginal
cost pricing would yield a first-best optimum if it were feasible. The persistence of
price distortions created either through monopolistic pricing in the private sector
or through commodity taxation must therefore be regarded as political restric-
tions determined outside the model.

We assume that the government has partial control over prices and we examine
how various feasible price changes will affect social welfare. This may be viewed
as a problem of comparative statics —or positive economics —in the sense that we
consider the change in the equilibrium allocations corresponding to various
feasible price—or tax—reforms and then find the resulting change in social
welfare.

We set t;= p,— c? = p,— ¢/ for all j so that we impose the same absolute price
distortion on goods produced in both the private sector and the public firm. This
may be motivated by assuming that the public firm chooses its production plan
such as to obtain aggregate production efficiency. If all price distortions are due
to commodity taxation, this formulation implies that taxes on intermediate goods
within the private sector and between the private and the public sector cancel out
so that in effect, only private and government sales to and purchases from
consumers are subject to commodity taxation. Of course, ¢y,-=0 by definition.

As the public budget constraint is assumed to be not binding, ¥ = 0, and setting
prices under public control different from marginal costs must therefore be
motivated by the re-allocation effect in the markets with exogenously given price
distortions. Assume that we undertake a (small) finite change in the commodity
prices by d p;, i =1,..., n. According to conditions (2.1), (2.5) and (2.11), such a
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change in the price structure will increase social welfare if
- v 9% y,
Z Z dpk+ Z ZtZ —dp, 20, (5:2)
k=1i=

and since the change in net public production must equal the change in net
private demand, the sufficient condition for an increase in social welfare simplifies
to

A

f: ; dpk >0. (5.3)

We first assume that all prices are changed in proportion to the distortions, that
is, d p, = t, dA, Vk. This means a uniform price movement towards or away from
marginal costs according to whether dA is negative or positive.

In this case the sufficiency condition reduces to

A

i i tde>O (5.4)

and since the Slutsky matrix d%,/dp, is negative definite, (5.4) is satisfied if and
only if dA <0 when ¢;# 0 for at least one i. Hence, if al/l prices move towards
marginal costs in proportion to the prevailing distortions, this will increase social
welfare. Similar results have been obtained in the context of international trade
theory by Foster and Sonnenschein (1970).

Looking at partial price changes, a change in the price of commodity e will
increase social welfare if

Z tigst dpe (5.5)

We define 6, = ¢, /p,, that is, the relative price distortion or the ad valorem tax on
commodity i With given distortions on commodities other than e, it follows from
(5.5) that the optimal ad valorem tax 6} is given by

Z 0ipi(axi/ape)
gx = 12* , 5.6
‘ E Pi(a’%i/ape) ( )
i#+e

that is, a weighted sum of the relative price distortions on commodities other than
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e. If commodity e is a net substitute for all commodities, then it follows
immediately from (5.6) that min, . 0, < 6* < max,__,.

From the homogeneity of compensated demand functions,

n A

9%,
0e Z plﬁ dpe=05

i=0 L4

and deducting from (5.5) and rearranging, we have that a partial price change d p,
will increase welfare if

n

9%,
Z (01 - ee)Pig dpe2 0’ (57)
i=0 e

where of course 6, =0. Hence, assuming that 6,> 0, Vi # 0, we have from (5.7)
that a sufficient condition for a decrease in p, to increase social welfare is that
commodity e is a net complement to all commodities with a greater relative
distortion than that on commodity e and a net substitute to commodities with a
lower relative price distortion. In particular, assume that commodities are ordered
according to the relative price distortion so that 6, >6,_, > --- > 6,. Then, if all
commodities (including the numéraire) are net substitutes, a partial reduction in
the price of commodity n will increase social welfare until 6, =6,_, and then
social welfare could be improved by reducing p, and p,_, until ,=6,_,=16,_,
and so on, until §,=0, Vi + 0.

As a special case of (5.7) we consider the case where the relative price
distortions are the same for all commodities (§ may be a common ad valorem
tax). Then (5.7) reduces to

9%,
ap,

~6-"2dp,>0. (5.8)

Hence, if the price is initially above marginal cost by the same factor for all
commodities (except the numéraire), then it will be optimal to raise the price
of commodities which are complementary (in consumption) and reduce the price
of commodities which are substitutes for the numéraire good. Thus, even though
prices are a partial price movement away from marginal costs for all commodities,
we have here an example where a partial price movement away from marginal
cost will increase social welfare. However, the economic rationale for this result is
quite simple. With an optimal redistribution of income, 0, is the marginal social
value of an additional unit of the numeéraire allocated to the purchase of
commodity i. Since, by assumption, 6, is the same for all i # 0, a re-allocation of
resources away from the production of the numeéraire to any distorted sector will,
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in this particular case, improve social welfare. This can be achieved by taxing
complements and subsidizing substitutes for the numéraire good, which is pre-
cisely what condition (5.8) says.

In the case where all price distortions in the private sector are caused by
commodity taxation, all private producers face the same prices and under
competitive behavior, there will, in equilibrium, be production efficiency in the
private sector. Moreover, under the assumption that the absolute price distortion
shall be the same for goods produced in both the private and public sector, there
will also be aggregate production efficiency. However, if there are no such
constraints on the production plan of the public firm, then the optimality
condition (2.11) does not imply aggregate production efficiency. This follows from
the fact that an optimal production plan in the public firm is obtained through
equating marginal production costs to shadow prices and with price distortions in
the private sector, shadow prices will depend on whether commodities are taken
out of consumption or private production. To see this, assume an economy with
only two goods, indexed 0 and e, and that there is a commodity tax levied on
private producers of commodity e which the public firm takes as given. In this
case condition (2.11) implies (under the assumption that p = 0)

o 0%,/dp,  (=dy./3p,)
=P, +c <
¢ "°dz,/dp, ¢ 0%,/90p,

c

Hence, in this particular case, the public firm should equate marginal cost to a
weighted sum of producer and consumer prices with non-negative weights adding
up to unity.

The above example is perhaps somewhat artificial since the public firm takes
the price distortion in the private sector as given, even when the public budget
constraint is not binding. With a binding budget constraint and if all goods are
taxable in the sense that all consumer and producer prices can be changed
independently, it has been shown by Diamond and Mirrlees (1971) that aggregate
production efficiency will always be desirable, even in the presence of price
distortion — provided that profits, if any, in the private sector can be transferred to
the government.

If we assume that the government controls all consumer and producer prices,
then private producer prices would be the relevant shadow prices to use in the
public sector, provided that the tax structure were optimal. Hence, in this
particular case, the public firm should aim at aggregate production efficiency, so
that it should produce until marginal costs in the private and public sector are
equal. Private marginal costs will of course deviate from consumer prices at a
second-best tax optimum, which implies that an optimal production plan in the
public firm is characterized by marginal costs that differ from consumer prices.
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6. Contestable markets: Relation between sustainable and Ramsey prices

We have analyzed the optimal pricing and production of a multi-product public
firm, characterized by increasing returns to scale and facing a competitive fringe.
The technology available to private firms has not been specified except in
assuming (implicitly) that, at the optimum, it provided non-negative profits to the
active private firms. Baumol, Panzar and Willig (1982) have taken a different
approach. In their analysis, the “public firm” is a profit-maximizing monopoly
(“incumbent”), disciplined by potential entrants who have access to the same
technology, with entry and exit being frictionless (no “sunk” costs).® They argue
forcefully that under certain conditions, the market equilibrium is (second-best)
socially optimal even though there may be only one active firm. Specifically, the
monopoly will charge “Ramsey prices” which enable the firm to cover costs. This
result they call the “Weak Invisible Hand Theorem” [Baumol, Bailey and Willig
1977)).

Baumol et al. consider a monopoly using a technology expressed by a subad-
ditive cost function, ie. c(z!'+z?)<c(zV)+c(z?), VZ',22>0, where z/=
(2{, 24,..., zJ) is an n-dimensional output vector.” Cost subadditivity implies that
one firm can produce more cheaply than two (or any number of) firms producing
the same total outputs and hence is offered as a unifying definition of natural
monopoly. The monopoly faces a vector of demands x(p)= (x1(p), x,(p),
..., X,(p)) where p=(pq,p,,-.., p,) are consumer prices. Denote by N =
{1,2,...,n} the set of all goods and let S C N be a subset of N. Thus, z°, x* and
p’ are the projections of z, x and p, respectively, on E?. The convention that
c(z%) = c(z5,0"/5), where N/S denotes the complement of S with respect to N,
will be used.

Consider a potential entrant having access to the same cost function ¢(-) and
incurring zero entry and exit costs. The entrant may produce any vector of
quantities 2° at prices p°. Then, a price vector p is sustainable® if every triple
(S, 2°, p®) satisfying

M p=<pf () 22<x(p%p"), (6.1)

$The market for air travel serves as a canonical example. Such a market may support only one
airline, but the active airline must price at cost to prevent a price-cutting rival airline from flying in
and skimming off customers.

"We focus on the production of outputs, z > 0. The analysis, however, can be applied to inputs too.

8This is called sustainability against partial entry, because the entrant may produce any quantities
up to those determined by market demands. Sustainability against full entry would require that
entrants supply market demands.
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also satisfies
pz5—c(2%)<0. (6.2)

When condition (6.2) is not satisfied then we say that markets N /S cross-subsidize
the commodities in S.

Two further conditions on cost functions are assumed. First, decreasing ray
average cost, i.e.,

c(yz) <ye(z) for Vy>1. (6.3)
Second, transray convexity, i.e.,
(A2 +(1-A)z2) <Ae(2))+(1-A)e(2?),  O0<A<l. (6.4)

The “Weak Invisible Hand Theorem” [Baumol, Bailey and Willig (1977)] states
that under conditions (6.1)—(6.4) Ramsey prices are sustainable. Thus, under these
conditions, a monopoly which uses prices to deter entry leads to an efficient
allocation without governmental regulation.

A number of comments on this result are now in order. Assumptions (6.3) and
(6.4) are contradictory when they are assumed globally and when the cost
function has no fixed costs, c(0)=0.° Baumol et al. (1977) have noticed this
problem and thus required that (64) hold only on the hyperplane which is
tangent to the zero-profit curve at the Ramsey prices [see Baumol, Bailey and
Willig (1977, p. 356)]. Clearly, these assumptions crucially depend on the location
of the Ramsey optimum allocation.

Furthermore, in the separable cost case, i.e.,

C(Z)= Z cj(z_j)7
j=1
¢;; EL > E} and c(0)=0,

these conditions are contradictory. In fact, it has been shown by Mirman,
Tauman and Zang (1982) that in this case the only sustainable prices are average
cost prices, which may obviously differ from “Ramsey Prices”.

Finally, Brock and Scheinkman (1983) advanced the notion of quantity sus-
tainability. While in Baumol et al. (1977) entrants expect that the incumbent’s
prices remain fixed [hence, definition (6.1)-(6.2) above may be called price

°In (6.4), let z2.—> 0. Then c(Az')<Ac(z!), 0 <A <1, which is equivalent to c(yz!) > Ac(z'),
y=>1.



1270 Kare P. Hagen and Eytan Sheshinski

sustainability], they assume the polar case where entrants expect that the in-
cumbents’ quantities remain fixed. This definition, they point out, is more relevant
in the case where the incumbent’s costs are all sunk, because then it is in its
interest to maintain larger output levels after entry than in the case where costs
are escapable. They show that under a well-behaved demand function, price
sustainability implies quantity sustainability. Moreover, it is possible that a
quantity sustainable price vector yields positive profits to the monopoly. Hence,
even in the separable cost case, quantity sustainable prices are not in general
average cost prices. Thus, it is more likely for a weak invisible hand result to hold
when the notion of price sustainability is replaced by the notion of quantity
sustainability.

Baumol et al. (1982) claim that their notion of contestability avoids the ex post
oligopolistic interactions based on entrants’ conjectures, typical of current game-
theoretic industrial-organization models [for example Kreps and Wilson (1982)
and Milgrom and Roberts (1981)]. Attempts to lay out a framework specified as a
game between incumbents and challengers [e.g. Maskin and Tirole (1982) and
Mirman et al. (1982)] have shown that perfect contestability emerges as an
equilibrium outcome in some, but not in all, dynamic games, depending on the
assumptions and rules of the game (asymmetric) information (who moves first,
etc.).

7. On the public firms’ decision rules

We have assumed that private firms respond, competitively or non-competitively,
to price changes induced by the public firm. In the competitive case this is a
natural assumption. In a non-competitive environment, it is perhaps more natural
to regard the public firm as a dominant agent, i.e., as one capable of imposing its
decision rules, such that the other firms have to adapt to them. This view has been
taken by Harris and Wiens (1980), followed by Beato and Mas-Colell (1983).

To simplify the discussion, assume that there is only one commodity (in
addition to the numéraire) and one private firm. Consumption is x, the quantity
produced by the public firm is z and by the private firm y: x=2z + y.

A decision rule for the public firm is, in general form, an arbitrary function y:
E! - E', which assigns a public production /( y) to every private production y
and. which belongs to some admissible set of functions A. Particular examples are
the marginal cost pricing rule, to be discussed below, or a rule which assigns a
constant level, say Z, to any level of y. Given the rule {/(y), private firms’ profit
maximization with respect to y determines the equilibrium configuration ( y, Y ( y)).
Optimization of social welfare consists of finding the best admissible decision rule
given the information available on demand and the cost function of the private
firm.
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As pointed out by Beato and Mas-Colell (1983), in this general form, it is not
clear what the admissible set A should be. In fact, if no restrictions are imposed
and information is perfect then the first-best can be attained by the decision rule:
Y (y)=max[x — »,0], where X is the first-best production. This rule fixes the price
at its optimum level with the effect that the private firm, robbed of its monopoly
power, will produce the socially optimal output. This result, however, crucially
depends on the public firm’s decision rule being perfectly credible, irrespective,
for example, of possible losses incurred by the public firm. A natural, but ad-hoc,
restriction on  would thus be a no-loss condition. Furthermore, under uncer-
tainty about private costs, the problem of finding the best Y may not be
degenerate. The optimum will depend, of course, on the characteristics of the
uncertainty. However, no results are yet available on this question.

Rather than pursuing the full optimality approach, Beato and Mas-Colell
(1983) have taken a “bounded rationality” line, comparing the performance of
two “simple” decision rules: constant public output and marginal cost pricing
(MCP).

A simple diagram may exhibit their analysis. Assume that there is one con-
sumer, with an additively separable utility, U, linear in the numeéraire x,
U=u(x)+x,=u(z+ y)+x,, where u is strictly concave. Costs (in terms of the
numéraire) of the public and private firms are ¢(z) and é(y), respectively. For
simplicity, both cost functions are assumed to be convex and hence no zero-profit
constraint need be imposed on the public firm. For a given amount of the
numeéraire, welfare, or net utility, W, is given by

W(z,y)=u(z+y),—c(z)-2(y). (7.1)

Let us examine first the “constant output” decision rule. Assuming that z is
given, the private firm maximizes profits, P, with respect to y,

mfo(z,y)=p(Z+y)y—é(y), (7.2)
where

plz+y)=w(z+y).

Denote the graph of the solution to (7.2) by g: y =g(z). The assumptions
imply that g is continuous and decreasing, as in Figure 7.1. The social optimum is
now obtained by maximizing (7.1) where y = g(z). This is point L (quantity z,),
where a social indifference curve is tangent to g.
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Figure 7.1

Now consider the MCP rule

p(z+y)=c'(2)=0, (7.3)

whose graph is denoted by A z= h(y). The assumptions imply that A is also
continuous and intersects g as described in Figure 7.1. The private firm maxi-
mizes its profits with respect to y assuming that z = h(y),

mjle(h(y)+y)=p(h(y)+y)y—é(y)- (7.4)

The solution is at M, where an iso-profit curve, P, is tangent to A.

It is quite clear that, in terms of W, the relation between M and L is
ambiguous. In particular, the MCP rule'is not dominated by the constant output
rule. In fact, Beato and Mas-Colell (1983) show that with linear demands and
constant rnarginal costs in the public firm, the MCP rule is superior to a constant
output rule.
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z

kO

Figure 7.2

The ambiguity regarding the ranking of decision rules can best be seen by
considering capacity constraints in the above example. Thus, suppose that the
public firm has a capacity constraint k, i.e., z < k. Let the optimum solution with
a constant output decision rule be denoted by (y™, z™) (point M in Figure 7.2)
and with the MCP rule by (yF, z¥) (point F°). Then it is easy to construct an
example where for “low” capacity, k°, U(y™, zM)> U(y¥, zF), while for “high”
or no capacity constraint, the welfare ordering is reversed (point F! preferred to
M 9).1° As the example indicates, it may be desirable for the public firm to build
capacity and to switch, as capacity expands, from one rule to the other. As the
Beato and Mas-Colell (1983) calculations indicate, the region (in terms of
parameters) where the MCP rule fares worse than constant output is when (the
public firm’s) capacity is low and marginal costs are high.

1°The numerical example: p =10— y — z. The private firm’s cost function ¢(y)=3y? [so g(z)=
(10— z)/4 for z <10], the public firm’s cost ¢(z)=3z and k =2.5. Then (y™,z*)=(3,1) and
(%, 25)=(25,2.5). Since U=10(y + z)— 1(p + 2)> =1y — 3z, clearly U(3,1) > U(2.5,2.5).
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Their calculations also show that there is no obvious relation between the size
of profits (for the public and for the private firms) and welfare levels. In fact, if a
profit constraint is imposed, one of these decision rules may not be feasible.

8. Optimal supply of public goods

The introduction of public goods into the present model would not, in principle,
present any further difficulty, as we could think of public goods as of government
production which is given away rather than sold. Yet optimal pricing and
production rules for public firms which produce both private and public goods
will be discussed in more detail.

We let the vector v represent the supply of public goods, and we focus on the
polar case where exclusion is not feasible and all consumers have to consume the
same amount of each public good. Hence, individual preferences will be repre-
sented by the utility functions U*(x*, v) and we set dU"/dv, =U}t > 0), Vk.

The efficiency frontier of the public production technology is now given by the
implicit production function g(z,v)=0.

Necessary conditions for efficient supply of public goods are then given by
conditions analogous to (2.1),

ZM Uk+ZUh ) Za(z ay,) Bg, =0, Yk, (8.)

8vk
where
8, =08/ 9v,.
We write @} =U}/Uy" = consumer h’s marginal rate of substitution between

public good k and the numéraire, or consumer h’s (individualized) price for
public good k in terms of the numéraire. Observing that 2, p,(dx!/dv,) = 0, Vh,
and using (2.4), (8.1) can be rewritten as

x! ., ax;! ay/
% ;8"57"" =cp+ Z,-:S" %7%_,(_? 30, | (82)

where ¢? is the marginal production cost of public good k. Substituting from
(2.7) and observing that Y, p,(dx!/dr*)=1, Vh, and ¥,c/(dy//dv,)=0, V},
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after some manipulations, (8.2) can be rewritten as

ax"

or®

ax}

% 1‘!‘—2(171'_"?) W£=02—Zh:Z(Pi—C?)

dv,

v,

L Y(p- )
S0-WEE(n-) R 63

The compensated demand derivatives of private goods with respect to public
goods supply are defined by

a%, Ix!  oxl!
[ - _r ——'-77
dv, grh k)

v, %
and, accordingly,

0% _ 0% 5 0¥/

dv,  du, < v,

is the partial derivative of the compensated net market demand for private good i
with respect to the supply of public good k. Using these definitions, condition
(8.3) can be rewritten as

9z, N 0y/
~LX(pi—c)g, (8.4)
j k

v, -

1
1_" cl(c)_Z(pi_c?)

i

Y=
h

With marginal cost pricing of private goods everywhere in the economy and with
no constraints on public spending, (8.4) simplifies to the familiar Samuelsonian
conditions for optimal public goods supply [see Samuelson (1954)]. With perfect
competition in the private sector, (8.4) is identical to the conditions for optimal
supply of public goods derived by Dréze and Marchand (1976) and Lau,
Sheshinski and Stiglitz (1978).

The left-hand side of (8.4) is of course the marginal social value measured in
terms of the numéraire of increasing the supply of public good k. The term in
brackets on the right-hand side is the net resource requirement in the public
sector needed for a marginal increase in the supply of public good k. This net
resource requirement may be greater or smaller than marginal production cost,
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depending on whether the public sector prices private goods above or below
marginal costs and on whether these private goods are complementary to or
substitutes for public good k. The net resource requirement for a marginal
increase in the supply of public good k is inflated by a factor 1/(1 —p) > 1, which
reflects the fact that the shadow price of the numéraire good is higher in the
public sector than in the private sector in the case where the public budget
constraint is binding. The last term on the right-hand side of (8.4) is due to price
distortions in the private sector and expresses the social cost or gain resulting
from the re-allocation of resources in the private sector caused by a marginal
(compensated) increase in the supply of public good k.

An example may perhaps be in order toillustrate the optimality condition (8.4).
Suppose that a public TV station is contemplating an additional television
channel. Assume further that this requires highly specialized program personnel
of which the TV station is the sole employer. Let this input be indexed e and
assume for simplicity that 9%, /dv, =0, Vi+ e. We can also assume that the
optimal pricing rule derivable from the first-order conditions (2.11) tells the TV
station to behave monopsonistically in the market for commodity e, setting
p. < — dz,/9z,. Hence, in this case, the net resource requirement of providing an
additional TV channel will be smaller than marginal cost cj. Moreover, an
additional TV channel may lead to increased production of TV sets in the private
sector and, to the extent that TV sets are subject to mark-up pricing, this will
entail a social gain which should be added on the benefit side.

We now turn to the case where all price distortions are caused by commodity
taxes and subsidies and we assume that the government controls all production,
so that y,=0 and x,=2z;, Vi. In this case, we can show that the familiar
Samuelsonian conditions have to be modified to take into account what may be
called an allocative effect and a distortive effect caused by an increase in public
goods supply.

Under the above assumption, condition (8.4) simplifies to

1 0%,
h — 0_ —_—
%Wk_l_ﬂ(ck itiavk), (8.5)

which is similar to the results of Diamond and Mirrlees (1971) and Lau,
Sheshinski and Stiglitz (1978). In the case where all production of private goods
takes place in the public sector, condition (2.11) for optimal pricing can be
rewritten as
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and substituting into (8.5) we get

ax;
oZvr,f+ Zti%—=c,?, (8.6)
h i k
where
t, 0%

o=1+) -+

Condition (8.6) for optimal supply of public goods says that marginal produc-
tion costs for public goods should be equated to a factor ¢ times the sum of
individual consumer prices, plus the social gain (or loss) resulting from the
changes in the demand for private goods caused by the complementarity and
substitutability of private and public goods. The latter effect, which is given by
the change in net tax payments by households, represents the allocative effect of
increased public goods supply.

As public expenditures are financed through commodity taxation, an increased
supply of public goods will lead to increased taxation. This will have a distortive
effect which is given by the factor 0. From the negative definiteness of the Slutsky
matrix it can be shown that under the condition of positive public expenditure

(Zitixi > 0),

t; a)‘c,.<0'
P Xe dp. T

hence o <1 and the distortive effect will always be non-positive.

9. Some intertemporal issues

Interpreting x;, x,,... as the same commodities at different dates, the previous
discussion can be interpreted as applying to the problem of optimum public
investment, i.e., the socially optimum shadow discount rates for public invest-
ment. This assumes, however, that the public firm is regulated so that the present
value of its profits achieve a given target level (b). This seems a sensible
formulation of the dynamic Ramsey problem since it recognizes the existence of
capital markets for borrowing and lending. However, a time inconsistency prob-
lem may arise when explicit dynamics are introduced [Brock (1982)].

Suppose that production in the public firm is subject to a “learning” element,
which can be simply modelled by modifying the public firm’s technology to
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g(z,€) =0, where ¢ is a productivity parameter and the change in & over time is
given by a standard distributed lags function of outputs,

% = Zaiz,- — f¢, (9.1)

where a; (a;>0) is the “contribution” of a unit of output i to efficiency and 6
(6 = 0) a fixed depreciation rate. Clearly, all variables have now a time dimen-
sion. Assume first that the profit constraint applies at each point in time,

b—Y pz;=0, Vi (9.2)

The objective is to maximize the infinite-horizon present value of the maximand
in Section 2, with a given positive social discount rate, r.

Elementary control theory yields that equation (2.11), which applies to the case
of a competitive fringe, then becomes

92 s
Z(C?_‘Ei_pi) ap =pi,, Vi, (9.3)
where
© ac’
éi(t)=a,.f e‘“*”’“")(——a%—)ds, t>0. (9.4)
t

The “shadow price” ¢; represents the prospective contribution of z; to future
cost reduction along the optimum path. We may interpret ¢? — ¢; as the “true”
marginal cost of output i. Notice that in (9.3), p measures the value of relaxing
the constraint (9.2) and hence it may vary in possibly complicated ways over time.
Clearly, operationalizing (9.3) is a complex issue.

The profit constraint in present value terms is
fwe"’(Zp,-z,-)dt=b/r, (9.5)
0 i

and similar first-order conditions can be deduced. However, as Brock and
Dechert (1982) have argued, the solution may be time-inconsistent. That is,
starting at date ¢ > 0, with initial conditions being the optimum values obtained
for i starting at 0, the optimum values for any s >t are different from those
obtained when starting at 0. Clearly, there is little point in laying out an optimal
plan if it is not optimal to follow the rest of the plan at subsequent dates.
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Chapter 26

OPTIMAL ECONOMIC GROWTH, TURNPIKE THEOREMS
AND COMPARATIVE DYNAMICS*

LIONEL W. McKENZIE*

University of Rochester

L. Optimal Paths and Duality

1. Introduction

We will be concerned with the long-term tendencies of paths of capital accumula-
tion that maximize, in some sense, a utility sum for society over an unbounded
time span. However, the structure of the problem is characteristic of all economiz-
ing over time whether on the social scale, or the scale of the individual or the firm.
The mathematical methods that will be used are closely allied to the old
mathematical discipline, calculus of variations. However, our problem is made
simpler by substituting discrete for continuous time so that the Euler differential
equation is replaced by a difference equation. On the other hand, the problem is
complicated by the use of an infinite horizon and the adoption as a primary
objective the characterization of the asymptotic behavior of optimal paths. We are
particularly interested in the tendency of optimal paths which start from different
initial positions to converge to the same limit path as time goes to infinity. We
will go beyond the traditional approach in another direction to consider paths of
capital stocks which meet the boundaries of the regions within which they must
lie given the conditions of the problem, in particular, the requirement that the
capital stocks be non-negative. Of course, this is one of the principal modern
innovations in the theory of maximization from the work of writers such as Kuhn
and Tucker (1951), Bellman (1957), and Pontryagin (1962).

*I have received assistance from many readers in preparing this chapter. Above all, I am grateful to
my students, Swapan Dasgupta and Makoto Y ano who have made numerous contributions to the text
and corrected many errors. I have also received valuable aid on specific points from Jose Scheinkman,
Peter Hammond, Teh M. Huo, Ali Khan, and Tapan Mitra. Finally, I am especially indebted to
William Brock, David Cass, David Gale, and Roy Radner for my understanding of optimal growth
theory.
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A crucial condition for the maximum to be achieved, whether as a necessary
condition or as one of the sufficient conditions, has been concavity of the
maximand, at least locally at the maximal path. This is to be expected from the
conditions for a maximum of a function of a finite number of variables. In the
calculus of variations the concavity that is needed is provided by the conditions of
Weierstrass and Lagrange [see Bliss (1925) for a classical reference or Hestenes
(1966) for a modern reference]. Moreover, when global results are squght, the
concavity condition is assumed throughout a relevant region. This is also to be
expected from the theory with a finite number of variables. In our theory
concavity of the utility function will always be assumed, even uniformly over a
relevant region for the global maximum and over time. The utility is defined
directly on the capital stocks at the beginning and the end of a standard period of
time, and the concavity is with respect to these variables. It should be mentioned,
however, that some results have been achieved in one-sector models in which
concavity is not assumed everywhere [see Skiba (1978), Majumdar and Mitra
(1982), and Dechert and Nishimura (1983)].

In most of the discussion the utility function will be allowed to depend on time,
as in the standard theory of the calculus of variations. Also the function to be
maximized will be the sum of utility functions for each period over the future.
This is described as a separable utility function over the sequence of future capital
stocks and corresponds to the integral of calculus of variations. Since the
consumption of one period does influence the utility of later consumption, the
separability assumption is not exact. However, the error is no doubt reduced by
lengthening the period, though this may not be much help in an application of the
theory. Again there are results in the literature where the separability assumption
is relaxed [see Samuelson (1971) and Iwai (1972)). The treatment of utility in a
period as dependent on initial and terminal stocks is not a restriction since the
usual assumptions that make utility depend on consumption and consumption on
production and terminal stocks will imply that an equivalent utility depending on
capital stocks exists.

The theory that I will present will cover both discounted and undiscounted
utility. We will seek to determine the asymptotic behavior of maximal paths,
which display a tendency to cluster in the sufficiently distant future from
whatever capital stocks they start. Other types of turnpike behavior that have
been studied are clustering in early periods for finite optimal paths that start from
the same initial stocks, but have different terminal stocks, and clustering in the
middle parts of paths that may start and end with different stocks [see McKenzie
(1976), McKenzie and Yano (1980), and Hieber (1981)]. In models with sta-
tionary utility functions, perhaps subject to discounting, the clustering has been
seen as convergence to a stationary path along which capital stocks are constant.
This view is reinforced by the fact that in stationary models the existence of
stationary optimal paths, which are, moveover, supported by prices, is easy to
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prove by special means which are not useful for other optimal paths. Then this
path and its prices can be used to establish the asymptotic convergence of other
paths to it, with great ease in the undiscounted case. However, methods are now
available from the work of Weitzman (1973) to derive the prices for other optimal
paths directly so that the balanced path does not have a distinguished role in the
asymptotic theory if existence is assumed or can be proved. Also methods are
available which exploit concavity directly without introducing prices.

Our consideration will be confined to the deterministic model although using
methods developed in this model analogous results have also been proved for the
stochastic model in which the future is uncertain [see Evstigneev (1974), Brock
and Mirman (1976), and Brock and Majumdar (1978)]. Also most of the
argument will assume concavity of the relevant functions without requiring
differentiability or interior solutions. However, some consideration will be given
to differentiable cases where optimal paths are assumed to lie in the interior of the
region of definition of the utility function. These stronger assumptions are
analogous to the assumptions used in the comparative statics of general equi-
librium models of competitive economies. Here they will permit some compara-
tive dynamics to be done. The assumptions are in some ways even stronger than
those usual in classical calculus of variations. However, the methods that become
available are very powerful in the discrete model and, so far as I know, have not
been extended to models where continuous time is the independent variable.

The original context for the optimal growth model was the problem of the level
of saving that would maximize a utility sum over future time for a population.
This problem was solved by the Cambridge mathematician Frank Ramsey (1928)
for a one-good model, which may be thought of as an aggregated economy over
an infinite future. The method used by him to handle the infinities involved is still
useful today. However, the emphasis on asymptotic behavior for optimal paths
appeared later in the multi-sector von Neumann model analyzed by Dorfman,
Samuelson and Solow (1958). They dealt with finite paths where the objective was
to maximize terminal stocks and their model contained two sectors. Since the
model was stationary they could concentrate on the convergence of all optimal
paths to a stationary optimal path. Later authors [Radner (1961), Morishima
(1961), and McKenzie (1963)] extended the von Neumann model and the conver-
gence theorems to many sectors. On the other hand, a Ramsey-style utility
function on the consumption stream was introduced as the objective rather than
terminal stocks. Also the horizon was extended to infinity. Asymptotic theorems
for the one-sector Ramsey model were proved by Cass (1966), Koopmans (1965),
and Samuelson (1965). Von Weizsacker (1965) generalized the objective function
somewhat by defining the overtaking criterion in which attention is turned to
partial sums and optimality is assigned to a path whose partial utility sums
eventually dominate when it is compared with an alternative path from the same
initial stocks. He also dealt with a model in which utility and production
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functions change over time, but he aggregated the economy to a single sector. We
will deal essentially with the Von Weizsicker model in a disaggregated form,
which is natural when the analysis is directed to asymptotic behavior of paths.
The existence of infinite optimal paths in the stationary disaggregated model was
proved by Gale (1967). Asymptotic theorems in this model were proved by
Atsumi (1965), Gale (1967), and McKenzie (1968). The existence theorem was
extended to models with discounted utility by Sutherland (1970), and the asymp-
totic theorems were extended to these models by Scheinkman (1976) and Cass
and Shell (1976).

Although the primary sources of the optimal growth model are aggregate
savings programs and capital accumulation programs for an economy, the theo-
rems and methods of the subject find applications in other areas with increasing
frequency. For example, applications are made to capital accumulation by the
firm with adjustment costs by Brock and Scheinkman (1978) and Scheinkman
(1978), and to competitive markets with perfect foresight by Brock (1974), or
rational expectations by Brock (1980). In these models the social utility function
is replaced by individuals’ utility functions or by the profit functions of firms.
Thus there is a movement toward a general theory of economic dynamics in
which asymptotic theorems and comparative dynamic theorems form the bulk of
the results and where the analysis is largely derived from the optimal growth
literature. Excellent examples from the theory of competitive equilibrium are the
recent works of Becker (1980), Bewley (1982), and Yano (1981), where the
turnpike results from optimal growth theory are used to prove that competitive
equilibria approach stationary states over time. It has been suggested that our
subject is best described as the study of economizing over time [see Intriligator
(1971)).

2. The basic model

We will use a reduced form of the objective function in which utility is expressed
as a function of the initial and terminal stocks of a period. The utility function is
written u,(x, y), where x is the vector of capital stocks at time ¢ —1 and y is the
vector of capital stocks at time ¢ Then u, is the utility derived from activities
during the time period from times ¢ —1 to ¢, which we call the ¢th period. The
reduced model is equivalent to the traditional extensive model in which utility is
expressed as a function u,(c) of the consumption vector in the zth period. The
extensive model introduces a production correspondence f,(x) which expresses
output, not just capital goods, as depending on initial capital stocks. However, so
long as the utility functions of different periods are independent, it is a necessary
condition for an optimal program that ¢ be chosen from f,(x)— y, where y
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represents terminal stocks, to maximize u,. Thus the models are not significantly
different. It should be noted that the full commodity space in which f,(x) lies
may include labor services and perishable goods dated by their times of use
within the period.

We may allow the utility function u,, as well as the space E, of capital stock
vectors at time ¢, to depend on ¢. Then u, maps a set D, contained in the
non-negative orthant of E,_, X E, into the real line, where E,_; and E, are
Euclidean spaces of dimensions #,_; and n, respectively. Let ||, for a vector
argument, denote the Euclidean norm. We assume

(I) The utility functions u,(x, y) are concave and closed for all ¢. The sets D, are
convex.

1) If (x, y) € D, and |x| < £ < oo, there is { < co such that |y|<{.

Assumption (I) provides the concavity and convexity that are recurrent features
of calculus of variations and other theories of maximization. By u, is closed is
meant that (x, y) € boundary D, implies u,(x, y) = limsup(u,(z,w) as (z,w) —
(x, y) if (x, y)€ D, and u,(z,w) = — co otherwise. Since we are seeking global
results, the assumptions on concavity and convexity are global. The boundedness
assumption (II) is made to avoid trivial cases. Note that (I) and (II) imply that
u,(x, y) is bounded above for |x| < £.

A sequence of capital stocks { k, }, ¢ € N, is a path of accumulation if N is a set
of consecutive integers and (k,_;, k,) € D, when ¢t —1 and ¢ are in N. The set N
may be a finite or an infinite set.

We may note that the capital stocks are the state variables in the language of
optimal control and there is no need to confine them to physical goods or things
that can be appropriated as private or public property. For example, features of
the environment, skills of workers, and mineral deposits may also be included.
These offer ways in which future utility possibilities may be influenced by present
choices. In addition, the dependence of the utility functions on time may take
account of trends in technology, tastes, and environment in so far as they are
independent of the choices made. Of course, the interpretation of the state
variables will depend on the particular problem at hand. Our descriptions have
been appropriate to the interpretation of #, as a social utility function that is the
objective of planning by the state.

In classical economics the concavity of the production correspondence which is
part of the ground for assumption (I) is often explained in terms of the
independence and linearity of basic productive activities, at least to an approxi-
mation. However, when external effects are present so that different activities
influence one another, this ground of concavity is jeopardized [Starrett (1972)].
Also polluting substances in the environment are not allocated between activities
the way capital goods are, so they do not fit into the paradigm of an allocation of



1286 Lionel W. McKenzie

stocks among independent, linear activities. These are important qualifications to
the generality of the model.

3. The objective function

The objective function for a finite program from t =0to¢ =T is Z,T=1u,(x,~1, ¥,)-
If the sum exists, the objective function for an infinite program { k,} beginning at
t =0 is similarly Z'f;lu,(k,_l, k,). However, the infinite sum may not exist and
one of Ramsey’s achievements was to show that this difficulty may be overcome
in certain models with stationary utility functions by subtracting a constant from
each term of the series to be summed. A more general method was introduced
more recently by Von Weizsacker (1965) and Atsumi (1965) and refined by Gale
(1967) and Brock (1970). In this approach the infinite sum is replaced by a
comparison of finite partial sums. The new criterion is called the overtaking
criterion.

Two definitions are made. The stronger definition characterizes an optimal
path. We will say that a path {k,} catches up to a path { k) starting at the same
time, if for any e > 0 there is T(¢) such that ):lT(u,(k;_l, k))—u,(k,_1,k,)) < e for
all T > T(e). Then a path { k,} is optimal if it catches up to every alternative path
from the same initial stocks. In other words, an optimal path is asymptotically as
good as any other path from the same starting point when they are compared by
means of their initial segments.

We will say that a path {k,} overtakes a path { k,} starting at the same time, if
there is e >0 and T'(e) such that X1(u,(k._,, k!)—u,(k,_1, k,)) > ¢ for all T >
T(e). Then a path { k,} is maximal if there is no path from the same initial stocks
that overtakes it. This says that a maximal path does not become permanently
worse than some alternative path when they are compared by means of their
initial segments.

4. Support prices

We wish to allow for maximal paths that do not remain interior to the sets D, at
all times, or perhaps at any time. In these cases derivatives will not always exist
for the utility functions along the path. For this reason it is convenient to
introduce dual variables, which we call prices, as generalizations of derivatives.
Then it is also possible to dispense with assumptions of differentiability in the
interior of D, as well. The existence of the appropriate prices for our purposes was
proved by Weitzman (1973) when utility is summable. However, his method can
be adapted to the overtaking criterion [McKenzie (1976) and Hieber (1981)]. A
theorem corresponding to that of Weitzman has been proved for the continuous
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time model by Benveniste and Scheinkman (1982). This was extended to a
continuous time model with the overtaking criterion by Takekuma (1982).

Consider a maximal path {k,}, t € N, where N is the set of non-negative
integers. First, we normalize the utility function choosing the zeros of utility so
that u,(k,_,, k,) =0 in every period. This is harmless since the choice of the zero
level of utility in each period has no effect on the comparison of paths. Next we
define a value function V,(x) which values a capital stock at time ¢ by the utility
sums that can be got from it in the future. Following the example of Peleg and
Zilcha (1977) in the stationary model, we set

T
V,(x)=sup|lim inf Y w.(h._,, k)], (4.1)

7 441

over all paths { h,} with h, =x. V,(x) is well defined when the right-hand side of
(4.1) exists as a finite number or positive infinity. A little computation will show
that the concavity of u, and the convexity of D, imply that ¥,(x) is concave and
well defined on a convex set K,. Since V,(k,)=0 for all ¢, K, is not empty. We
may also note that ¥,(x) is well defined for any x for which there is a path { £/}
with kj=x and k], ,=k, .

Let P, be the set of capital stocks y such that there is x with (x, y) € D,. P, is
the set of capital stocks that can be produced from some capital stocks held at
time r —1. S is a flat in the Euclidean space E if there are vectors y,€ E, i € I,
where 1 is a finite set, such that z €S is equivalent to z=2X,_,a,), for some
numbers «; such that X, ,a;=1. Let S, be the smallest flat in E, that contains
K, and for ¢ 21, let S, be the smallest flat in E, that contains P, and K,. It is
crucial to the derivation of support prices for {k,} to assume:

(III) Interior (P,N K,) # ¢ relative to S,, for all 1 >1. Also k, € interior K,
relative to S,

It is important to notice that assumption (III) is not independent of the
maximal path {k,}, since the sets K, depend on V,(x) which is defined after
normalizing utility on {k,}.

Since k , lies in the relative interior of K, given any x € K, there is x’ such
that ky = ax +(1— a)x’ withO <a <1 and x’ € K. Then, from the concavity of
u, and Vy(k,)=0, it follows that V(x)<oo. But Vy(x)<oo and (x, y) € D,
implies V;( y) < oo. Since by assumption (III), y may be chosen in the interior of
P, N K, relative to S}, V;(x) < oo for all x € K,. This argument can be continued
toany ¢ > 0, so V,(x) < oo for x € K, for all ¢. In interpreting the model it should
be recalled that any goods not held at 1 =0 may be omitted from E; and any
goods that cannot be produced from k, after ¢ periods may be omitted from E,.
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From the definition (4.1) of V,(x) it is clear that the principle of optimality
holds and we may also write

Vt(x)=sup(ut+1(x’ y)+V,+1(y)), (42)

over all y such that (x, y)€ D,,; and y € K, ,. Make the induction assumption
that there exists p, € E, ( p, may be 0) where ¢ > 0, such that

V (k)= pk, 2V, (x)— px, (4.3)

over all x € K,. Let x =k, in (4.2). Then the sup is attained at y = k,,; by the
maximality of {k,}. The substitution of (4.2) in (4.3) gives

Uy (kpy k) + I/r+l(kt+1)_plkt 2 u,+1(x, ) +V(y) = pix, (4.4)

for all (x, y)€ D,,; with y €K, ;. Denote the left-hand side of (4.4), a given
number, by v, ;. Then

Uz+1_ut+1(x’)’)+sz§Vt+1(Y)- (4-5)

We define two sets for each ¢ > 0,

A={(W,Y)|yeP,+1 and W>vt+1_ut+l(x’y)+Ptx
for some x with (x, y)€D,.,},

and

B={(w,y)ly€K,,; and wxV,,(»)}.

By the existence of the maximal path {k,}, P,., N K,,,# ¢. Thus 4 and B are
not empty. 4 and B are disjoint by the inequality (4.5). They are also convex.
Thus by a separation theorem for convex sets [Berge (1963, p. 163)] 4 and B may
be separated by a hyperplane contained in R X E, ;, where R is the real line. The
separating hyperplane may be defined by a vector (w«, — p,,;) # 0, where p,, ; lies
in the linear subspace parallel to S, (that is, g € S, implies p, .+ g€ S,, ;).
Then 7w — p, .,y =w’' — p,.1y’ for all (w, y) € A and (w’, y’) € B. This situa-
tion is illustrated in Figure 4.1.

Using the definitions of w, w’, and v, ; and relation (4.4), the separation of 4
and B implies

'”'{ ur+1(kt’ kr+1)+V:+1(kt+1)_prkt_ ut+1(x’ .Y)+Ptx}_Pt+1y
27V, 1 (V)= Py (4.6)
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for any (x, y) such that (x, y) €D, and any y’' €K, ;. If # =0, (4.6) implies that
Pis1(y'—y)=O0forall y'€K,,, and y€ P, ,. However, P,,, N K, ; has an
interior in S,,; by assumption (III), and p,,; is parallel to S,,,. Therefore,
P,+1=0 as well, contradicting the requirement that (=, p,, ) # 0. Thus « # 0 and
we may set w =1. Put x=k,, y=k, , and (4.6) becomes

I/t+1(kt+1)_Pt+1kt+l_Z.I/t+1(y,)_pt+ly,’ (4-7)
for all y’€ K, ;. Put y’=k,, , and we obtain
{ut+1(knk:+1)_Ptkt}+Pt+1kt+1§ {"t+1(x’ y)_Ptx}+Pz+1y’ (4.8)

for all (x, y)€ D, ..

The induction is begun by supporting the value function V,(y) at k,€ K, in
R X E,. The concavity of V;(y) implies there is (&, py) # 0 such that p, € E,

w= iQf(vt +17 Uy 1(X,Y) + px)
WeR

w =V, (y)

Kisq yeEy,q

Figure 4.1
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and
Vo (ko) — Poko Z mVo(x) = pox, (4.9)

for all x € K,,. Choose p, in the linear subspace parallel to S, where S, is the
smallest flat containing K,. If # =0, p,#0 and po(ko — x) <0 for all x € K|,
Since k € relative interior K, the inequality (4.9) is impossible, and 7 # 0. We
may choose o =1, as before.

We have proved that prices exist supporting maximal paths in the following
sense:

Lemma 4.1

Let {k,}, t=0,1,..., be a maximal path of accumulation. If assumptions (I), (II),
and (III) are met, there exists a normalization of utility and a sequence of price
vectors p, € E,, t=0,1,..., which satisfy

V(k)—pk,2V(y)—py, (4.10)

for all y € K, and V,(k,) is finite, and

ut+1(kt’ kt+1)+Pt+1kt+1 - ptkt ; u,H(x, y)+Pt+1y - DX (411)

for all (x, y) € D,,;.

By (4.10) the prices support the value function. By (4.11) they support the
utility function. These properties of the prices play crucial roles in the arguments
leading to turnpike theorems for maximal paths when assumptions of differentia-
bility of the utility function and interiority of paths are not made. The fact that
the Weitzman prices support the value function implies that they are Malinvaud
prices (1953), that is, k, has minimal value at p, over the set of capital stocks
from which the subsequent utility stream can be obtained. This is obvious from
(4.10), since V,(y)=V,(k,) implies p,k,< p,y. Of course, Malinvaud prices are
defined for efficient paths rather than maximal paths and, in particular, summable
utility is not needed. A path {k,}, t=1,2,..., is said to be efficient if there is no
path {k;} with k(= kg such that u,(k,_,,k})=>u,(k,_,, k,) for all ¢ with strict
inequality for some ¢. It is clear that maximal paths must be efficient, but the
contrary need not hold.

The converse of Lemma 4.1 is not true. However, a slight relaxation of the
maximality conditions allows a converse result to be proved. The argument for
Lemma 4.1 only requires that consecutive stocks along the path realize the (finite)
supremum in (4.2), that is, for all ¢ it should be true that

Vt(kt)=ut+1(knkt+1)+Vt+l(kt+1)’ (412)
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or equivalently that
T
VO(k0)=Zut(kt—l’kt)+VT(kT)’ all T 21. (4.13)
1

Then under assumptions (I), (II), and (III), the proof proceeds just as given. A
path satisfying (4.13), where utility is normalized so that V;(k,) is finite, may be
called potentially maximal, since any “loss” from using an initial segment can be
made arbitrarily small [a related idea for finite horizons may be found in
Hammond and Mirrlees (1973) and Hammond (1975)]. At any time 7T, given an
arbitrary e€> 0, the initial segment of the potentially maximal path may be
completed with a new choice of capital stocks beyond 7, so that no path from the
beginning can overtake the revised path by more than e As earlier, one path
overtakes a second by ¢ if its finite sums eventually exceed those of the second
path by £ at all subsequent times. If we call the revised path e-maximal, the
potentially maximal path can at any time be converted into an e-maximal path
where ¢ may be chosen arbitrarily small.

We will show that price supports imply that a path is potentially maximal.
Suppose a price sequence { p,}, t=0,1,..., p,€ E,, exists such that (410) and
(4.11) are satisfied for { k,}. Assume that {k,} is not potentially maximal. Then
for some T there is € > 0 such that

VO(kO)g éut(kt—l’kt)‘FVT(kT)"‘e- (414)

But the definition of V, implies there is some path {k;}, t=0,1,..., for which
ko =k, and

T

Vo(ks) < Xu,(kiy, k) +Vr(ky)+e/2. (4.15)
1

Comparing (4.14) and (4.15) we derive

T

T
zur(kt—l’kt)+VT(kT) < Eut(k;—l’k;)'l'VT(k’T)- (416)
1 1

However, from (4.11) we have

T

Y (u, (ko k) —u, (ki k) = pr(ky —kp)+ polko— k), (4.17)
1
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and from (4.10)

VT(kT)—'VT(k%)Z.PT(kT—k;")' (4.18)
Summing (4.17) and (4.18) and using k, = k{ gives

T T
Vilkr)+ Xu (k1 k) 2 Ve(ky)+ D, (ki_y, k).
1 1

This contradicts (4.16), so { k,} must be potentially maximal. Thus we have
Theorem 4.1

Under assumptions (I), (II), and (III) a path is potentially maximal if and only if
it can be price supported in the sense of Lemma 1.

Notice that the assumptions are not needed to prove that a price supported
path is potentially maximal.

The cake-eating example [Gale (1967, p. 4)] is the classic example of a path that
is potentially maximal but not maximal. The set D contains the pairs of numbers
(x, ) such that y >0, x>0, and y < x. Utility u(x, y)=v(z) where z=x—y
> 0 and v(z) =1log(1+ z). The path k, = k,, all ¢, is potentially maximal but not
maximal. Indeed, no maximal path exists from positive initial stocks. The path
k, =k is supported by the prices p, =1, all ¢. The utility function is concave, but
not strictly concave since u(x, y)=u(x+z, y+z)foranyz= — y. Also V,(y) =
y, all t. However, u is strictly concave in terminal stocks separately. We may
prove:

Theorem 4.2
If u is strictly concave in terminal stocks, a potentially maximal path is unique.

If a path is potentially maximal it satisfies (4.13). If there are two such paths
{k,} and {k.}, let T be the first time that k, # k. Then by concavity of V. and
strict concavity of u; in the terminal stocks, the average of the right-hand side of
(4.13) for k, and k| is less than the value of the right-hand side of (4.13) for the

average of the two paths, k!, which is also feasible. That is,

T-1
Volko) < X u (k1. k)+ur(kp s, k7) +Vp (ki) e, (4.19)
1
for some &> 0. By definition of V;(k7) there is a path {l:c,} from ¢ = T such that
(k1 k) >Vr(ki)—€e/2, where k;=k7. Let k,=k, for t <T. Then
from (4.19)

V(k,) < iu,(k-pl'c,), (4.20)
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in contradiction to the definition of V(k,). Thus there can be only one potentially
maximal path. Under conditions to be explored in Section 5 this path will be
optimal. Theorem 4.2 was suggested by Peter Hammond.

It is sometimes valuable to know that capital values p,k, are bounded as
t = 00. Normalize utility on the potentially maximal path. A simple condition
that guarantees boundedness of capital values is that V(ak,) be bounded as
t = o0, for any «a sufficiently near 1. Consider

Vt(kt)_Ptkt 2 I/t(akt)_pt(akt)’
or
(1_ a)ptkt = Vt(kt)_ Vt(akt)'

Thus p,k, is bounded above if V,(ak,) is bounded below for some a <1, since the
normalization implies that V,(k,) = 0. Similarly, a >1 establishes a lower bound.

5. Optimal paths

A useful basis for establishing the existence of optimal paths depends on having
price supports for the utility function in the sense of (4.11) such that capital
values are bounded along the path. In the case of certain stationary optimal paths
stationary supports can be found by special arguments. Since capital values are
then necessarily bounded, the stationary paths are optimal. Then value loss type
arguments may be applied to prove that optimal paths originate from all capital
stocks whose value functions are well defined relative to the stationary optimal
path.

For the sake of the existence theorems we make three special assumptions,
suggested by the methods of Von Weizsacker:

(W1) There is an infinite path {k,}, ¢t=0,..., whose utility functions are
supported by a price sequence { p, } in the sense of (4.11).

(W2) Limsuppk,= M <oo, and if {k;} is an infinite path with k{ =k,
liminf p k!> M’ > — o0.

Let the value loss 8,(x,y)=u,(k,_1,k)+ pk,—p, 1k, 1 —(u,(x, )+ py—

pi-1x), for any (x, y) € D,. By (4.11) §,(x, y) 2 0.

(W3) For any &> 0, thereis § > 0, such that | p,(x — k,)| > ¢ implies §,_ ;(x, y) > 8
for any (x, y) € D, ;.
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Assumptions similar to these were used by Von Weizsacker (1965) to prove
existence for a one-sector model that is time-dependent.

(W2) places weak bounds on the limiting values of the capital stocks as ¢t = oo,
along feasible paths and along the path given by (W1). (W3) provides for a value
loss for the input—output combination in period ¢ when the value of input differs
from the value of input on the given path. It is implied by uniform strict
concavity of u along { k,}, but it is weaker than that condition. -

With these assumptions we may prove that { k,} is an optimal path. Consider
any path {k/} with k{=k, Let 8,=0,(k;_y, k;), u,=u/k, 1. k), u;=
u,(ki_y,k;). Then u;—u,= p,(k,— k)= p, 1(k, 1—k/_1)—8, Summing, we
obtain

T T
2(“:_“z)=P0(k6-ko)+PT(kT_k'T)_28;- (5.1)
1 1
Since k{ = k, using (W2) gives
T T
limsup ) (u,—u,) < M—M’'—lim} 8, (5.2)
1 1

Either {k,} catches up to { k/} or limsup X (u, — u,) > 0. In the latter case (5.2)
implies 8, —» 0. Then (W3) implies pr(k;— k%) — 0, and (5.1) implies er(u; —u,)
<0 for large T, with < unless k; = k,. This means { k,} catches up to {k;}.
Since { k;} is an arbitrary path with k{ =k, { k,} catches up to every path from
ko and { k,} is optimal. We have proved [McKenzie (1974)].

Theorem 5.1
Under assumptions (W1), (W2), and (W3), the path { k,} is optimal.

Once an optimal path { k,} has been shown to exist from the initial stock k,
optimal paths may be derived from all initial stocks in the set K, that is, the set
of stocks for which the value function is well defined after normalization of utility
by u,(k,_,, k,) =0, all ¢. The value function is well defined from a capital stock x
if there exists a path {k/} with k{ = x such that liminf>.Tu,(k,_,, k})> — oo, as
T — oo. Consideration of (5.1) with (W2) and (W3) will show that this condition
is met if and only if the value loss 278, is bounded as T — oo. The value loss is the
shortfall of the utility sum less a part due to the first differential of u, when u is
differentiable, or an analog defined by the support function in the general concave
case. The value loss method works because the first-order effects on the utility
sums depend only on the differences in value of the initial and terminal stocks, as
(5.1) shows, and (W2) and (W3) place certain bounds on the limiting values of the
terminal stocks.
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Let K, be the set of capital stocks x with well defined values V(x) when
utility is normalized on the optimal path { k,}. We prove [McKenzie (1974)]:

Theorem 5.2

If there is an optimal path {k,} from k,, satisfying assumptions (I), (II), and
(III), and if (W2) and (W3) are satisfied for one of its supporting price sequences
{ p,}, there is an optimal path from every capital stock in the set K, defined
relative to { k,}.

By Lemma 41 the hypothesis of Theorem 5.2 implies (W1). Also from the
discussion above, the set K, may equally well be defined as the set of stocks from
which there exist paths with finite value loss. Let

Ly(x) =inf hmES( iLkl), Toew,

over paths { k/} such that kj=x. Lj(x) is well defined if and only if V(x) is
well defined, given (W2) and (W3). However, ZITS, has the advantage over ZlTu .
that its terms are non-negative, so the finite sums converge if they are bounded
above. This fact underlies the original Ramsey (1928) arguments for one-sector
models and was adapted to the multi-sector case by Atsumi (1965). However, its
full implications for the existence problem were first drawn by Brock (1970).

The essential step in proving Theorem 5.2 is to show that the infimum in the
definition of L(x) is assumed by a well defined path from x, if x € K. This
path will also realize the supremum in the definition of V;(x). Let s index a
sequence of paths from x and let L{(x) be the value loss on the sth path. We
may assume that the sequence is chosen so that L§(x) — Ly(x). Let {k;} be the
sth path. By assumption (II), &£}, s =1,2,..., is bounded for each ¢. Thus we may
use the Cantor diagonal process to choose a subsequence such that (retain
notation) k; — k, for each t By assumption (I), (k: 1» k,) € D,. Otherwise

u,(ki_,, ki) —> —oo and using the definition of value loss §,(ki_;, k) = o0 so
that 8, > 0 implies Lj(x) — oo and x & K. Then {k } is a path of accumulation
from x. _

Let L, be the value loss associated with {%,}. Then L,>= Ly(x). Suppose
L, > Ly(x). Then for all large s, L,— L{ > ¢ for some &> 0. Choose T so large
that

T
Ly—28(k, 1,k)<e/4 (5.3)
1
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Choose S so large that
Za (k,_1, k,)— Za(k, Lk)<e/d4,  s>8. (5.4)
Then, adding (5.3) and (5.4), we have
28 (ki1 k) <es2, s>8. (5.5)

But L} > 2T8(k:_,, ki), s0 Ly— L) < e/2 for s > S which contradicts L, — L > ¢
for all large s. Therefore, L, = L(x), or the limit path realizes the minimal value
loss over all infinite paths from x.

To prove that {} } is optimal we must show that it catches up to every path
from x. Supposé {k;} is an arbitrary path from x. Let u|=u,(k|_,, k}),
u,=u,(k,_,, k). By normalization we may put u,(k,_,, k,)=0, all 2. Also Ly(x)
finite implies by (W3) that p,(k, — k;) =0, so by (5.1),

T

Zﬁz _’Po(x_ko)_Lo(X)> — 0.

If 218,(k;_1, k}) > oo with T, (5.2) implies

T
limsup) u/=—o00 as T—-oo.
1
Then
T T T
limsup ) (u; — #,) = limsup }_u, —lim) %, = — oo,
1 1 1

and {k,} overtakes {k/}. On the other hand, if X.78,(k/_y, k;) is bounded as
T — o0, (W3) again implies p(k;— k%) — 0, so by (5 1),

T 00
Z“;—’ Po(x_ ko)_ Z‘Sr(k:ﬂ,k:)'
1 1
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Since { k,} minimizes value loss from x,

T 00

L(ui=a) > Lo(x) = X8,(kiy, k) <0 as T—oo, (5.6)
1 1

and {k,) catches up to {k;}. Since {k;} is an arbitrary path from x, {k,) is
optimal, and Theorem 5.2 is proved.

We observe that Ly(x) is finite and V,(x) is well defined relative to the optimal
path {k,} if there exists a path {k;'} with kf =x and k= k, for some 7> 0.
Then {k,} is said to be reachable from x. In stationary models this is often
provided for relative to the stationary optimal path.

It is clear from (5.1) that

T
limsup ). (u; — u,) < limsuppr(kr—kj),
1
if kj =k, Thus {k,} is optimal if limsup p(k — k7) < 0-holds for all paths
{k;} with k{ = k,. In particular, if lim p,=0 and k, is bounded over ¢, {k,} is
optimal. These conditions are likely to be met in models where u, =p'u for
0 < p <1, which are called quasi-stationary. We may state the assumption:

(W2') k, is bounded over ¢ and lim p,= 0.

Then we have:

Theorem 5.3

Under assumptions (I), (II), (W1), and (W2’), the path {k,} is optimal.

Assumption (W2’) was introduced in the efficiency context by Malinvaud
(1953) in the form p,k,— 0, as t — oo.

II. Stationary Models and Turnpike Theory
6. The stationary model

A particular model to which Theorems 5.1 and 5.2 may be applied is that of Gale
(1967) and McKenzie (1968). In this model the utility function is stationary, that
is, D,= D and u,=u for all ¢. Stationarity may be introduced in a model with
steadily growing population by use of per-capita quantities for capital stocks and
per-capita utility in the objective. It may be shown that a constant path that gives
maximum sustainable utility [that is, k, =k, all ¢, and u(k, k)= u(x, y) for
(x, )€ D and y > x] is supported by prices in the sense of (4.11), so that it
satisfies (W1). Since the prices may also be chosen to be constant and any path is
bounded in this model, (W2) follows directly. (W3) also follows if u(x, y) is
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strictly concave at (k, k). Then Theorems 4.1 and 4.2 apply to show that {k,},
t=0,1,..., where k,=k, all ¢, is optimal, and there is an optimal path from
every x € K, = K, where K, is defined relative to {k,} as in Section 4. On the
assumptions often adopted in the stationary model K includes all positive stocks
and all stocks from which positive stocks may be reached. Free disposal of
surplus stocks, the expansibility of certain stocks, and 0 € D are used to imply the
wide scope of K. .

In order to have a set of assumptions that imply (W1), (W2), and (W3), and are
somewhat more specific than those conditions, we will describe the stationary
model. The assumptions (I) and (II) of the basic model are retained and in
addition we assume

(Gl) D,= D, u,=u, for all ¢ (stationarity).

(G2) There is { > 0 such that |x| > { implies forany (x, y) € D that |y| < y|x| for
vy <1 (bounded paths).

(G3) If (x, y) € D, then (z,w)e D forall z>x,0 <w < y,and u(z,w) = u(x, y)
holds ( free disposal).

(G4) There is (x, y) € D for which y > x (existence of an expansible stock).

Before stating the last assumption we must show that a constant path exists
with constant prices satisfying (W1). Define the set V= {v|v=y— x, where
(x, y)€ D}. Since E,= E", an n-dimensional Euclidean space, all ¢, V C E". By
free disposal, (G3), and the existence of an expansible stock x, (G4), 0 € interior
V.Indeed, y’'—x'=v' eV if(x,y)ED and x < x’ < y and x < y' < y. We will
show that y — x > v € V implies (x, y) is bounded. By (G4) thereis v = y —x > 0.
Suppose there is v € V'such that D, = {(x, y)|y — x = v} is not bounded. Choose
a to give vV=av+(1—a)v>0, where 0 <a<1. Let (x’, y)=a(x, y)+(1—
a)(x, y) for (x, y)€D,. Then v'=y’—x'=0 but (x’, y’) can be made arbi-
trarily large by choosing (x, y) € D, arbitrarily large, contradicting either as-
sumption (II) or (G2). Thus D, is bounded for any v € V.,

Define f(v)=supu(x, y) for (x, y) € D,. Since u is concave and closed by
assumption (I) and D, is bounded, the sup is attained for any vE€V. Let
W= {(u,v)lu< f(v) and vEV}. W is convex since f is concave and, putting
u=f(0), (#,0) is a boundary point of W. Thus there is (7, p)€ E"*! and
(7, p)# 0, such that 7u+ pv <wu for all (u,v) € W. Since V' is unbounded
below by (G3), p>0. Suppose #=0. Then pv <0 for all v €V, or since 0 is
interior to V, p =0. Thus 7 # 0, and we may choose (7, p) so that # =1. Then
u+ pv < u for all (u, v) € W. This implies

Lemma 6.1

There is p > 0 such that u(x, y)+ py — px <u for all (x, y) € D, where u=
max u(x, x) for (x, x) € D.
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Let u(k, k)=u. Then the path {k,}, t=0,1,..., with k,=k for all ¢ is an
infinite path supported, in the sense of (4.11), by the price sequence { p,}, where
p,= p for all . We now assume:

(GS5) The utility function u is strictly concave near the point (k, k), where
u(k, k)= u(x, x) for all (x, x) € D.

It follows from (GS5) that u(x, x) = u implies (x, x) = (k, k).

The value loss relative to the constant path k, =k is 8(x, y)=u — u(x, y)— py
+ px. Then 8 (x, y) = 0. Since u is a concave function, § is a convex function. We
may use (G5) to prove a value loss lemma [Atsumi (1965) and Radner (1961)].

Lemma 6.2

For any &> 0, there is § > 0, such that |[x — k| > ¢ implies §(x, y) > & for any
(x, y)€ D, where u(k,k)=1u and p and u are given by Lemma 6.1.

Suppose Lemma 6.2 is not true. Then there exists a sequence (x*, y*), s =
1,2,..., such that |x°*—k|>¢ and 8(x*, y*) —0. Since 8(k,k)=0 and 8 is a
convex function, 8(x*, y*) does not increase as (x°, y*) approaches (k, k) along a
line segment. Thus we may put |x* — k| = ¢ for all 5. Then the sequence (x*, y*),
which is bounded by assumption (II), has a point of accumulation (X, y) where
8(x, y)=0. Also (%, y) € D by concavity and closedness of # on D. Then strict
convexity of 8§ at (k, k) implies 8(x, y) <O for (x, y) between (X, y) and (k, k)
in contradiction to Lemma 6.1.

Lemma 6.2 implies (W3) for k, =k, p,= p. Lemma 6.1 implies (W1), and (W2)
follows directly from (G2) and p > 0. Thus Theorem 5.1 implies that k, = k,
t=0,1,..., is an optimal path. Also Theorem 5.2 implies that an optimal path
exists from any x € K, that is, from any x for which V(x) > — oo or equivalently
L(x) < oo, where these functions are defined relative to the stationary optimal
path, k,=k.

On the basis of Lemma 6.2 we may show that the prices derived in Lemma 6.1
are full Weitzman prices, that is:

Corollary

Given assumption (GS5) the prices (p, p) of Lemma 6.1 and (k, k), where
u(k, k)= u, satisfy both (4.10) and (4.11), when ( p,, p,,,) is set equal to (p, p)
and (kn kt+1) to (k9 k)

That (p, p) and (k, k) satisfy (4.11) is the content of Lemma 6.1. Let k, lie in
K and consider

u(k9 k) = u(ktAl’ kt)+Pkt - pkt—l + a(ktAl’ kt)’ (61)
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where { k,} is any path from k. Summing (6.1) gives

T

T
Tu=Y u(k,y,k,)+ pkr— pko+ Y. 8(k,_q,k,). (6.2)
1 1

Let u(k,k)=0. Suppose liminleru, > —o00 as T —oo. Then by Lemma 6.2,
k; — k. Therefore, taking the supremum of the right side of (6.2) over paths { k,}
from kg, we obtain

V(k)— pk 2V(ko)— pko, (6.3)

where V(k) = 0. However, (6.3) is (4.10) for the present case.
We say that a stock x is expansible if there is (x, y) € D with y > x. We can
prove [Gale (1967)]:

Lemma 6.3
If x is expansible, then x € K.

Consider a(x, y)+(Q—a')(k, k)= (k, k.,1), where y>x, 0<a<l, =
0,1,2,.... For t =0, (k,, k..1)=(x,y), and as t > o0, (k,, k|.;)— (k, k). But
'oi=k—a'(k—y)and k,,,=k—a" (k- x). Then ki, ,>k,,, if y —ax>
(k — ak). This holds for a near 1 since y > x. Thus by free disposal we may
replace (k,, k,, ) by (k,, k,,;) and {k,} is an infinite path approaching k.
Also, by concavity of u,

u(k,, ki) = A—a)u(k, k)+a'u(x, p) = a'u(x, y),

and, using free disposal,

0

1
Eu(kv kt-l—l) 2 mu(x’ }’)a
0

proving that x € K.
Summarizing the above results we may state:
Theorem 6.1

If in addition to assumptions (I) and (II) we accept assumptions (G1)—(G5), there
is a stationary optimal path, supported by price vectors p,= p in the sense of
(4.10) and (4.11), and there is an optimal path from any expansible stock.

Without the assumption of strict concavity at the stationary path that maxi-
mizes stationary utility, we cannot show that expansible stocks give rise to
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optimal paths. However, on the weaker assumption that this path is unique, the
analogous result can be proved for maximal paths. See Brock (1970), where the
terminology “ weakly maximal” is used. The appropriate assumption is

(G5’) There is a point (k, k) € D such that u(y, y) = u(x, x) for all (x, x) € D
implies (y, y) = (k, k).

This assumption is only slightly weaker than requiring u to be strictly concave at
(k, k) in the directions that lie in the diagonal. The possibility that « has a flat
contour in other directions means that other paths originating at k may exist
which oscillate about k& without suffering value losses. See McKenzie (1968).

Make assumptions (G1)—(G4) and (G5’). Let p be the price vector of Lemma
6.1, where u(k, k) = u. As before, define the set K relative to the path &, =k,
t=0,1,..., where K = {x|V(x)> — o0}. Equivalently K = { x|L(x) < o0}, where
L(x)= Ly(x) is defined relative to k, = k and p, = p. As in the proof of Theorem
5.2, for x € K thereis a path {k;}, t=0,1,..., that realizes minimum value loss
L(x) when kj=x. It 1s implied by (G2) that {k;} is bounded. Thus
(1/T)Z(k, " k Y= (ky_,, k) has a limit point (k, k). By closedness of u,
(k,k)e D. Let u(k,k)=0. Then

;u(k, ki) =p(ki—ki)- ;«S( 1. k), (6.4)

from (5.1). Since Z{S’ - L(x), (6.4) 1mp11es 1/ T)zru — 0. On the other hand,
by concavity of u, (1/T)Lu, <u(kr_y, kr). Thus u(k,k)=0 and k=k by
assumption (G5’).

Suppose { k;’} is any other path from x. As in the proof of Theorem 5.2 it is
enough to consider paths with finite value loss. Then by the above argument
(1/T)X k! also converges to k. However, from (5.1) we derive

T

;( (ki k)= u(ki 1, k1))

= p- (ki — k) + 28,(ki_y, ki) = 18, (ki1 k). (6.5)
1 1
Suppose liminfX](u — u/)=y>0. Since limX’8/, as T - co, is minimal,
lim(X]8; —X78/") < 0. Thus (6.5) implies liminf p- (k' — k) = y must hold. But
k% >k and k¥ — k, which is a contradiction. Thus hmmeT(u —u})<0 and
{k }is max1ma1 This establishes:

Theorem 6.2

If in addition to (I) and (II) we accept assumptions (G1)-(G4) and (G5’), there is
a maximal path from any expansible stock.
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7. The quasi-stationary model

The quasi-stationary model differs from the stationary model by the presence of a
discount factor 0 < p <1 for utility, that is, u,(x, y) = p'u(x, y) for £ = 0. We will
first prove that a quasi-stationary model has a stationary optimal path that is
supported by proportional price vectors [Sutherland (1970)]. As for the stationary
model, from the stationary optimal path we may derive the existence of other
optimal paths.

For the quasi-stationary model, we assume, in addition to (I) and (II) of the
basic model:

(S1) D,= D c E*", u,=p'u, for all ¢, where 0 < p <1 (quasi-stationarity).
(S2) Identical with (G2) (bounded paths).
(S3) Identical with (G3) ( free disposal).

(S4) There is (X, y) € D for which py > X (existence of a stock expansible by a
factor exceeding p~1).

These assumptions are small modifications of those for the stationary model of
Section 6, (G1)-(G4), to allow for the presence of p. Indeed, if p is put equal to 1,
they are the same.

We will show that an optimal stationary path exists in the quasi-stationary
model. This extends a theorem due to Peleg and Ryder (1974) to a general
reduced form model. For { given by (S2), let A be the set {(x,x)|x =0 and
x| £§}. A is a compact convex subset of the diagonal of E” X E". For any
(x,x)€ A define f(x,x)={(z,w)lpw —z=(p —1)x for (z,w)€ D}. Since it
contains the point (X, y) by assumption (S4), f(x, x) is not empty. We will show
that f(x, x) is bounded. If (z,w) € f(x, x) the definition of f implies that

lz| < plw|+(1—p)|x], (7.1)

where 0 < p <1. Suppose |z| = ¢. Then by assumption (S2), |w| < |z|. Substituting
in (7.1), |z| <p|z|+(Q—p)|x|, or |z] <|x|. Since |x|]<{ by (S2), this gives a
contradiction. Thus the set f(x, x) is bounded.

For Uc D, let g(U)={(z,w)€Ulu(z,w) 2 u(z’,w’) for all (z/,w’)€U}.
Consider U = f(x, x). Since u(x, y) is concave and closed by assumption (I) and
f(x, x) is bounded, the set {(z,w) € U|u(z,w) = u(x, x)} is compact. Therefore,
g(U) is compact and not empty. Also by concavity, g(U) is convex. Let h(W),
for W C D, be the set {(z, z)|(z,w) € W}, which lies in A. Thus & is a projection
on A along the first factor of the Cartesian product E” X E”. Finally, define the
correspondence F=hogof. F maps A into the set of non-empty, convex,
compact subsets of A. See Figure 7.1.
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(z,z) = F(x, x)

™ (z,w) = g o f(x,x)

N
x@®

input space E"

Figure 7.1

We will need:

Lemma 7.1
The correspondence F is upper semi-continuous.

Since 4 is a continuous correspondence, and both go f and A have compact
range, it is sufficient to prove that go f is upper semi-continuous. Let (z,w) €
g o° f(x, x). Suppose (z°,w®) = (z’,w’) and x*-->x, s=1,2,...,where (z*,w’) €
geo f(x* x*) for all s. Suppose (z’,w’) is not in ge° f(x, x). Although f is not
upper semi-continuous, (z’,w’) € f(x, x) holds, since u(z’,w’)> u(x, y) and u
closed implies (z’,w’) € D. Then there exists £ > 0 such that u(z,w) > u(z’,w’)+ e,
and there is s; such that s> s, implies u(x*,y*) < u(z’,w’)+¢/3, from closed-
ness of u. Thus s > s, implies

u(z,w) > u(z*,w*)+2e/3. (7.2)

0 0

Choose x°<x, x2<x; if x;>0, x?=x; if x,=0. Since f(x° x°) is not
empty, we may choose (z°%w®) € f(x° x°). Finally, we may choose A with
0 < A <1 such that (1— A)(u(z°%w°)—u(z,w)) = — &/3. Since x* - x, there is s,



1304 Lionel W. McKenzie

such that s > s, implies
x*2 (Ax+(1-A)x0)=x". (7.3)
Moreover, from the definition of f it is clear that
Az,w)+(@-=N)(2%w%) e f(x"”,x"). X (7.4)
From (7.3) and (7.4) it follows that
p (M +(1=N)w®)— (Az+ (1= )20 (p — 1),

for s > s5,. In other words, A(z,w)+(1—A)(z°% w®) € f(x*, x*). But (z°, w*) max-
imal in f(x*, x*) implies u(z*,w*) > u(A(z,w)+(1— A)(z%w?)) or, by concavity
of u, u(z*,w*)=Au(z,w)+(1—Nu(z’w° = u(z,w)+(1 — A)u(z%w®) -

u(z,w)). Thus we have by choice of A, for s > s,,

u(z’,w*) 2 u(z,w)—e/3. (7.5)

By (7.2) and (7.5), for s = max(sy, s,), it follows that u(z,w) > u(z*,w*)+2¢/3
> u(z,w)+e/3, which is a contradiction. Therefore, it must be that (z’,w’) €
gef(x,x) and ge f is upper semi-continuous, which was to be proved. This
lemma is due to Khan and Mitra (1984).

Since A is compact and convex and F maps A into convex subsets, the
Kakutani fixed point theorem [Berge (1963, p. 174)] implies there is (k, k) such
that (k, k) € F(k, k). We will show that (&, k) is a stationary path supported by
proportional price vectors. It may be seen that (k, k) maximizes utility over
f(k, k). In any case, there is (k,w) that does and, by definition of f, w > k. Then
by free disposal (S3), (k, k) also maximizes utility over f(k, k).

The derivation of price supports for (k, k) parallels that of Section 6. Define
the set V"= {v|v=pw — z, for some (z,w) € D}. By free disposal, (S3), and the
existence of an expansible stock, (S4), (p — 1)k €interior V. For veV, let
D,={z,w)eDlpw—z=v}. D, is bounded for any vE€V by an argument
parallel to that given in Section 6 for p=1. Define ¢(v)=supu(x, y) for
(x,y)€D,, veV. The sup is attained as before. Let W= {(u,v)|u < ¢(v),
vEV}. W is convex and interior W+ ¢. Let o = (p —1)k and u = ¢(0). Then
(u,0) is a boundary point of W. Thus by a separation theorem for convex sets
[Berge (1963, p. 163)] there is (7, r)€ E,,; and (m,r)# 0, such that 7u+rv <
au +(p —1)rk for all (u, v) € W. Since v is unbounded below by (S3), » > 0 must
hold. Suppose 7 =0. Then rv < (p —1)rk for all v €V. However, (p —1)k is
interior to V, so r = 0. Thus 7 # 0, and we may choose (7, r) so that # =1. Then
u+rv<u+(p—1)rk for all (u,v) € W. Let g = pr. Using the definition of v we
obtain [Khan and Mitra (1984)]:
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Lemma 7.2

There is (k,k)€ D and q >0 such that u(z,w)+qw—p gz <u+ gk —p gk
for all (z,w) € D, where u = u(k, k).

This extends similar results, arrived at independently by Flynn (1980) and
McKenzie (1982).

Consider the path {k,}, t=0,1,..., where k,=k, all ¢, and the vectors g and
k satisfy Lemma 7.2. Then the price path { p,}, t=0,1,..., where p,=pq
supports the utility function u, = p‘u in the sense of (4.11). It is clear that p, > 0
and k, is bounded over ¢, or (W2’) holds. Thus by Theorem 5.3, the path {k,} is
optimal. An examination of the proof of Theorem 5.2 shows that (W2’) will also
replace (W2) there. Then given (W2’), it is unnecessary to use (W3) to show that
pr(ky—k4)— 0, and (5.6) is established directly. Thus Theorem 5.2 is valid with
(W2’) replacing both (W2) and (W3), and an optimal path exists from any x € K,
that is, from any x for which V;(x) > — oo, where this function is defined relative
to the stationary optimal path.

We may also show that (4.10) holds for p, so that they are full Weitzman
prices. Consider

ptu(k’ k)+(p’— pt_l)qk =ptu(kt~17 kt)+ptqkt - pt_lqkr—l + 61(k1~1, kz),
(7.6)

where { k,} is a path from k, and §,(k,_,, k,) = 0. Summing (7.6) gives

T T T
Y ou+(p"—1)gk =Y p'u,+p'gkr — gko + 28, (7.7)
1 1 1

Since k; =k is an optimal path from k and k, is an arbitrary path from k, in
the limit (7.7) justifies

Vo(k)— gk 2 Vy(ko)— gk,

which establishes (4.10).

In this case it is not difficult to show that the set K of capital stocks x, with
well defined values Vj(x) relative to the stationary optimal path &, = k, includes
all sustainable stocks. If x is sustainable, that is, (x, x) € D, then one feasible
path from x is k,= x, t =0,1,.... This implies

4() 2 Dofu ) = phgu(x x),

so Vy(x)> — oo holds. Thus we have:
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Theorem 7.1

If in addition to assumptions (I) and (II) we accept assumptions (S1)—(S4), there
is a stationary optimal path k, = k, supported by price vectors p,= pqg in the
sense of (4.10) and (4.11), where g > 0. Also there is an optimal path from any
sustainable stock.

According to Theorem 7.1, under the conditions assumed, there always exists a
stationary optimal path k, = k supported by a price sequence p, = p'g, that is, by
proportional prices. We may also show that any stationary optimal path (4, k)
has proportional price supportsif (k, k) € interior D. Since k, =k, t =0,1,..
an optimal path interior to D it satisfies the hypothesis of Lemma 4.1. Thus a
sequence of support prices { p,}, t=0,1,..., exists, and p, >0 by free disposal.
Consider prices ( p, q) that support u(k, k), that is,

u(x,y)—u(k,k)<p(x—k)—q(y—k) forall (x,y)eD. (7.8)
Since (k, k)€ interior D, it is immediate that B exists such that |p| <8 and

|gl < B must hold.
By the support property we have

o'u(x, y)+py—p,_xsoulk, k)+pk—p, ik,

Dividing through by p' gives
P _ P, _
u(x, y)—u(k, k) s=——(x—k)-=(y—k), t=12,.... (7.9)
p p
Averaging the first T+ 1 inequalities (7.9) gives
u(x,y)—u(k, k) <p Pr(x—k)=0Qr(y—k), (7.10)
where
P.:—_l_—( .+.p_1 +...+p4T )
T 741\ Po I4 Pr)s
and
Or= (e Pt Pt -+ p T )
TS Tl p P1 P Pz +p Prs

1 _
= Pr +m(ﬂ T pr— Po)-
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Since |P;| < B for all T by (7.8), there is a subsequence {7}, i=1,2,..., such
that P — g 2 0. Then Q. also converges to ¢, and we obtain from (7.10)

u(x,y)—u(k,k)<p 'q(x—k)—q(y—k). (7.11)

Thus the price sequence { p;}, where p/=p'q, gives proportional support prices
for k,= k. This argument is due to Sutherland (1970). We have shown:

Theorem 7.2

The path {k,}, k,=k, t=0,1,..., where (k, k) € interior D, is an optimal path
given (S1)—(S4), if and only if there are support prices { p,} where p, = p'q, ¢ = 0,
which satisfy (4.11).

It is implied by Theorem 7.2 that u(k, k) maximizes u(x, y) subject to
py —x2(p—1)k=v. Consider y > p~'(x+v), k=p~!(k+ v). Substituting in
(7.11), we have

u(x,y)—u(k, k) <p 'q(x—k)—q(p 'x —p k),

or u(x, y)—u(k, k) < 0. However, it is clear from Theorem 7.1 and the proof of
Lemma 7.2 that if (k, k) maximizes u(x, y) subject to py —x = (p—1Dk, k,=k
is optimal. Then we have the:

Corollary

The path {k,}, k,=k, t=0,1,..., where (k, k) € interior D, is an optimal path
given (S1)—(S4) if and only if u(k, k) maximizes u(x, y) for py —x = (p —1)k.

The necessity parts of Theorem 7.2 and the Corollary also apply to the
stationary model, since the same arguments are valid. However, for sufficiency
assumption (G5) would be needed, that u is strictly concave at (k, k).

8. Convergence of optimal paths

There are three general methods available for proving the convergence of optimal
paths. A very simple method may be used when the utility function is uniformly
concave, in a certain sense, along an optimal path. This method makes direct use
of the fact that a chord of the graph of the utility function lies entirely below the
graph. On the other hand, we use an alternative method when uniform concavity
does not hold. This dual approach is used based upon the support prices. This
approach has been referred to as the method of “value loss”, since it is the
accumulation of shortfalls in values of input—output combinations along one path
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relative to another at the other’s support prices that eventually contradicts
optimality. However, it is not first-order value losses that force convergence. They
are fully accounted for over a segment of the optimal paths by the differences in
value of initial and terminal stocks. Rather the work is done by second-order
value losses due to concavity. Thus our arguments are closely related to the
problem of the second variation in calculus of variations. This analogy may be
illuminating to students of the calculus. However, it should be kept in mind that
turnpike theory compares paths starting from different points both of which are
optimal relative to their starting points. This is unlike the classical problems of
calculus of variations. Finally a method is available based on the treatment of the
first-order conditions for optimality as a set of difference equations that define a
transformation of the paths of accumulation into a Banach space. This approach
will be examined in Section 10.

Let {k,} and { k;} be two optimal paths for t =0,1,..., where k, and k; may
differ. Assume (I), (II), and k € relative interior K, and suppose kj € K, that
is, Vy(k{) > — oo, when utility is normalized so that u(k,, k,,,)=0, all z The
primal approach to convergence considers a path that is halfway between { k,}
and {k}}, that is, { k;’}, where k|’ = 3(k,+ k}). By convexity, k;’ € K, for all .
Assume uniform strict concavity of u, along {k,} in the primal sense that
(x, y)—(k,_1, k,)| > €> 0 implies there is > 0, independent of ¢, such that

u,(%(x + kt——l’ y+ kt)) = %(ut(x’ Y)+ ut(kt~1’ kt))+8' (8-1)

Applying (8.1) to {k,}, { k;}, suppose the distance between the paths exceeds ¢,
s(T) often by time T. Put u,(k,_, k,)=0 for all z. Then

T T
Yu (ki k) 23X u, (ki k)+s(T)8. (8.2)
1 1

If s(T)—> 0 as T > o0, L u) > oo and V,(k{/) = oo. Since k, € relative interior
K,, Vy(ky) =00 would be implied as we saw in Section 4 in contradiction to
Vo(koy) =0 by the normalization. More exactly we may prove [Jeanjean (1974)
and McKenzie (1982)]:

Theorem 8.1

Let {k,}, {k:;}, t=0,1,..., be optimal paths and assume (I) and (II), and
k, € relative interior K. Assume uniform strict concavity of u, along {k,}.
Suppose k{, € K. Then for any & > 0 there is a number N(¢) such that |k; — k,| > ¢
can hold for at most N(&) periods.
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To find N(e) let k € K,, where k,=ak +(1— a)ky for some a, 0 <a<l1.
Then, by concavity of V,

0=Vy(ko) z aVy(k)+(1— a)Vy(k),

or

Vo(kg) =
At the same time,

Volky) 2 3 (Vo ko) +Vo(kp)) + N(e)d =13V, (ki) + N(e)s.
Thus

a

N(e) 287 <21 Vo(B)- 3l K5))

a—1

which may be seen to be non-negative. This proves the theorem.

In the stationary model of Section 6, where u, = u, K,= K, for all ¢, uniform
strict concavity at the (k, k) of assumption (G5) is immediate, and Theorem 8.1
implies that all expansible stocks lead to optimal paths that converge to the stock
k of the optimal stationary path. This result was first proved in a model with
more than one sector by Atsumi (1965), using the value loss approach.

If the hypothesis of Theorem 8.1 is strengthened by including the first part of
assumption (III), so that support prices may be shown to exist, the dual approach
may be used to draw the conclusion of the theorem [McKenzie (1976) and Hieber
(1981)]. In this case it is convenient to use a dual notion of uniform value loss.
The definition of uniformvalue loss along (k,, p,)is that |(x, y)—(k,_, k,)|>&e>0
implies that §,, ,(x, y) > 6 for all z. Since this notion is weaker than the primal
notion of uniform strict concavity, the two versions of Theorem 8.1 have no
simple order of strength.

The role of uniform strict concavity in the value loss approach is to provide
uniform value loss when (x, y)# (k,, k,,,)- The value loss in period ¢+1 for
capital stocks (x, y) relative to the path {k,}, supported by prices { p,}, was
defined in Section 5 by

ul+1(kt’ kt+l)+pt+1kt+l —pk,= uH—l(x’ y)+pt+1y —-pxt 8:+1(x’ y)'
(8.3)

From (4.11) the value loss §,,;(x, y) is well defined and non-negative for all
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(x, y) € D, . If strict concavity holds, it is also positive for (x, y) # (k,, k,;1).
Indeed, by the same proof used for Lemma 6.2, we obtain:

Lemma 8.1

If u,, , satisfies (I) and is strictly concave at (k,, k,. 1), forany £ > O thereis § > 0
such that |x — k| > e implies §,,,(x, y) > 8, for any (x, y)€ D, ,.

Let us consider two paths {k,} and {k;}, t=0,1,..., that are optimal where
k, and k{ may differ. Assume (I) and (II), and (III) for { k,} and { k;}. Suppose
Vo(k§) > — oo when utility is normalized on { k, }, or k§ € K. Also V{/(ky) > — o0
when utility is normalized on {k;}. or k,€ K{. Let u, be the utility function
normalized on { k,} and u; the utility function normalized on { k;}. Then

i

Vo(k(')) = Z “r(ki—p k;)+V;(k,’),

=1

and similarly for Vy(k,). Since u, (k!_,,k,)+ul(k,_;,k,)=0, it follows that
V(k))+V/(k)=Vy(k{)+Vi(ky), for all & If X!_ u.(k._,,k.) converges,
Vo(k§)+ Vi (ky) = 0. Also support prices exist for both paths by Lemma 4.1.

The definition of the value losses in (8.3) gives symmetrical expressions for the
two paths,

ut(kt—la kt)+pzkt —pt—lkr—l = ut(k;—l’ k;)+ptk:_ pr—lkt,—l + 81, (84)
ut(kt—l’ kr)"‘l’z'kz = Piak, = ”:(k;—l, k:)‘*‘l’;k:“ Pi1ki_1— 6. (8-5)

In these formulae, 8,=6,(k;_,, k;), and &/ = 8/(k,_,, k,). The prices and thus the
size of value losses are independent of the normalization of u,. Subtracting (8.5)
from (8.4) gives

(Pt’_ pt)(kt,_ kt)—(ptl—l - Pt~1)(k;—1 - kt*l) = 8t + 8. (8-6)

Let Lp(t) = (p; — p)(ki— k,).
We may apply the support of the value function according to (4.10) to obtain

V,(k,)=pk,=V(ki)—pki+A,, (8.7)
V,/(k,)— pik,=V;(ki)— piki—X,, (8.8)

where A, >0, N,=0. Subtracting (8.7) from (8.8) and using V,(k;)+V/(k,) =
Vo(ky)+Vy(ky), as well as V,(k,)=V/(k;)= 0, gives

(P = p)(ki—k,) == Yo(k§) =V (ko) A, = X,. (8.9)
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Since §,, 8/, A,, and X, are non-negative, L,(¢) is monotone increasing and
bounded above. This line of argument leads once more to the conclusion of
Theorem 8.1 with the condition that assumption (III) holds for both paths and
uniform value loss holds along one of them. From (8.6) and (8.9) we may derive
A+ N, =No+Ao—2L!_ (8, +8)). Therefore, to avoid contradiction, the number
of periods N(e), when |k;—k|>e, cannot exceed (Ao + No)/8=—(L,(0)+
Volkp)+Vg(kg))/8.

We have proved:

Theorem 8.2

Let {k,}, {k.}, t=0,1,..., be optimal paths. Assume (1), (II), and (III) for both
paths and assume kj € K, and k,€ K. Then support prices { p,} and { p/}
exist for {k,} and {k,}, respectively. Assume uniform value loss for either
(pi,k,) or (pl, k;). Then for any £>0 there is a number N(g) such that
|k;— k, > € can hold for at most N(&) periods.

However, Theorems 8.1 and 82 do not apply to objective functions that
discriminate systematically against the future. The simplest of these, and one
often used, is u,(x, y) = p‘u(x, y) where 0 <p <1 and u is a function indepen-
dent of time that satisfies assumptions (I) and (II). Make assumptions (G2)-(GS).
Then (G1), or u,=u and D,= D, all ¢, implies by Theorem 6.1 that an optimal
stationary path k, = k exists supported by price vectors p‘= p. From the proof
we find that k satisfies u(k, k) > u(x, x) for (x, x) € D. Moreover, strict concav-
ity at (k, k), provided by (GS5), implies that k satisfying this maximizing
condition is unique. Also assume (k, k) € interior D.

If p is now introduced, that is, the utility function u,(x, y)=p‘u(x, y),
0 <p <1, is defined, for p sufficiently near 1, (G2)-(G4) will imply (S2)—(S4).
Then for such a p, Theorem 7.1 implies that a stationary optimal path k,= k*
exists. From the proof, using Lemma 7.2, k* satisfies u(k®, k?) = u(x, y) for all
(x, y) € D such that py — x> (p —1)k*. Let V(x) be the value function in the
stationary model with u,=u and u(k,k)=0. Let K= {x|V(x)> —o0}. As-
sumptions (S3) and (S4) imply that K has an interior.

For each value of p, p’ <p <1, choose k” satisfying the condition of Lemma
7.2. With assumptions (I), (II), and (G2)-(GS) we may prove:

Lemma 8.2

For any &> 0 there is p’ such that |[k? — k| <& holds for the stationary optimal
path, k,=k®, when 1> p > p'.

By Theorem 7.1, assumptions (I), (II), and (S1)-(S4) imply that a stationary
optimal path k, = k” exists. But for p’ near 1 these assumptions are implied.
Then, as mentioned above, such a path exists where u(k?, k*) maximizes u(z,w)
over all (z, w) that satisfy pw — z > (1 — p)k®, that is, over (z,w) € f(k*, k). Let
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p°—1, where p’<p*<1 and s=1,2,.... Since |k°|<{ by (G2), there is a
subsequence (preserve notation) such that k* — k. Let f(p, x, x) be defined in
the same way as f(x, x) in Section 7. Then by an argument parallel to that for
Lemma 7.1, ge f(p, x, x) is upper semi-continuous in (p, x, x). In other words,
u(k”, k”) maximal over f(p’, k” k*) implies that u(k, k) is maximal over
fQ, k1, k*). Since f(1, k%, k') contains all (x, x) € D, from Lemma 6.1 and the
proof of Theorem 6.1 we find that k, =k is a stationary optimal path when p =1.
Strict concavity of u near (k, k) from assumption (GS5), implies that a stationary
optimal path k that satisfies u(k, k)= u(x,x) for (x, x) € D is unique. Thus
k = k and the original sequence k* — k. Since k* — k for an arbitrary sequence,
the convergence is uniform. We may conclude that k? = k as p—=1 and the
lemma is proved.

With this preparation we can develop a turnpike theorem for the quasi-sta-
tionary model [Cass and Shell (1976)]. Substitute p‘u for u, in (84) and (8.5) and
multiply through by p~*. Define current prices by ¢, = p~‘p,. Then we have

u(kt—l’ kr)+qzkt - p“lq,_lk,_l

=u(ki_, k) +qki—p7'q,_1ki_1+07'8, (8.10)

in place of (8.4) and a similar equation in place of (8.5). For each p, 0 <p <1, k*
is chosen to satisfy the condition of Lemma 7.2. Let k, = k?, all ¢, where k” is the
capital stock of the stationary optimal path and p; = p'q® are the Weitzman prices
provided by Theorem 7.1. Let { k,(p)} be an optimal path from k, € interior K
and p,(p) = p'q,(p) the Weitzman support prices. The existence of the Weitzman
support prices follows from Lemma 4.1, since (G3) and (G4) imply that the set S
of sustainable stocks has an interior. But S € K, and S C P,N K, for all ¢, when
K, and K, are defined relative to any path { k,(p)}. If u is strictly concave near
k° for any e> 0, |k,_,(p)— k°| > € implies there is 6 > 0 such that the value loss
suffered by k,_,(p) at prices p'g® is 6 > 6. In formula (8.6) put §,=6,(p), the
value loss suffered by (k*, k) at prices p,(p), and 8/ = 8f. This gives

(q.(p)—q°)(k(p)~k?)—p " (q,—1(p) = q*)(k,_,(p)— k")

=P~t(81(P)+81p)’ (8-11)

for all ¢t >1. Assumption (G5) implies that a neighborhood U of (k, k) exists
within which u is strictly concave. Suppose p’ is chosen near enough to 1 so that
every (kP,k?)eU for 1>p>p’. This is possible by Lemma 8.2. Then for
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1>p>p and any e£>0 there is § >0 such that |k,_;(p)—k”|> ¢ implies
p~(8,(p)+8f)> 6.

Suppose that the initial prices go(p) for the path k,(p), and the prices g° that
support the stationary optimal path are bounded for 1> p > p’. Then (g,(p)—
q°)( ko — k*) is bounded for these p, and p’ may be selected near enough to 1 to
imply for 1> p > p’,

(p7'=1)(g0(p)—q*)(ko—kP) > —8/2. (8.12)

Let LP(t)=(q,(p)—q°Xk,(p)—k"). Adding (8.11) and (8.12) gives LP(1)—
L?(0)>8/2. Then (p~*—1)LP(1)> — §/2 also holds. Provided |k,(p)— k*| > &,
for 0 < <1, we may apply induction to obtain LP(t)—L?(t—1)>8/2, uni-
formly for 1> p > p/, or

(2.(p)—q")(k,(p)—k*)~(g,-1(p)— q°)(Kk,1(p)—Kk*) > 8/2,  (8.13)

Since feasible paths are bounded by (G2), utility is bounded above. Therefore,
discounted sums converge to finite values or — oo, and V,(k})+V, (k,) =0, by the
reversal of the normalization. Therefore, if we multiply through by p~*, (8.9)
becomes

(a.(p)—a")(k,(p)=k*)=—p""(A,+X,) 0. (8.14)

We will see that L{(¢) = (q,(p)—q°)(k,(p)— k) may serve in place of L,(¢) to
prove a turnpike theorem, in the sense of convergence to a neighborhood of k°,
rather than to k* itself.

Let R be the set of p <1 such that (S4) is satisfied. Note that (S4) is satisfied
for p’ > p if it is satisfied for p. First, we must show

Lemma 8.3
The prices g,(p) and g° are bounded for p € R.

Let k, = k be the stationary optimal path provided by Theorem 6.1 and p, = p
the corresponding support prices. Maintain the normalization u(k, k) =0. Let V}{
be the value function at ¢ =0 when p is the discount factor. We will show that
V§(x) is bounded for x € k over p € R. Let {k,} be an arbitrary path from x.
The relation (6.1) gives

O;u(kt—l’kt)+p(kt-kt—1)‘ (815)
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Multiplying through by p* and summing from ¢ =1 to T, we have

T T~1
Yo'u(k, 1, k) <ppko+ X p'(p—1)pk,—p"pks < px, (8.15)
1 1

or V(x) is bounded above independently of p. On the other hand, x € K implies
V(x) > —oo. That is, there is a path {k;} with kj =x for which
liminf):{u,(k;_l,k{), as T — oo, is finite. Then the argument of Theorem 8.1
implies that for any &€ > 0 there is N(¢) such that |k, — k| > ¢ for no more than
N(e) periods. But (k, k) € interior D implies that (k;, k) € D for k; sufficiently
near k. Thus we may assume k, =k and u,(k,_1,k;)=0 for all ¢ >T. Then

t T

You(kioy, ki) =Ypu,(ki_y, kl),

1 1

for all ¢ > T. This implies that V§(x) is bounded below over p € R.
Consider the support formula

V§(ko)—qo(p) ko 2 V8(x) = go(0)-x, (8.16)

implied by (4.10) for k, and x € k. Choose x so that (ko —x),=¢>0, all i. Set
3o(p) = q0(p)/190(pP)I- If |go(p)]| is unbounded over R, for some p € R there is a
sequence p° — p, s=1,2,..., such that |g,(p*)| = oo, and Gy(p*) = G, # 0. Then
(8.16) implies

—gokoZ —qyx.
Since g, > 0 by free disposal, this contradicts the choice of x. Therefore, g,(p) is
bounded for p € R.
We must now bound g°. According to Lemma 7.2
u(k®, k?)+pq°k? — q°k? z u(z,w)+pq°w — g’z, (8.17)
for all (z,w) € D. If g is unbounded for p € R, there is a sequence p° = p € R

such that |¢*’| is unbounded and k* — k. Choosing a subsequence and normaliz-
ing as before, we obtain in the limit, as a consequence of (8.17),

(p—1)gk=2g(pw—1z), G+0,

for all (z,w) € D. This is a contradiction since (S3) and (S4) imply that (p — 1)k
is interior to the set { pw — z|(z,w) € D}. Thus ¢* is bounded for p € R.
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Since V{§ is concave and finite in K, it is a continuous function of y in the
interior of K. Therefore, it is bounded in any compact subset of the interior of K,
for example, over the set U= { y||k — y| <e/2}. Then it is immediate from the
proof that the bound on g,(p) for p € R, given by the lemma, is uniform for k,
in U. We have:

Corollary

The prices g,(p) are uniformly bounded for k, in a sufficiently small neighbor-
hood of k and p € R.

The corollary implies that the support prices g,(p) for any path lying in a small
neighborhood of k are bounded as ¢ — oo, since the g,(p) are possible choices of
qo(p) for ko= k,.

We may now prove the neighborhood turnpike theorem. A similar theorem for
the case of continuous time has been proved by Nishimura (1979).

Theorem 8.3

Assume (I) and (II). Let u, = p‘u and D,= D. Assume {G2)—(GS5). Also assume
that the point (k, k) of (G5) lies in interior D. Let { k,} be an optimal path where
k, € interior K. Let {k;}, k;= k", all ¢, be a stationary optimal path given by
Theorem 7.1. Then for any &> 0, there is p(&) and N(e) such that 1> p > p(¢)
implies |k, — k?| < € holds for all ¢ > N(e).

Since the prices g,(p) and g° are bounded for p near 1 by Lemma 8.3, the
argument leading to (8.13) may be applied for an arbitrary £é> 0. Let N>
—2LPF(0)/8. Then (8.13) and (8.14) are inconsistent unless |k, (p)— k°|<e for
some ¢ < N. The choice of N is independent of p so long as 1> p > p’. This shows
the optimal path must approach k” at least once [see the “visit lemma” of
Scheinkman (1976)). However, we will show that there is a neighborhood of k* in
which the path remains thereafter.

By Lemma 8.2 and the assumption that (k, k) € interior D, it is possible to
choose p’ so that (k°, k?) &€ C Cinterior D for 1> p > p’, where C is compact.
Then any y sufficiently near k* will have (y, y) € interior D, which implies
y € interior K, for any p with 1> p > p". Let U,= { y||y — k?| < €}. Choose ¢ so
small that U, C interior K for (k°, k) € C. Then, by the Corollary to Lemma 8.3,
the prices g,(p) are bounded for k,(p) € U, uniformly for p with 1> p > p’.

We may suppose that p’ has been chosen so that k,(p) lies in the neighborhood
U, for some t < N for any path p with 1> p > p’. Uniformly bounded prices for
1>p>p and k,p)€ U, imply that L exists such that 0> L?(z)>pL for
k,(p) € U. Then if k,(p)€ U, it follows from (8.11) that L°(¢ +1) > L. How-
ever, — LP(¢) is seen from (8.7) and (8.14) to be the sum of the remainder terms
in the supports of the value function, thus, using strict concavity, |k,(p)— k?| = 0
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as L — 0. Then for any ¢ > 0, € may be chosen so small, that is, L so near 0, that
L?(t+1)> L implies |k,,,(p)— k*| < €. This follows from the strict concavity of
u near (k*, k) and thus of V£, ,, for p near 1. If k, ,(p) is outside U, it is
implied by (8.11) that L (z+2)—p 'L (z+1) > & for some 8 > 0. Also o’ may be
chosen near enough to 1 so that (p~!—1)L > —§/2 for 1> p > p’. Then from
LP(t+1)> L we have

Le(e+2)—Le(t+1)28+(p ' —1)L>8/2. | (8.18)

This implies L (¢ +2)> p~'L also holds and |k, ,(p)— k?| <¢’.

Let U,= {x||lx—k?|<¢}. Then (8.18) may be used again to imply that
k,, .(p)€U, for =2, s0long as k,,._1(p) does not lie in U,. But k,,,.(p) must
eventually re-enter U,, or L#(¢ + 1) will become positive, which is impossible. A
repetition of the argument shows that k,, .(p) remains in U, again. Thus k,, .(p)
can never leave U, and the theorem is proved.

Theorem 8.3 is weaker than Theorem 8.1 where p =1, since it is not asserted
that p can be chosen so that k,(p) converges asymptotically to k°. Indeed, there
may be other optimal stationary paths interior to U, and cyclical paths as well
[see Benhabib and Nishimura (1978)]. However, the assumption (G5) may be
strengthened to give asymptotic convergence for p sufficiently near 1. Suppose
that u has continuous second partial derivatives at (k, k) and the Hessian of u is
negative definite there. Then p may be chosen near enough to 1 so that

PUyy  PUy
Uy Uy |’

Q(p)=[

evaluated at (k°®, k®), is negative quasi-definite for (k”, k*) in a neighborhood W
of (k, k). Since the neighborhood W expands as p — 1, while k? > k as p =1, p
may be chosen near enough to 1 to bring (k°, k) inside W. But Q(p) negative
definite implies that (8.13) will hold for some § > 0 for any £> 0.

Indeed, write the left-hand side of (8.13) as

Lo(r)= Lo(r =1) = = (u5 — ug)(k, = k*) = (puf — puf )(k,_1 — k°),

(8.19)
where ub = (9/dy)u(k,_1, Y)], ¢, u5=(9/3y)u(k®, y)l,—i», and similarly for
uf, and uf. We may express (8.19) in a small neighborhood of (k®, k) as

(ugl(kt—l_kp)+u32(kl_kp))(kt_kp)-'-(pufl(kt—l_kp)
+oufy (k,—k?))(k,_y — k*)+o0(e?)
=LP(t—1)—L*(2). (8.20)



Ch. 26: Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics 1317

where o(e?) is of order higher than the second in ¢ and e=|(k, 1, k,)—(k*, k*)).
If Q(p) is negative quasi-definite, (8.20) implies

Le(t)— LP(t—1) 2 — A —o(&?), (8.21)

where A is the characteristic root of $(Q7(p)+ Q(p)) of maximal absolute value.
Thus ¢’ > 0 may be chosen so that — Ae? —o(e2) > — 3Ae? for all 0 <e<¢’. But
from Theorem 8.3, p may be chosen near enough to 1 so that |k,(p)—k*| < ¢’ for
all > N(¢’) and all p with 1> p>p. We may also choose p so that Q(p) is
uniformly negative quasi-definite for 1> p > p, that is, (8.21) holds for given A
for all p with 1 > p > p. To avoid contradicting (8.15), |k,(p)— k?| = O must hold.
Indeed, for any &> O there is N,(¢) such that |k,(p)— k| < & for ¢t > N,(g) when
12p2p.

We have proved:
Theorem 8.4

If in addition to the hypotheses of Theorem 8.3, » has continuous second partial
derivatives at the optimal stationary path (k, k) of Assumption (GS5) and the
Hessian of u is negative definite at (&, k), there is p such that 1 > p > p implies
for any &> O there is N(e) such that |k, — k?| <e for all ¢t > N(e), where {k,} is
any optimal path satisfying k, € interior K.

The fact that k is assumed interior to E} is not a restriction, since the capital
stock space can be chosen differently for each ¢, so long as all stocks are included
which can appear in that period given the initial stocks [McKenzie (1976)]. Of
course, the requirements that k, be interior to K and (k, k) be interior to D are
substantive restrictions.

Theorem 8.4 extends the classical theorem for p=1 to the case p <1 and
sufficiently near 1. A result of this type was first obtained by Scheinkman (1976).
A similar result was obtained by Brock and Scheinkman (1978). Theorem 8.3 may
be extended to utility functions #, that depend more generally on time where a
uniform concavity condition can be obtained in a way analogous to the move
from p‘u to u. Suppose there exist numbers p, > 0 such that @, = l_[{p,‘lu . 18
uniformly strictly concave along { k, }. Then the argument leading to Theorem 8.3
can be retraced in this broader context [McKenzie (1976)]. A particular case
would be that of variable discount factors, or u,= I 1]p,u so that &1, = u for all «.

In the special case of the stationary model another type of turnpike theorem
was established in the course of proving Theorem 6.2. It was shown there that
even without strict concavity of » near a point (k, k) where sustainable utility is
maximized, if this point is unique [Assumption (G5’)], the average input—output
vector of a maximal path (1/ T)er(k,_l, k,) converges to (k, k). Brock (1970)
refers to this behavior of maximal paths as an average turnpike property. The
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circumstances that underlie the average turnpike property become clearer when a
general analysis of asymptotic behavior of maximal paths is made using the
notion of the von Neumann facet in the following section.

The asymptotic properties of optimal paths in the continuous time model have
been investigated along lines similar to those of this section, in particular, by Cass
and Shell (1976) and Brock and Scheinkman (1976).

9. The von Neumann facet

Although the support prices were found for maximal paths in Section 4 with
utility functions that were only assumed to be concave, the turnpike theorems that
have been proved so far have used stronger assumptions involving strict concav-
ity, at least at an optimal path. Strict concavity is used to provide value losses
8,(x, y)> 0 whenever (x, y)# (k,_y, k,) for an optimal path {k,}. However, if
the basis for a value loss argument exists in terms of uniformity of concavity over
time, it will still be true that paths must behave asymptotically to eliminate the
value loss. This means that asymptotically optimal paths must be supported by
the same prices. If we define a facet as the set of (x, y) € D, that are supported by
a particular price vector ( p, q), the elimination of value losses will require that the
input—output vectors of optimal paths eventually approach the same facets. Thus
a weaker form of convergence will continue to hold. This convergence may, in
fact, lead to a turnpike in the original sense when the facets have an appropriate
structure. This is a generalization of the turnpike theorems to the case where
utility may not be strictly concave, and value losses do not necessarily appear off
the turnpike.

The case of non-strictly concave utility is not really a borderline case in terms
of the economic problem. Suppose that the extensive model has neo-classical
production functions with homogeneous labor input and no net joint products.
That is, if (x, y) is an input-output vector for the jth industry, x; > y, for i # j.
Output is divided between consumption and terminal stocks. Let utility be a
strictly concave function of consumption. Yet the reduced model cannot have a
strictly concave utility function in terms of initial and terminal stocks. A flat piece
of the graph of u,(x, y), and thus a non-trivial facet, will be generated by the
variations in activity levels which are consistent with the labor supply and with
the consumption vector ¢ that underlies u,(x, y). The possible variations will be
significant whenever the variations of the input-output vector can be absorbed by
the initial and terminal stocks without varying either ¢ or the total labor supply.
If stocks are depleted from use so that an activity from each industry must be
used to obtain y > x for (x, y) € D,, the dimension of the facet will be at least
n—1 if stocks are maintained somewhere on it. To this extent input-output
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changes can be made to fall on the accumulation program without losing
efficiency by varying activity levels for activities in use.
Define F,( p, q) as all (x, y) € D, such that

u,(x,y)+q— px=sup(u,(z,w)+qw—pz), (9.1)

over (z,w) € D,. Concavity and closedness of u, implies that F,(p, q) is a closed
convex subset of D,. Also F, is an upper semi-continuous correspondence from
E,_, X E, to the non-negative orthant of E, ; X E,. Let

d((z,w), F;) = min|(z,w)—(x, y)|,

for (x, y) € F,. We reformulate the value loss result as [McKenzie (1968)]:
Lemma 9.1

Let u, satisfy assumptions (I) and (II). Let F,(p, q) # ¢ be a facet of D,. For any
1 >0, £> 0 there is 8 > 0 such that |z| <n and (z,w) € D, implies 8(z,w) > 8 for
d((z,w), F) > e.

Consider a sequence (z°,w®) that violates the conclusion, that is, |z°| <7,
d((z°,w*), F,) > ¢, but 8,(z°,w*) < §° where §° — 0. By assumption (II) w’ is also
bounded, so there is a convergent subsequence whose limit (Z,w) satisfies
8,(z,w)=0, |z| <, and d((Z,w), F,) 2 &. However, 6,(z,w)= 0 implies (z,w) €
F,, which is a contradiction.

Lemma 9.1 may be used to prove a theorem which is the analog of Theorem
8.1. Suppose that {k,}, t=0,1,..., is a maximal path and F, is a sequence of
facets where (k,_;, k,) € F, for all ¢. Such a sequence is defined by the sequence
of support prices { p,} guaranteed by Lemma 4.1. It is not unreasonable, in view
of bounded land and labor services, to assume F, to be bounded, even uniformly
over time. Let us assume further that the value loss off F, is uniform over ¢ in the
sense that 71, €, and § may be chosen independently of ¢ in Lemma 9.1. Let K
be the set of initial stocks with well defined values when %, is normalized so that
u,(k,_1, k,)= 0, all ¢. Then the analog of the dual argument for Theorem 8.2 will
prove convergence of maximal paths {k;}, from initial stocks k{ € K, to the
facet sequence { F,}. The argument for Theorem 8.1 is also valid for a primal
version of convergence to the sequence of facets. If strict concavity holds,
F,={k,_,, k,} and the original theorems are true. We may state:

Theorem 9.1

Let {k,}, {k;}, t=0,1,..., be maximal paths and assume (I) and (II), and (III)
for both paths. Let { p,} support {k,} and let { F,} be the corresponding facet
sequence. Assume kj € K, and k, € K{, and there is uniform value loss along
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{ F,}. Then for any £> 0 there is N(¢) such that d((k;_,, k;), F,) > & can hold for
at most N(¢) periods.

One case to which Theorem 9.1 applies is the stationary model of Section 6
with the strict concavity assumption (G5) omitted. Lemma 6.1 is valid since it
does not use (GS5). Thus there exists p = 0 such that u(x, y)+ py — px < u for all
(x, y)€ D where u=maxu(x,x) for (x,x)€ D. The price vector p defines a
facet F(p, p). We may prove [Peleg (1973)]:

Lemma 9.2

Under assumptions (G1)-(G4) there is (k, k) € D such that u(k, k)= u(x, x),
for all (x,x)€ D and k,=k, t=0,1,..., is a maximal path.

Let C= {(x,x)|u(x,x)=u}. By assumptions (I) and (G2), C is compact.
Then there is (k, k) € C such that

pk < px forall (x,x)€C. (9.2)

Suppose k, =k is not maximal. Then there is a path {k;} and 7> O such that
ki =k and

X (w1, k) =) > 60, 93)

for all ¢t > T. Consider

t

1
(xt—l’ yt) ¢ Z(k,’, 17k-,r)'

1

Convexity of D implies (x,_;, y,) € D. Since k; is bounded by (G2), there is a
point of accumulation (k, k) of the sequence (x,_;, y,). Moreover,

1 t
u(x{ 1,)/; ;72 ( T—1° )
1

by concavity of u. Then (9.3) and assumption (I) imply u(k,k)> %, and
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(k, k)€ C. By Lemma 6.1, and (9.3), for all > T,
t t
e< ¥ (u(ki_y, k;)—u) < X p(ki_,— k)= pk — pk;. (9.4)
1 1

Since y,=(1/t)Xik’ and y,—k, (9.4) implies pk > pk +e. This contradicts
(9.2), since (k, k) € C. Therefore, k, = k is a maximal path.

The set C and, in particular, the maximal path k, =k, lies on the facet
F(p, p). We may set F,= F(p, p)in Theorem 9.1 and derive the convergence of
k; to F(p, p). In a similar way, Theorem 83 may be given a facet generalization
where k* is replaced by the facet F? = F(q*, pq®) on which (k°, k°) lies. F(p, p)
or F* will be referred to as a von Neumann facet. The argument for Lemma 8.2
now proves that (k®, k®) converges to the compact set C, as p — 1. Note that in
the proof of Lemma 8.3 the support prices given by Lemma 6.1 are used, but the
stationary optimal path plays no role. Therefore, the boundedness of q,(p) and
q® follows for the present case just as before. However, two new assumptions are
needed.

(F1) The unique support prices for all points of the von Neumann facet contain-
ing (k*®, k*) are (¢°, Pq®).

(F2) For any £>0, e¢>0, there is §>0, such that |x|<¢ and d((x, y),
F(g*, pgq®)) > ¢ implies 6(x, y) > 8, uniformly for p near 1.

Assumption (F1) implies directly that L?(z) = (q,(p)—q*)(k,(p)— k?) is O for
(k,(p) k,.1(P)) € F(q*, pq®). By assumption (G2), k,(p) is bounded indepen-
dently of p by the maximum of |ky(p)| and {. Then assumption (F1) implies that
L,(p) is also near 0 for (k,(p), k,,1(p)) near F(q*, pq®), since in that case q,(p)
will be near g°. Assumption (F1) is needed because k, need not be near k°
although (k,(p), k,,1(p)) is near F(q*, pqg®). Assumption (F2) provides the value
losses that lead to L,,1(p)—p 'L,(p) 2 8> 0 for some 8 when (k(p), k., 1(p))
is outside an e-neighborhood of F(gq°®, pq®).

These facts allow the proof of a neighborhood turnpike theorem for the von
Neumann facet which is the analogue of Theorem 8.3 [details may be found in
McKenzie (1983)]. We have:

Theorem 9.2

Assume (I) and (II). Let u, = p'u, D,= D, and assume (G2), (G3), (G4), and F(1),
F(2). Let { k,} be an optimal path where k, € interior K. Let { k|}, k,=k", all ¢,
be a stationary optimal path, and p; = p'g® the support prices, given by Theorem
7.1. Then for any &> 0, there is p(e) and N(&) such that 1> p > p(&) implies
d((k,_q, k,, F(q®, pq®)) > & holds for no more than N(e) periods.

The principal change that must be made in the proof of Theorem 8.3 to obtain
the proof of Theorem 9.2 is to replace the condition |k,(p)— kP|>¢ by the



1322 Lionel W. McKenzie

condition d((k,_,(p), k,(p), F(q°,pq®)) > & whenever lower bounds are being
deduced for value losses §,(p)+ 6. Then the elimination of value losses to avoid
contradiction with (8.14) forces convergence to the facet F(g°, pq®) rather than
to the path k;=k*. The part of the earlier proof that required (k*, k°) to enter a
strictly concave neighborhood of (&, k) is no longer needed, since it is no longer
necessary to establish F(q°, pq®)= (k*, kP).

Given some assumptions on the structure of the facets F, of Theorem 9.1 to
which the (k,_,, k,) belong, and which are defined by the ( p,_;, p,), it may be
that paths that remain close to the F, for a long time must approach each other.
This can be seen most easily for stationary models where one of the price
supported paths is a maximal stationary path supported by constant current
prices so that F,= F for all ¢.

Choose points in the facet F which affinely span the smallest flat containing F,
say (x', y'), i=1,...,r, where the dimension of F is r —1<2n. Then any point
(z,w) € F can be expressed as 2] a;(x’, y*) where La; = 1. If (k,} is a path on F,
we have {k, i, k,}=2Xjal(x', y"), and (k,, k, 1) =Llal }(x!, y'), or Llaly'=
2 a‘*1x’. Suppose that r =n+1 and 4 and B are square matrices with columns

(xi) and |7 i ,
1 1
respectively. Then ¢ > 0, the equation Ba'= Aa'*! must be satisfied for some

vectors o' and a'*'if (k,_;, k,) and (k,, k,, ;) lie on F.If A is non-singular, this
may be written

a't'=A4""Ba". (9.2)

Suppose 4 ~'B has only one characteristic root A with absolute value one and
this root is simple. Then A =1, since a must solve (9.2) where

Sa(x, y') = (k. k),

and k is the capital stock vector of the stationary maximal path. The last rows of
A and B imply that X]_ a,(j)=0 if A;#1 and Y _,a1)=1 for A\;=1. The
path k, = k is optimal for the quasi-stationary case by Theorem 5.3. We will show
later that it is optimal for the stationary case as well. If we make assumption (G2)
of the stationary model of Section 6 that sustainable stocks are bounded, |k,| is
bounded by a number {. Then for any path {k,} on F, k,— k must hold
[McKenzie (1968)]. This is easily seen if the characteristic roots are all simple, so
the characteristic vectors span the complexification of the r-dimensional Euclidean
space [Hirsch and Smale (1974, pp. 64-65)). Then o' = ):;,Bj}\’ja( J) where a(j) is
the characteristic vector associated with A; and B; is a given number, possibly
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complex. Also {k,} on F implies Za,’. =1,s08;=1.1f |A;| >1, B;= 0 must hold,
or else a' and thus k, is unbounded as ¢ = co. If |A;| <1, N; > 0 as t = co. Thus
a' > a(l) and k, - k. By an extension of this argument the same convergence
property will be shown to hold for any path that converges to F. Then the
convergence of maximal paths will once again be established.

In the case where (k, k) € interior F relative to the smallest flat that contains F
we may prove r <n + 1. The proof of Lemma 6.1 implies that u + pv =u for a
vector p > 0 for every v = (y — x) and (x, y) € F. Thus all (u, v) corresponding
to points in F lie in a flat of dimension less than or equai to # in E”*! and (#,0)
is expressible as an affine combination with non-zero .coefficients of r affinely
independent vectors of W, (u,v’)= (u(x', y’), y'—x"), where r <n+1. This
means (u(k, k), k, k) is the same affine combination of r affinely independent
vectors (u(x’, y%), x’, ') of the graph of u. Consequently the dimension of F is
at least r —1. We will show that the dimension of F is exactly r—1. Let
(k,k)=2"_,a;(x", y'). Then 0 = L} _,a,v". Suppose there were (x, y) € F which
was affinely independent of the (x', y%). Let v =(y — x). Then v =X/_,B;v* for
some B; where 218,=1, or v/=—B; B’ + B 'v, and 0= Z#j(a,. —a,87 BV
+a j.Bj“_ 1u.‘ This implies there is (k’, k) which is the same linear combination of
the (x', y'), i+ j, and (x, y). Moreover, the assumption that (x, y) is affinely
independent of the (x’, y') implies that k' # k. But (k’, k') € S where S is the
smallest flat containing F, since S and F are convex, and (k, k) is interior to F,
there is a point (k”, k’’) on the line segment joining (k’, k') and (k, k), which lies
in F. This contradicts the uniqueness of the stationary optimal path. Thus no
such (x, y) € F can exist, or the dimension of F is r —1. If r = n + 1, matrices A
and B will have the same number of rows as columns and except for coincidence
their columns will be linearly independent. If the model is neoclassical, small
perturbations of the processes will eliminate characteristic roots of absolute value
one except for the root one which is present by construction. Finally, when u is
piecewise linear, the graph of u is polyhedral and (k, k) € relative interior F
holds by definition. See Morishima (1969, chs. 10 and 13), for a careful discussion
of the polyhedral case.

We may say that the structure of the von Neumann facet F is stable if, for any
e> 0, there is T such that every solution o of the difference equation (9.2), for
which (Aa!, Ba')= (k. k., .)€ F for t >0, satisfies |k, — k| < & for some k for
all > T [Inada (1964)). The case outlined in the last paragraph is an example of
a stable facet. Suppose that a bounded path { k,} converges to F, but that {k,}
does not converge to k. Choose a sequence of neighborhoods U* of F defined by
U’={(x, y)Id((x, y), F) < & >0} where ¢ — 0. Let 7, be a sequence of times
such that (k,, k,,,) €U’ for t > ¢, Thisis possible since (k,, k,, ;) converges to F
by assumption. Consider the sequence of paths {k}}, 7=0,1,..., where k=
k, ... Since the {k;} are bounded, we may use the Cantor process to choose a
su:bsequence converging to a path { k/}. Then assumption (I) and F closed imply
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that (k;,k’.,,)€ F for all 72 0. If {k,} does not converge to k, given T > O the
times ¢, may be chosen so that |k} — k|> &> 0 for all s. This implies that there
exist paths beginning at time 7 =0 on F' that lie outside an e-neighborhood of &
at time 7=7T where T may be set arbitrarily large, in contradiction to the
stability of F. We may prove:

Theorem 9.3

If a path {&,} in a stationary model, satisfying assumptions (I), (II),7and (G2),
converges to the von Neumann facet F and the structure of F is stable, then
k,— k where k is the capital stock vector of the stationary optimal path. If {k,}
is a maximal path, it is optimal.

The convergence has been shown. However, the argument for optimality
leading to Theorem 5.1 only uses (W1) and (W2), which are met here, together
with the turnpike property which was proved using (W3). Since in the present
case the turnpike property is established, optimality follows for { k,}. The facet F
where A is non-singular and 4 !B has a unique characteristic root with absolute
value one, which is simple and equal to one, gives a particular case for Theorem
9.3. A condition which is equivalent to stability is that the stationary path on F
be unique and there be no cyclic paths on F of constant amplitude [McKenzie
(1968)].

In the quasi-stationary case the analogue of Theorem 9.3 is not useful since
Theorem 9.2 only gives a neighborhood theorem, or Liapounov stability, not
asymptotic stability, for the von Neumann facet. However, the neighborhood
counterpart of Theorem 9.3 can be proved for quasi-stationary models. First,
when there is a unique optimal stationary stock, that is, C= {k}, for p=1,
Lemma 8.2 remains valid and k? — k as p — 1. Furthermore, it is easily seen that
p —1 implies that F? — F where F is the von Neumann facet for p =1. This
allows us to prove a neighborhood version of Theorem 9.3 [see McKenzie (1983)].

Theorem 9.4

In addition to the hypothesis of Theorem 9.2, assume that the von Neumann facet
F for p=1 is stable. Then for any e€>0 there is p(¢) and T(e) such that
p(e) < p <1 implies that (k,— k®) <& holds for 7 > T(e).

The proof of this theorem is entirely parallel to the proof of Theorem 9.3,
except that use must be made of a sequence of paths { k,(p*)} from kqy(p’) = k,
since no single path need converge either to F or to F*. Indeed, suppose the
theorem were false. Then there are sequences p* =1, ¢ =0, and 7°, s =1,2,...,
such that (k,(p%), k,.1(p*)) lies in the e’-neighborhood of F for ¢ > 7°, but for
which there is ¢*= 7+ T and |k,.(p°), k*'| > &, where T may be arbitrarily large.
Let h{=k, . ,. Since the paths { 4]} lie in a bounded set, we may choose, by a
Cantor process, a subsequence converging to a sequence {h,}, t=0,1,.... As
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before, the limit path lies in F but |h; — k| > €. Since this construction is possible
for T arbitrarily large the stability of F is violated. Thus no such sequences can
exist, or k,(p) eventually remains in an e-neighborhood of k, where ¢ may be
chosen arbitrarily small if p is then chosen near enough to 1.

It is also possible to prove an asymptotic theorem in the case of a non-trivial
von Neumann facet and p near 1 if differentiability is assumed in the manner of
Theorem 8.4. Of course, the presence of the facet implies that the second
differential of u cannot be negative definite at (k, k). However, it can be negative
semi-definite and negative definite in the subspace S of E?2" defined by S =
{(z,w)z,w)-((x, y)—(k, k)) =0, for all (x, y) € F}. That is, [u,;] evaluated at
(k, k) is negative definite on the orthogonal complement of ( F—(k, k)). The
asymptotic convergence to k is proved by appeal to the local stability theorem of
Scheinkman (1976). Since Theorem 9.4 brings the path k,(p) into a small
neighborhood of k? for p near 1, local asymptotic stability of k® completes the
argument. The local argument uses a linear approximation (12.8) to the Euler
equations (12.1) and a regularity assumption for the stable manifold of the linear
approximation. The theorem and its proof may be found in McKenzie (1983).

III. Comparative Statics and Dynamics
10. Differentiable utility

If we assume, in addition to concavity and closedness of u,, differentiability of u,
with respect to capital stocks, a new method of proving the turnpike theorem
becomes available, due to Araujo and Scheinkman (1977), that does not depend
on the condition that p be near 1. Differentiability also facilitates comparative
studies analogous to the comparative statics of general equilibrium theory. The
special assumptions which are used to obtain the results are the analogues in the
dynamic setting of the familiar assumptions of comparative statics and stability
theory for general equilibrium, that is, a dominant diagonal or negative definite-
ness for the appropriate Jacobian matrix [see Arrow and Hahn (1971, ch. 12)].
Negative definiteness is almost equivalent in the differentiable context to the value
loss assumptions of the last section. However, the dominant diagonal assumption
for the Jacobian matrix is independent of negative definiteness. The concavity of
utility that is crucial for calculus of variations, and maximum theory in general, is
still needed. This should not be surprising since the conditions of Weierstrass and
Legendre in calculus of variations, which imply local concavity of utility with
respect to rates of change, are necessary conditions along an optimal path.
Because of the differentiability of u, we do not need to appeal to Section 4 for
support prices since the derivatives of u, take their place. Recall that a path of
accumulation is optimal if it catches up to every alternative path from the same
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initial stocks. If { k,} is a path with (k,, k, ;) interior to D, consider alternative
paths {k;} where k; =k, for t #+ 7 and k.= x> 0. Then { k,} catches up to { k;}
if and only if w,(k, p,x)+u, (X k41 Sw K,y k)+ (K, k). The
differentiability assumption implies that this condition will be violated for an
appropriate choice of x and 7 unless

u;(kt—l,kt)+ui+l(knkt+1)=0’ N (101)

for all ¢, where u; denotes the vector of derivatives of u, with respect to initial
stocks and u the vector of derivatives with respect to terminal stocks. Thus (10.1)
is a necessary condition for optimal paths and corresponds to the Euler condition
of the calculus of variations.

We assume:

(I’) The utility functions u,(x, y)= p‘u(x, y), where 0 <p <1 and u(x, y) is
concave and closed on the convex set D, contained in the non-negative
orthant of E?2". Interior D # ¢ and u has continuous second partial deriva-
tives in the interior of D.

For the sake of simplicity we make our argument in terms of the quasi-sta-
tionary case u, = p‘u, 0 < p <1, although the argument can be given in a general
form applying to utility functions that depend on time in more complicated ways,
reflecting changes in taste and technology [McKenzie (1977)]. Let {k,}, t=
0,1,..., be a path satisfying (10.1) for u,= p‘u, where the distance of the path
from the boundary of D,= D is at least ¢> 0 in all periods. Represent an
arbitrary path {k.} by {z,} where z,=k,— k,, and rewrite (10.1), after dividing
through by pf, as

02(21—1’Zt)+pul(zt’zt+l)=0’ (102)

for all ¢, setting v(z,_, z,) =u(k,_,, k}) for all &. We will refer to {z,} also as a
path. For a given 0 <f8 <1, let x,=B"z,. Let G, be the set of paths {z,} with
B!z, <e/2 for all ¢. Let G, be the corresponding set of sequences { x, }. Then
G, is contained in the Banach space / of bounded sequences of vectors in E,.
The norm |x|, of x €12 =sup|x,| over ¢ >0, where |x,| is the Euclidean norm.
The set G, is not empty since it contains 0. By the assumption that (k/_,, k) is
bounded interior to D, G, has a non-empty interior in /5.
We define a function § by

‘fz(xo’ x) ZB_tvz(ﬁt_lxt—h tht)+ﬁitpvl(:8txn Bt+1xt+1)’

t=1,2,..., where x={x,}, t=1,2,.... Then £(0,0),=0 for all 1, by the first-
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order condition (10.2) for an optimum. If v has second partial derivatives at (0, 0)
that are bounded and uniformly continuous over ¢, £,(x,, x) is bounded over ¢
for small e. Thus £ maps G, into /%.

We will say that a path {k,} is smooth if it satisfies the Euler equation (10.1)
and is bounded away from the boundary of D. Then u has second partial
derivatives that are bounded from oo over ¢ and uniformly continuous along
{k,}. It is possible to show for smooth paths that the derivative D, £ at (0,0) is
given by

(ngh)l = (0122 + PU%1)h1 + prfzhz,
(Dx‘gh)t=lBilvélht—l+(v§2+pvtlirl)ht_’"ﬁpvtl;lhwla (103)
for t=2,3,..., where hel], vfj=v,.j(z,_1, z,), and the partial derivatives are

evaluated at (0,0). Also D, ¢ is continuous at (0,0) [see Araujo and Scheinkman
(1977)]. We may represent D,£ as an infinite matrix, or

datech Bk 0
D &= B} v3, + pv3; Bevi, a
X - ‘
Bl vh+avh Bevt,
A

If ||, is a norm on R”", for a matrix argument |+|, indicates the corresponding
operator norm, that is |M,;|; is sup|M;;y|, for y € E”, | y|; =1. Given any norm
on R" an infinite matrix M formed of n X n blocks M;;, with M,; invertible, is
said to have dominant diagonal blocks if sup|M; |, <oo over i and sup):j i
|M;'M,;|, =8 <1 over i. M defines a transformation of /2 into /7 when
)> ,|M|, is bounded over i. The boundedness of the second partial derivatives of
u imply this condition for D £ if {k,} is smooth. The matrix M is said to be
invertible if it defines a linear homeomorphism of /. onto /2 [Dieudonné (1960,
p- 45)] We may show:

Lemma 10.1

If an infinite matrix M that maps /2 into /] has dominant diagonal blocks, it is
invertible.

Since M is bounded on the unit ball in /7, it is a continuous linear map. Let
M, be the matrix of diagonal blocks M,; with 0’s elsewhere. Since |M, | is
bounded over i by the assumption of dominant diagonal blocks, M, ! exists and
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is continuous. Let M, = M; M. Then the dominant diagonal assumption implies,
for some norm |*|;,

|M,—I|;=sup 2 |M;'M,;;=8<1.

ioj#i

Since M,=1—(I—M,), formally M;'=1+(I— M,)+(I—M,)>+ ---. But
the Neumann series on the right-hand side converges, so M, has a continuous
inverse over /2. Thus M = M; M, has a continuous inverse over /2.

Assume that D, £ has dominant diagonal blocks at (0,0), which corresponds to
k; = k,, for all . This condition will hold for 8 sufficiently near 1 if it holds for
B=1. Then D { is a linear homeomorphism of /2 onto /2. Also £(x,, x) maps a
neighborhood of (0,0) in E" X[ into I with £(0,0)=0. We may apply the
implicit function theorem [Dieudonné (1960, p. 265)] to obtain a continuous
function ¢ (x,) valid in a neighborhood of x,=0 such that £(x,, ¥(x,)) =0
where J(x,) has continuous derivatives and ¢ (0) = 0.

The continuity of y implies that |x,|, may be chosen small enough to put x
near 0, that is, sup|x |, <& over ¢ for small positive &. Then z,=B'x, for 8 <1
implies that z, converges exponentially to 0, that is k; converges exponentially to
k,. We note that for e sufficiently small {k/} is also a smooth path. This proves:

Lemma 10.2

If (ky, k) is a path of accumulation that is smooth and the Jacobian of the map §,
derived from the Euler equation (10.1), has dominant diagonal blocks, there is a
neighborhood W of k, such that kj € W implies there is a smooth path { k/},
t=0,1,..., and k|- k, exponentially as ¢ = co.

In order to derive a local turnpike theorem from Lemma 10.2, it is only
necessary to show that the paths {k;} derived there are optimal paths from kg
near k,. An additional assumption is needed, which in the quasi-stationary case
can take the form of (S2) or (G2), introduced in Section 6. The effect of (S2) is to
bound any path. We can prove:

Lemma 10.3

If assumptions (I’), (II), and (S2) hold, any path that satisfies the Euler equation
and is bounded interior to D is smooth, and any infinite smooth path is optimal.

All that is needed to give smoothness for an Euler path that is bounded away
from the boundary of D is that its second partial derivatives be bounded.
However, smoothness is immediate by continuity of the derivatives if the path is
confined to a compact subset of D. But this follows from (S2) and the fact that
the path is bounded interior to D.
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To show optimality for smooth paths observe that concavity of u implies for

{ki}, t=0,1,
t+1 (k’ :+1)_pt+lut2+1k;+1_pt+1u{+1k;

> o lu(x, y)— o lubtly — pft iyt iy, (10.5)

for (x, y)€ D, where u4*' =u,(k!, k;,,), for example. By the Euler equation
(10.1), wu,(k;_y, k)= —puy(k;, k;,,) for a smooth path {k;}. Thus p'u}=

— o' 1ui*lin (10.5). Let p,=—p‘u’, t=0,1,.... Then (10.5) implies (W1) and
smoothness implies the second part of (W2’). Since (52) implies the first part of
(W2'), {k;} is optimal by Theorem 5.3.

Together Lemmas 10.2 and 10.3 imply, except for uniqueness:
Theorem 10.1

Suppose {k,}, t=0,1,..., is a path that is smooth and satisfies the dominant
diagonal condition, and assumptions (I’), (II), (G2) are met by the utility
function. Then every capital stock k{ near k initiates a unique optimal path and
this path converges exponentially to { &, }.

To see that the optimal path is unique, suppose there were a second optimal
path {k;'} with ky=k{. Consider a path {k,} with k,=ak;+(1— a)k/,
0 <a<1. Then

T

azu,( §~1,kz')+(1—a)2“;( — I’k”) Z“t(kt 1> ) 2515

1

where ¢, > 0. Thus the optimality of { k;} and {k;’} implies that ¢ =0, all z. For
a sufficiently small { k,} lies in a small neighborhood of {k;} and thus of {k,}.
Since { k,} is also optimal from k& it must satisfy the Euler equation. However,
by the implicit function theorem the solution of the Euler equation in a small
neighborhood of {k } is unique. Thus k;’ = k; for all .

Theorem 10.1 is a local turnpike result. However, it may be used to prove a
global theorem. Let C be the set of capital stocks that initiate smooth paths at
t = 0 along which the dominant diagonal condition is met. Theorem 10.1 implies
that these paths are optimal. By assumption, C is not empty. If { k,} is a smooth
optimal path satisfying the dominant diagonal condition, Theorem 10.1 implies
that kj in a small neighborhood of k initiates a smooth path {k;} that
converges to {k,}. Moreover, the uniform continuity of the second partial
derivatives near the path {k,} implies that the dominant diagonal condition is
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also met by {k;} when the neighborhood is chosen small enough. Thus we may
consider the maximal connected component C, of C that contains k.

Let S be the subset of C, such that the optimal path from w € S converges
exponentially to { k, }. If we€ S, Theorem 10.1 implies there is a neighborhood of
w which is also in S. Let {k/} be the optimal path from w and let y lie in this
neighborhood. Then there is a path {k;’} from y, and B <1, for which |k, — k|
<|k,—kl|+ |k;— k| < B'lko—w|+ Blw—y|, so k)’ also converges exponen-
tially to k, as ¢t = co. Thus S is open.

Now suppose that x € boundary S and x € C,. Since x € C;, Theorem 10.1
applies and there is y €S near x such that the path {k;’} optimal from y
converges exponentially to the optimal path { k;} that departs from x. But y €S
implies that k.’ converges exponentially to k,. Therefore, kX, must converge
exponentially to k,, or S is closed in C,. But C, is a connected set so S =C,. We
have proved a global result.

Theorem 10.2

Suppose {k,}, t=0,1,..., is a path that is smooth and satisfies the dominant
diagonal condition, and assumptions (I’), (II), and (S2) are met by the utility
function. Let C be the set of capital stocks, at ¢ = 0, that initiate smooth paths
satisfying the dominant diagonal condition. Let C, be the maximal connected
component of C that contains k,. Then x € C, implies there is a unique optimal
path {k/} with k{ =x and k,— k, at an exponential rate, as ¢ — oo.

The crucial feature of the argument leading to the turnpike result is the
invertibility of the derivative of the Euler functions. This derivative was used to
define a transformation of I into /7. Sometimes, however, other Banach spaces
may be more effective. For example, if assumptions are made like those in Section
8 to support a value loss argument, the appropriate space is Hilbert space /5. The
invertibility lemma follows if the derivative is negative definite. Consideration of
the matrix representation (10.4) shows that the derivative is negative definite if the
matrix

[Puﬁ P”iz}

uy Uy

is negative quasi-definite uniformly over the path. This is implied by uniformity
over interior D NW, for W= {(x, y)||x| <max(|k,|,{)} where { is from (52). It
may be shown [Brock and Scheinkman (1978)] that this condition is almost
equivalent to the value loss conditions (8.14) and (8.21) needed for the turnpike
results in Section 8 when u is twice continuously differentiable. Thus the method

of this section is very powerful for interior paths when u is twice continuously
differentiable.
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The arguments used here like those in Section 9 are not limited to the
quasi-stationary case. With minor complications they can be adapted to utility
functions u,(x, y) which depend on time in the way described in Section 2
[McKenzie (1977)].

11. Comparative dynamics for optimal paths

By use of the infinite Jacobian matrix of the first-order conditions (the discrete
Euler conditions) for an optimal path it is possible to derive comparative dynamic
results for the differentiable model [Araujo—Scheinkman (1979)]. These are analo-
gous to the comparative static results proved in general equilibrium theory and
use the same assumptions adapted to the infinite case. The Jacobian matrix is
shown to be negative definite, or it is assumed to have dominant diagonal blocks
with certain sign patterns for diagonal and off-diagonal blocks. The parameters
that shift demand between the numéraire and other goods in general equilibrium
are replaced by the discount factor or the initial stocks in the dynamic case of
optimal growth.

Let {k,}, t=0,1,..., be an optimal path. Let z,=k,—k,, and z={z,},
t=1,2,.... Define {(z,, z, p) for 0 <p <1 by

§,(ZO,Z, p)=02(Z,*1,Zt)+pl)1(Zt,Z,+1), (111)

where v(z,_,, z,)=u(k,_y, k}) for all ¢. If { k,} is a smooth path and B, is the set
of paths {z,} with |z,| <e, for small ¢, { maps B, into /2. Similarly if H, is the
set of paths { z,} with 27°|z,|> <oo and |z,| <, for small ¢, { maps H, into /. In
the first case { maps a neighborhood of 0 in /7 into /7, and in the second case ¢
maps a neighborhood of 0 in /3 into /3.

As in Section 10, under assumption (I’) for a smooth path {k,}, D,{(0,0,p)
can be represented in either space by an infinite matrix,

vy +p0Y. pUL, O
2 2 3 3
D, = U1 vy, +povy;  pUY, ’ (11.2)
3 > : 4
Un vy + ’_).l_)u phi
;e eh

In this expression v;;=v,;(k,_,,k,). Suppose the quadratic bilinear form
hT(D,¢)h is negative definite, that is, h"(D,{)h < — eX|h,|% for all hel7 and
some € > 0. Then D,{ is invertible on /5 [Araujo and Scheinkman (1977, p. 619)].
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It is clear from the representation (11.2) that D,{ will be negative definite if

t t
PV P
t t
Un Uy

is negative quasi-definite, uniformly with respect to ¢ along the path {k,}. At the
stationary optimal path, k, =k, all ¢, D,{ is negative definite if and only if

pPLy PUyy
Un Uy

is negative quasi-definite, where v;; = u; j(k, k). Also, from Lemma 10.1, D{ is
invertible over /2 when the dominant diagonal condition is met. These are the
two conditions which have been shown to imply a turnpike theorem. As in the
general equilibrium tatonnement, there is a close relationship between conditions
which imply stability and conditions which allow comparison of equilibrium
paths.

As for D,¢ in Section 10, the invertibility of D,{ allows the implicit function
theorem to be applied to obtain a function ¢(z,, p’), defined in some small
neighborhood of (0, p), such that {(z,, (2, p’), p) = 0. Also ¢(z,, o) is differen-
tiable and the derivatives are given by

Dzo‘i’(zo" p/) == [ngl(ZOa ¢(ZO7 P’), P’)] *1'Dz0§(z()a ¢(ZO? P/), p,)a
(11.3)
De=-[DL17"Dy,

[Dieudonné (1960, p. 265)]. We first show:
Lemma 11.1

If D,{ is invertible on /2, assumption (I’) implies

[e e}

Yo' '[dz/dpl[D,¢], 20, (11.4)
1

where D,{ and D,{ are evaluated at (zq, ¢(zy, p'), '), dz/dp = D,$(z,, p’), and
(24, p’) is sufficiently near (0, p).
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Since dz/dp=-[DJS]""D,¢{ by (11.3), we obtain D,{-dz/dp=—D,¢.
Therefore,

[e e}

Yot [dz/dp],[D.£-dz/dp], = - Yo" [dz/dp],[D,¢],- (11.5)
1 1

The left-hand side of (11.5) is equal to [dz/dp]"4(d z/dp), where 4 is equal to
the matrix obtained from D,{ when the ¢ th row is multiplied by p**!. However, it
is easily seen from (11.2) that A is negative semi-definite if

vy VL

vy U
is negative semi-definite, which is implied by the concavity of v. The concavity of
v is immediate from the concavity of u given by assumption (I’). Also the
convergence of the sums in (11.5) follows from the fact that the derivatives belong
to /2 and 0 < p <1. This completes the proof of the lemma. Of course, D, is
invertible on [/ when the path (k,} is smooth and the dominant diagonal
condition holds.

From (11.1) we observe that [D,{(0,0, p)], = v1(0,0) = u,(k,, k, 1) =
—p 'u,(k,_,, k,). Thus ([D,$1, P[D,S],+1) supports u(k,, k,,,) in the sense of
(4.11) by virtue of the concavity of u. Put p,=p*'[D{], t=1,2,..., and
Po=1uy(ky, ky). Then { p,}, t =0,1,..., satisfies (4.11). Moreover, by the differen-
tiability of u, these supports are unique, so they must satisfy (4.10) as well by
Lemma 4.1. Since dz/dp=dk/dp, the conclusion of Lemma 11.1 may be
written 2.°p,(dk,/dp) 2 0, or an increase in the discount factor for utility cannot
reduce the present value of the stream of capital stocks at the support prices.

The conclusion of Lemma 11.1 holds equally well when D,{ is invertible on /5
by the same argument. As mentioned earlier D,{ will be invertible for a smooth
path under assumption (I’) if the quadratic bilinear form A7(D,{)h is negative
definite, that is, if

t 1
pvy Py
t t
Un Uy

is uniformly negative quasi-definite with respect to ¢ Indeed, in this case it is
unnecessary to multiply by p’*!. Current prices may be used, that is, putting
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.= 'pp»
p2[dz/dp],[D¢],=X4q,[dz/dp], >0 (11.6)
1 1

will hold. On the other hand, the economic meaning of a sum of turrent values is
not clear.

The results so far are not intrinsic to the stationary model. However, for the
stationary model when a stationary optimal path exists that is interior, Araujo
and Scheinkman (1979) have shown a more intimate connection between stability
and Lemma 11.1. If the linear approximation to the Euler equations, as a system
of difference equations, is asymptotically stable at the stationary optimal path,
and also the optimal path { k,} converges to the stationary optimal path, then the
Jacobian matrix D,{ along this path is invertible on /”, and the consequence
(11.4) may be drawn. A path that converges in this fashion is said to satisfy a
strong global turnpike condition.

The foregoing discussion may be collected in:

Theorem 11.1

Assume (I’), (II), and (S2), and let { k,}, t=0,1,..., be a smooth optimal path.
Let { p*} be the unique support prices for { k, }. Then ):‘fp,(dk /dp) =0 if any
of the following conditions hold:

(1) The Jacobian D,{(0,0, p) has dominant diagonal blocks along { k, }, where
z,=k,—k,.

(2) The matrix

t t
Uy Uy

puiy P“fz]

is negative quasi-definite along { k, }, uniformly with respect to .

(3) The path {k,} satisfies a strong global turnpike condition. If condition (2)
holds, the inequality is strict and p, may be replaced with ¢, = p~'p,.

It should be noted that Theorem 11.1 does not make a comparison of
stationary optimal paths. Even when k, =k, p,= p, for all t, we cannot expect
dk,/dp to be constant with respect to z. A shift in p to p’ will lead to a new
stationary optimal path k! = k’, and the new optimal path from k will converge to
k.
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Comparative dynamic results may also be obtained when the initial stocks vary
if appropriate assumptions are made on the signs of elements of the Jacobian.
These assumptions will be sufficient to sign the inverse of the Jacobian matrix just
as in the static case of general equilibrium theory. The crucial mathematical tool
is a generalization to infinite dimensions of the theorem on non-negative inverses
for Leontief type matrices. Araujo and Scheinkman (1979) proved:

Lemma 11.2

Let M be an infinite matrix written as a collection of nXn blocks M,
i, j=1,2,..., with supEj"=1|Mi | <oo, over i. If M has dominant diagonal blocks

and M;;'<0, M,,>0, for i # j, then M1 <0.

=

Asin proving Lemma 10.1 let M, be the matrix of diagonal blocks M;; with 0’s
elsewhere. Let M, = M['M. As before My'=1+(1— M,)+(I— M,)*+ ---,
since M;'<0 and M,;>0 for i# j, I—M,20. Thus M;'>0 and M '=
M;M;t<0.

The condition M;;! <0 will be satisfied by the theorem for Leontief matrices
[McKenzie (1960)] if M,; has quasi-dominant diagonal elements, either by rows or
columns, that are negative, and the off-diagonal elements are non-negative. A
square matrix A has quasi-dominant diagonal elements by rows if there exist
numbers d, > 0 such that d |a,|> 2 ;djla;;| for all i, and mutatis mutandis for
columns.

Assume that the Jacobian matrix (11.2) of the Euler conditions D,{ satisfies the
conditions of Lemma 11.2 on an optimal path. That is, (v, + pvi7!) "' <0 and
03120, v551 >0, for t =1,2,.... Thenif [ D,{] ! exists, it will satisfy [D,{] ! < 0.
However, by (11.3), D,¢(zp,p")= —[Dzi‘]_l-DzO{. From (11.1), [D,f{], =
v51(2¢, 21), and [D, §],= 0, for ¢ > 1. Thus, by assumption, D, { > 0, and finally
[D, (20, p)], = dk,/dk;o2 0 for all i and ¢ The effect of increasing any initial
stock is to cause all subsequent stocks along the optimal path to increase or
remain constant. This justifies:

Theorem 11.2

Assume (I'), (II), and (G2), and let {k,}, t=0,1,..., be a smooth optimal path.
Suppose the matrix D,{(0,0, p) has dominant diagonal blocks, and the sign
conditions (u%, +puli})"1<0, ui1>0, u4f1>0, t=1,2,..., are met where

uj;=uj(k,_y, k,). Then dk,/dk;;2 0 for all i and all ¢

12. Comparative statics of stationary states

Comparative statics is confined to the stationary or quasi-stationary model and
compares stationary optimal paths which correspond to different values of the
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discount factor or other parameters of the model. Our interest will lie in the
quasi-stationary model where the following assumption holds:

(I'’’) The utility function u, = p‘u for 0 <p <1 and u is concave and closed over
D which is a convex set contained in the non-negative orthant of EZ2".
Interior D # ¢. Also there is a stationary optimal path {k,} interior to D
with k, =k, where u has continuous second partial derivatives at (k, k) and
the Hessmn matrix of u at (k, k) is negative definite.

We will be concerned with the effect of small changes in parameters for stationary
optimal paths whose input—output vectors (k, k) are interior to D.

Let k,= k be a stationary optimal path where (k, k) is interior to D. Then the
first-order conditions for optimality (10.1) imply

u,(k, k) +puy(k, k)=0. (12.1)

As noted in Section 11, if the matrix

pu;  PUpy
Un Uy

Q(p)=[

evaluated at (k, k), is negative quasi-definite the local turnpike theorem holds,
that is, for any capital stocks in a small neighborhood of k, the unique optimal
path converges to k, = k, as t = co. Then we may say that the stationary optimal
path k, = k is locally stable.

The Jacobian matrix of (12.1) with respect to k is J(p) =u, +u,, + pu;; +
puy,. If this matrix is non-singular, the implicit function theorem may be applied
to (12.1). That is, if (k’, p’) satisfy (12.1) for 0 < p’ <1 and (k’, k’) € interior D,
there is a unique differentiable function k(p) such that (k(p), p) satisfy (12.1) for
p near o, and k(p’)=k’. Let q(p)=pu(k(p), k(p)) we may consider the
inequality

q(p')-dk(p)/dpl,-, > 0. (122)

If (12.2) is satisfied at (k(p’), p’)) Burmeister and Turnovsky (1972) say that the
model is regular at (k(p’), p’)). Regularity means that an increase in the discount
factor leads to an increase in the value of capital for a stationary optimal path
when prices are held constant.

If the necessary condition (12.1) for optimality with k = k(p) is totally dif-
ferentiated with respect to p, we obtain

(u21 +tuptpuyt P“lz)(dk/dp)+ u, =0,
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or

J(p)(dk/dp)=—u=—p7'g, (12.3)

where the functions are evaluated at (k(p), k(p)), and k = k(p). Multiplying
(12.3) by dk /dp on the left gives

(dk/dp)"T(p)(dk/dp) == p~'g(dk/dp). (12.4)

But if Q(p) is negative quasi-definite, so is J(p) and (12.4) implies (12.2). Thus
we have:

Theorem 12.1

Under assumption (I”’), the sufficient condition for local stability of a stationary
optimal path, Q(p) negative quasi-definite, implies that the stationary optimal
path is regular.

Another condition that implies J(p) negative quasi-definite and thus estab-
lishes regularity is u,, +u,, negative quasi-definite. Put J(p, @) =uy + u,, +
auy, + auy,, evaluated at k(p). Then J(p, @) is negative quasi-definite when
a=0, and J(p,a) is negative definite for a=1. Since J(p)=p(J(p,1))+
(1—-p)(J(p,0)), J(p) is negative quasi-definite for 0 <p <1 [Dasgupta and
McKenzie (1983)]. The analogous condition in the continuous time model is
shown by Magill (1977) to imply stability for that model. If we write x,,, =k,
— k, and U(k,, x,,,)=u(k, k,,,), then u,; +u,, =U,. Thus u,, +u,, is the
effect on the marginal utility cost of investment of an increase in the initial stocks.

According to Theorem 10.1 local asymptotic stability holds around an optimal
path if the assumption of dominant diagonal blocks is met along this path. For a
stationary optimal path the dominant diagonal assumption for the infinite
Jacobian matrix D, ¢(x(, x) with 8 =1 is reduced to

-1 -1
|(u22+P“11) u21|+|(u22+pu11) pup,| <1, (12-5)

since the non-zero blocks of each row are the same, with u; =Y, j(k, k), all ¢, and
i, j=1,2. Recall that |-| for a matrix argument denotes the operator norm, that is,
|A| = sup|Ax| for |x|=1. As in the case of market tatonnement, the dominant
diagonal assumption is not effective by itself but requires a supplement, for
example, symmetry or sign restrictions on the elements. Assume, as in the
dynamic case of Theorem 11.2, that (u,, + pu;;) ' <0 and u;, = u3; > 0. From
(12.3) we have

— -1 —
dk/dP=“(1+("22+P“11) 1(“21"‘!’“12)) (uyy + puyy) ‘o7, (12.6)
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By the proof of Lemma 11.2 and the sign assumptions (I +(u,, + puy;) " (uy +
pu;,)) ‘exists and is non-negative. Therefore d k /dp = Mgq, where M > 0. Since
free disposal implies that g is non-negative, we have dk,/dp > 0, for all i, or an
increase in the discount factor cannot lead to a decrease in any capital stock. This
justifies:

Theorem 12.2

Under assumption (I1”’), if the dominant diagonal block condition holds and
(uy +puy;1) 120, u;,>0, along the stationary optimal path k(p), then
dk,(p)/dp >0, all i

We may say that weak regularity holds if > replaces > in (12.2). Then
Theorem 12.2 implies weak regularity of the stationary optimal path but it is
much stronger than weak regularity. Also the condition (u,, + pu;;) ' <0 is
implied, as noted earlier, if (#,, + pu;;) has quasi-dominant diagonal elements,
by row or by column, and the off-diagonal elements are non-negative.

The relation between stability and regularity, illustrated by Theorems 12.1 and
12.2, seems to be typical, that is, sufficient conditions for local stability often
imply regularity of the stationary optimal path, whether the discrete time or the
continuous time model is used. For the continuous time model additional
examples may be found in Brock (1976). Results of this type illustrate the
Correspondence Principle of Samuelson, that ““the problem of stability of equi-
librium is intimately tied up with the problem of deriving fruitful theorems in
comparative statics” [Samuelson (1947)]. Also see Burmeister and Long (1977).

For further examples of the Correspondence Principle we may consider the
autonomous difference equation of second order

u2(kt—1’kt)+pu1(kt’kt+1)=0' (12-7)

This is the form taken by the necessary condition of optimality (10.1) for a
stationary model. It is approximated in a small neighborhood of the stationary
optimal path k, = k by the linear equation

Uynz,_y+(ugp +puy)z, +pupz, =0, (12.8)
where z, = k, — k. The characteristic equation of (12.8) is
det(uyy + (uy + puy )N + puyA2) =0, (12.9)

where det A is the determinant of 4. Suppose (12.9) has n roots of absolute value
less than 1 and det u,, # 0. We may appeal to the argument of Scheinkman (1976,
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pp- 25-26) which is given for the case p=1, but also applies when p <1, to
conclude that these assumptions imply the local turnpike theorem for (k, k), or
local stability for optimal paths near (k, k). We will show that, if u,, is also
symmetric, (k, k) is regular [Dasgupta and McKenzie (1983)].

Rewrite (12.9) as

det(A4+ BX +pAN?) = 0. (12.10)

The proof that (k, k) is regular depends on:
Lemma 12.1

If A is non-singular and symmetric, the characteristic roots of B~'A are less than
1/(1+ p) in absolute value, if and only if there are n roots of (12.10) with
absolute value less than 1.

Since — B is positive definite and A is symmetric there is a non-singular matrix
Q such that QTBQ =~ I and Q74Q = — R where R =Q " (B~'4)Q is a diago-
nal matrix with the characteristic roots of B4 on the diagonal. Also R is real.
See Gantmacher (1960, p. 310). Since A4 is non-singular, the diagonal elements of
r, of R are non-zero.

(12.10) is equivalent to det(Q7(A + BA + pAN*)Q) = 0 or det(A 1 +(1+ pA?)R)
= 0. Thus the roots of (12.10) are the roots of the equations

A+(Q+pN)r=0, i=1,...n, (12.11)

where repeated roots are counted. The discriminant of (12.11) is (1—4pr?). Thus
the roots of the ith equation are real if |r,|<1/(1+ p).

Suppose all |7,| <1/(1 + p). Then all roots are real. Also det A # 0 implies A = 0
is not a root of (12.10). Then (12.11) implies

pIA+1/|A[=1/]r|>1+p. (12.12)

This gives (|A|—1)> (]A|—=1)(1/p|A|). Thus |A|>1 implies 1/p|A| <1. But sub-
stitution in (12.11) shows that A a root implies 1/pA is the other root. Therefore,
one of the roots has absolute value less than 1. Since this is true for all i, there
must be n roots A; of (12.10) with |A;| <1.

On the other hand, suppose there are n roots A; of (12.10) with |A,| <1. If the
roots A; are real, the equation in (12.12) implies that |r,|=1/(1+ p) for |A;|=1.
Also the derivative of the left-hand side of this equation with respect to |A| is
negative for |A| £1. Then |r| <1/(1+ p) for |\, <1. If a root A, is complex, it
follows that1/pA, =X, or |A,|=1/p >1 in contradiction to the hypothesis. Thus
|r,] <1/ + p) holds for all i.
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To show regularity, assume there are n roots A; of (12.10) with |A;| <1 By
Lemma 12.1 if r is any root of B~4, then —1/(1+ p) <r<1/(1+p). But — B
positive definite and 4 symmetric implies min,7; < x"Ax/x"Bx < max,r;, when
x+#0, and r, i=1,...,n, are the roots of B~'4 [Gantmacher (1960, p. 319)].
Thus, |x"4x/xTBx| <1/(1+p), or, since B is negative definite, x7(A4+ B +
pA)x = xT(uy + uy, + puy + puy,)x <0 for x # 0. By (12.4) this implies regular-
ity for (k, k).

It is easily seen [Araujo and Scheinkman (1977, p. 611)] that if (12.8) has n+1
roots of absolute value larger than 1, the stationary optimal path cannot be stable.
Thus our result may be stated.

Theorem 12.3

Assume (I””) and let (12.8) represent the Euler equations linearized about the
stationary optimal path k, = k. If (12.8) has no roots of absolute value equal to 1,
and u,, is non-singular and symmetric, the stationary optimal path is regular if it
is locally stable.

For a symmetric matrix the operator norm defined by the Euclidean norm is
equal to the maximum of the absolute values of the characteristic roots [see
Araujo and Scheinkman (1977, p. 607)]. Let |+|; be the matrix defined by the
norm on R" given by |x|, = (— xBx)/2. Then max|B~'4x|, over |x|; =1 equals
max|E~Y(B~'4)Ey| over |y|=1, where — B = EET. However, E (B !A)E is
symmetric, and it has the same characteristic roots as B~'4. This means that the
dominant diagonal block condition for (12.8) is met if (1+p)B~4 has the
absolute value of all its characteristic roots less than 1, which by Lemma 12.1 is
implied by local stability. On the other hand, the dominant diagonal condition
implies local stability by Lemma 10.2. Thus Lemma 12.1 has:

Corollary

If u,, is non-singular and symmetric, the stationary optimal path is locally stable,
if and only if (12.8) has a dominant diagonal block.

The symmetry of u,, is 'equivalent to the symmetry of U,; = u, + u,,. The
implications of the symmetry condition that corresponds to U;, =U,; in the
continuous time model have been extensively explored by Magill and Scheinkman
(1979). They prove that the sufficient condition for regularity which corresponds
to J(p) negative definite implies local stability in the continuous case. However,
Dasgupta (1982) has shown by a counterexample that J(p) negative definite does
not imply stability in the discrete case.

If symmetry is strengthened to separability of U(k,0), thatis, U,; = u,; + u,, =
0, the stability assumption of Theorem 11.1 becomes unnecessary. With this
assumption J(p)= p(uy; +uy,). Since J(1) is negative definite by assumption
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(I””), and in this case J(p) = pJ(1), J(p) is negative definite also, which implies
regularity by (12.4). However, we may also prove stability under the assumption
of separability.

Consider (uy, + puy;) " J(p)=1—1+ p)(uy + puyy) tuy=I+(1+p)B 4.
By a theorem of Arrow (1974, p. 200) if X is positive quasi-definite and M is
symmetric, the real parts of th roots of XM have the same sign distribution as the
real parts of the roots of M. In this case M= — J(p) and X = — (u,, + pu;;) L.
Since M is positive definite, the roots of I +(1+ p)B~'4= XM have positive real
parts. Indeed, the roots are positive since the fact that B is definite and A4 is
symmetric implies that the roots of B~'4 are real [Gantmacher (1960, p. 310)].
Let r be a root of B~'4, then 1+(1+ p)r > 0. But B~'A has negative roots by
the same result of Arrow, since it is the product of a positive definite matrix and a
negative definite matrix and XM and MX have the same roots. Therefore,
0<—r;<1/(1+p) for all i and (12.9) has n roots with absolute values less than
1 by Lemma 12.1. By the result of Scheinkman this implies that (k, k) is locally
stable, since det u,, = —det u,, # 0 by assumption (I”’). We have proved [Dasgupta
and McKenzie (1983)]:

Theorem 12.4

Assume (1”). If u,, +u,, = 0, or U(k,0) is separable on a stationary optimal path
k,= k, the stationary optimal path is locally stable.

In the continuous time model global stability of an interior stationary optimal
path has been proved under the assumption of separability by Scheinkman
(1978).

It is an implication of regularity that the utility achieved on the stationary
optimal path increases with the discount factor p. Indeed, if k,=k(p’) is a
stationary optimal path and k(p) satisfies (12.1) near p’, putting u*(p)=
u(k(p), k(p)), we have

du*/dp = (uy + u,)(dk(p) /dp) -, (1213)
Since u, = — pu; by (12.1), (12.13) implies du*/dp > 0 at p = p’ if and only if
(1-0)u(dk(p)/dp) = (0¥~ ~1)q(dk(p)/dp) >0, (12.14)

where the derivatives are evaluated at p = p’. If 0 < p’ <1, the inequality (12.14) is
implied by regularity. Following Burmeister and Turnovsky (1972), we may refer
to a stationary optimal path that satisfies du*/dp > 0 as non-paradoxical. Thus
we have the result:

Theorem 12.5

Under assumption (I"”), if a stationary optimal path is regular, it is non-paradoxi-
cal.
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The Jacobian matrix of the necessary condition (12.1) may also be used to
study the question of global uniqueness [Brock (1973)] Let us say that a
stationary optimal path k, = k is interior if (k, k) € int D. Theorem 7.2, together
with the remark that follows its corollary, implies that (12.1) is necessary and
sufficient for a stationary path that is interior to be optimal when 0 < p <1. Thus
the number of solutions to (12.1) for given p and the number of stationary
optimal paths for p that are interior to D are the same. Also from the remark
following the corollary to Theorem 7.2, for p =1 the input—output vector of an
interior stationary optimal path maximizes u(x, y) over (x, y) € D such that
y—x = 0. Because the Hessian is negative definite by assumption (I”’), the
maximum is achieved at a unique point. Thus the interior stationary optimal path
is unique for p =1. The capital stock of this path is also the unique solution of
(12.1) for p =1.

Write G(p, x) = u,(x, x)+ puy(x, x) for (x,x)€D and 0 <p <1. Let C bea
convex subset of the diagonal of E” X E™ which contains the input—output vector
(k, k) of a stationary optimal path for p =1. Assume that C is open relative to
the diagonal, and the closure C lies in the interior of D. It follows from Lemma
8.2 that for some p’ such that 0 <p’<1, all p such that o’ <p <1 have the
property that the solutions k(p) of (12.1) satisfy (k(p), k(p)) € C. Let C; be the
projection of C on the first component of the product E” X E”". Since C, is a
convex open subset of Euclidean space, it is an oriented differentiable manifold
and its closure C,; is a manifold with boundary. For p given, G(p, x) defines a
vector field on C_’l, which for any value of p with p’ < p <1 has no zeros on the
boundary of C;.

Since G is a continuously differentiable function of p and p varies between p’
and 1, the vector fields on C, are smoothly homotopic to one another. Therefore,
the degree of the vector field on the boundary of C; is invariant [Milnor (1965, p.
28)]. Let G,(x, p) be the derivative of G with respect to x. The degree of the
vector field on boundary C, equals the sum of the signs of det G, (p, x) over all
x =k such that G(p,k)=0 [Milnor (1965, pp. 36-37)]. But for p =1, there is
only one such k, and det G, (1, x) = (—1)" at this k since the Hessian matrix of u
is negative definite there by assumption (I’”). Thus the degree of the vector field
on boundary C, = (—1)". Assume that the sign of det G,.(p, x) does not change
over the zeros of the field for o < p <1. Since the sum of signs must have absolute
value 1, there can be only one zero for G at such p, or equivalently only one
stationary optimal path interior to D.

At a zero of G, the derivative G,(p, x) is the Jacobian matrix J(p, x) of (12.1).
Thus we have proved:

Theorem 12.6

Let C be defined as above. There is p’ <1 such that all stationary optimal paths
k,(p)=k(p) with (k(p), k(p)) € interior D, for any p with p’<p <1, satisfy
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(k(p), k(p)) € C. Under assumption (I”’) if the sign of det J(p, k(p)) is constant
for each p over the stocks k(p) of stationary optimal paths with (k(p), k(p)) € C,
there is only one such path for each p.

This theorem was first proved, in a neo-classical model, by Benhabib and
Nishimura (1979).

Sufficient conditions for stability are also useful for comparative statics when
parameters of the utility function, other than p, are varied. Let u,/(x, y)=
p‘u(x, y, a), where a is a vector of m parameters of the current utility function.
Differentiating (12.1) totally with respect to a gives

(g1 + gy + puyy + puyy )(dk /da) = — uy, — ptty,. (12.15)
Multiplying (12.15) on the left by (dk /da)”, an m X n matrix, we have

(dk /da) T(“zl + Uy, + puy, + puy,)(dk/da) = - (dk/da)T(uzﬂ +puy,).
(12.16)

The sufficient condition for local stability of the stationary optimal path k,(p) =k
that Q(p) be negative quasi-definite at (k(p), k(p)) implies that (#,, + u,, + puy;
+ pu,,) is negative quasi-definite. Then (dk /da)’(u,, + pu,,) is positive quasi-
definite. In applications to particular problems, for example, investment of the
firm with adjustment cost, this result may be fruitful [Brock (1976)].

Similarly, the sufficient condition (12.5) for local stability of k,(p) =k, that is,
a dominant diagonal for the infinite Jacobian matrix, may be applied to

_ -1
dk/da=— (I+ (uyy + pu11) 1(“21 + Pulz))
X (g + ptuy)  (sze+ ). (12.17)

As before, the matrix — (I + (uy + ptty;) " Wuy + puy,)) Yy + puyy)~! is non-
negative when the sign assumptions (u,, + pu;;) "' <0, u,, = ul, > 0, are made.
In applications this result may also be useful.

As an example, consider a simple model of investment by the firm with
adjustment costs, related to the continuous model of Treadway (1971). Let
w(ky k1, 0)=f(k, k,,1)—a(k,. 1~ k,), where f represents gross revenue, after
maximizing on current spending for variable inputs, and « is a vector of prices for
new capital goods. The presence of k,,, as an argument of f is a consequence of
the adjustment costs of capital expansion incurred within the firm. The firm’s
objective is to maximize X% pm(k,, k, .1, @) given some initial stocks k,. Prices
are formed on competitive markets and are expected to remain constant, while
p =1/(1+ r), where r is the interest rate, also expected to remain constant.
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Differentiating 7 (k, k, a), where k,(p) =k is a stationary optimal path for the
utility function u, = p‘r, we have 7, = f, — a and =, = f; + a. Then =, ,= — I and
71, = 1. Substituting in the right-hand side of (12.15) and solving, dk/da=
(1-p)(J(p))~ L. If we make the assumption, sufficient for local stability and
regularity of k,(p), that Q(p) evaluated at (k, k) and thus J(p, k), is negative
quasi-definite, we see from (12.16) that dk /da is negative quasi-definite. Then
the equilibrium demand for each capital stock is decreasing with respect to its
own price, so long as the interest rate is positive.

We may also apply the assumption of dominant diagonal blocks, with (,, +
pm,) <0 and m,=7}20, which is also sufficient for local stability of
k,(p)=k. Using again that m,,+ pm,=—(1—p)I, we infer from (12.17) that
dk /da < 0. This is what one would expect by analogy to timeless production
where factors are normally gross complements. See Rader (1968). We may finally
note that dk /da negative quasi-definite in the adjustment cost model also follows
from the other assumptions that we used to establish regularity, since the
arguments proceeded by way of negative quasi-definite J(p, k). The assumption
of symmetry and local stability in Theorem 12.3, the assumption of separability,
and the assumption of U,;( = u,, + u,,) negative quasi-definite are cases in point.
Another model of investment, used by Lucas (1967), satisfies the separability
assumption. It has been studied in this context by Scheinkman (1978).

13. Comparative dynamics near stationary states
In the neighborhood of stationary states some further results of comparative

dynamics are available. In the quasi-stationary model it is convenient to write { as
a function of k,, k = (kq, k,,...), and p and give a definition equivalent to (11.1),

§,(k0,k,p)=uz(k,_l,k,)-+pu1(k,,k,+1). (13-1)
Then D,{ is given by (112) if u,; replaces v;; everywhere. Let k, = k(p),

t=0,1,..., be a stationary optimal path and let D,k = (Dk(p), Dk(p),...) where
Dk(p)=dk(p)/dp. From (11.2) and (12.3) we have

Dy&(ko, k,p)D,k=[J(p)Dk(p)—uyDk(p), J(p)Dk(p),...]
=—(uy—uyDk(p),uy,...). (13.2)

However, from (13.1) we obtain

DS(kg, k,p) = (uy, uy,...). (13.3)
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Therefore, substituting in (13.2),

D& (ko, k,p)(D,k) == D¢ (kg k,p)—(upnDk(p),0,0,...). (13.4)
If D, ¢ is invertible, (13.4) implies

Dk =—(D¢) 'D,¢ —(Dug) (unDk(p),0,0,...). (13.5)

But the implicit function theorem implies that in a small neighborhood of
(ko, k, p) there is a continuously differentiable function  (k{, p’) which maps a
neighborhood of (k, p) into !} such that [{(k{, Y (k§, p'), p’],=0, all ¢, and
Y(ky, p) = k. Furthermore, as in (11.3),

D,y (kb ) = = Dut (kb ¥ (kg ), ) D8 (k¥ (koo 0), ). (13.6)

Thus, combining (13.5) and (13.6), we obtain an expression for the variation of
the path k, = k(p) with p,

D,y (ko,p) =D,k + Dig(ko, k,p) "+ (unDk(p),0,0,...). (13.7)
Moreover, since the derivative D,y (kg,p’) is continuous in its arguments,

D,y (ky, p’) converges to D,y(ko, p) as ko — ko= k(p) and p’— p.
Similarly the variation of the path with respect to the initial stock is given by

D, (k') == (Dis (ki # (ki o), ') "Dy (kb ¥ (ko 07). ),
so that

Dy ¥ (ko, p) == (D (kos k, p)) " (42,0,0,...), (13.8)

where ko= [Y(ko, p)],=k(p), all ¢, and k = (k(p), k(p),...). From (13.7) and
(13.8) we derive

Dp‘l/(ko’p)=Dpk—Dko¢(k0’p)'Dk(p)' (139)
The preceding argument is apparently special to p as a parameter because of

the part played by u,. However, the fact that Dk(p) = u, need not be introduced.
If the utility function depends on a parameter «, which may be a vector, it may be



1346 Lionel W. McKenzie

written as before u(x, y, a). Then { may be defined by
gt(k07 k,p, a) = uz(kt‘l’ kt’ a)+pu1(kt, kt+17a)' (13-10)

The earlier arguments can now be made with k(p, a) replacing k(p), D, k(p, a)
replacing Dk(p), D,{ replacing D, and D,(u, + pu;) replacing u;. Then in
place of (13.7) we derive

D (kqy,p,a) =Dk + Dt(kq, k,p,a) ' (uyDk(p,a),0,0,...), (13.11)
and in place of (13.9) we derive
Dy (ky,p,0) =Dk — D, b(koy,p,a)-Dk(p,a), (13.12)

where D,k = (D,k(p,a), Dk(p,a),...) and D k(p,a) is the variation of an
optimal stationary state associated with p and « from a change in a. If a is an m
vector, D,k(p,a) may be represented by an n X m matrix while D, y may be
represented conformably by a matrix of #» columns arranged in n X n blocks
indexed by ¢ On the other hand, Dk and D} are representable by a matrix of
m columns arranged in n X m blocks indexed by ¢.

On the basis of the preceding arguments we may state [Dasgupta and
McKenzie (1983)]:

Theorem 13.1

Let k,=k(p,a), t=0,1,2,..., be a stationary optimal path. Assume that
D, §(ky, k, p, @) is invertible. Then for (kj, p’, @’) near (k,, p, a), there is a unique
optimal path ¢ (kg, p’,a’) with [Y(kg, p',a)]o=kg, and D,y (kg, p’,a’) and
D y(k§, p’sa’) converge to the expressions given in (13.7) and (13.11) as
(kgs p'sa’) = (kg, p, @). Also D, Y (kg, p’,a’) converges to the analog of the
expression in (13.8) when a is introduced as a parameter.

However, to make use of these expressions we need to evaluate
(Dkg‘(kO’ k’ p’ a))_lDak(p7 (1) and (Dkg(kO’ k’ P, a))_lek(p, a)' ReplaCing v by
u in (11.2) we observe that

[Dkf(ko’ k,p, a)-z] (T UnZ +(up + oty )z, + pupyz, g, (13-13)

where z, =0 and u;; = u,;(k(p, @), k(p, a)). Equate D, {(k, k, p,a)-z to a€l}.
If |u;,|# 0, (13.13) may be written

b=2z,.,—Nz,— Mz,_,, (13.14)

7

where M= —p~'up'u,, N=—up(p tuy +upy), and p tupla,=b,. A solu-
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tion z, t=0,1,2,..., of (13.14) with z,=0 satisfies z, = [(D,¢{) *-a], Thus
solutions of (13.14) with appropriate values for 4, will provide explicit formulae
for the expressions in (13.7) and (13.11). Araujo and Scheinkman have shown that
solutions exist for any b €% if the Euler equations (12.8) have no roots A with
[A\|=1 and k(p) is locally stable.

It is helpful to transform (13.14) into a first-order system. Define %,(z,_,, z,)
and d,=(0,b,), so that d, € R?". Then (13.14) may be written

d,=h, ,— Hh,, (13.15)
where

_[o 1

H_[M N]'

Assuming that (12.8) has no roots of unit norm and k(p) is locally stable, there
are n characteristic roots A of H with |A| <1 Thus there is a non-singular real
matrix P such that

L 0
—1 — - 1
PlHP=L [ . LJ, (13.16)

where L, and L, are n X n, and the characteristic roots of L, have absolute
value less than 1 and the characteristic roots of L, have absolute value greater
than 1. After transformation by P the system of equations (13.15) become

€=y~ Ly, (13.17)
where
e,=P7d, and y,=P 'h,.

From (13.7) and (13.11) we find that in the case where p varies a=
(43 D,k(p, @),0,0,...) and b =—(MD,k(p, @),0,0,...). Therefore, the first set of
equations (13.15) appears as

(2)_[1?4 §](2)=(MDpk0(p,a))‘ (13.18)
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These equations are equivalent to

7\ |0 I{f- Dpk(p, a))
(22) [M N]( 2 =0. (13.19)
When (13.19) is transformed by P, it becomes
1 L 0 0
yi —l ! l ylo)=0. (13.20)
Y2 0 L,[\»n

It is clear from (13.17) that y € I”, implies y; = 0. Thus it must be that

0 1
Jil_ ~D,k(p,a) Nnj_(4
P(O ) ( A and P| 5 ) (13.21)
Putting
P, P
P=[ 11 12],
P22 PZl

(13.21) implies
P,y =—Dk(p,a) and Pyp?=1z,.

It has been proved by Scheinkman (1976, pp. 25-26) that P;; is non-singular if
p =1. However, the same argument is effective for 0 < p <1. Then

zy=— P, Pi'D,k(p,a). (13.22)

Also from (13.21), z; = Py, y{, and from (13.20), y{=L,y? = — L, P;;'D,k(p, ).
Thus z, = — P;,L,P;'D,k(p, a). Indeed, it follows that

z,=— P, LiP;'Dk(p,a), all r21. (13.23)

Note that L, = P;'P,; from (13.22) and (13.23).
We may now use (13.7) and (13.23) to derive, for ky = k(p),

[ D, (ko, p,a)],= D,k(p,a)— P,,L,P'D, k(p, a), (13.24)

which is valid for £>1. Thus [D,y(ko,p)],=0 for =0 and converges to
D,k(p, @) as t = co. The argument for the derivative with respect to a proceeds in
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the same way to give the analogous formula
[Da‘xl’(kOa P, (X)] = Dak(P, a)_ P11L’1P1_11Dk(P, a)- (1325)

Moreover, we have from (12.3) that D,k(p, a)= (J(p, a) " uy(k(p, @), k(p, @) if
J(p, a) is non-singular. However, J(p) singular implies A =1 is a root of (12.8).
Thus assuming that (12.8) has no roots of unit norm we may derive from (13.24)
an explicit expression for the variation of path with p when k, = k(p, ), that is

[D,y(ko,p,0)], == Py (1-L5) P (I (p, @) uy. (13.26)
Also comparison of (13.26) with (13.9) shows that
[Digt (Ko, p,@)], = P LiPy. (13.27)

On the basis of the foregoing argument we may assert [Dasgupta and McKenzie
(1983)]:

Theorem 13.2

If the path k,=k(p,a), t=0,1,2,..., is locally stable, u,, is non-singular, the
Euler equations (12.8) have no roots of unit norm, and assumption (I’’) holds, the
variation of the optimal path for k, = k(p, a) with respect to p, a, and k, is
given by expressions (13.24) and (13.26), (13.25), and (13.27), respectively. More-
over, the variations for optimal paths where the parameter values are p’ and o/,
and initial stocks are k{, converge to these expressions as (k§, p’, @’) = (k, p, @).

If it is assumed that u,, is symmetric, as before, sharper results may be
reached. Let Q be the matrix that appears in the proof of Lemma 12.1. We will
need:

Lemma 13.1
On the hypothesis of Theorem 12.4, if also u,, is symmetric, P, = Q.

The symmetry of u;, implies that M in (12.16) equals —p~'. Also N =
— ptu; (uy, + puyy). Let R-be the diagonal matrix with the roots of (12.11) on
the diagonal. Then

Q_l -0 0 Illo o _ 0 7
[0 Q”H—p“l N”o Q}_[_pﬂl R (13.28)
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Let 8° € R" satisfy 8/ =0, j# i, and &/ =1. Consider

8 A
)\8") B ( —p—1(1+r,.1)\)3")' (13:29)

If A is chosen to be a root of (12.11), 1+ r, 'A = — pA2, so the right side of (13.29)

1S
x( 8' ).
AS!

In other words,

[

is a characteristic vector of

0 I
_p—lI _p~1R—1 ’

for the characteristic root A, and the matrix of characteristic vectors may be
written

I I
T=[L1 LZJ’

where L; and L, are diagonal matrices with the characteristic roots of (12.10) on
the diagonal. Then

L Al
—p U -—p R7? 0 L,|

Finally, from (13.16) and (13.28),

Qo 0|1 I o 0
P=[0 Q”Ll L2]=[QL1 QLZ]’ o =g

In accord with the notion of regularity for stationary optimal paths defined in
Section 12, optimal paths which satisfy 22°P,(dk,/dp) > 0, as in Theorem 11.1,
may be said to be dynamically regular. Then we will say that an optimal path k,,

0 I
__p—II _p—lR—l



Ch. 26: Optimal Economic Growth, Turnpike Theorems and Comparative Dynamics 1351

t=0,1,..., has strong dynamic regularity if P,(dk,/dp) > 0 for all ¢ > 0. With the
help of Lemma 8.2 we may prove [Dasgupta and McKenzie (1983)]:

Theorem 13.3

Under the hypothesis of Theorem 13.2, if u;, is symmetric, optimal paths from
ko in a sufficiently small neighborhood of k(p, &) have strong dynamic regularity.

We apply Lemma 12.1, and the properties of Q, and Lemma 13.1 to (13.26).
Write J(p,a) =B +(1+ p)A where A =u,, and B =u,, + pu;;. Then

(J(p,a)) ' =(A4"B+(1+p)I) A"
= —(QR7'Q 71 +(1+p)I) "QRQ”
=-0(R'+(1+p)I) 'R7'QT.

Thus (13.26) may be written, using Lemma 13.1,

[D¥ (ko p, @) =0(1- L) (I+(1+p)R) QT (13.28)

for ky = k(p, a). Since L, is diagonal with A; on the diagonal and |A,| <1, and R
is diagonal with r; on the diagonal and |,| <1/(1 + p) by Lemma 12.1, the matrix
on the right-hand side of (13.28) is positive definite. Therefore, u;[ D,y (ko, p, a)],
> 0 and the theorem follows for k, near k(p, @) by Theorem 12.3. We may note
that this argument also provides an alternative proof of Theorem 12.3; since
(J(p,@)) ! is shown to be negative definite. Otani (1982) derives results in the
continuous time model parallel to Theorem 13.3.

Formula (13.25) may be applied to the adjustment cost model described in
Section 12. Then « represents the prices of new capital goods. Solving equations
(12.15) for dk /da= D, k(p, a) gives D, K(p,a)=(1—p)(J(p))~! as before. Sub-
stituting this expression in (13.25), we obtain

[D(kosp,0)],= Py (I - L4) Pt (1-0)(J(p)) . (13.29)

Thus by the argument leading to Theorem 13.3 [D,J(k,, p, @)], is negative
definite when u;, is symmetric. Consequently an increase in the price of any
capital good reduces its stock along an optimal path of accumulation from k|
near k(p,a). Also investment, which equals [D,¢],,, —[D,¥],, is reduced along
the path in the component corresponding to a capital good whose price increases.
This application to the adjustment cost problem corresponds to results proved by
Mortensen (1973) in a continuous time model of investment with adjustment
costs.
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Chapter 27

ORGANIZATION DESIGN*

THOMAS A. MARSCHAK
University of California, Berkeley

1. Introduction

The study of organizations has taken two directions in recent economic research.
First, an organization is a productive unit. It transforms resources —members’
time and informational equipment of various sorts —into certain outputs, namely
actions that yield some sort of desired commodity, called payoff. A major
theoretical and descriptive task is to characterize the technology of such produc-
tive units and to discover what distinguishes well designed organizations from
poorly designed ones. The task is analogous in spirit to the modeling of a complex
physical or chemical technology so as to find those resource combinations which
produce the technology’s outputs efficiently. Accomplishing the task leads to the
ranking of possible designs for an organization. We shall use that term loosely for
the moment. A design specifies, informally speaking, who does what when.

Second, one particular class of organizations has been studied intensively,
namely economies, whose members are producers and consumers. The members
spend some of their time in observing their changing local environments, in
transmitting messages to other members, in computating, in storing and retrieving
information. These efforts produce the resource-allocation actions followed in the
economy. One class of designs for such organizations are called price mechanisms
and have traditionally received central attention. But more recently, possible
designs for economies have been studied abstractly and the general term “re-
source-allocation mechanisms” has come into use. Competitive mechanisms using
prices are examples, but so are planning mechanisms in which various sorts of
directives are transmitted by a center.

The work on resource-allocation mechanisms has so far been obliged to take a
very incomplete view of the issues facing a designer of mechanisms who has to

*This chapter was to have been prepared by Jacob Marschak. Before his death (July 1977), he had
prepared an outline. A few initial pages were found as well. The present essay is in no sense an
attempt to reconstruct what he intended to write. It is, however, unified by the concept of a design
composed of “tasks” (or “processors”). This concept is central to his final publication [J. Marschak
(1979)] and, judging by the outline, was to have unified his writing of the present chapter.

Handbook of Mathematical Economics, vol. 111, edited by K.J. Arrow and M.D. Intriligator
© 1986, Elsevier Science Publishers B.V. (North- Holland)



1360 Thomas A. Marschak

choose between two candidates. Such a designer would want to know, for each of
two proposed resource-allocation mechanisms, its net performance over time: the
final commodities available for consumption as the economy passes through any
given sequence of environments and responds to them with the mechanism’s
resource-allocating actions, after allowing for the resources used in the operation
of the mechanism itself. This would require a complete characterization of the
technology of a mechanism’s operation. So far, only fragmentary and extremely
simple models of technology have been explored.

Another issue arises both in the general study of efficient organization design
and in the analysis of resource-allocation mechanisms for economies. That is the
question of incentives. If the organization members are humans and not program-
mable robots, they may fail to follow the instructions specified by a given design
because they do not want to. When is it the case that the benefits which members
receive as the mechanism generates actions make each member prefer following
the designer’s instructions to violating them? For organizations which earn a
transferable payoff—a commodity desired by all members and divisible among
them - it may be possible to award a portion of payoff to each member in such a
way that each member finds it in his own interest to follow a given design.! The
designer may view such rewards as part of a design’s cost. It is then payoff less
rewards less the other costs of operating a design which determine the designer’s
ranking of alternative designs. The incentive problem is discussed extensively in
Chapter 28, largely in connection with resource-allocation mechanisms. We shall
omit it, in order to keep the present survey within manageable bounds.

Fortunately, one can usefully study the efficiency of designs, separately from
the incentive issue. One assumes, in effect, that members are programmable
robots. A design which has been found to be promising from the efficiency point
of view can then be studied further to see if its incentive properties are accept-
able — to see whether some system of rewards can induce humans to behave as the
design’s robots behave.

The present survey takes the point of view of a designer of organizations who is
to choose among alternative designs for the organization, given certain data which
determine the designs available as well as the payoffs and the costs associated
with each available design. Typically, the performance of the design will depend
on uncertain external events. The generally accepted contemporary view as to
ideal behavior for a designer —or any other chooser under uncertainty —is that he
be an expected-utility maximizer who attaches suitable personal probabilities to
the uncertain events. The difficulty with requiring such uncompromising rational-
ity is that— unless the designer’s utility function is sharply restricted —the study of
designs with regard to efficiency becomes irrelevant. Without restricting the utility
function — or, possibly, making very specific assumptions about the

'An example is studied in J. Marschak (1977).
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probabilities—it becomes irrelevant to compare designs with respect to the
amount of “output”, as measured by expected payoff, which can be achieved for
given bundles of costly inputs (communication effort, suitably measured; ob-
serving effort; computing effort; and so forth).

Suppose utility, defined on payoff and on these input quantities, is increasing in
the former and decreasing in the latter. Suppose design 4 dominates design B: A
achieves at least as high an expected payoff as B and requires no more of any
input with the strict inequality holding with regard to one or more of these
magnitudes. Then it is not true that for all utility functions and all probability
distributions, the expected-utility maximizing designer must prefer 4 to B2 If,
moreover, both payoﬁ‘[ and all input costs can be measured in dollars, then only
for a linear utility function —i.e. only for a risk-neutral designer —is it true that “A4
dominates B with respect to expected payoff and input costs” implies “A4 has
higher expected utility than B”.

Yet much of the work which has been done, including work on resource-allocat-
ing designs for economies, can be viewed (as we shall see) as work of the efficiency
sort. There seems to be agreement that the work is interesting and ought to
continue. Indeed, this seems often to be the only sort of work presently feasible.
But one cannot take the view that such work is relevant for any expected-utility
maximizing designer.

How then, without restricting utility, can one motivate the efficiency approach?
The most promising answer is to appeal to bounded rationality as the appropriate
standard of behavior for a designer. Designing an organization is perhaps the
most complex decision making that one can study. If ever there were a task for
which the unlimited rationality of the expected-utility maximizer is too ambitious
a standard, it is the design of organizations. But “bounded rationality” in the
present state of the discussion [Simon (1972)] is still only an informal guide,
permitting a wide choice of models.® The discussion provides one with useful
suggestions —e.g., that a boundedly rational decision maker revises his “aspiration
level” in accordance with the observed difficulty of achieving the level’s previous
value. But beyond this, the modeler has no accepted and specific ground rules.

What would be crucial as a foundation for further work in the efficiency of
organization design is a set of simple, appealing, and modest axioms for a
boundedly rational decision maker which respect his non-neutrality towards risk

2For a proof, see J. Marschak (1971).

3For this to be true with non-linear utility it would suffice for utility to be the sum of a possibly
nonlinear function of payoff plus several other possibly non-linear functions, each defined on a
different input. Such separability seems unreasonable in many settings. In ideal models both costly
inputs and payoff would be measurable in dollars, and such separability of the utility-function would
be ruled out. But even in models which fall short of the ideal the “ preferential independence” [Keeney
(1972)] required for separability is highly implausible.

“4See, for example, Radner (1975) and Radner and Rothschild (1976).
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and yet imply that when one design dominates another with regard to expected
payoff and costly inputs, then the dominating design is preferred.

No such axioms are presently available. In their absence, not only expected
payoff, but also other “output” measures—or gross performance measures, as we
shall sometimes call them —have a legitimate claim on the attention of the student
of organization design who is interested in efficiency. One of these is minimum
payoff or maximum distance from a payoff maximizing action, and some initial
research using such a measure is summarized below (Section 4.3).

Our central concept in the present survey will be a simple sort of design —called
a one-step design, to be developed in Section 2. We shall be able to interpret
major recent work as a contribution to the efficiency study of one-step designs.
Section 3 so interprets work in the theory of teams. Section 4 similarly interprets
work in the theory of adjustment processes (including certain work on resource-
allocation mechanisms) and suggests some possible new directions. Section 5
interprets briefly some general issues in organization design, notably “centraliza-
tion versus decentralization”.

2. One-step designs

2.1. General concepts

We consider a designer of an organization. He is given

(1) a set E of possible environments e,

(2) a set A of possible organization actions a,

(3) a set R of possible results or payoffs r,

(4) a result function or payoff function p from 4 X E to R.

He is to choose what we shall call a design. He has beliefs about the elements of
E, expressed as probabilities, as well as preferences among the pairs (7, ¢), where
¢ denotes the cost of a contemplated design. For each environment in E, the
design yields a pair (r, c¢). If the designer obeys suitable axioms [J. Marschak and
Radner (1971, ch. 2)], then there will be a wutility function on the pairs (r, ¢) such
that he prefers the first of two designs to the second if and only if expected utility
over the pairs (r, ¢) which the design yields is higher for the first design than for
the second. If a payoff r is a quantity of a desired commodity and the cost ¢ is a
quantity of the same commodity, then the utility function is defined on the
variable r — c.

“Nature” chooses, at the start of each time period, an element e of E. In each
time period, the designed organization must choose an element a of A, thereby
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generating an element r =p(a,e) of R. Each element a of A4 is a vector
a=(ay,...,a;). We shall call the / components of the organization’s action “ the
values assigned to its / attributes”. The attributes comprise the /-element set L.

We list now the elements of a one-step design, the object our designer is to
choose. The adjective “one-step” will be explained shortly. For ease of exposition,
we confine the definition to the finite case—i.e., unless otherwise indicated the sets
E, A, R and the sets comprising a design are all finite.

First, there has to be chosen a set N of organization members. Let N contain »
members.

Second, for each member i € N, there has to be chosen a task T'= (X', X', T'"),
where® X' is a finite non-empty set of inputs X; X' is a finite non-empty set of
outputs x'; and I'* is a matrix of conditional probabilities Pr(x‘|x"). If I'! contains
only zeros and ones, then I'" is called a noiseless task. To define the sets X*, X,
the designer specifies the observing, message-receiving, message-sending, and
action-taking in which i engages. To be precise, he must choose for every
member i

(a) a partitioning @’ of the environment set E. Member i, observing the
environment, determines in which of the sets in & the environment lies (there is
a finite number of these sets). If &' contains only E itself, then i does no
observing at all.

(b) a subset L of the action-attribute set L, and a finite set 4, whose typical
element a,; specifies a value for every attribute in L'. Here U,L'= L; NFL' is
empty (only one member is responsible for a given attribute); and A is a subset
of the projection of A with regard to the attributes in L' If L is empty, that
means that member i has no direct responsibility for any attribute of the
organization’s action.

(c) For each j# i, a finite set M/ of possible messages to j. For all i, j in N
with i # j, the set M is a subset of the same set, called a language. If M is
empty, then i never sends messages to j.

A member’s inputs are observations or messages or both; his outputs are
messages or values of action attributes or both. For every i, then, we define

Xi=2ix [ M¥, X=[IMVxA,.

k+i J*Ei
(Thus, one component of an input is a set—the subset of E in which i knows the
environment to lie.) Once we have specified the matrix I'* = Pr(x|x’), we have

5The alternative term “processor” has been used for this triple in engineering and computer-science
literature.
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also specified various associated probabilities. In particular, we have specified the
conditional probability distribution of certain components of i’s output given the
value of certain components of i’s input —for example, the probability distribution
of the message j sends to k, given a value of the message j receives from i. We
can then also speak, in the usual way, of a certain component of i’s output as
stochastically independent of (or dependent on) a certain component of i’s
input—for example, the message i sends to j* is independent of the message i
receives from k*.

Now, in a one-step design a member i never sends to j # i a message which is
itself (stochastically) based, either directly or indirectly (via intermediate mem-
bers) on a message sent by j. Formally, we shall say that j sends message to k
based on messages received from i if for some 7/* in M’*, and for some inputs
x*/, x**/ both in X/ and differing in only one component, namely the message
received by j from i, we have

Pr(m/*|x*/) # Pr(m/*|x**/).

We shall say that r receives messages influenced by s if there is some sequence of
members ¢,..., gy distinct from each other and from r and s, such that

g, sends messages to ¢, based on messages received from s,
q, sends messages to ¢, based on messages received from g,

q_, sends messages to g, based on messages received from g _,,
qy sends messages to r based on messages received from g _;.

The design defined by the triples {( X, X', I")}, y is then a one-step design if
no member i sends to k +i messages based on received messages, where those
received messages are influenced by i himself.

We can now interpret the operation of a one-step design—a design which also
meets our condition on the sets L' and our condition that X‘, X' are non-
empty—so that, given a period’s new environment the design generates new
actions in response to it, and so that the probability distribution of these actions
can (in principle) be computed. To do so we assume that there is no noise in the
acquisition of inputs and the adjustment of action attributes to their chosen values.
Member i knows exactly the set in @' to which the period’s environment
belongs, knows exactly the messages sent to him, and the value of a;; which he
chooses becomes in fact the value taken by the organization. In Section 2.2.3
below, we consider the case of intervening noise.

Each member adopts the following procedure: “Send a message to a given
member and choose a value for a given action attribute as soon as you receive all
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those input components which determine the probability distribution of those
output components.” Members initiate the period’s action-generating process by
observing the environment. Each observing member then adjusts those action
attributes whose values depend only on his observation, and sends those messages
which are based only on his observation. He next sends those messages and
adjusts those attributes which depend only on his observation and on the
messages received in the first interchange of messages. He thereupon sends those
messages and adjusts those attributes which depend only on this observation and
on the messages received in the first two interchanges. And so on until he has
selected all components of his output.

Fulfillment of the one-step condition implies that every action attribute will be
adjusted. It cannot happen that in order to adjust an attribute, i must wait for a
message from j which does not arrive because it depends (indirectly) on a
message i is to send, and that is based in turn on the message i awaits.

A design, finally, will be said to cover E with regard to A or to be a design on E
with regard to A if for every environment in E the design generates values of the
action attributes which define an action® in A.

A one-step design covering E with regard to A is then a triple

(NAMYYinjienjem{ 25 40T} en),

fulfilling all the conditions we have stated. Given an environment in E, the design
implies a conditional probability distribution over the actions in A. If the design
is noiseless (i.e. each of its tasks is noiseless), then it assigns a unique action to
every environment.

The concept of design just given can be generalized in a number of ways while
still preserving the one-step property. In particular, (1) finiteness could be
dropped and (2) memory could be added. Some components of an output could
be sent to a member i’s memory, to be retrieved as an input component, in a
subsequent period. We shall refer to such generalizations as needed, when our
simple concept of design is not adequate to interpret a topic in the survey. In
particular, memory will be added in Section 4.1.

2.2. Models of technology and costs

The designer, with his beliefs about E, can proceed to compare two proposed
one-step designs if he knows something about their costs. A design’s cost reflects
the effort required to carry out each task (transforming inputs into outputs); to

SIf the set A is the cartesian product of its / projections (with respect to the / attributes), then every
design covers E with regard to 4.
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acquire each task’s inputs (by observing the environment, by transmitting mes-
sages); and to execute the actions whose current value is an output of some tasks.
We consider several possible approaches to the modeling of a design’s technology
and its costs.

2.2.1. Probability-free fixed cost models of technology

In one approach, one ignores the fact that some environments occur more
frequently than others, some messages are sent more frequently than others, and
some actions taken more frequently than others. One portrays a technology in
which a separate “detector” is required for each of the possible values of every
component of a task’s input. Such a detector is a device which at any moment is
in a “no” or a “yes” state and at the start of a period is in the “no” state. As the
period’s value for an input component is determined, the device corresponding to
that value takes the “yes” state, while all the other devices, corresponding to
other values, continue to take the “no” state. Similarly, for each possible value of
every component of a task’s output there is a “selector”, a device which is always
either in a “yes” state or a “no” state and is in a “no” state at the start of a
period. As the period’s value for an output component is obtained by member i,
in response to the states of the input detectors, the corresponding selector is put
into the “yes” state and those corresponding to other values continue to take the
“no” state.

A fixed investment has to be made in the required number of detectors and
selectors and the design’s cost depends on this investment alone. The detectors
and selectors may experience different degrees of “wear and tear”, since some
take the “yes” state more often than others. But that, in the model, has no effect
on cost.

In the simplest model of this class, cost is given by some function whose
arguments are the number of members in N and the number of elements in the
sets P!, M, A,; the function is increasing in each of these arguments. Possibly,
in addition, cost goes up rapidly, for each fixed i, as the sizes of the sets 2’
(MY}, ., Ay go up, so that the designer can strike a balance between the
number of members and the size of their tasks.

A more elaborate probability-free model would require more than the counting
of elements of sets. It might, for example, consider some partitionings 2’ more
costly than others. It might describe i’s observing of the environment as the
asking of a sequence of binary questions which ends when the correct set in %'
has been found. The (probability-free) “observing cost” might then be an in-
creasing function of the largest number of questions which could ever be asked.

Under a probability-free model of technology and cost, a designer will never be
interested in a design with noisy tasks. He is charged nothing extra for noiseless-
ness and can therefore only gain-with regard both to expected utility and



Ch. 27: Organization Design 1367

expected payoff—by confining his attention to noiseless designs in which a
well-chosen output always follows a given input.

More elaborate probability-free models would, however, allow for differences in
computational complexity. Some noiseless tasks require relatively great effort to
perform in a given time. The required output is a complicated function of the
components of the input. Even though one confines oneself to the finite case, so
that the function is a finite “table”, some tables are easier to search through to
determine the proper output than others. There is substantial theoretical literature
on computational complexity, but so far it has not taken a form that appears
useful for the cost comparison of specific designs. We shall comment briefly later
(Section 4.4) on the theory of sequential finite-state machines, which suggests one
approach to ranking tasks according to computational difficulty.

2.2.2. Probabilistic but noiseless technologies which exploit frequency differences

Consider next models of a technology which are to be used for a noiseless design
(all tasks are noiseless) and for which there is no noise in the acquisition of inputs
and the execution of actions. The technology pays special attention to the more
frequently observed environments, more frequently sent messages, and more
frequently chosen actions.

Each task receives its inputs and issues its outputs through various noiseless
devices” —devices which observe the environment, transmit messages, and execute
actions, adjusting each attribute to its chosen level.® Randomness of the messages
received and actions taken springs then, from the randomness of the environment.
Suppose Nature chooses the successive environments out of E, in successive time
periods, in a serially independent manner. Given, then, an unchanging probability
distribution on E, one can, in principle, compute for a given design the probabil-
ity that member i has to send to j a particular message m'/ in the typical time
period.

7Formally, we could calll each such device a task. Thus, transmission of a message which is i’s
output to j, for whomitis an input, could be a “task”, whose inputs are messages sent by i and whose
outputs are messages actually received by j. If transmission is noisy, that means the newly defined task
is a noisy one. For modeling purposes it seems useful, however, to reserve the “ task” concept for the n
(human) members, and to use the word “device” to describe transmitting “hardware” which links
tasks to each other, observing hardware and action-executing hardware. Of course, the “hardware”
might have some human components (e.g. messengers).

8Given the set E and a partitioning @' on E, a noiseless observing device always correctly informs
i as to the setin &' to which the current environment belongs. For a noisy device there is at least one
set S in &, containing a subset of positive probability measure, such that for the environments in this
subset, the device indicates (to i) with positive probability, a set other than S. Of course, one can
formally redefine E so that the device’s 1foise itself becomes part of the typical element of E. Relative
to the redefined set E, the device is then noiseless. This exercise seems unlikely to be useful as
modeling. One would like those objects which are given to the designer—the sets E, A4, and the result
function p —to be independent of a particular device, which is just one of many devices choosable by
the designer.
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We want now to model the technology of message transmission from i to j.
One possible transmission device sends certain symbols from i to j and is just
“large” enough to send a fixed number, say f*/, of symbols per time unit, which
we shall take to be our “period”. The cost of the device is an increasing function
of f. The original Noiseless Coding Theorem of Information Theory® [Shannon
(1949)] then tells us that given the probabilities of the messages m'/, there is a
greatest lower bound to those values of f*/ which are capable—using a suitable
coding of messages into symbols —of “keeping up” with the stream of messages i
is required to send to j in successive time periods as nature picks successive
environments. A good code assigns longer symbol sequences to infrequent mes-
sages. Using such codes, there is a greatest lower bound to those values of f%
such that with probability one the backlog of messages waiting to be transmitted
never exceeds a constant bound. If there are ¢ symbols, the greatest lower bound
is given by the entropy

— Y Pr(m")log,Pr(m').

m e MY

This is the greatest lower bound to the average number of symbols needed per
message. Hence it is the greatest lower bound to the number of symbols per time
unit which the device must be capable of transmitting if member i is to keep up
with the stream of messages which he has to send to j, since i has to send a new
message to j in each time unit.

Suppose now that member i is permitted to accumulate the messages to be sent
to j in blocks. Each block is coded into a sequence of symbols which are decoded
by the receiver. The code has the property that the start of a new message can
always be recognized. By making the block size long enough, one can bring as
close to the lower bound just given as one wants the symbols-per-time unit
capability required in order to process, with a bounded backlog, the stream of
messages which i has to send to j as Nature chooses its stream of environments in
successive time periods.

The difficulty is that if a block is to contain more than one message (from i to
), then several time periods, with their successive environments, must pass.
Hence the action which each of these environments generates is not taken until

°The term Information Theory usually refers to the work of Shannon and his successors. It deals
with the properties of certain models of transmission. The more recent term “Information Economics”
was originally applied [e.g., J. Marschak (1971) and papers cited there] to studies of the value of
information to a single decision maker or possibly (like some of the work surveyed here) groups of
decision makers. In these studies cost either plays no role or else simple assumptions about cost are
made, not necessarily those made in transmission models of the Shannon type. Even more recently,
the term “ Economics of Information” has come to be used (somewhat confusingly) for a still different
area: the working of markets whose members respond to various signals which, at some cost, they can
observe.



Ch. 27: Organization Design 1369

several time periods after the environment has ceased to prevail We have
assumed so far that the payoff p(a, e) collected in a period depends only on the
environment e prevailing and the action a taken in that period. If we continue to
assume that, and if successive environments are indeed serially independent, then
the delayed actions generated through message-block accumulation ‘can be no
better —with regard both to expected utility and expected payoff—than a well-
chosen constant action repeated in every time period. In that case, the greatest
lower bound of the Noiseless Coding Theorem can be of no interest to the
designer. What becomes relevant instead is the lowest symbols-per-time-unit
capability which —using the best possible code —permits i to send every message
to j that he may be obliged to send and to do so within a certain fixed time
interval. The relevant fixed time interval is, in general, less than the time period
between environments. One has to allow for the time required for coding and
decoding as well as the time required for members’ observing, action-taking, and
other transmissions (between other pairs of members) which are required by the
design to precede or follow the transmission from i to j.

Given, then, the fixed interval T during which the transmission from i to j
must be completed (T <1, if we continue to take the period between environ-
ments as the time unit), the required symbol-per-time-unit capability of a z-sym-
bol transmission device is Q /T symbols per time unit, where Q is simply the
smallest integer satisfying

t2 < number of elements in MY,

(Each message in M/ is coded into a distinct sequence of symbols and there are
as few unused sequences as possible.)

The Noiseless Coding Theorem becomes relevant if we continue to assume
environments to be serially independent but modify our original set of objects
given to the designer. Let d(e) denote the action in 4 which a (feasible) design
generates in response to a period’s new environment. Replace the payoff function
p by a function w defined on quadruples (a, e, ¢/, T) with @ in A4, e and ¢’ in E,
and T a positive integer. Suppose a proposed design, yielding a(e), takes T time
periods to generate an action in response to an environment, where “time period”
means, as before, the interval between successive environments. Then if the
environment sequence is e;, €, ..., ¢€,,..., the payoff collected by the organization
in the typical time period ¢ is w(a(e,_r),e,_r, e, T).

High values of w are desired by the designer and w is decreasing in T, that is,
smaller delays yield more payoff. The arguments of w include the current
environment e, —the environment prevailing when the design finally generates an
action in response to e,_ . This reflects the fact that delay is undesirable because
of the elapsed time itself (“impatience”) and because the action a(e;,_,) is to
some extent obsolete when the environment has become e,. Consider, as an
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example, a design whose purpose is to fill current “orders”, which are one
component of the current environment. The generated action is the fulfillment of
an order, namely, the shipment of commodities to certain consumers. A long
delay is undesirable for consumer and designer (impatience). But, in addition, the
delivered commodities may have become, to some extent, inappropriate in view of
new tastes (a further component of a current environment) when delivery finally
occurs.

If the function w replaces the original payoff function p, then in choosing
among designs, the designer has to balance the transmission-cost saving due to
accumulating blocks of messages (and so allowing a low symbols-per-time-unit
capability) against the lower values of w resulting from longer delay. Needless to
say, the trade-off is a complicated one, and does not appear to have been worked
out, even for simple examples.

The relevance of coding theorems to transmission costs in the case of serially
dependent environments is dealt with in Section 2.2.3 below.

Aside from message transmission, the other efforts required by a design may be
performed in a manner that exploits frequency differences. Unlike the case of
message transmission, there are no standard models, exploiting frequency dif-
ferences, of observing, action-taking, and computing. But models can be con-
structed. In the case of observing, for example, a possible probability-free model
was discussed briefly earlier: cost depends on the largest number of binary
questions ever needed to locate the environment in a set of #'. In a frequency-
exploiting model of observing, one would consider cost to change from period to
period and to be an increasing function of the number of binary questions which
need to be asked in that period in order to locate the environment.

Given the sets in %, many question-asking schemes (algorithms) are possible.
A partial catalogue of schemes has been explored by H. Oniki (1974a, 1974b).
One could simply proceed down a given list of sets and ask for each whether or
not it contains the environment, stopping as soon as the answer is “yes”. One
could arbitrarily divide the sets into two groups, equal in number of elements, or
differing by one, then similarly divide each of those into two sub-groups, and so
forth, letting the resulting binary tree (two branches at each node) guide the
questioning. Or one can arrange the sets in %’ along many other binary trees
(e.g. trees in which groups are divided into two sub-groups far from equal in size).
If a probability is attached to each set in £’ then one natural criterion for
choosing among these algorithms is the expected number of questions that need
to be asked until the environment is located. The argument establishing the
Noiseless Coding Theorem tells us a greatest lower bound for this expected value
as one passes over the possible algorithms, namely, the entropy

H=- Y, .Pr(S)logPr(S).
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A further theorem of Shannon tells us that the least upper bound for the expected
value is H +1. There exists, moreover, an algorithm [Huffman (1962)] for
constructing all optimal binary trees—all binary trees which minimize the ex-
pected value of the number of questions asked.

This approach rests on a model of the observing technology wherein all
questions are equally difficult to answer. In some settings this may, of course, be
quite unrealistic; some parts of the set £ may be harder to “scan” than others,
or, to use another terminology, some aspects of the current environment may be
harder to measure than others. Clearly, one has to begin modeling specific real
organizational observing tasks before one can begin to judge the usefulness of the
binary-tree model or any other model.

There have not yet been attempts to construct frequency-dependent models of
action-taking as such. One could, presumably, try to capture the idea that
frequent changes of action are costly as well as the idea that the instructions
issued to an action taker (which are the outputs of certain tasks) ought to be made
“simpler” for more frequently taken actions than for less frequently taken ones.

2.2.3.  Noisy models

In these models it is costly to diminish the noise in a task — to replace (X', X* I')
by (X', X', I""), where I'! is, in some appropriate sense, closer than I’ to a
noiseless zero—one matrix. Similarly, in these models, the acquisition of inputs
through noisy transmission and noisy observation is cheaper than through noise-
less transmission and observation; the carrying out of intended actions with error
is cheaper than without error.

Consider first the devices used for message transmission from i to j. Suppose
environments are serially independent, so that the successive messages i is
required to send to j are also serially independent. Suppose that i can be
provided with a device for transmission to j. The device transmits symbols (“0”
and “1”). But it is not completely reliable; it is characterized by a probability
matrix A:

Symbol received
1 0

—
hS]
—
|
hS|

Symbol sent 0 q 1-¢

Suppose one can choose both the matrix A and the device’s speed (in symbols-
per-time unit). The device is'cheaper the less its speed and the “further” is A from
the identity matrix.

The device is used as follows. Member i is given, in each time unit (the time
period between environments), a message in M/ to be sent to j. Suppose there
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are R elements in M/ and their probabilities in every time period are sy, ..., Sg.
Member i takes the messages to be sent, accumulates them into suitable blocks,
codes each block into sequences of zeros and ones. The sequence is sent over the
noisy device and received (in somewhat distorted form) by j who decodes it; j,
that is to say, assigns to the received zero/one sequence a sequence of messages in
M/, namely, the sequence with highest posterior probability.

For any n-tuple of probabilities ( p,,..., p,) with 0< p; <1, i=1,...,n, and
Y,p,=1,let H(p,,..., p,) denote the entropy —X,p,log p,. Now let

c(A)= max [H(a,l—a)
Ogaxl

pa ¢(1-a)
pa+qg(l—a)’ pa+q(l1-a)

(1-p)a
(1-pla+(1-g)1-a)’

—(pat+q(l-a))H

—[(1—p>a+<1—q>(1—a>]H(

(1-4)(1-a) )]

(1-p)at+t(1-¢)(1-a)

We can interpret C(4) (the “channel capacity” associated with A) as the largest
average uncertainty reduction which a noisy device characterized by the matrix A
is capable of achieving, where entropy measures uncertainty and the average is
taken over the possible symbols received. The first H-term measures a receiver’s
uncertainty about the sender’s choice of zero or one before he has received a
symbol and knows only the probabilities that the sender sent zero or one, which
are, respectively, @ and 1— a. The last two H-terms measure the receiver’s
reduced uncertainty about the sender’s choice given that he has received a
particular symbol. Now if

C(A)> H(plv""PR)s

then the error probability, i.e. the probability that a message decoded by i differs
from the message which i would have obtained from j if A were the identity
matrix, can be made arbitrarily small by choosing sufficiently long blocks of
messages. Moreover, this can be done so that the average number of symbols
(zeros and ones) required to code a message exceeds c(A) by as little as desired.
Hence, provided one accepts sufficiently long block accumulations, any device
transmitting c¢(A) symbols (zeros or ones) per time unit (time period) will suffice
to keep up with the stream of messages that i has to send to j.
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Error probability is, of course, a peculiar criterion, since it weighs all errors
equally, even though some lead to lower payoffs than others. A 1960 generaliza-
tion of the result [Shannon (1960)] allows for a more appealing criterion, namely,
“fidelity”, that is, the expected value of some “benefit” function—a function of
the message sent by i and the message recognized (after transmission and
decoding) by j. In the generalized result, expected benefit can be made as close as
desired to the highest expected benefit achievable for a noiseless device (for which
A is the identity matrix) and this can still be done with a symbols-per-time-unit
speed as close as desired to C(4). The result extends from binary devices to
devices with any number of symbols.

Even the generalized result is remote from the assessment of a design’s cost
when a “good” collection of transmission devices is chosen for the design. For the
result to be relevant in the case of serially independent environments, we again
need to introduce delay penalties. One has to balance the cost saving due to
noisiness and the saving due to slowness of the devices used in transmission
between all pairs (i, j) not only against each other but also against the penalty
due to delay. Then in extremely simple cases the generalized result might guide
one in achieving the balance.

If one does not accept delay but requires every message to be sent in the time
period in which the prevailing environment is the one that gave rise to the
message, then, as in the noiseless-transmission case, the coding theorems of
Information Theory have no relevance. Once may use codings and noisy-trans-
mission devices, but the speed of a device (in symbols-per-time-unit) must be high
enough to permit the longest possible coded message. It must be the speed Q
defined in Section 2.2.2 above.

Once a complete set of transmission, observing, and action-taking devices are
in place-both noisy ones and noiseless ones—so that a design’s tasks can be
carried out, a conditional probability distribution on the actions in A is de-
termined for each environment in E. To find it, one has to interpret properly the
inputs and outputs of each task. Thus, suppose each input in X/ includes among
its components a message in M‘/; if i transmits to j through a noisy device, then
a typical value of this input component is j’s best guess, after decoding (his
maximum-likelihood guess) as to the message in M which i intended to send.
The probability distribution on A for a given e in E depends, possibly in a
complex way, on the probabilities characterizing every device used for input
acquisition and action-taking. But it is determined once those probabilities are
specified. Given a probability distribution on E as well, the designer who is to
choose between two designs and does not accept delay can, in principle, rank
them according to highest attainable expected utility, where utility is defined on
payoff and cost. Cost consists of the cost of an array of (possibly noisy) devices
capable of acquiring the design’s inputs and executing its actions plus the cost of
performing the design’s tasks (assigning outputs to inputs). A design’s highest
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attainable expected utility is its expected utility for the best possible choice of
devices.

Alternatively, one can take the less ambitious bounded-rationality or linear-util-
ity viewpoints described in the Introduction, and could try to study, for a given
design, the trade-off between expected payoff and the various elements of
cost —e.g., noisiness of devices and of tasks, speed of transmission, sizes of the
finite sets defining the design.

What of the costs associated with the members’ tasks themselves? If a task
T'= (X', X', I'Y) is noisy, one approach to modeling its cost is simply to select
some measure of dispersion and to suppose that given the sets X' and X', the
lower is the average value of this measure for the probabilities Pr(x‘|x’) — where
the average is taken over all inputs X' —the costlier is the task. The costliest
possible task for a given pair (X', X') is that for which I'"' is noiseless. This is
performed by a totally reliable member. A less reliable, more “confused” mem-
ber, who is, perhaps, less well trained or less gifted, may be acquired (purchased)
instead. He is able to carry out—given the sets X, X’ —only a noisy task. From
this point of view, then, a particular acquired member is part of a design; to
acquire him, and to assign him the sets X', X', is to acquire the matrix I". It
might then be reasonable to let the cost associated with the triple (X', X', I'Y)
depend on the sizes of X’ and X' and on the average dispersion of I'.

Note that one possible dispersion measure is, once again, average entropy, i.e.

Y Pr(x)|[— ¥ Pr(x|x')logPr(x’|x?)|.

e X xext

But the grounds for using entropy in this context are not those of the transmis-
sion model. Member i selects outputs in X’ in response to inputs in X' so
nothing need be transmitted. Average entropy is merely one possible measure of
i’s “confusedness” or “reliability”.

2.2.4. Models in which cost varies from period to period and depends on the
period’s input —output pairs

In models of this sort the cost of a task T depends on more than the sizes of
X', X' and the “reliability” expressed in I". Some inputs are harder to detect than
others in the time available and some outputs harder to select than others. There
is, then, a cost ¢(¥', x') attached to every pair (¥, x') with X' € X’ and x’ € X%
and the cost is incurred in any period in which i assigns the output %’ to the
input x’. A design’s cost varies from period to period. An example of a “cheap”
output of member i might be a “null message” sent to j (“silence”). This, of
course, does tell j something about i’s inputs, but the act of forming it (“doing
nothing”) may, in some technologies, require little effort.
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Such an approach to cost may, of course, be combined with some of the other
approaches considered, so that the total cost of a design is composed of a variable
part and a fixed part.

2.2.5. Costs: The case of serially dependent environments

To conclude our general discussion of costs, two final remarks need to be made
about the case of serially dependent environments. First, if the environments are
serially dependent —if they are, for example, the successive states of a Markov
chain — then the coding theorems of Information Theory are again relevant to the
modeling of transmission costs provided delay is accepted. But the application of
the theorems is more complicated, since the probability distribution on M?%
changes from period to period. One possibility is to require the transmission
device to have a sufficient speed (in symbols-per-time-unit) to keep’ up with the
stream of messages if the probability distribution were stationary and were the
“worst” of the distributions that could, in fact, prevail-if such a “worst”
distribution exists.

Second, to allow for the undesirability of delay one now need not redefine
payoff as in Section 2.2. Payoff can remain, as in our original formulation, a
quantity collected in each period depending only on that period’s action and that
period’s environment. Since successive environments are now correlated, an
action which the design generates in response to a period’s environment may not,
on the average, be inappropriate to the environment of some periods later; in that
later period, the delayed action may generate more payoff, on the average, than
would the best constant action (repeated in all periods, regardless of present or
past environments). Hence, for many plausible stochastic processes generating
successive environments, expected payoff decreases as delay increases, even where
current payoff depends only on current environment and current action. The
designer is interested, then, in balancing the low cost of slow devices against the
lower payoff due to the delay these devices causes.

3. Contributions to organization design, interpreted in the framework of one-step
designs: Information structures and decision rules in teams

3.1. Information structures and designs

In the theory of teams [J. Marschak and Radner (1971)], one is given a collection
N of n members, an environment set E (not necessarily a finite set) with elements
e, a set A of possible action n-tuples a = (ay,..., a,), and a payoff function p on
EXA. Let A,, i€ N, denote the projection of 4 with respect to the ith
coordinate of a. For each i € N, a, (an attribute of a in our previous terminol-
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ogy) is called member i’s action. Only two objects are to be chosen: (1) an
information structure (Y, n), where Y is an n-tuple of signal sets (Y1,...,Y,) and
n=("y-...,m,) is an n-tuple of functions %, from E to Y; (2) a feasible
team decision rule 8 =(8,,...,8,), where 8§, (member i’s decision rule) is a
function from Y; to A, such that for all (y;,...,y,) in Y;X--- XY,
61[m(y));---,8,[n,(y,)) lies in 4. The latter feasibility requirement is trivially
satisfied for all § if A=A; X A4, X --- X A,.

Suppose an expected-utility maximizing deSIgner is given two pairs: (Y, %), 8]
which has a cost ¢, and [(Y,7),8] which has a cost ¢. Suppose he has a
probability distribution on E and a utility function u# defined on payoff—cost
pairs. Suppose there is a sequence of periods in each of which an environment e
is drawn from E according to the given probability distribution. Then the
designer prefers the first pair if and only if the expected value of

u(p([8,(71(e)),....8,(7(e))]. ), 2)

exceeds the expected value of

u(p([8,(Fn(e))s-.. 8, (nle))] €). E).

But most of the work which has been done in the theory of teams deals with a
simpler issue. That is to find, for a given interesting information structure, the
“best” decision rule, where “best” means expected-payoff maximizing and not
expected-utility maximizing, with utility defined on payoff and cost. Given a
structure (Y, n), one seeks the rule 8 such that for all other rules & the expected
value of p(8;(n:(e)),--.,0,(n,(e)), e) is not greater than the expected value of
p([81(m1(e)]-.-,[8,(n,(e)],e). Such work has to appeal to the linear utility or
the bounded-rationality viewpoints sketched in the Introduction. Studies which
compare information structures with regard to highest attainable expected payoff
seem likely, in any case to continue. They appear far more tractable than
full-scale studies of highest attainable expected utility for non-linear utility
functions and specific cost assumptions.

If we have found, for a given team of n members, an information structure and
an expected-payoff maximizing team decision rule, have we then also defined a
one-step design? No, for if we only write down an information structure and a
decision rule, we say nothing about the observing effort and the message-sending
which occurs and about who performs these tasks. Only action-taking is dis-
cussed: member i adjusts the value of a,. Suppose, however, one adds that e is an
n-tuple (e, ..., e,) and that member i always observes e, his “local” characteris-
tic. (In our previous terminology, i has a partitioning £’ whose typical set has
the form {e: e;=é¢;}.) A designer is given, in other words, some sort of “natural”
association between action and local observation. He may choose from a set of
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available information structures (Y, n) which enrich the information (about the
entire environment e) of at least one member k. To be more precise: for member
k, for such a structure (Y, n), and for all elements & of some subset £ of E which
has positive probability measure, it is not true that

{e:ne(e)=mi(8)} 2 {ere,=2,)}. (3.1)

Now suppose further that every such member k receives the additional infor-
mation through a single (n —1)-tuple of messages received, all at once, from the
other members. Clearly, there will be some (n — 1)-tuple which suffices, if nothing
else the (n —1)-tuple (ey,..., €4_1, €41 15---5 €,). Then we have all the elements of
a noiseless one-step design which achieves a given information structure (Y, n)
and a given decision rule §. Member k’s inputs are his own observation and the
messages received from others. His outputs are the messages he sends (which
depend only on his observations) and a value of a,, which depends on his own
observation and the messages received and equals §,[7,(e)]. But some one-step
designs achieving the structure (Y, n) are wasteful. For each member i, one would
like to search among all (n —1)-tuples of functions { @y }, x e n.; « x> Where @, is
defined on the possible values of e, and there is some function r, such that for
every e in E,

n(e) = ri[ei’(pi,l(el)""’ (pi,i—l(ei—l)’ (pi,i+1(ei+1)7"'7(pi,n(en)]' (3.2)

Among all such pairs (r,{@;};.,) one is interested in those which are
economical with regard to transmission (from k to i) of the messages ¢,.(e;) and
with regard to the difficulty of computing the functions ¢, and r,. If E is finite,
then the approaches to measuring noiseless transmission costs which were dis-
cussed above are relevant again. If E is a continuum, and the range of ¢,, is a
continuum as well, then one may require that ¢,, satisfy appropriate smoothness
conditions and treat the dimension of the range of ¢, as a measure of transmis-
sion cost. Work of this sort, with a different motivation than the achieving of a
given information structure for a team, is summarized below in Section 4.2. As for
computational difficulty (complexity), that, as remarked earlier, is a subject still
largely unexplored by economists concerned with organization design.

An information structure for a team, as defined so far, is noiseless relative to a
given set E of environments. Member i generally does not have complete
information about the environment but he always receives the same informa-
tion —namely, %,(e)-about a given environment e.

One can study instead information structures which are noisy relative to a given
E. In the simplest sort of noisy structure, member i obtains for each e in E, a
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signal n; (e)+A,, where 7,(e) is a real number and A, is a real random variable'®
with a probability distribution F,. As before, a decision rule § is to be chosen.
Assume again that e is an n-tuple (e,...,e,). But now the “local” information
which member i always has in any case —regardless of the information structure —is
e;+p;, where p; is a random variable with probability distribution G,. The
analogue of (3.1) is then the condition that for at least one member k the
conditional distribution of e given n,(e)+ A; is not the same as the conditional
distribution given e, + p,. If this condition is met, then we seek a (noisy) one-
step design which achieves the given noisy information structure. To do so we
seek for each i [analogously to (3.2)] a function r, and an (n—1)-tuple
{(Pirs Dig)}iken, i+r Where @, is a function and D, is the probability
distribution of a random variable y,,, such that for each i in N and each € in E
the distribution of 7[e;+p;, @ 1(& +p)*+Yir- s @i im1(@Gmr T D) Vi
@ i1 H i) Yiivne o i (€, +1,)+ v, ] is the same as the distribution
of n;(€)+ A,. Such (n —1)-tuples, together with the distributions G, describing the
members’ noisy observing, define a noisy one-step design achieving the required
noisy information structure. As before, the design’s action outputs may be
assigned to inputs so as to express a chosen team decision rule.

Some investigations which have used the framework of the theory of teams
have, in effect, proceeded in the reverse direction from that just described. They
have considered a particular one-step design which is of interest because of its
historic role in certain discussions and have then studied the information struc-
ture which the design achieves. The studies by Groves, Radner, and others of a
“Lange-Lerner” price mechanism and rival mechanisms in a certain class of
teams are of this sort. Below, in Section 3.4, we briefly consider these studies.

3.2.  Finding best expected payoff for a given structure

The work done so far in the theory of teams has not concerned itself with the
design needed to achieve a structure and with the design’s costs. That is natural,
since it is difficult enough to find, as the existing work does, decision rules which
are best, in the expected-payoff sense, for some interesting information structure
and payoff function. A main tool for this purpose is the “person-by-person
satisfactoriness” theorem. Suppose that 4= A4, X --- X A4,. If a decision rule
8=(8,,...,8,) is best for a given structure (Y, n) with regard to the expected

10 Of course, as remarked earlier in connection with designs, one can redefine the environment set so
that the noise A; becomes part of the environment; relative to the new set the information structure is
again noiseless. But doing so obscures the special form taken by the analogues of (3.1) and (3.2) for a
noisy structure. From a modeling point of view, it may be useful to distinguish between the aspects of
the environment which no transmission or observing devices can affect, and the aspects which are
simply properties of the devices the designer chooses.
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value of payoff p(a,e), then clearly it must be true that each rule §; is best given
the other rules {8, },.;. That is to say, for every y; in Y; such that the event
1;(e) = y; has positive probability, §,( y;) must equal that element a, of A, which
maximizes with respect to a,, the conditional expected value of
P8, (m(e)): - §_1(M_1(e))r @y, 8per(My1(€))s- - -, 8,(m,(e))], €) given that
n,(e) = y;. The theorem says that if p is strictly concave and differentiable in its
arguments, then such “person-by-person satisfactoriness” is also sufficient for &

to be a best rule”.!!

3.3.  The quadratic case

If the function p is quadratic and concave, then the condition that §; be best
against the other rules gives, for each y,, an equation which is linear in the best
rules 81,..., 8,._1, 3,-+1,...,3,,. To be precise, suppose the payoff function p(a, e)
has the form

e, +2a’n(e)—a’Q(e)a,

where e, is a constant n-vector, p is a vector-valued function of e, and Q is a
matrix-valued function with Q(e) always a positive definite n X n matrix. Mem-
ber i’s signal 7,(e) tells him something about p(e) and Q(e) and hence about the
team action which ought to be taken to maximize payoff. For a given information
structure (Y, n) and for any y, €Y,, the person-by-person satisfactoriness condi-
tion is (after differentiating the conditional expected payoff given n,(e) = y; and
setting equal to zero)

Si(yi)"?(QiiMi(e) = J’I)+ Z g(aj(m(@))lm(e‘) = )’i) = g(l"‘ilni(e) = J’i)s

J#£i

(3.3)

where & denotes expectation.

For the quadratic case there are several procedures for finding explicitly a best
d given (Y, n), or at least finding the expected payoff under a best 6:

(1) One can, for some information structures, guess, using intuition, at a
decision rule 8 which seems likely to satisfy (3.3). If one can then show that it
does, one has shown it to be a best rule.

1 The theorem generalizes to the case in which the action a has to lie, for every e, in a convex set
A(e) which need not be the Cartesian product of its » projections. In the geperalized theorem,
“(8y,...,0,) is person-by-person satisfactory” means, for example, that for every e, a; =8;(n;(e))
maximizes the conditional expected value of p([ay, 8,(n,(e)),...,6,(n,(e))], e) on the set of those
member-1 actions g, for which [a;, 52(112(e)),..., 8, (m.(e)] € A(e).
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(2) One can assume that E is the n-dimensional real space and that the
probability distribution on E is normal. If y,=mu,(e) is a real vector, also
normally distributed, and if Q is constant, then for the (6,,..., 8,) which satisfies
(3.3) and is therefore best, §; is a linear function of the components of y;. Each
coefficient of §; is a function of the parameters of the distribution of p(e) and the
constants Q and e,,

(3) If Q is constant, then for certain information structures one can show, using
(3.3), that for each y;, 3,( ¥;) (with 8 best) satisfies a linear equation in 3,.( y;) only.
This occurs, in particular, for a structure wherein each member i knows some
function {;(e), with {(e),..., {,(e) independently distributed, and also knows a
vector 7,(e) = (7,(e),..., 1,(e)), where ,(e) is member k’s “report” about {,(e);
the “report” partitions E more coarsely than does {,(e).

(4) If Q is constant, then without further assumptions it is straightforward to
show that if & is best for a structure (Y,n), then (using some compact and
obvious vector notation)

&8[n(e)l =0 u(e);

at the same time, “value of information” —the amount by which best expected
payoff for (Y, n) exceeds best expected payoff for the “no-information” structure
(where, for every i, 1,(e) is a constant signal) — is given by

&[8(n(e))]n(e)-[£8(n(e))] srle).

For a number of structures, this permits calculation of the “value of information”
[and hence of the best expected payoff for (Y, n)] without explicitly computing a
best decision rule.

Using one or another of these four approaches, a variety of information
structures have been explored for the quadratic case'? [Chapter 7 of J. Marschak
and Radner (1971)]. Some of these results can be interpreted (in accordance with
the central concern of the present survey) as tracing the effect on best expected
payoff as one varies one or another element of an information structure’s cost—or
the cost, rather, of a design achieving that structure.

(a) There is a family of structures, called [in J. Marschak and Radner (1971)]
“dissemination of independent information” and just summarized above in
connection with the third approach to calculating best decision rules. Consider
moving from a structure in which a particular member j does not send to any

12 Chu (1976a, 1976b) considers, for the quadratic case, information structures in which member i
knows the linear combination o6'_,h;,p.(€). One might regard the rank of the matrix (h;,) as an
indicator of its cost. An algorithm is given which converges to that matrix among all those of given
rank for which best expected payoff [with u,(e),..., p,(e) independent and normally distributed] is
highest.
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others a report of {;(e) (his “local” observation), to a structure which is the same
except that j now sends such a report to everyone. It turns out that the resulting
improvement in best expected payoff is independent of the size and composition
of that group of other members r # j who send reports in both structures. So if
allowing a new “reporter” has a constant cost [if communicating {;(e) to the
others is equally costly for all j], then if the designer wants expected payoff
minus cost to be large, all of the members for whom improvement in expected
payoff exceeds the reporting cost should be instructed to report.

(b) Interesting classes of structures are suggested by the term “management by
exception”. In one such class, the variable p;(e) is assumed “locally” observable
by j and to take values on the real line. To define the information structure, a
part of the real line—a set R;—is chosen for each j and is called j’s “exception
set”. If and only if j finds p;(e) to lie in the exception set, he communicates it to
some ‘“central agent” who relays it to all the other members whose observations
are also exceptional (or, equivalently, who computes the action all those members
ought to take and tells each of them what that action is). Then 7,(e) equals p ;(e)
if p;(e)& R; and otherwise equals {p,(e): k € J(e)}, where J(e) is the set
{k€ N:p,(e)€R,}. If the variables p;(e) are assumed independently distrib-
uted and Q(e) a constant, then a best decision rule is found [by making a good
guess and verifying that the rule satisfies (3.3)]. When, for an environment &, j’s
observation p;(€) is not exceptional, the best rule tells him to take the action
which would be best under that information structure wherein each member k
knows only p,(e) for every e. When j’s observation p;(€) is exceptional, the best
rule tells him to take the action which would be best for that structure wherein,
for every e, all members in J(€) known each other’s observations [i.e. for any e
each knows {p,(e): k € J(@)}].

For given probabilities { p;}; c y, Where p; =Pr{p (e) € R ], the sets R; can be
chosen so that best expected payoff is a maximum. Doing so, letting p; = p for all
J» and letting Q take a special form —namely, g;, =1, g;;= g, i # j —one can trace
(for fixed n) the effect of increasing p on best expected payoff. As p goes toward
1, best expected payoff increases but does so more and more slowly. Suppose the
relevant technology is of the general sort in which a different cost is attached to
each of a task’s input—output pairs and one pays for each pair when it is used
(Section 2.2.4 above). In the present setting, suppose a certain cost is incurred
whenever member j reports an exception but not otherwise. If one assumes the
cost per report to be identical for all members and all reports, and independent of
the number of members reporting, and if the designer wants the expected value of
payoff minus cost to be high, then there is a best value of p. Beyond this value,
the improvement in expected payoff due to more frequent reporting of exception
is less than the increase in expected cost.

(c) The effect of increasing or decreasing error in observing and in the
transmission of certain messages can be examined. One can study, for example, a
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structure in which complete information about e is accumulated (by some central
agent). Assume ( constant; the central agent knows (p(e),...,p,(e)). He
computes the payoff-maximizing action a(e)= (a,(e),...,d,(e)) and sends 4,(e)
to i. That transmission, however, is subject to error, so that member i ends up
knowing y, =n,(e)=a;(e)+¢;(e). Assuming all the 4,(e), ¢;(e) to be indepen-
dently normally distributed with zero means, a best decision rule can be com-
puted (using the second of the above four approaches). Consider the central agent
to be an (n+1)st member of the team. In one model of technology we may
attribute error to “confusedness” or “unreliability” of member n +1 himself.
Suppose that the more dispersed is the variable ¢;(e), the cheaper the design,
where we measure dispersion by the variance of the ¢;(e). If all the variables ¢;(e)
have a common variance, a designer can balance the cost of low dispersion
against the resulting improvement in expected payoff.

A similar analysis can be performed with regard to observing error. This time,
the central agent receives erroneous messages p;(e)+e; as to the individual
observations p,(e). He computes the action d(e) = (4,(e),..., d,(e)) which would
be payoff maximizing if u(e) were to equal (pu,(e)+¢,,...,p,(e)+¢,). He sends
d,(e), without error, to member i. Now the cost of reducing observing error can
be balanced against best expected payoft.

(d) The size of the team can be considered an element of cost and the effect of
varying it on best expected payoff traced for a specific family of information
structures. To do so, one has to specify how the payoff function and the
probability distribution on E vary as n varies. One may, for example, assume
that Q is constant and has ones on the diagonal and gq everywhere off the
diagonal [with —1/(n —1) < g <1, which assures positive definiteness]. One can
assume the variables p,(e) to be independent of each other for all team sizes, and
to be drawn, for all team sizes, from the same probability distribution with zero
mean and, for every n, an n X n variance—covariance matrix with diagonal
elements 1 and off-diagonal elements o. Under such assumptions, then, the
“returns to scale” issue can be investigated. For many structures, best expected
payoff increases as n increases but for some of these structures one has “decreas-
ing returns” (each additional member adds less to best expected payoff than the
previously added member), for others increasing returns; and for still others
constant returns. For some structures, the limiting behavior of best expected
payoff, as n increases without limit, can be conveniently and suggestively studied.

(e) One can check certain general conjectures as to the desirability of certain
properties of structures or designs as one changes certain aspects of the payoff
function. Such properties may be associated, in particular, with the term
“decentralization”, discussed in more detail in Section 5 below. For the present,
suppose we consider a decentralized information structure to be one in which
member i knows only certain “local” or “private” information. Suppose, in
particular, that it is the structure in which i knows p,(e). One can then study the
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improvement in payoff as one moves away from the structure toward “more
centralized” structures [wherein at least some member i knows more than p,;(e)].
One may be interested in the way the improvement changes as (1) one varies the
payoff function so as to increase the “interaction” between members — the sensi-
tivity, with respect to changes in j’s action, of i’s marginal contribution to
payoff —as measured, say, by d%/da;da ;5 (2) one varies the environmental
probability distribution so that i’s local observation p;(e) becomes more strongly
correlated with j’s local observation p(e). More specifically, let Q again be
constant with ones on the diagonal and g off it. Then |g| measures the strength of
interaction between any two members. It is found — as intuition suggests — that as
|g| rises above zero, there is an increase in the “penalty” due to decentralization,
i.e. in the improvement in payoff when “local information only” is replaced by,
for example, complete pooling of local information, or management by exception,
or pooling of local information (for every e) among groups of members.'?
Similarly, if one lets &p; =0 and lets &p,p; =1 when i= j and o > 0 otherwise
(all 4, j in N), then for those “non-decentralized” structures which have been
studied in this connection, the improvement in payoff as one substitutes that
structure for “local information only” goes down as ¢ goes up. Again, this is as
intuition suggests.

3.4. Studies of a resource-allocation team

A number of studies have dealt with a team of n +1 members composed of one
“center” and n local “managers”. Each manager i is to use a resource assigned to
him by the center and is to choose a value of a local decision variable L;. An
environment is e = (k, p;,..., 1,), Where k is the total availability of the resource
and p,; is a parameter defining a local production function f. A team action is the
vector a= (k,,..., k,) where k; is i’s assigned share of the centrally allocated
resource. The arguments of the production function f are L; and k,. The team’s
payoff is p(a,e)= Z;',l f(L; k, p;), provided E:’=1ki < k. [In a generalized ver-
sion, Groves and Radner (1972), k and k, are vectors.]

The first studies [Radner (1972) and Groves and Radner (1972)] were inspired
by the classic claims made for a “price” mechanism, wherein the center adjusts
(ky,-.., k,). BEach adjustment is made after receiving from each manager i a
“profit-maximizing demand” message—i.e. a quantity 7(,.( P, M;) which would
maximize max, f(k;, L;, p;)— pk;, where p is a price announced at each step by
the center and adjusted in response to the previous step’s excess demand. While
the process may converge, under suitable assumptions on f, to a payoff-maximiz-

13But these results fail to have analogues, when one studies quadratic payoff functions and designs
which carry out successive steps of certain adjustment processes. See Section 4.4 below.
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ing value of ((k;, L,),...,(k,, L,)) it would, in practice, have to be stopped after
a finite number of steps, say, at the T'th step. At that point, the information
structure to be studied is defined: for each manager the center knows his original
local observation (k for the center, p; for each manager i) together with the
accumulation of messages received in the preceding steps of the process (the
profit-maximizing demand messages for the center, the prices for each manager).
In the classic discussion (of tatonnement processes), the action finally taken at the
Tth step is in fact based on the messages most recently received and not on the
entire accumulation of messages: the center, for example, allocates £ in accor-
dance with the final profit-maximizing demand messages (each manager’s share
equals his final profit-maximizing demand if these demands do not exceed k& and
otherwise falls short of his final demand, in some suitable way). Nevertheless, one
can ignore the costs of memory and can seek the best decision rule assigning, at
the final step, a value of (k4,..., k,,) to the center’s accumulated information and
a value of L, to each manager’s accumulated information.

This was done, to begin with for the case of a single step (T'=1), with
production functions f quadratic and the parameter w; a pair (f;;, p;7):

f(ki’ L, #i) =2pk; +2p, L, — ki2 - Li2 —2gk;L,.

The information structure, labeled “one-stage Lange-Lerner” (OSLL), is in-
tended to capture the interchange of a “price mechanism” which terminates after
one step. The center announces a price and the managers respond with profit-
maximizing demands. The center’s choice of price can only depend on k, since
that is all the center knows at the start. Once the center knows what the
profit-maximizing demands are, he can uniquely deduce, for each i, the quantity
v; = W, — gn;; . It is then argued that nothing is lost if one says that the center in
fact sends k itself to the managers and each manager sends »; in the OSLL
structure (Y, ), then, manager i, i=1,...,n, knows 7,(e)=(p;, k) and the
center (member n +1) knows 1, (e) =(k, »y,...,?,). Informally speaking, this
viewpoint might rest on a model of technology in which only transmission is
costly, all real numbers (and vectors of real numbers) can be transmitted exactly,
and the dimension of the real message sent from i to j determines the cost of that
transmission.

Note that given the OSLL structure, each manager has to choose a current
value of L; in ignorance of other managers’ production functions, of the values
other managers give their local decision variables, and of the quantity of the
centrally allocated resource which he and others will receive. A team decision rule
tells i what value of L, to choose.

Assume all the random variables p,,,pu,;, k to be independently distributed
and assume that the distribution of u, is the same for every i, as is the
distribution of p,,. It is then verified that for the OSLL structure a certain team
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decision rule in fact satisfies that version of the person-by-person-satisfactoriness
condition which is appropriate!® when the decisions are to fulfill a linear
constraint like 2k; < k. Hence, in view of the concavity and differentiability of p,
that decision rule is best. The best expected payoff so obtained is then compared
with the best expected payoff for several other structures.

In particular, it is found that the best expected payoff is not increased if each
manager i sends not »; —which is a “contraction” of his local information—but
rather sends the vector p;= (p, ;) itself, so that 7, ,(e)=(k,py,--., 1,,),
while 9,(e) = (p;, k), i =1,..., n, as before. One virtue of the “price mechanism”
is then demonstrated: given the center’s “price” message (here taken to be k
itself), each manager’s “profit-maximizing demand” response (here taken to be »;)
cannot be improved upon. If there were allowed to be a second price announce-
ment by the center, then the best possible (or “full-communication’) payoff —i.e.
max , p(a, e)—could be attained for every e, since (k,»,,...,»,) gives the center
enough information to compute exactly the optimal shadow price (that price for
which the profit-maximizing demands would comprise the optimal allocation).
That is a property of the quadratic payoff function and is not in general true for
other concave payoff functions.

A surprisingly rich assortment of further structures have been studied for the
quadratic case—in a slightly generalized version—by Welch (1980). In the gener-
alized version, there is no separate “center” member and each manager i has an
endowment w; of the “team” resource. Each manager has to choose a value of his
local variable L; and a final allocation k; of the team resource, which may be

T

more or less than the random variable w;. For a feasible decision rule 37_ &, =

i_W;. A linear function of i’s information plays a role in several of the
structures studied, namely, y,=», — (1 — g?)w,, where », is defined as before.

Under the structure called “bilateral sampling”, member i knows y;_;, ¥; and
Y;+1- Under “pass the mean” he knows (¥;_;, ¥, ¥;.1), Where ¥,=(1/ i)):;._lyj.
Under the “Feldman Round”,'® he knows v, v,,,, and p,_;, where p,=7v,/2" !
+ Z;_zyj /2'=/*1 For each of these structures, the optimal decision rule for i can
be interpreted as a profit-maximizing rule for a certain shadow price =;, whose
definition varies from structure to structure.

In this study, as well as in the Groves—Radner studies, it is instructive to
examine the performance—that is, the limit of the best expected payoff —of the
various structures as the number of managers increases without limit.
Given the assumed form for p, and the assumptions concerning identical distribu-
tions of the random variables, the move from an r-manager to an (r +1)-manager

team is well defined. It may be possible to compute not only the limit of best

14See footnote 11.
15Inspired by Feldman (1973).
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expected payoff but also the path of best expected payoff for an initial range of
team sizes. In the Welch study it is found, for example, that “bilateral sampling”
performs worse than “pass the mean” for small team sizes, but after n =8, it
quickly becomes far superior and stays so in the limit.

The Radner—Groves studies find that in the limit the penalty of the OSLL
structure —the amount by which its best expected payoff falls short of best
expected payoff under full communication—goes to zero as n increases without
limit. One might view this fact as another virtue of “price-like” mechanisms. The
results has been generalized [Arrow and Radner (1978)] to the case of a general
concave function f.

Arrow and Radner (1978) find a similar asymptotic result for the case of
general concave production functions f and for an information structure which
can not be interpreted as a price mechanism. They study the structure wherein
each manager conveys to the center a complete description of the manager’s
current function f. The center is to allocate each resource in a list of fixed
resources (whose availability he knows) among the managers, and bases the
allocation on full information. Each manager,, however, knows only his own
function f and has to chose a value of his local decision variable in ignorance of
other managers’ functions and in ignorance of the total resource availabilities. As
the number of managers increase without limit, the best expected payoff attain-
able under this structure converges to the best expected payoff attainable under
completely share full information (i.e. the best expected payoff attainable when all
managers as well as the center know all production functions as well as the
resource availabilities). To put it simply, local ignorance becomes less and less
damaging as the number of managers grows.

A similar asymptotic result has been shown by Groves and Hart (1982) to hold
for a structure which it is again difficult to identify with a price mechanism but
which appears considerably more appealing, with regard to informational costs,
than the Arrow—Radner structure, with its full communication of production
functions to the center. Groves and Hart study an “uninformed demand”
information structure. Each manager sends to the center a demand for the
centrally allocated resource (or for each of several centrally allocated resources).
The demand is not based on any “price” message from the center but only on the
manager’s local information (his current production function). If the total de-
mands do not exceed the current central resource availability then the demands
are met exactly. If they do exceed it, then one of several rationing schemes are
used. Formally, the information structure tells each manager only his own
production function and tells the center the manager’s demands (manager i’s
demand is some function of i’s current production function), as well as the
central resource availability (or availabilities). A team decision rule for this
structure tells each manager what value to choose for his local decision variable
and tells the center how much of the central resource (or resources) to allocate to
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each manager —it tells the center, that is to say, to fulfill the managers’ demands
when that is feasible and to apply some rationing scheme when it is not. To
achieve the paper’s asymptotic results it is not necessary to compute a team
decision rule which is best (expected-payoff-maximizing) for each such unin-
formed-demand information structure, but only to study particular interesting
rationing schemes and the team decision rules associated with them. It turns out
that for some uninformed-demand structures and some choices of rationing
schemes, as the number of managers increases without limit, the output of each
manager (the value taken by his function f) converges almost surely to the
highest attainable output (i.e. the output attainable when all decisions are based
on fully shared complete information). In particular, an extremely simple ration-
ing scheme suffices —a scheme in which the managers can be viewed as arriving, in
an arbitrary sequence, at the pool of fixed resources. Each arriving manager takes
what he wants from the pool until the pool is exhausted.

From the viewpoint of a designer who wants to compare one-step designs
whose costs are explicit, these results — asymptotic or otherwise --about the merits
of “price” mechanisms (in their single-interchange-of-messages form) are interest-
ing but quite incomplete. Such a designer would really like to know, in weighing
the classic claims for price mechanisms as a guide for choice among designs,
whether “price” designs extract good performance (expected payoff) from the
effort required to run them; or whether other designs would extract more from the
same effort. One very special form of this question could in fact be studied using
the tools of the Theory of Teams (ie. the techniques which sometimes permit
computation of best decision rules and best expected payoft).

In the Radner-Groves problem, one could confine attention to finite designs
and could permit manager i to impose a “grid” on the set E; of possible values of
(B 1;2)- He imposes on E,, that is to say, a partitioning 2’ composed of B,
sets. Similarly, the center partitions E, ,,, the set of possible k’s, according to
@"*1 composed of B,,, sets. Consider a technology in which a design’s cost is
increasing in B,, i =1,..., n +1, and depends on nothing else. Let E;, i=1,..., n,
be the non-negative quadrant of real two- space and let E,l +1 be the non-negative
real line. One can, in particular, consider a “(B,,..., B,, B, ;)-grid” finite version
of the OSLL structure, wherein the center knows, for each manager i, that the
true value of », lies in one of B, sets, and each manager knows that the true value
of k lies in one of B,,; sets. The best decision rules for this structure can be
found. They are obtained in a simple way from the best rules for the original
“continuum” OSLL structure by substituting, respectively, &(v,|p; € S;) for &v,
and &(k|k € T) for &k, where S; is asetin P’ and T is a setin #"*1. A similar
substitution yields best expected payoff. One can then choose the B; sets for each
i, i=1,...,n+1, so that best expected payoff is not less than for any other
(n+ l) tuple of partitionings, where the ith partitioning is a B i~fold partitioning,
i=1,...,n+1. Finally, one can ask whether this best (B,,..., B, ,)-grid finite
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version of the OSLL structure makes the best use of its effort. Is there any other
structure, under which member i, i=1,..., n, conveys to member n + 1 one of Ei
possible signals about his local environment and member n +1 sends out one of
B, ., signals about his, for which best expected payoff is higher? The answer is
not yet known.16

3.5. The polyhedral case

One of the distressingly few attempts to model real organizations in the frame-
work of the theory of teams is a study of a sales organization by McGuire (1963).
In the simplest model there considered, each of n salesmen decides, in a given
period, on an order, a;, to be centrally produced and delivered to that salesman’s
location. Salesman i knows a current price, e; (a random variable), at which an
unlimited amount can be sold in his location. The unit production cost for Y.a;,
the sum of salesmen’s orders, is 1 if 2a, < ¢ (c, say, is a “normal-shift capacity”),
but it is 1+ k for any excess of 2a; over ¢ (k is, say, the extra unit cost of an
“overtime” shift). Team payoff is then

p(a,e)= Zn: a,-(e,-—l)—kmax(O, i a;,— c)
i=1 i

i=1

b

n n
= min( Y ae—1),Y ae,—1—k)+ck
i=1 i=1
and A4 is non-negative real n-space. One may be interested, for example, in the
structure (%, Y) for which 7,(e) = e, and in comparing it with the “centralized”
structure for which 5,(e)=e. Consider a generalized form of the problem:
p(a,e)=min(p,(a,e),..., p,(a, e)), where p,(a,e) is linear in the vector a for
k=1,...,8
Suppose, further, that for any e, the (real-valued) actions are required to satisfy
not only a; <0,i € N, but also linear constraints depending on e, namely,

Z}\i(e)a,-éﬂs(e), s=1,...,S.

i=1
If E is finite then, not surprisingly, the best decision rules for any information

structure (7, Y) can be found by solving an associated linear programming
problem [J. Marschak and Radner (1971, ch. 5)].

6More ambitiously, one can add a further “effort” dimension, namely, “fineness of action
implementation”, to be discussed below in Section 4.3. One studies a finite version of the OSLL
structure in which not only the numbers B, are fixed, but also the number of possible team actions,
ans asks whether any other finite structure characterized by the same B,’s can do better when the
number of permitted team actions is kept the same.

Handbook of Mathematical Economics, vol. II1, edited by K.J. Arrow and M.D. Intriligator
© 1985, Elsevier Science Publishers B.V. (North- Holland)
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4. Contributions to organization design: Adjustment processes
4.1. General concepts and background

An adjustment process is a system of difference or differential equations in n
variables, each variable associated with one of the n members — comprising the set
N —of an organization which has to take actions in response to a changing
environment. The variable associated with member i is a vector of messages sent
to other members or possibly to i himself (a stored piece of information). In
general, the equation associated with a member has the organization’s environ-
ment as a parameter. In important cases the parameter is not the complete
environment but rather the aspect of which that member has “private” knowl-
edge —knowledge he gains through his own observation of the environment and
not through messages received from others. The organization’s action is an
n-tuple, whose ith coordinates is called “member i’s action”. There may be a
natural association between a member’s action and his private knowledge:
whoever is in charge of a certain coordinate of the organization’s action “auto-
matically”, or very cheaply, has private knowledge of a certain aspect of the
environment. Such “cospecialization of action and observation”, as it has been
called [J. Marschak and. R. Radner (1971, ch. 4)], is a technological fact and
partly determines the costs of carrying out an adjustment process.

We shall confine attention to difference-equation processes. Suppose again that
new environments occur regularly, one time period apart. The first step of the
adjustment process follows observation of the new environment. In practice, some
finite number of steps—say, T —would have to be carried out. Following the T'th
step, the organization takes an action which is a function of the values taken by
the members’ variables at the T'th step. This action is, then, a response to that
environment which preceded the first step.!”

Given an n-member organization with environment set E and action set 4, a
temporally homogeneous adjustment process'® is the quadruple

m=(Mmg, f=(f....f"), h).
Here # is a set called a language; m, an initial message, lies in .# ™, the n-fold
Cartesian product of #; f' is, for every i in N, a function from E X 4™ to
M; and h —called the outcome function —is from E X .#‘™ to A, an action set.
The quadruple defines, for any e in E, the difference equation system

mi=f'(e,m,_,), t>1, alliin N,
where m,_, € #"™ is the n-tuple (m;_y,..., m]_y).

170One may wish to add the requirement that T be small enough so that the action is taken before a
new environment occurs.
18We consider here a variant of the formulation first given by Hurwicz (1960).
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In a temporally non-homogeneous process, which we shall not consider, each
function f’ would have a further argument, namely, the interger ¢ The variable
m’ can be interpreted as a message formed by i at step ¢ and sent to any member
Jj who needs it in order to form his next message m}“. If T steps of the process
are carried out following the environment e, then h(my, E) becomes the organi-
zation’s action in response to e.

Now suppose we are given n partitionings ’ on E, i € N. Let the sets in 2’
be indexed by the variable e;, called the ith environmental characteristic. Then we
call the process (#, my, f, h) privacy-preserving relative to { P'}, . y if for every
i, there is a function f' such that if e lies in the set of #' indexed by é;, then

file,m)=fi(é;,m), allmin #™.

An action in 4 is the n-tuple a = (ay,..., a,). If there is an inevitable cospecial-
ization of action and observation, so that only the member who takes, say, the
action a, can observe a certain environmental characteristic, then that means it is
technologically impossible to operate a process, say = *, which is privacy-preserv-
ing relative to partitionings wherein not k£ but some other member observes that
characteristic. If such cospecialization is not inevitable but is extremely cheap,
then the process =* is not impossible but is forbiddingly expensive and perhaps
not worth studying.

As for the selection of an action once a terminal message m,. has been reached,
the function & determines a vector of functions (4,..., h") where h'(m, e), with
me . #™, is a value of a,, i € N. One may wish to require a similar privacy-pre-
serving property with regard to action-choosing, i.e. for every i, thereis a function
h' such that when e is in the set of 2’ indexed by &, then h'(m, e) = h'(m, ;) for
all m in .# ™. This is achieved automatically if / is a function only'® of m.

Suppose both f and h in the process = = (A, my, f, h) are privacy-preserving
relative to {#'},. . Suppose the partitioning %’ describes the environmental
observing done by member i. The possible actions &;(e, T) = h'(mr, ) generally
partition the set E more finely than the observational partitioning %°. The
further refinement is due to the 7' interchanges of messages which occur. The
messages which member i may receive from j are implied by the function f*: i
receives messages from j # i if and only if there is some m = (m’,..., m/,..., m")
€M™, some m=(m,...,m/,...,m")€ M, with m’/+ m’, and some e € E
such that f'(e, m) # f'(e, m). But a;(e, T) does not depend on the entire T-step

19Then h is a “non-parametric” outcome function in the terminology of Hurwicz (1972). Formally,
of course, one could let 4;(m,_1, ¢;) be an element of the vector m}. Member /, that is to say, keeps a
running record (in the form of a message sent to himself) of the action he would take were the current
step to be the final one, and this is, say, the last coordinate of the vector m!. If the current step is the
final one —if ¢ = T — then the action taken by i is given by the non-parametric function h’(mz) which
equals the last coordinate of m..
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accumulation of messages received by i; that accumulation would generally
partition E still more finely than does 4;(e,T). At each step, in the typical
process, member i, knowing only e; and m,_,, is unable to reconstruct (does not
remember) the sequence of messages which he has received since the first step.?’

The abstraction just presented was inspired by the classic debates about the
virtues of price or “competitive” mechanisms for resource allocation in an
economy. Once classic claim was that an economy, with or without private
ownership, could be operated at all - or at least could not achieve Pareto-optimal-
ity unless—the information repeatedly exchanged among its many members
consists, for each commodity, of a price and an excess demand. The unthinkable
alternative was some scheme which would require descriptions of members’
preferences, endowments, and technologies to be gathered in a central place,
where individual consumptions and productions are computed and then issued as
instructions to the economy’s members. Discussions since the 1930’s have made
clear that the choices are not quite so polarized. One can formulate schemes
(“planning” mechanisms of various sorts), in which there is still a “center”, which
fall short of the unthinkable total centralization, but in which the center may yet
receive more information about members’ technologies and tastes than would be
given by a classic sequence of utility- and profit-maximizing excess demands. The
messages sent by the center, moreover, constrain members’ actions more than
prices alone constrain them in the classic scheme. To clarify the issues that arise
in choosing among the rich variety of resource-allocating schemes which are in
principle possible, one first needs an abstract concept fitting any scheme. The
abstraction just given has served the purpose reasonably well in a number of
studies of resource-allocating mechanisms. We shall consider several lines of
study and shall relate each of them to the comparison of one-step designs.

4.2.  The equilibrium study of adjustment processes®!

Hurwicz’s original paper (1960) presents a process, the “quasi-competitive”
process, which captures, in one form, the message interchanges that precede a
competitive equilibrium. Each member’s message is a set of “resource-flow
matrices”; such a matrix describes all trades and productions in the economy. To
form a new message, a member i finds the set, say S;, of those matrices which
would leave him at least as well off as any matrix in the intersection of all
members’ previous messages. His new message is not S; itself, but rather the
smallest cone containing S;. That is of interest because the smallest cone generally

20The formulation above does, however, permit complete (or partial) accumulation of messages. If
the language # 1is sufficiently rich, i’s message m’ could contain a complete summary of the sequence
of messages i has so far received.

2 Much of the literature dealing with this topic is surveyed in Hurwicz (1973); we shall explicitly
mention here only a small part of the literature.
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partitions the set of possible previous message n-tuples more coarsely than does
the set S; itself and therefore is, in a certain sense, an informationally less costly
message. If the environment set (the set of possible tastes, technologies, and
endowments) has classic properties, then for every initiating environment the
quasi-competitive process yields at equilibrium an n-tuple of messages—i.e. sets of
resource-flow matrices—whose intersection contains only the competitive equi-
libria of the economy defined by that environment.

In this approach to the study of processes, then, one looks not at the messages
reached after some finite number T of steps, but rather at the equilibrium
messages. To be precise, one now no longer defines a process as a quadruple but
merely as the triple,

7= (M, [ h);

the initial message m, is omitted. Then, for e in E, the equilibrium messages
comprise a set D(e) C A ™, where m = (m!,..., m',..., m") € D(e) implies

fi(e,m)=m', all ieN.

The action generated by the process in response to e lies in a set, namely, the set
D(e) of equilibrium outcomes or actions,

PD(e)={acA:h(m,e) =aforsomemin D(e)}.

We shall say that the process covers E with regard to equilibria if, forevery e in E,
D(e) is not empty. We shall then also call it a process on E.

One simply lays aside the question of which equilibria, if any, will in fact be
reached for specific initial messages, and the question of how long (how many
steps) this might take.?? In the spirit of classic debates about competitive resource
allocation, one investigates only the achievements of a process at equilibrium. For
the case of resource-allocating processes for a certain set E of economic environ-
ments, one may be interested, for example, only in processes which (1) cover E

22There is one process for which equilibrium is achieved in one step. This is the privacy-preserving
process wherein each member i/ announces the characteristic e¢; to the others. For this process, the
language is # =U,E;, where E; is the set of possible values of e;, and f'(e,m)=f'(e;,m)=e,.
Following any initial message m,, one has for all i, m{ = f'(e, my) = f'(e;, mo) = ;= f(e;, m;) =
m’,. One-step processes are considered in a general manner below.
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with regard to equilibria and (2) for every e in E achieve Pareto optimality,
relative to the economy defined by e, at every equilibrium outcome-—ie. every
element of Z(e). One can then ask whether a certain process within the class of
processes satisfying (1) and (2) for some E is informationally inferior to some
other process in this class— whether, for example, the quasi-competitive process,
which satisfies (1) and (2) for the set E of classic economies, is inferior to any
other process satisfying (1) and (2) for the same? set E.

For some purposes it is useful to provide the following interpretation for the
equilibrium study of a process @ = (.#, f, h) on E which is used by an n-person
organization and is privacy-preserving relative to partitionings { #'},.y on E
with sets indexed by the variables {e;};c 5. Let there be a center —an (n +1)st
member —who announces to all the members in N (members 1,..., n) an arbitrary
non-repetitive sequence of trial messages m = (m!,..., m',..., m") belonging to
M ™, After the current message m is announced, every member i in N examines
the current value of his private environmental characteristic e; to see whether
fi(e;, m)=m' [where, as before, fi(e;, m)=f'(e,m)]. If so, member i sends a
“Yes” signal to the center. If the center receives n “Yes” signals, then an
equilibrium message, say m € .# ™, has been found; the center then computes
the value of h(m, e) for the current environment and this becomes the organiza-
tional action taken in response to e. [If 4 determines a privacy-preserving n-tuple
h,...,h", and every a in A is an n-tuple (ay,..., a,) of members’ actions, then
each member i computes the new action h'(, e,) and takes that action.] If and
only if the center receives less than n “Yes” signals, a new trial message m is
announced.

One ignores, then, the fact that sometimes a large number of trials may be
needed to reach an equilibrium message and sometimes a small number. Doing
so, one can simply treat as costly the “size” of the set .# (") —i.e. some suitable
measure of the size of the collection of messages which the center must be
prepared, in the worst case, to try out. If .#( is finite, the size is the number of
elements in .4 ™. If .#™ is a finite-dimensional vector space, then its dimension
is a measure of size.

The dimension approach is followed in a number of studies of resource-allocat-
ing mechanisms for economies [Mount and Reiter (1974) and Reiter (1974a,

B Hurwicz’s quasi-competitive process is informationally superior to the “greed” process with
regard to coarseness of the partitioning on the possible message n-tuples m, = (m,..., m”) induced,
for any ¢ and any fixed e, by the n-tuple m,_ ;. In both processes, messages are sets of resource-flow
matrices and the outcome function assigns to an n-tuple of sets another set, namely, their intersection.
In the greed process, the entire set S;, not the smallest cone containing it, is sent by i. On the other
hand, the greed process achieves Pareto-optimality at equilibrium for a wider class of economies than
the classic set E. It is not yet settled whether there is another process, in the class of processes
satisfying (1) and (2) for the classic E, which is informationally superior —in the same precise
sense— to the quasi-competitive processes.
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1974b)]. For these mechanisms .# (" is a continuum. These studies are well
surveyed by Reiter (1977) and we shall not re-survey them here. In all of these
studies, certain smoothness conditions are placed on the functions f and A.
Without such conditions, a process with a many-dimensional .# could be
replaced by a process with a lower-dimensional /(" having the same equi-
librium outcomes for any e — by coding, in a “non-smooth” way, every many-
dimensional message as a one-dimensional one (e.g., » real numbers can be
hidden in a single decimal number with n digits). Such smuggling of many
dimensions into one dimension is felt to introduce certain additional costs, so that
the apparent cheapness of the single dimension is illusory. These costs are not
explicitly modeled but perhaps have to do with the fact that in practice a
continuum of messages would have to be approximated by a finite collection of
messages and a process with “smuggling” would be hard to approximate, since a
small error in the one-dimensional message would lead to a very large error in the
“smuggled” n-dimensional message obtained after decoding.

A specific technology in which such costs would arise for non-smooth processes
has not so far been presented in the discussions. Instead the general question
asked has been: Given a certain class E of economic environments (economies),
and given that the action set 4 comprises the economy’s possible final consump-
tions, what is the lowest dimension of .#, where .# is a Euclidean space, for
which there is a “smooth” process (., f, h), privacy-preserving with respect to
the natural partitions*® 2@’ on E, covering E with regard to equilibria, and
achieving Pareto-optimality at every equilibrium outcome?? In particular, is the
lowest dimension that required by the competitive process, suitably defined? For
the class E of classic economies, and various specific versions of smoothness, the
answer to the second question has been shown to be “Yes” [Mount and Reiter
(1974) and Hurwicz (1977)].

The simplest and earliest of these results is due to Hurwicz.?® Consider an
n-person exchange economy with L commodities. In the price mechanism a
message consists of n L-dimensional trade vectors and L —1 prices. Now let
n=2 and L =3 and let each of the two persons have a utility function on the
commodity triples with a quadratic term and a linear term. (We shall be
considering the very same economy for n= L = 2 in Section 4.3.3 below.) It can
readily be shown that if a mechanism had as its messages the two trade vectors
plus less than 2 (= L —1) auxiliary variables and if it covered the set of all
possible economies (endowments and linear-quadratic utility functions), that
would imply a one-to-one mapping from the message space onto an “economy-

24In the natural partitions, each agent knows his own endowment, preferences, and technology.

251f the sets # are not restricted to Euclidean spaces, then dimension is replaced by a more general
concept.

26 The central technique of proof first appeared in Hurwicz (1972), but the discussion there did not
deal with economies. The most general version of the result sketched here appears in Hurwicz (1977).
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space” of higher dimension; but such a mapping cannot be Lipschitzian. So if
“smooth” is taken to mean that the mapping from messages to environments is
Lipschitzian (or, more precisely, contains a Lipschitzian selection), then there
exists no smooth mechanism which covers all linear-quadratic two-person ex-
change economies, achieves (at equilibrium) what the price mechanism achieves,
and has a message space consisting of trade vectors and auxiliary variables and
having a dimension lower than that of the price mechanism’s message space. 4
fortiori there exists no such mechanism covering a larger class of two-person
economies than the linear-quadratic class. The result extends to » persons and to
message spaces more general than the trade-vectors-plus-auxiliary-variables spaces.

Results of this sort are clearly important if one wants to assess in a preliminary
way the classic informational claims made for the competitive mechanism - claims
long unsubstantiated since it appeared too difficult to study them with rigor. This
motivation amply justifies the approach even though it is incomplete from the
point of view of a designer of organizations. The designer would be concerned
with a specific transmission, observing, and action-taking technology. He would
be concerned by the changing number of trials required, from one environment to
the next, to reach an equilibrium message. He would be concerned with costs not
captured in the size of #, e.g. the action-taking effort, perhaps measured by the
size of the set of possible equilibrium outcomes (actions). The “trial message”
procedure, moreover, is generally not a well defined one-step design in our earlier
sense.

Some processes, however, are one-step designs. To define them —and for other
purposes as well—it is first convenient to replace our definition of process by a
slightly more compact one. The new definition is suggested by the “ trial message”
interpretation just given. We define a process on E, privacy-preserving with
respect to partitionings { #'},., on E, with each setin ' indexed by a value of
e,€ E, as a triple

P=(M,gh),

where M is a language (whose elements we may think of as a center’s trial
announcements) g is an n-tuple of functions (gl,..., g,..., g"), where g’ is a
function on E,X M taking?’ two integer values, namely, zero and 1; and & is
from M X E to A. For a privacy-preserving process 7 = (.#, f, h) as defined so
far, one obtains the new form P = (M, g, h) by letting M = .# (", letting

gi[ei,(ml,...,mi,...,m")]=0 if fi[ei,(ml,...,mi,...,m")]=mi,
=1 otherwise,

2TAgain, E, denotes the set of possible values of e,.
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and letting A= h. The new form, then, simply suppresses the fact that an
announced trial message is an n-tuple of individual messages. The equilibrium
messages and actions for the new form are the same as those for the associated
original form: for P =(M, g, h), m € M is an equilibrium message for e, with
characteristics (ey,...,e,), if and only if g‘(e;,m)=0, all i in N. We shall,
through the rest of the present section and the next one (Section 4.3) consider
only processes P = (M, g, h) as just defined.

Now suppose that a process P =(M, g, h) on E is privacy-preserving with
respect to the partitionings { 2, }, < n, Where for each i the sets in #; are indexed
by the variable e; and E;= {e;}. We shall say that the process P is a one-step
process if (i) there exists for each i a set T; of non-empty sets whose union equals
E; and (ii) there exists a one-to-one mapping y from M to M= T,X--- XT,
such that for each i and for every m in M, g'(e;, m) =0 if and only if e; €1¢,,
where (#,...,t,) =y(m). One can interpret such a process as follows: Person i
observes his local environment e; and determines a set ¢; in T, to which it
belongs. This set is communicated to a center. The center finds that m for which
y(m)=(t,,...,t,); then the action h(m,e) is taken. A sequence of trial announce-
ments is not needed. Suppose we now add an explicit statement as to who
computes and takes the action i(m, e). If h is privacy-preserving, then the action
has n parts, each the responsibility of one member, who computes and takes that
part of the action once the center has announced m; if not, then the entire action
is computed and taken by the center. To carry out the process in this way is to
operate a one-step design as we have defined it. In the terminology of Section 2.1,
a one-step process defines a one-step design covering E with respect to 4, where
A is any set containing the set of actions {a: a = h(m,e) for some m in M and
some e in E }.

To any arbitrary process P = (M, g, k), there corresponds a one-step process
which we shall call the standard form of P; it is denoted P* = (M*, g*, h*) and is
privacy-preserving with respect to the same partitionings as P. A message in M*
is an n-tuple of sets. We have

M*= {(Rl,...,Rn):fori=1,...,n,R,-=u’é(ei) for some e,EE,.}, (4.1)
where

po(e)={meM:gi(e,m)=0}. (4.2)
Further, for any m=(Ry,...,R,) € M*,

g*(e;,m)=0 if R,=p'(e;),
=1 otherwise, (4.3)
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and, foranye in E,
h*(m,e) =h(m*,e), (4.4)

where m® denotes an element uniquely selected from the set N, < yR;.

The standard form P* = (M*, g*, h*) has the following interpretation: Mem-
ber i observes the environment to determine the current value of e;, say &, He
then sends to the center a message, which, is a set, namely, the set uig(E ) of all
those messages—all those elements of the original language M —for which he
would, in the original trial-message procedure, say “Yes” when e; has the value
e, The center examines the n such sets received and selects a message, in the
original set M, which lies in all of these 7 sets.?® For the current environment this
is an equilibrium message of the original process P = (M, g, h) and is also an
equilibrium message (with respect to g*) of the standard-form process P*. (If the
original process covers E with respect to equilibria, then the intersection of the n
sets cannot be empty.) An action is then assigned to the equilibrium message so
found; it must belong to the set of equilibrium actions for e in the original
process P. If we interpret P*, then, in the sending-of-messages-to-the-center
manner, and if we add an explicit statement as to who determines the equilibrium
action, then we have well defined a one-step design, for n members plus a center,
which realizes the process P = (M, g, h). Given any e, the design generates as an
output an action which is an equilibrium outcome for P.

As an informally sketched example, consider an adjustment process of a
“Lange-Lerner” price type with » managers and a price-announcing center who
allocates an organizational resource. In the original process,?® the center an-
nounces a new price at each step ¢ as a function of profit-maximizing excess
demands received at ¢ —1. Only at equilibrium are the right prices found, it is its
achievement at equilibrium that makes the process worth studying and worth
comparing with others which achieve the same allocation at equilibrium. In the
standard form of the process, each manager, after observing the current environ-

28T0 see that the standard form is indeed a one-step process as defined above, we have to exhibit
the mapping y. For any message m* = (S),..., S,) € M* let y(m*)=[y;(m*),...,v,(m*)], where
Yi(m*)=(e;: g'(¢;, m)=0 for all meS,}. The mapping is one-to-one. Suppose not. Then M*
contains an m* = (S},..., §,) and an m* = (S,,..., S,), such that for some i, §; # §; and y,(m*) =
¥;(#**). Suppose (i) 5; = {m € M: g'(¢;, m)=0} and (i) ;= {m € M : g'(&;, m) = 0}. Since §; # S,
3m € M such that (iii) i € S, but (iv) & §;. Now (iv) means that g’(e;, #ir) # 0; that means in turn
(since 7 € §;) that &, & y,(m™*) = {¢;: g'(e;; m) =0 for all m in §;}. On the other hand (ii) implies
that e; € y;(m*)=(¢;: g'(¢;,m)=0for all m in §;}. That contradicts the statement that y,(m*) =
¥ (m**).

' ® The original process can be defined formally so that it has the “(M, g, h)” form. An element of M
is a trial announcement of managers’ local actions and prices. One can also define the process in the
“(MA,f,h)” form. An element of .# (a message by member /) is a set of prices and managers’
actions; i proposes a value of his own action by announcing the set defined by that value and by all
possible values of the other variables.
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ment —determining his current technology—computes a demand schedule, giving
the profit-maximizing demand he would announce, for that technology, at every
possible price in the original process. The center receives the n demand schedules
and uses them to find a price at which total excess demand would be zero (or
possibly negative); he then gives each manager i an allocation equal to i’s
(profit-maximizing) demand at this equilibrium price. Informed of his allocation,
each manager chooses a (profit-maximizing) value of whatever local action
variables are in his charge. A one-step design, then, has achieved the equilibrium
of the price process.

The standard form requires, in general, a richer language than the original
form,*® but since it defines a one-step design, with no mystery as to a terminal
step, the assessment of its cost, and its payoff's over successive time periods, can
proceed.

4.3. Discrete processes>!

4.3.1. Introduction

The assumption that a process P = (M, g, h) has a countable language M permits
mathematically distinct approaches to the assessment of its costs and payoffs. The
language may be not only countable but discrete. A discrete language lies in a
metric space and for each element of the language there is a neighborhood
containing that element but no other element. Among discrete processes those
with a finite language are of particular interest.

In the present section we mainly consider processes with discrete languages.
But some remarks apply as well to the larger class of countable processes and
some only to the smaller class of finite processes. We shall refer to any process
whose language is not countable as a continuum process.

From a technology-modeling point of view, one many argue that discreteness is
realistic: it is not possible to send any one of a continuum of messages over a
transmission device found in the real world. If the continuum is the real line, for
example, then any number to be sent has to be rounded off to a pre-selected
number of digits. A further reason to study countable or discrete processes is to
see what results from the study of continuum processes have natural counterparts
in the countable or discrete case. In particular, are there counterparts to the
finding that there are no “smooth” continuum processes which achieve what the
price mechanism achieves but have a message space of lower dimension?

%An example is given in footnote 36, below.

31The problems and results summarized in this section are based on joint work of L. Hurwicz and
the author [Hurwicz and Marschak (1984)]. An early remark on a finite counterpart to the smoothness
conditions of the “continuum” literature considered above is found in Hurwicz (1972, p. 314).
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We start by considering any process P = (M, g, h) which

(a) has a countable M

(b) is privacy-preserving relative to partitionings { 2'}, . »
on E,whereeach setin 2’ is indexed by a value of the
variable e;, whose possible values comprise the set E, . (4.9)

(c) covers E [for every e in E, thereis an m in M
for which g'(e;, m) =0, all i]

(d) has an outcome function & whose domainis M and not M X E|

We assume further that

the index n-tuple (e, ..., e,) uniquely determines e, i.e.,
for every n-tuple (T3,...,7,) with T, 2, all i in N, . (4.6)
N, c 4T; is a singleton

Now (4.6) is satisfied if the variable e is identical with the n-tuple (e,,...,e,) and
if
E=E XE,X---XE, (4.7)
where, as before, E; denotes the set of possible values of the variable e,.
We consider in the rest of the present section (Section 4.3) only triples
(E, P,{ P}, c y) satisfying (4.5) and (4.7).
4.3.2. Realizing a discrete process in one step

It will be useful to define, for any process P = (M, g, h) on E,

aéf(m)E {e,.eEi:g‘(ei,m)=0} l
oy(m)= T1 ai(m)

enN

(4.8)
3= {S C E,: S is non-empty; S = o;(m) for some m in M}‘

If E; is a set in one-dimensional Euclidean space, then every set g,(m) is the
intersection of E with a countable union of rectangles, where each rectangle has
dimension n or lower.

We turn now to a two-person organization whose environment set £ = E; X E,
is a closed rectangle in non-negative real two-space with one corner at the origin;
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E; (i=1,2) is a closed interval of the non-negative real line, with zero its smallest
element The two figures which follow portray two pnvacy-preservmg processes
on E, ie. two triples, (M, g, k) and (M, g, h). Process P = (M g, h) has a
language M containing just three messages: m,, m,, fir;. Process P=(M,z h)
has a language M with just four messages m,, m,, m,,m, Assume that process
p obeys the condition that “m’ # m” and a;(m’)U a;(m"’) is a rectangle” implies
“h(m’) # h(m")”.3? In Figure 4.1 the three interior clcsed rectangles portray the
three sets 0;(7,), 0;(71,), 05(713). The indicated closed intervals portray the sets
oz () (i —1 2; k=1,2,3), wh1ch for brevity, are called R, R, R, and R,, R,.
The interior closed rectangles and closed intervals of Figure 4.2 portray the
analogous sets for process P; there the interior intervals are denoted T;,T, and
T2,T2 In the notation of (4.8), =} = {R;, R, R,}, S2={R,, R,}; == (T, T}},

g { T2a TZ}

Now we can associate with process P a one-step process which we shall call the
observational-report form of the original process. In this form the language
consists of pairs of sets, namely the four pairs {(T},T;), (Tl, T,), (T3, T,),
(T;, T,)}. Person i observes in which of the closed intervals, 7; or T,, the current

2(learly if a process P=(M,g, h) has two messages, m’ and m’”’, for which h(m’)= h(m"),
while at the same time o,(m’)U g, (m”) is a rectangle, then the two messages can be consolidated, i.e.
there exists another pnvacy-preservmg process on E, with the same equilibrium actions as P and with
a language smaller than M if M is finite.



Ch. 27: Organization Design 1401
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Figure 4.2

local environment e; lies and announces that interval to the center. If e; lies on
the boundary of two intervals, he announces either one. The center next finds that
m in M such that a;(m) is the closed rectangle which is the cartesian product of
the two intervals. The action h(m) is then taken, where % is the outcome function
in the original triple (M, g, h).

For any e in F the equilibrium actions for the one-step observational-report
form are exactly . = of the original process, i.e. the one-step process realizes the
original process P. Note that the observational-report form has a four-element
language, a language of the same size as that of the original process.

We may define the observational-report form for any process P = (M, g, h). It
is the triple P = (1, 8, h), where

(a) M= {(S,,...,5,): $,€3L, i=1,...,n}

(b) g"[(e,.,(sl,...,S,,)]=0 if e €S
=1 otherwise . (4.9)

c) k[(S,,...,S,)] = h(m), where m is the only element of M
satisfying a,(m) =I1"_,S,

But the observational-report form of a given process P may not exist, since (c)
may not be satisfiable for some n-tuple (S,...,S,). The observational-report
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form exists [i.e. (c) can always be satisfied] if and only if for every n-tuple
(Sy...,S,) with S;€X}, all i, there is one and only one m€M such
that o,(m) = *_1S;. If the observational-report form of P does exist then it
realizes P.

For process P of Figure 4.1, the observational-report form, as just defined, does
not exist, since e.g. there is no element m in M= {7y, m,, s} such that
o;(7m)= Ry X R,. It is true that we can depart from the observational-report form
as just deﬁned and construct another one-step process which realizes process P,
by dzscardmg the set R, from the pairs in the language. For t__hat process —call it
P*= (M*, g* h*)-we have M*= (R, Ry), (Ry,Ry), (Ry Ry), (Ry,Ry),
while g* and h* are defined analogously to g © hin (@ and (c) of (4.9). But that
process, while indeed a one-step process reahzlng P, has four elements in its
language, whereas P itself has only three. There is, in fact, no privacy-preserving
one-step process with a three-element language which realizes process P [assigns
to each (e, e,) in E the equilibrium actions which process P assigns to that
(e1, e,)]- Process P covers E with the three closed rectangles of Figure 4.1 and
assigns a distinct outcome to each rectangle. To construct a one-step process
realizing process P, we must choose subsets of E, and E, such that the Cartesian
product of each subset pair is contained in one of the rectangles and each point in
E is contained in one of the Cartesian products. But every collection of subset-pairs
with that property contains more than three pairs.*

Summarizing the basic differences between process P and process P:

(i) Process P has an observational-report form, as defined in (4.9), in which
every set in X is a possible message sent by i The observational-report form of
P realizes P 1n one step and has a language exactly as large as that of P itself.

(i) There is no one-step process which realizes process P and has a language no
larger than that of P itself.

To put it another way, both of the original processes P and P cover E with
regard to equilibria, assigning certain action sets to points of E.>* The assign-

ments made in process P might be superior to those made in process P, with
regard to some appropriate measure of performance,® even though P has a

331f the collection contains three or fewer subset pairs, then for either E, or E, there is exactly one
subset. Suppose that is true for E;. Then there is no subset S of E, such that E; X § is contained in
the top left rectangle. Suppose it is true for E,. Then there is no subset S of E; such that E, X S is
contained in the bottom rectangle.

3To points on the boundary of two rectangles a set containing more than one action is assigned.
For process P, a point on the boundary shared by the two lower rectangles is assigned the action set
(R(ms), h(ma)).

See Section 4.3.3 below.
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smaller language. But unless the language size is increased, the equilibrium
actions of process P cannot be realized in one step; it requires a sequence of trial
announcements— sometimes as many as three—before an equilibrium message is
found. The equilibrium actions of process P, on the other hand, can be realized in
one step, by transmission of observational reports to the center, without changing
the language size.3

Now what general property of a process, going beyond the finite Euclidean
space of the preceding two illustrative processes, makes it behave like process P
and not like process P? The answer is provided by the following definition; the
definition abstracts from the visual intuition that a process like P imposes a grid
on E while a process like P does not:

Definition
A process P =(M, g, h) on E is said to have a grid structure if

forevery i in N noset S in E; is contained in the union (4.10)
1
of some sets in 2;, all of them distinct from S'.

(Equivalently, P has a grid structure if for every i in N and every S in 2}, there
exists an element x € S such that x ¢ S for all S e 2‘ with S # S)

Clearly process P has a grid structure and process P does not. If E is a subset
of a metric space, then a process P = (M, g, h) on E has a non-overlapping grid
structure if for all i any two sets S, S’ in 2; are either disjoint or have only
boundary points in common, where every neighborhood of a point in the
boundary of the two sets contains points in both sets. Process P has a non-over-
lapping grid structure. The discussion which now follows would be greatly
simplified if we confined attention to non-overlapping grid-structure processes on
subsets of metric spaces. But the question of when a one-step realization is
possible and what language size this requires is important enough to merit a more
general treatment.

36 For both processes P and P there is another one-step form, namely the standard form, defined in
(4.1) to (44). But that requires a larger language than the observational report form. Thus in the
standard form of process P there are three possible messages for person 1: (i) the message (i, it ) to
be sent if e, lies in the interior of R, [ie. for such an ey, the set ;Lg(el) defined in (4.2), is { /iny, fin, }];

(ii) the message (#n, i, ) if e, lies in the interior of Ry; (iii) the message (7, firy, fi13) if € lies at
the boundary of R, and R;. Similarly there are three possible messages for person 2. So the language
of the standard form of P has nine elements.
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It can be shown®’ that if a process P = (M, g, h) on E has the grid structure,
then

(a) forevery n-tuple (Sy,...,S,) with S; in E;, there is an
m in M for which o,(m) =11, _ S,

(b) foreverym in M with g (/) non-empty there is an n-tuple
(Sy-...,S,) with S, in T}, and o,(m) =11, S, . (411

(c) if M is finite and contains no m for which o,(m) is empty,
then the number of n-tuples (S,,..., S,) with S; in 2},
i =1,..., n, equals the number of elementsin M

A process which obeys (4.11) need not have the grid structure. But if it obeys
(4.11) together with the condition of non-redundancy then it must have the grid
structure. A process P = (M, g, h) satisfies this condition if M contains no
redundant messages. A message m € M is redundant if o,(m) is non-empty and

is contained in U, ¢ 30,(m), where MC M and m& M. (If a process has
redundant message there exists a second process with the same equilibrium
actions for every e as the first process and no redundant messages.)

37Proposition (b) of (4.11) follows immediately from the deﬁnltlon of o,. The proof of proposition
(a) is as follows, for the case n = 2. Suppose S, =, (m) S, =0, 2(m), and both sets are non-empty. If
both S; and S, contain only one element or if 21 or 2, contalns only one set, then the assertion of
(a) follows trivially. Suppose (without losing generality) that S; has more than one element and that
5, contains more than one set. Then, in view of (4.10), there exists a point e* = (eff, e¥) in §; X S,
such that

¥eol(m)” implies “op(m)=o}(7)". ™)

[Suppose not Then for every (e, e;) in S ><S2 there exists an m such that e; € g (m) and
a, l(m)+g, (m) That is to say, for every (e, ;) in S; X S, there exists $; € 2‘ with §; ;e S, such

that e € Sl and e, € ;. That means S, is contained in the union of some sets in 21 all distinct from
S;, which contradicts (4.10).]

Since the process covers E with regard to equilibria there exists an m* with e* € g, (m*). We shall
show in two steps, that g,(m*) =S, X S,.

Step I. Let é+# e* belong to og(m*) in partlcular (without losmg generality) suppose (a)
& &S =¢ (m) We have (B) é Eq, (m*) (v) ef Eo, L(m); (8) e; FEo, L(m*). Now one of three
possxbl]mes must hold: (a) o (m* )=o gm) which contradicts (a), (,B) (b) o, (m*)r\ o, L(m) is
empty, which contradicts (y), (8), or (¢) ag(m*) # o, (), but o;(m*)N o, (M) is not empty. *But ©),
together with (y) and (&), contradict (*). Hence & e S;. An 1dentlcal argument establishes &, € S,.

Step II. Suppose & + e* belongs to S; X S,. Suppose é & o, (m*) in particular, suppose (without
losing generality) that (A) & & o;(m* ). We also have (p) &, é og(m), in addition to (y) and (8) of
step 1. Of the three possibilities listed in step I, (a) contradicts (A), (x¢); and (b) and (c) are ruled out
as in step I. Hence, é, € o;(m*). An identical argument establishes &, € ag"(m*).

Proposition (c) of (4.11) follows directly from (a) and (b).
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If a process P = (M, g, h) is non-redundant and has the grid structure then it
obeys, moreover, a strengthened form of (4.11), in which (a) becomes “for every
n-tuple (S,,...,S,) with S; in 2! there is one and only one m in M for which
o (m)= n,E NS ”. The strengthened form is needed if the observational-report
form of P is to exist, i.e. if the outcome function % in (4.9) is to be well-defined.
A non-redundant finite-language grid-structure process P = (m, g, h) has then [in
view of (4.11) in its strengthened form] an observational-report form which
realizes P and has a language the same size as M.

Finally, if a process P = (M, g, h) with a finite language M is non-redundant,
if “m # m’ and o,(m)VU o,(m’) is a Cartesian product” implies “h(m) # h(m’)”,
and if the process lacks the grid structure, then there does not exist a one-step
process which realizes P and has a language not larger than M. The argument
used above to establish this fact for the illustrative process P can be generalized.

4.3.3. Informational efficiency of discrete processes

We turn now to the informational efficiency of discrete processes. Suppose the set
A of possible actions lies in a Euclidean space. An organization has to choose a
point in A4 in response to an environment e in a set E. It contemplates doing so
by using a proposed discrete process on E. We shall use a new measure-not
expected payoff—of the process’s “gross” performance. The measure is well-
defined for many infinite-language discrete processes but will be particularly
useful for the study of finite-language processes. Let ¢(e) denote, for any e in E,
a uniquely selected payoff-maximizing action in 4. (We confine attention to cases
where a payoff-maximizing action exists for any e in E.) Our measure of gross
performance of a process P = (M, g, h) satisfying (4.5) will be the “maximum
possible error” of the process P or, as we shall call it for brevity, the “error of the
process P . This is

es(P)= sup sup |lh(m)=o(e)l,

meM e€a(m)
where, as before,
o (m)={e=(es,...,e,): g'(e;,m)=0,allie N},

and the symbols | denote Euclidean distance. Study of this measure is confined to
processes P for which &, exists (a sufficient condition is that 4 be bounded on
M). The error ¢,(P) is, loosely speaking, the largest possible distance between the
action which the organization “should” take [i.e. ¢(e¢)] and the action actually
taken when the process P attains an equilibrium message. We shall call ¢ an
optimality function.
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Consider now the following question about a given process P. Is there any
other process P* on E with ¢,(P*) <e,(P), with the informational costs of P*
not higher than those of P and with atleast one of these inequalities strict? If not,
the process P is efficient. If there is no such P* among the processes in a given
class of processes, then P is efficient within that class.

Studying such an efficiency question for a minimax performance measure like
e, 1s, of course, not accepted lightly by someone who regards expected-utility
maximization with personal probabilities as the only proper procedure for a
designer or any other decision maker. As the remarks in Section 1 emphasized,
however, such a viewpoint must also reject the efficiency study of designs with
regard to expected payoff. Both lines of study are equally “illegitimate”, yet it is
such lines of study, not uncompromising expected-utility comparisons (with
utility defined on payoff and cost), that one can feasibly pursue.

The performance measure &,, in the proposed efficiency study of processes, is
itself subject to criticism, since it ignores the payoffs earned by the actions which
might be in force before the process generates an equilibrium action. If the
process has a one-step realization, the criticism is not serious.

On the cost side, progress requires some bold assumptions. In the spirit of
existing equilibrium studies of processes we ignore all costs incurred in the steps
which precede equilibrium. Again the omission is not serious if the process has a
one-step realization; it then becomes a one-step design in our earlier sense.

Two cost elements will be considered: (i) the size, or for infinite-language
processes, the “fineness”, of the language M, and (ii) the size or fineness of the
process’s action set h(M)={a:a=h(m) for some m in M}. If a process
P=(M,g, h) has the grid-structure, then it can be realized by the one-step
observational-report form, and the size or fineness of M is a measure of
“observing effort” or “the precision of observational reporting”, since M and g
determine the sets o,(m) in which person i seeks to locate the current environ-
ment e;. The size or fineness of the action set 4( M) is a measure of implementing
or action-taking effort. In some cases it may also measure some aspects of
computing effort: an outcome function 2 which partitions M coarsely may be
easier to compute than one which partitions M finely. Beyond that, however, no
explicit measure of computing effort will be suggested. That may create difficul-
ties, as the “price-mechanism” result summarized in Section 4.3.4 below il-
lustrates. Useful measures of computing effort remain a major unmet challenge in
the study of adjustment protess and the study of designs in general.

We shall not present a general definition of the two “fineness” measures which
are to be used when language and outcome set are infinite. Some natural measures
will emerge in the illustrations of Section 4.3.4.

We now narrow the discussion to the case of an optimality function ¢ which
takes its values in one-dimensional real space and to processes whose action sets
lie in one-dimensional real space.
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Three basic propositions are important tools in the construction of discrete
privacy-preserving processes on a set E = E; X - -+ X E, whose actions are points
on the real line and which are informationally efficient with regard to a real-val-
ued ¢.

Proposition 4.1 (optimality of the “closest -to- midcontour” outcome function)

Let P=(M, g, h) be a process on E for which ¢,(P) exists. Let 4 denote the
action set h(M). Let P*= (M, g, h*) be another process on E, where h* is
defined as follows:

forany m € M *, h*(im) is the smallest element of a set |
which has either one or two elements, namely the set

{aceAd:la—d,(m)|<la—d,(m)|,allain A}, where ). (4.12)

d¢(m) =3

in£ )¢(e)+ sup ¢(e)

€€ g (m e € a,(m)

Then e,(P*) exists and &,(P*) < g,(P).

The proposition says that a process for which the error e, exists can be
improved with regard to error, or at least not damaged, if the process’s outcome
rule is changed so that the action set remains the same but the rule for assigning
actions becomes the following: to each of the sets o,(m) the rule assigns3® that
action (in the unchanged action set) which is closest to the “midcontour” action
for a,(m), with ties being broken in favor of the smaller action. The “midcontour”
action for o,(m) is that action which is midway between the infinum of the
function ¢ on the set o,(m) and the supremum of ¢ on that set. Given any triple
(A, M, ¢) we shall call the function 2* defined in (4.12) the closest-to-midcontour
function for (A, M, ¢).

Proof of the proposition is straightforward.

For the next proposition call a process == (M, g, h) on E ¢-connected
whenever we have (i) e’,e”,e” in E; (i) m€ p (e’), m € p(e"); (i) ¢(e’) <
¢(e”)<¢(e”). Then we also have VﬁEug(e”). [Here p,(e), following the
definition in (4.2), denotes {me€ M: g'(m,e;)=0, all i}.] The proposition says
that if a process which lacks the property is modified so that it displays ths
property, then the error ¢, is not increased. Specifically:

Proposition 4.2 (Optimality of “¢-connectedness™)

Suppose e’,e”,e”” € E and ¢(e’) < ¢(e”) < ¢(e’”). Suppose P = (M, g, h)is a
(not ¢-connected) process on E such that for some me M, mep ge), me

38Since an outcome rule assigns an action to each m in M, it also assigns an action to each set
o, (m).
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po(e” ). Let P*=(M*, g*, h*) be another process on E such that M* =M,
h*=h,

ug.(e)=p,(e), forallein E\{e”},
and

pge(e”)={m}.
Then

g, (P*) ,(P).

The proposition implies, in particular, that if for every i=1,...,n, E; is a
subset of the real line, and if ¢ is non-decreasing or non-increasing in each of its
arguments then we can confine attention, in searching for grid-structure processes
with low error, to grid-structure processes (M, g, h) for which every set o,(m) is
the intersection of E with a single rectangle of dimension n or lower.

To state the third proposition some definitions are needed. For a given process
P=(M,g, h)on E, let a, B be, respectively, the infinum and the supremum of ¢
on E. Assume that Ja, B[ C ¢(E). For m in M, define u,, = inf{$(e): e € 5,(m)},
v, =sup{¢(e):eEo,(m)}. For a < X<Y < B, define the set BYy to be the
empty set if u,>Y or v, <X, and the set {e:e€o,(m); X<¢(0)<Y}
otherwise. Thus By, comprises those environments which are in o,(m) and have
¢-values in [ X, Y], except that if such an environment, say e*, lies also in o ()
for some m # m, then e* is assigned to By or By according to whether o,(m)
or o,(m) contains environments whose ¢-values are in J¢(X), ¢(Y)[.

For a<X<Y <B and ACR, let E,(X,Y)=sup{|h (m)—¢(e)|: m € M,
B%, non-empty; e € BY, }, where h , denotes the closest-to-midcontour function
for (A, M, ¢). (Thus, for the action set 4, E (X,Y) is the supremum of the
errors on the entire “belt” of environments whose ¢-values are in [ X, Y], where
environments lying in several distinct sets o,(m) are deemed to belong to the belt
or not in accordance with the preceding definition.) For m in M and a< X <Y
< B, ACR and B}, non-empty, define F,, ,(X,Y)=sup{|h (m)—¢(e)|:eE
B¥y}. Call the set o,(m) “A-critical on (X,Y)” if BY, is not empty and
F (X, Y)=E(X,Y). [Thus o,(m) is A-critical on (X, Y) if it contains points
(environments) in the “(X, Y)-belt” and for one of these points, say e*, the error
|h ((m)— ¢(e*)| equals the supremum of the errors over all points in the (X, Y)-
belt.] Finally, we say that the finite set 4 has the “no-alien property for
(A, M, ¢)” if for two successive elements r, s of A (ie, r<s and ]r,s[N A4 is
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empty), the action h 4(m) equals r or s if o,(m) is A-critical on (r, s). [Thus if
o,(m) is A-critical on the “belt” defined by two successive elements of 4, then m
is assigned one of those elements (by the closest-to-midcontour function 4 ,)
rather than some “alien” element.]

Then Proposition 4.3 is as follows:

Proposition 4.3 (optimality of “equal-error” action k-tuples among all action k-
tuples when ¢ is bounded)

Let ¢ be bounded from above and below, i.e. there exist a, 8 € R such that
inf{¢p(e):e€ E} =a, sup{¢(e):e€ E}=p. Let ¢, E satisfy Ja, B[ S $(E). Let
P = (M, g, h) be any process on E with h(M)= A, where 4 has k elements. Let
P*= (M, g, h*) be another process on E, where:

(i) h*(M)= A* and h* is the closest-to-midcontour function for (M, A*, ¢);

(i) A* has k distinct elements, namely a;,..., a;, which are ordered, without
loss of generality, so that a; <a, < --- <a,;

(iii) A* has the no-alien property for (a, M, ¢); and

(iv) A* satisfies the “equal-error” condition

EA*(“, ay) = EA‘(al’ a,)

= EA*(a2a 03)

(4.13)

= E(ag_y,ay)
= EA*(ak,B).

Then &,(P*) <e,(P).

The proposition says that if ¢ is bounded then a process with a k-element
action set can always be improved, or at least not damaged, if the action set
becomes a k-tuple with the “equal-error” and no-alien properties, and the
closest-to-midcontour outcome function is used. The proposition rests on a
somewhat intricate argument.

Propositions 4.1 and 4.3 tell us, then, that if ¢ is bounded, then a search among
processes with a k-element action set in order to find a process with a low error ¢,
can be confined to those processes for which the outcome rule is the closest-to-
midcontour rule, and the action k-tuple has the no-alien and equal-error proper-
ties.>

39Each of the three propositions has a counterpart for the case of actions which lie in the real space
of dimension greater than one.
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One can, in particular, study the case of a linear ¢ on a compact E in a finite
Euclidean space. Consider the class of k-action grid-structure processes on E,
where the grid is constrained to consist of cubes of the same size [each cube being
a set g,(m)]. An exact error-minimizing action k-tuple for such processes (a
k-tuple with the equal-error and no-alien properties) has been found as a function
of ¢, E, and cube size.

4.3.4. Illustrative applications to the study of resource-allocating mechanisms

Suppose persons 1 and 2 comprise a two-person two-commodity exchange
economy. Let x and z be symbols associated with the two commodities. For
person i, endowments of the two commodities are w,_ ,w, . Additions to endow-

x;0 Wz

ments (net trades) are denoted x;, z,. Utility as a function of net holdings is
2
U, = ai(wx,- +x,)— %Bi(wx,- +x;) +z,+ W,
(where a; > 0, 8;> 0), provided

du;/9x;=a,— B,(w, +x,)20. (4.14)

Now define e;;=a;—Bw,, ex=a,—Bw,, e;=B1>0, e;,=B,>0, e, =
(€115 €15), €, =(€a1,€,5;), € =(ey, e,). Then (4.14) becomes

x;<ey/¢€;,. (4.14%)

The pair of consumptions [(w, + x;,w, + z;), (W, +Xx2,w, + z,)] is an interior
Pareto optimum if at that pair (4.14’) holds for i =1,2 and

P _:Blwxl+B2wx1)/(Bl+B2)

=(en—ey)/(enten), (4.15)
Xy =" X, (4.16)
z1+2,=0, (4.17)
z;+w, 20, i=1,2. (4.18)

Now let a set E of pairs e =(e;, e;) be given. Consider the following con-
tinuum “price” mechanism P = (M, g, h) on E:

M= {(p,x): p=(epen+eynen)/(e+ep),
x=(e;;—ey)/(e, +ey) forsome e € E},
§1=911_912X‘P, §2=e21+622x—p,

h(p,x)=x.



Ch. 27: Organization Design 1411

Here p is a price and x is a proposed value of the net trade x,. For every e € E,
the unique equilibrium outcome (the unique element of the set h[p (e)]) is
x,= (e;;— e,1) /(€12 + e,5;). The inequality (4.14’) is satisfied for x,=x, and
x, = —x, provided

exne T eye 2 0. (4.19)

We consider only E such that (4.19) is satisfied for all e € E.

We are interested in the informational efficiency of discrete versions of the
mechanism ( process) P, as well as the efficiency of other processes on E. An
appropriate optimality function for this purpose would be one which assigns to
each e € E, the set of interior Pareto optima for the economies defined by e.
Fortunately, however, we do not have to deal with optimality functions which are
set-valued and not point-valued. For it happens that in the economy considered,
with its utility functions linear in z;, every interior Pareto-optimal trade vector
(x1, X5, 2, 2,) for the economies defined by a given e has the same value of x;
(and hence also the same value of x, = — x;), namely x, = (e;; — €,1)/(e1; + €3,).
Any (z,, z,) satisfying (4.17) and (4.18), combined with x; = (e;; —e,;)/(e1, +
e,,) is also, for any e € E, the unique equilibrium outcome of the continuum
price mechanism P. Therefore, if one chooses P out of those privacy-preserving
continuum processes on E which achieve a Pareto-optimum at equilibrium, then
one imposes no “bias” in favor of certain Pareto optima: the x-components of an
optimum are unique and the process P leaves open the specification of the
z-components.

Hence, in judging a certain discrete process on E, it is natural to use the
point-valued optimality function ¢(e) = (e;; — e,;)/(e1; + €,,), and to compare
the maximum distance between that process’s equilibrium actions and ¢(e), with
the corresponding maximum distance for other processes on E.

Judging the information efficiency of discrete versions of the price process P is
a task which is very different when the environment set is compact than when it is
unbounded. We consider both compact and unbounded examples.

A compact two-parameter set of economies. Consider first the economies de-
fined by the following compact set E:

E= {e = [(6’11’312),(321,622)] tep=ep=1,0<e;51,0<ey él}-

For every e € E, (4.19) holds. It will save notation in studying this E, to let the
symbols e,, e, temporarily take new meanings: let e, now denote ey, let e,
denote e,;, let e =(e,,e,) and let E now denote the set {e = (e;,e,):0< e <
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1,0< e, <1}. Our optimality function becomes ¢(e)=3(e;—e,). The con-
tinuum price mechanism P = (M, g, h), redefined so that it is now a mechanism
on the redefined E, has

M={(p,x):p20; p+x—€,=0, p—x—e,=0
for some (e, e,) € E}
={(p,x):p20,IxIsp=sl-|x|, —3sxs3},
gl=p+x—e, g=p—x—e,,

h(p,x)=x.

The language M, that is to say, consists of all points in the rotated square shown
below (Figure 4.3). _

We consider now a discrete approximation, called P, to the continuum price
process P. The approximation is a process whose language is a subset of M*,
where M * denotes the points in M which are obtained when one imposes on M a
uniform lattice whose points are spaced a distance of ¢ apart, with the origin
being a lattice point. The set M * has 25 elements, namely the points shown in
Figure 4.4. _

In the approximating process P, there is for every e, € E;, a surrogate value e!
at a distance of not more than { from e,. Person i observes e; and finds the
surrogate value e;. (For e; =% or 3, there are two surrogates.) Person i says Yes
for a given message m if he would have said Yes for that m and for e; in the
continuum process P. Any “tighter” choice of uniformly placed surrogates than
those which are within ¢ of any given e; would not permit coverage of E: for some
surrogates there would be no lattice point among those in Figure 4.4 such that in
the continuum process i would say Yes to that surrogate at that lattice point.
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Formally, for the approximating discrete price process P= (1\7 , &, i), we have

(ii) g(m,e;)=0 if g'(m,r)=0 forsome rin p(e,),

=1 otherwise, i=1,2,

where
p(e) = {4}, 0=e<3,
=(34),  e=h,
={%}, j<e<i,
- {88, ek
={%}’ $<e <],

(iii) h(m)="h(m).
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Thus in the approximation P, the setsin {oz(m):me M) are the nine squares
in Figure 4.5. Inside each square a3(m) is written m = ( p, x) (at the top) and the
outcome 4(m) = x (at the bottom). The example illustrates what can be stated in
a precise manner, namely, a general procedure for obtaining a discrete process
which approximates a given continuum process whose language is a subset of a
Euclidean space. As in the example, the approximation imposes a uniform lattice
on the continuum language.

The process P is a grid-structure process with a nine-message language M and
a five-element action set A(M)= {—3%,-1%,0,4% %) The five actions correspond
to the values of ¢ along five contours (lines of constant ¢); the center of each
square is on one of these contours. Each square, in other words, is assigned its
midcontour, which, as we know from Proposition 4.1, is the best possible outcome
that can be assigned to the square. It is easily checked that for our optimality
function ¢ = }(e, — e,), £,(P)=+%. The maximum error of § occurs at the corner
points of the squares. At e =(%,2) for example, an equilibrium message [one of
four in pz(e)]is m=(p,x)= (3,0). For this message, the action is x = A(m) = x
= 0. But the optimal action is ¢(e)=3(3—3) =1L

The result concerning linear ¢ and compact E, alluded to at the end of Section
4.3.3 above, shows that if a grid-structure process on our unit-square E has 9
messages and 5 actions, then it annot have a maximum error less than 1. So P is
informationally efficient in the class of grid-structure processes on E. That is to
say there is no grid-structure process on E with not more than 9 messages, not
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more than 5 actions, an error &, not more than §, and one of these inequalities a
strict inequality.*°

From another point of view, however, the discrete price process P is not
efficient, since only 9 of the 25 points in M* are used in the approximating M.
Suppose that in “purchasing” the lattice on M whose points are ¢ apart, one has
paid for a 25-element language. Given this capability, is there a mechanism which
improves upon the maximum error of 1 achieved by P_and does so without
requiring more than 5 actions, the number required by P? The answer is that
there exists a grid-structure process which achieves this improvement. An error of
25 (which is less than %) is achieved by a grid-structure process P=(M*g h)on
E, portrayed in Figure 4.6, whose language has 25 elements. The sets a;(m) are
squares and the 5 actions are { — 25, — 26, — 25,3535 }-

These results generalize to any discrete process on E which approximates the
continuum process P in the manner illustrated and whose language is obtained
by imposing a lattice of arbitrary fineness on the continuum M. If one counts
only the lattice points actually used, then the discrete price process is information-
ally efficient, at least within the class of grid-structure processes. If one supposes
that both the used and the unused lattice points are available as messages, then a
process on E with no more messages, no more actions and a smaller error than
the price process can be constructed.

A compact three-parameter set of economies. Consider now a new E. This time
let e, = (eq;, e;,) have its initial meaning: let e,,, as initially defined, equal one;
let e, denote e,, as initially defined. We consider the class E of three-parameter
economies, where E is the non-negative unit cube,

E={[(en,e1n),e]:05e<1,0<e,<1,05e, <1}

The continuum price mechanism P= (M_ ,&, h) on E has, as its language M, the

4OMoreover, it is conjectured, but so far unproved, that if one wants to divide the unit square into ¢
non-overlapping rectangles so that the maximum perimeter of the rectangles is minimized, then one
can confine one’s search to ¢ rectangles of equal perimeter. By Proposition 4.1 the best possible
outcome to assign to a rectangle is its midcontour. But for ¢ = 3(e; — e,), the maximum error on a
rectangle of sides a, b, when the midcontour outcome is assigned to the rectangle is (a + b)/4 (this
error occurs at a corner). Finding an error-minimizing mechanism which uses ¢ messages is therefore
the same as dividing the unit square into ¢ non-overlapping rectangles so as to minimize the maximum
perimeter. If the conjecture is true, then it is easy to show that when ¢ =r?, r an integer, then the
maximum perimeter is minimized if the unit square E is divided into ¢ equal squares. Since 9 = 32,
then if the conjecture were true, it would follow that the equal-square mechanism of Figure 4.5, in
which each square is assigned an outcome equal to its midcontour, is a best mechanism (with regard to
error) among all 9-message 5-outcome processes, i.e. that the discrete “price” mechanism P is efficient
in the class of all discrete processes on E, not only in the class of grid-structure processes.
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Figure 46. In every square o,(m), the outcome (m) is written. The maximum error in
every square occurs either at the “northwest” or at the “southeast” corner of the square
and is exactly 3 /20.

set of messages which are equilibrium messages for some e in E. It is straightfor-
ward to verify that this set M is the parallelogram in Figure 4.7. (It contains the
rotated square of Figure 4.3 since the E of the preceding two-parameter example
is contained in the new E.)

Suppose as before that a uniform lattice is placed on the parallelogram FE,
generating a set M* of lattice points. Suppose that, P, our discrete approxima-
tion to P, is to use as its language a subset M of M*. Let the discrete
approximation P = (M, g, h) be defined quite analogously to that of the preced-
ing example, with “surrogates” playing the same role. It is again a grid-structure
process. The surrogates are now given by the centers of uniform cubes of side V.
The cubes cover E. To be an acceptable approximation to P, however, the process
P must cover all points in E with regard to equilibria. The fineness of the lattice
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placed on M must be consistent with the “tightness” of the surrogates, i.e. with
the number V. That is to say, for each of person i’s surrogates there must be a
lattice point in M * such that in the continuum process i would say Yes if his
local environment were that surrogate and the message were that lattice point.

It can be shown that if V'=1/¢, ¢t > 0 an integer, then:

(i) For any lattice on M which is consistent with 1/, the process P= (M__ , &, 71)_
will not use all the lattice points in M* [i.e. for some m in M*, oz(m) is

empty].

(ii) One can construct another discrete process (a grid-structure process) whose
language has the same number of elements as the lattice points actually used,
whose action set is no larger than that of P, and which yet has a lower error
g4 So the price process P is inefficient: one can do better without increasing
either language or action set.

It is perhaps surprising that the three-parameter case should prove less “favor-
able” to the price process than the two-parameter case. One might have expected
that the price process displays its advantages the more strongly the larger the
number of parameters determining an environment. In fact a result similar to that
just summarized, a result which we shall not sketch here, can be obtained for the
four-parameter case (with 8 <e,, <1, where § > 0 is arbitrarily small and with
€115 €12, €5, €ach taking values >0 and <1). On the other hand, perhaps two,
three, and four are all “small” numbers and perhaps it takes an example with a
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much larger number of parameters to illustrate the informational virtues of a
discrete price process.

Note finally that the price process P follows one of several possible “styles” in
which one might approximate the continuum price process. Another style
(“rounding off” the functions g') is considered in the unbounded example which
now follows. Whether a “round-off” approximation to the price process is
inefficient for bounded sets of economies remains open.

A two-parameter unbounded set of economies. Now let E = {e=[(e;q,e;12),
(€11, €5,)]: €1, =€y, =1, e;; + ey, > 0}. Again let e, denote e;; and let e, denote
e,;. We shall consider a discrete process P on E which approximates the
continuum price process P in a different way than the “parameter surrogate”
processes just considered. For the process P = (M, g, h) on E we have

M={(p,x):p+x=e,, p—x=e, for some e,, e, with e, + ¢, > 0}.

Now impose on this M a lattice in which the distance between the x-coordi-
nates of the lattice points is not necessarily the same as the distance between
p-coordinates. Denote the lattice L,,, where p > 0, 7> 0. The lattice is the set of
points {(p, X): p =Ip, x = k7 for some integers /, k}._

The language of the discrete approximating process P= (M g, h) is M= L,.N

M. Further for i=1,2 and m=(p, X)in M,

§i(m’ei) =0 if |gi(m,ei)|§8i,
=1 otherwise,

and

i

[(5,x)] =%

The numbers 8, 6, are positive. In this style of approximation, person i says Yes
(for a given “local environment” e;) to a lattice-point message ( p, X) if he would
be “within §,” of saying Yes in the continuum process, i.e., if g’ takes a value
within 8; of zero. This corresponds, for example, to rounding off g’ to a given
number of digits (decimal, binary, or in general, z-nary) and saying Yes if the
rounded off value is zero. The round-off numbers 8,8, are to be chosen so as to
permit coverage of E. That means they must lie in the set S,, = {(8,,8,): for every

(e, e,) € E, there exists (p, X) in M such that |p+x—e1|<81, |IpP—X—ey| <
8,} (recall that g'[(p, x),e)]=p+x—e, g 2[(p,x),e]=p—x—¢,).



Ch. 27: Organization Design 1419

Suppose a (8;,8,) in S, has been chosen. Then for a given (e, e,), the lattice
point ( p, X) is an equ111br1um message if

PtX—e =¢, pP—X—e=¢, e <8y, |e] £6,.

That means that x = (3)(e; — e,)+ 3(& —¢&,) will be the action taken. But the
optimal action for (e, e;) is ¢[(e;, €;)]=3(e; —e,). The supremum of
the distances between the equilibrium action and the optimal action, i.e. of the
possible values of [3(&; — &,)| =3¢, + &,), is then 4(8, + 8,). That is to say

£¢(;) = (%)(81 +8,). (4.20)

To judge the proposed discrete price process fairly, we must select a pair of
round-off numbers (8, §,) in S,, for which §, + &, (and hence ¢,) is a minimum.
Note that for a given pair (p,7) of lattice finenesses, the action set of the
discrete price process is the set T.= {x:x=kr for some integer k}. The
informational eﬁic1ency question is therefore the following: For given p, 7 does
there exist a process P = (M, 3, h) on E, with Mc L,, and with action set

h(M)=T, such that e¢(P) < e,,,(P), where P is deﬁned for a (8,,6,) which
minimizes §; + &, on §,.? If the answer is no, then P is informationally efficient.

The answer for p <1, is, however, “Yes”. From one point of view, in fact, it is a
rather strong “Yes”. Specifically, for every rival process P, the action set is the set
T.. Hence we immediately have a lower bound to e¢(l~’), namely 7/2. [To see this,
pick an arbitrary integer k. Let e=(e,, é,) € E satisfy (&, — &)=kt +1/2.
Then |¢p(e)—x|=7/2forall x €T,. Sowe have £¢(P) >inf, 7‘,|¢(é)— x|=1/2]
The error of the discrete price process [for a best choice of 8,,8,) in §,,] exceeds
the lower bound 7/2. But for any A>0 and any lattice L,, w1th 0<p<l,

however fine, we can construct a process P for which £¢(P) = 1-/2 + A. That is to
say, for a given lattice L, there is a family of discrete processes which are not the
price process P but have the same language and action set as the price process P; by
choosing an appropriate member of this family we obtain an error as close as desired
to the lower bound 7/2.

To establish the result one proceeds as follows. The set S, turns out to be very
difficult to compute for arbitrary p, 7. It is a bit easier to compute the not larger
set Sp, = {(08,,68,): for every (e, e,) €EE, there exist integers /, k such that
lp+kr—eq <8y, [lp—kT—e,| 82}. [Here a weaker requirement is imposed
on (8,, 8,) than is the case for S, , since negative “prices” /p are now permitted.]
Let the expression a$,. denote the set {(8,,8,): 8, =ad,, §,=ad, for some
(8,,8,)in S bc} One shows easily that

S, =18, 1 (4.21)
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S1/p0=(1/p)S,; orequivalently S, =pS, , ;. (4.22)

Now forp =1, S‘pl consists of all points on or above a certain “staircase” graph
in the (8,,8,)-space.* The set S,; contains points for which 8, +8,=p +} but
no points for which 8, + 8, <p + 3. Consequently, in view of (4.22), if p <1
(1/p =1) then some of the points in .§p1 =pS}/,1 lie on the line §, + 8, =p(1/p +
3) =1+ p/2 and none have a value of §, + 8, less than that. Hence, in view of
(4.21).

if p<t (p/7=1),
then the minimum of 8, +8,0on  §,, =7, ., }. (4.23)

is t(1+(p/1))/2=7+p/2

_Nowlet p < 7. Since S,, C S‘p, and since 7 + p/2 is the minimum of §, + §, on
S,., every (8,,0,) in S, satisfies §; +8,> 7+ p/2. But then, in view of (4.20),
the error of the discrete process P, using any (