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Many environmental scientists are analysing spatial data by geostatisticalmethods and interpolating from sparse
sample data by kriging to makemaps. They recognize its merits in providing unbiased estimates with minimum
variance. Several statistical packages nowhave the facilities they require, as do some geographic information sys-
tems. In the latter kriging is an option for interpolation that can be done at the press of a few buttons. Unfortu-
nately, the ease conferred by this allows one to krige without understanding and to produce unreliable and
evenmisleading results. Crucial for soundkriging is a plausible function for the spatial covariances or,morewide-
ly, of the variogram. The variogrammust be estimated reliably and thenmodelled with valid mathematical func-
tions. This requires an understanding of the assumptions in the underlying theory of randomprocesses onwhich
geostatistics is based. Here we guide readers through computing the sample variogram and modelling it by
weighted least-squares fitting. We explain how to choose the most suitable functions by a combination of
graphics and statistical diagnostics. Ordinary kriging follows straightforwardly from themodel, but small changes
in the model function and its parameters can affect the kriging error variances. When kriging is automated these
effects remain unknown.We explain the choices to bemadewhen kriging, i.e. whether the support is at points or
over blocks, and whether the predictions are global or within moving windows.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Daniel Krige, the doyen of geostatistics, died earlier this year at the
grand age of 93. Early in his career he developed empirically statistical
methods to predict ore grades from spatially correlated sample data in
the gold mines of South Africa (Krige, 1951, 1966). In the 1960s his ap-
proach was formalized by Matheron (1963, 1965), and the term
‘kriging’was coined in his honour. In the two decades that followed en-
vironmental scientists – pedologists, hydrologists, geologists, and atmo-
spheric scientists, to name a few – saw the merit of this technology
in their own fields (e.g. Burgess and Webster, 1980; de Marsily and
Ahmed, 1987; Gajem et al., 1981; McBratney et al., 1982; Vauclin
et al., 1983; Russo, 1984; Oliver andWebster, 1987). Now kriging is ap-
plied widely and with increasing sophistication in petroleum engineer-
ing, mining and geology, meteorology, hydrology, soil science, precision
agriculture, pollution control, public health, fishery, plant and animal
ecology, and remote sensing. Kriging has become a generic term for sev-
eral closely related least-squares methods that provide best linear unbi-
ased predictions (BLUP) and also some non-linear types of prediction. It
is a major advance over the mathematical methods of interpolation
common in the first half of the 20th century.

Environmental surveys are almost always based on samples, but in
general the measurements represent a continuum in space from
which the sample has been drawn. Most analysts and their clients
want to know what values are likely at intervening places. Kriging en-
ables them to predict those values optimally, i.e. without bias and
with minimum variance; hence its popularity.

Initially practitioners had to write their own code for
geostatistical analysis; they had to have understanding of numerical
analysis to program the methods. In the last 20 years the situation
has changed dramatically with powerful software that has become
widely and cheaply available in the public domain, such as GSLIB
(Deutsch and Journel, 1998), gstat (Pebesma, 2004; Pebesma and
Wesseling, 1998) and GenStat (Payne, 2013). Gstat in particular is
now accessible through R free of charge (see http://cran.r-project.
org/web/packages/gstat/index.html). Several geographic informa-
tion system (GIS) packages also have facilities for geostatistical anal-
ysis, and kriging has become one of the favoured interpolation
routines, if not the favoured one. The ‘Spatial Analyst’ component
of ArcGIS (3D-Analyst and Geostatistical Analyst Tool, ArcGIS ver-
sion 9.2) is especially congenial with attractive graphics. It has en-
couraged many environmental scientists to use geostatistics, and
specifically ordinary kriging (see Section 4), for interpolation and
mapping. With kriging in its various forms, environmental scientists
can make spatial predictions at any location between their observa-
tion points without bias and take proper account of the errors, which
are minimized and also estimated together with the predicted
values. Unfortunately, the ease with which modern software can be
used means that anyone can produce maps by kriging without un-
derstanding what happens between the data and the resulting
maps. At the press of a few buttons on a computer one can interpo-
late from scattered data and display the result as a map. The software
becomes a ‘black box’ in which, somehow, a variogram is computed
and values from it are inserted into kriging equations without any
intervention or assessment by the user.

There are several textbooks on geostatistics (e.g. Chilès and Delfiner,
2012; Goovaerts, 1997; Olea, 1999), including our own (Webster and
Oliver, 2007). Judging from the numerous scripts we are asked to read
for this journal and others, however, we have the strong impression
that these books do not provide the succinct guidance that authors
seek to practice geostatistics wisely. Most authors seem to cull their
knowledge from journal articles, many of which are sketchy ormislead-
ing and some that are actually wrong.

Our purpose here is deliberately educational; it is to guide investiga-
tors, in particular those intent on publishing records of their research in
Catena, to use the basic geostatistical tools correctly and with under-
standing, and to avoid the pitfalls that lead toworthless results andmis-
leading claims and to scientific papers that requiremajor revision based
on fresh analysis and often more data.

Many environmental scientists who use geostatistical packages
have maps as their ultimate goals. But kriging for interpolation is
only the penultimate step in a chain that begins with sampling and
proceeds through the exploration and screening of data, perhaps
transformation, crucially the estimation and modelling of one or
more variograms, and ends with graphic display. Here we look at
each of these steps and the assumptions required to implement
them. We also tell intending authors what they should report so
that readers know and could repeat what they have done. We intro-
duce some algebraic notation for brevity, but we have placed most of
the essential equations in Appendix A so as not to break the flow of
the narrative. You can find them all with explanations in the text-
books cited above.

We are soil scientists, and we set the scene and illustrate the proce-
dures with examples in soil survey. There are close analogies in other
branches of land research, and scientists in those fields should find our
guide equally apt.

2. Random processes

Features of the environment, such as soil, are the product of many
interacting physical, chemical and biological processes. These processes
are physically determined, but their interactions are so complex that the
variation appears to be random. This complexity and incomplete under-
standing of the processes means that a deterministic or mathematical
solution to quantify the variation is out of reach at present. The logical
solution required a leap of imagination byMatheron (1965) in his sem-
inal thesis to treat the variation as though it were random. Let us first
translate this idea of a random property into a mathematical one,
which we call a random process. We can formalize it in the notation
that has become conventional as follows.

1. The value of a property, say z, at any place x, equivalent to x1,x2 in two
dimensions, and denoted by z(x) is one of an infinity of values of a
random variable Z(x) at that place. We call it a ‘realization’ of the
process.

2. The set of random values at all such places, again infinite in number,
in a region is a random process, and also denoted Z(x).

3. The random variable is spatially correlated at some scale.

Variables, such as the heights of water tables, the concentrations of
elements in soil, air temperatures and rainfall, for example, are regarded
as spatial randomvariables. For each, however, we have only a single re-
alization. Consequently, we cannot compute statistics for the realization
or draw inferences from it. Inference requires many realizations, and so

http://cran.r-project.org/web/packages/gstat/index.html
http://cran.r-project.org/web/packages/gstat/index.html


Fig. 1. Experimental variograms of log10K+ at Broom's Barn Farm. In the left-hand col-
umn are the ones computed from 87 data, and on the right are the ones computed
from all 434 data. The lags have been binned over all directions and incremented in
steps of 40 m, the sampling interval on the grid. The solid lines show the models
fitted to them with (a) spherical model, (c) exponential model,(e) power function,
and computed from 434 data and fitted with (b) spherical model, (d) exponential
model and (f) power function.
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to overcome this impasse we must make a further assumption, namely
that the process is stationary.

2.1. Stationarity

The notion of stationarity underpins geostatistics and allows us to
assume that there is the same degree of variation from place to place.
We can represent the random process by the model

Z xð Þ ¼ μ þ ε xð Þ; ð1Þ

where μ is themean of the process and ε(x) is a random quantity with a
mean of zero and a covariance, C(h), given by

C hð Þ ¼ E ε xð Þε x þ hð Þ½ �; ð2Þ

which is equivalent to

C hð Þ ¼ E Z xð Þ−μf g Z x þ hð Þ−μf g½ � ¼ E Z xð ÞZ x þ hð Þ−μ2
h i

: ð3Þ

In these equations h is the separation between samples in both dis-
tance and direction; Z(x) and Z(x + h) are the values of Z at places x
and x + h, and E denotes the expectation. If the mean is not constant
then the covariance cannot exist, and we invoke Matheron's (1965)
somewhat weaker assumption of intrinsic stationarity in which the
expected differences are zero, i.e. E[Z(x) − Z(x + h)] = 0, and the co-
variance is replaced by half the variance of the differences, the
semivariance:

γ hð Þ ¼ 1
2
var Z xð Þ−Z x þ hð Þ½ � ¼ 1

2
E Z xð Þ−Z x þ hð Þf g2
h i

: ð4Þ

Like the covariance, the semivariance depends onh and only onh, and
as a function of h it is the variogram, γ(h). The variogram is more gener-
ally useful than the covariance function because of theseweaker assump-
tions, and so it has become the central tool of geostatistics. For second-
order stationary processes the covariance function and variogram are
equivalent:

γ hð Þ ¼ C 0ð Þ−C hð Þ; ð5Þ

where C(0)σ2 is the variance of the random process. We mention one
more function of h, namely the correlogram: ρ(h) = C(h)/σ2.

We close this section by emphasizing that randomness and station-
arity are assumed attributes of ourmodels of variation; they are not prop-
erties of either the real world or of data, and there is no formal test for
them. Rather, they are useful in that they help us to understand the com-
plexity of the real world and to predict its conditions at unvisited places.

3. The variogram

The variogram as defined above is that of the random process Z(x)
which we assume to have given rise to the actual realization on the
ground; it is a theoretical function.

There are two other variograms that must be recognized.

• The regional variogram is that of a particular realization of the ran-
dom process in a finite region. You might compute if you had com-
plete information of the region and a computer with infinite
capacity. It can differ from the theoretical variogram in that a region
does not necessarily encompass all the variation in the assumed the-
oretical process. It is sometimes called the ‘non-ergodic variogram’ for
this reason (see for example Brus and de Gruijter, 1994). We can get
close to the regional variogram with dense data from satellite and
proximal sensors when we compute their experimental variograms.

• The experimental variogram is one that we estimate from data, z(xi),
i = 1,2,…. It is usually computed by the method of moments and at-
tributed to Matheron (1965):

γ̂ hð Þ ¼ 1
2m hð Þ

Xm hð Þ

j¼1

z x j

� �
−z x j þ h
� �n o2

; ð6Þ

where m(h) is the number of paired comparisons at lag h. By
incrementing h in steps we obtain an ordered set of values, as
shown by the points plotted in each of the graphs in Fig. 1. This is
the experimental variogram, also known as the sample variogram
because it is based on a sample. It estimates points on the regional
variogram.

3.1. Computing and modelling variograms

By programming Equation (6) we can compute the experimental
variogram from data. The result depends on the precise way we apply
the program and the decisionswemake, whichwe discuss aftermodel-
ling. These choices affect the outcome and should be stated clearly in
any paper for the Journal.

The experimental variogram consists of semivariances at a finite set
of discrete lags, whereas the underlying function is continuous for all h,
Equation (4). Therefore, the next step is to fit a smooth curve or surface
to the experimental values, one that describes the principal features of
the sequence while ignoring the point-to-point erratic fluctuation. The
curve must have a mathematical expression that can describe the vari-
ances of random processes with changing lag and guarantee non-
negative variances in your predictions. The choice is limited to a few
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simple functions that satisfy these. One of themost popular functions is
the isotropic spherical-plus-nugget model. We give its equation here to
introduce parameters mentioned later in the text:

γ hð Þ ¼ c0 þ c
3h
2r

−1
2

h
r

� �3� �
for 0bh≤r

¼ c0 þ c for hNr

¼ 0 for h ¼ 0;

ð7Þ

in which h = |h| is the lag distance, and the parameters are c0, the
nugget variance, c the spatially correlated variance, and r the range,
which is the limit of spatial correlation. The quantity c0 + c estimates
the variance of the randomprocess and is known as the ‘sill’. The nugget
variance, c0, represents the uncorrelated variation at the scale of sam-
pling; it is the variation that remains unresolved including any mea-
surement error. The quantity c is the correlated component of the
variation that represents continuity. Three other popular functions are
the exponential, the Gaussian and the power models; their equations
are given in Appendix A. Their definitions are in all the standard text-
books, and they are available inmost geostatistical software.We caution
against the ill-considered use of the Gaussian model, which is at the
limit of acceptability for a random process and can lead to bizarre pre-
dictions (Chilès and Delfiner, 2012). Wackernagel (2003) also warns
against it and shows implausible results from its use.

Fitting models is perhaps the most controversial aspect of
geostatistics. Some practitioners still fit models by eye; the procedure
is unreliable for several reasons including fluctuations in the experi-
mental variogram, the varying accuracy of the computed semivariances
Fig. 2. Experimental variograms obtained from a large simulated field by repeated sampling w
imental values, the dashed lines join the 5% and 95% quantiles. The circles are themean values,
eters c0 = 0.182, c = 0.811 and r = 12.4.
and anisotropy, i.e. variation in the underlying function with change in
direction.We see no need for this approach now thatwe have excellent
statistical software. Pannatier (1995), however, combined fitting by eye
with statistical evaluation in his program Variowin. It seems to work
well, but in our experience not quite as well as the next approach
(Webster and Oliver, 1997).

The approach we take is the one taken in most modern software
(though not in GSLIB) and is the one we strongly recommend.

1. Plot the experimental variogram.
2. Choose several models that appear to have the right shape and fit

each in turn by weighted least squares (Cressie, 1985; McBratney
and Webster, 1986) in an accredited program.

3. Plot the fitted models on the graph of the experimental variogram
and assess whether the fit looks reasonable.

4. If all plausible models seem to fit well, choose the one with the
smallest residual sum of squares (RSS) or smallest mean square.

5. One might be able to improve a fit in the above sense by elaborating
themodel. Any combination of the simple valid models is itself valid.
But is the added complexity worth it? The Akaike information crite-
rion, the AIC (Akaike, 1973), may help to answer. It is defined as

AIC ¼ −2� lnLþ 2� p; ð8Þ

in which L is the maximized likelihood and p is the number of parame-
ters in the model; the aim is to minimize it (Webster and McBratney,
1989; Webster and Oliver, 2007). For any one experimental variogram
ith four sizes of sample, namely 49, 81, 144 and 324 points. The black discs are the exper-
and the solid lines are the spherical model fitted to the exhaustive variogramwith param-

image of Fig.�2


Fig. 3. Experimental variogram of topsoil sand from a survey in theWyre Forest, England.

Table 1
Summary statistics of exchangeable potassium (K+) at Broom's Barn.

K+/mgl−1 Log10(K+) K+/mg l−1 Log10(K+)

Number of data 434 434 87 87
Minimum 12.0 1.079 14.0 1.146
Maximum 96.0 1.982 70.0 1.845
Mean 26.3 1.398 26.7 1.404
Median 25.0 1.398 26.0 1.415
Std dev. 9.039 0.134 9.403 0.138
Variance 87.71 0.0180 88.42 0.019
Skewness 2.04 0.39 1.76 0.39
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it has a variable part which we can calculate as

A ¼ n lnRþ 2p; ð9Þ

where n is the number of estimated semivariances and R is the mean
of the squared residuals. We can usually increase p to improve the fit,
i.e. to diminish R, but if in doing so we do not diminish A then the elab-
oration is of little worth.

6. If you are still unsure which model to choose specifically for kriging
then do a cross-validation and choose the model that produces a
mean squared error closest to the mean kriging variance; we de-
scribe it below after we have introduced kriging.

Likelihood methods of choosing and fitting models are also gaining
ground among geostaticians, especially to incorporate trend and exter-
nal drift (Kerry and Oliver, 2007a; Lark, 2012; Lark andWebster, 2006;
Lark et al., 2006). However, in 90% of investigations the above approach
should be satisfactory if applied with understanding.

3.2. Reliability of the empirical variogram

Several factors affect the reliability of the experimental variogram;
they include the following:

• Size of sample.
• Lag interval and bin width.
• Marginal distribution of the data.
• Anisotropy.
• Trend.

We consider these in turn.

3.2.1. Sample size
Themost important factor determining the reliability, or accuracy, of

the empirical variogram and over which we have control is the size of
the sample on which it is based. In general the more data you have
the greater is the accuracy. Fig. 2, computed by repeated grid sampling
from a large two-dimensional simulated field, shows how the confi-
dence intervals narrow as the number of data increases and the sam-
pling interval decreases. Note also

(a) that the same data are usedmany times over in the calculation of
the semivariances with the result that estimates are correlated
with one another, and therefore one cannot use the classical for-
mula for confidence intervals based on χ2;

(b) that the confidence intervals widen as the lag distance increases;
and

(c) that the confidence intervals for the smaller samples are wide at
all lags; clearly variograms computed from fewer than 100 data
(see Fig. 2) are unreliable, a claim we have made forcibly before
(Webster and Oliver, 1992).

In the above illustration, the sampling interval decreases as the size
of sample increases. As a result the spread of values of γ̂ hð Þ narrows at
short lags. But the sampling interval itself is important for another rea-
son; it determines the utility of the empirical variogram. If the interval is
larger than the correlation range of the process or in the realization then
the empirical variogramwill beflat: ‘pure nugget’ in the jargon. It is use-
less for prediction and tells us only that all variation occurs within a
shorter distance. Fig. 3 derived from Oliver's first survey of the soil in
the Wyre Forest of England is an example (see Oliver and Webster,
1987). The sampling interval was approximately 165 m; later after
more intense sampling the spatial correlation was found to extend to
no more than about 70 m.

We can further illustrate the effect of sample size and intensity with
actual data from the survey of the 80-ha Broom's Barn Farm in Suffolk
(Webster and McBratney, 1987). The topsoil was sampled at 40-m in-
tervals on a square grid to give 434 data. The exchangeable potassium
(K+) concentration was measured, and Table 1 summarizes the statis-
tics. The data were transformed to common logarithms (log10) to stabi-
lize the variance because the skewness coefficient is 2.04 (see
Section 3.2.3 below). Fig. 1(b) shows the experimental variogram com-
puted from all 434 data plotted as a series of points; they follow a
smooth progression to which the spherical model fits well. In Fig. 1(a)
the variogram has been computed from only 87 points. The progression
is now erratic because the estimates are less reliable, and the fitted
spherical model appears poor and we cannot be confident that we
have chosen wisely. Fig. 1(c,e) shows that the exponential and power
functions, respectively, appear to fit this experimental variogram equal-
ly well.

Of the three graphs on the left-hand side of Fig. 1, the exponential
model, Fig. 1(c), appears to provide the best fit visually to the experi-
mental values, whereas the power function, Fig. 1(e), appears to fit
the least well. For comparison, we fitted these functions to the
variogram of the full set of data, Fig. 1(d,f). The power function,
Fig. 1(f), deviates from the experimental values at both the short and
long lag distances. The lack of fit of the exponential function, Fig. 1(d),
is less obvious but perceptible. The choice of function for the full set of
data could be done visually, but for the sub-sample diagnostic informa-
tion from the model fitting is needed. Table 2 gives the model type, the
parameters and the diagnostics. For the full set of data, the spherical
function clearly fits best with the smallest residual sum of squares
(RSS) and the largest percentage variance explained. For the subset of
87 there is little to choose between the three, but the diagnostics pro-
vide a weak indication in favour of the exponential function.

Most introductory statistical texts instruct their readers to sample at
random so as to obtain unbiased estimates, and they describe ways of
designing schemes for the purpose. In geostatistics the randomness is
assumed to be in the underlying process – it is part of the model – and
we can take a more relaxed attitude to sampling provided we avoid
bias. Grids are convenient in thefield and provide even cover for kriging.
As above, however, if they are coarse they might miss the short-range
variation crucial for estimating themost important part of the variogram.
They are best supplemented with extra sampling points within the grid,
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Table 2
Parameters of models fitted to experimental variograms of log10K+ at Broom's Barn.

Estimates of parameters Diagnostics

Data set and model Variance explained/%
c0 c r/m a/m β α RSSa

Full set (434)
Spherical 0.00453 0.01524 397 0.00368 99.4
Exponential 0.00158 0.01981 180 0.01943 96.7
Power 0 0.00778 0.388 0.05727 91.2

Subset (87)
Spherical 0.00811 0.01151 376 0.01184 40.9
Exponential 0.00135 0.01601 110 0.01127 43.8
Power 0 0.01092 0.248 0.01254 43.1

The symbols for the parameters are defined in the text.
a RSS is the sum of squares of the residuals from the fitted function.
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either at shorter intervals along the rows and columns of the grid or in a
nested arrangement. Webster and Lark (2013) illustrate several options.

3.2.2. Lag interval and bin width
For data on a regular grid or at equal intervals on transects the natu-

ral increment in the experimental variogram is one interval.Where data
are irregularly scattered, the comparisons must be grouped by distance
and perhaps by direction also; Fig. 4 shows the geometry of the group-
ing. The practitioner must choose both the length of the step, h, and the
width of the bin, w, within which the squared differences are averaged
for each step. Usually the two are coordinated such that each compari-
son is placed in one and only one bin. Choosing h andw requires judge-
ment. If h is short andw is narrow then there will be many estimates of
γ(h), each based on few comparisons and subject to large error, and the
variogramwill appear ‘noisy’. If in contrast h is large andw is wide there
might be too few estimates of γ(h) to reveal the form of the variogram.
You should graph the experimental values so that you can select
sensibly.

3.2.3. Marginal distribution
Another attribute of data that can affect the reliability of variograms

is themarginal distribution. Long upper tails in the distributions of pos-
itively skewed data inflate variances and distort the variogram.We rec-
ommend that you compute histograms and box-plots and calculate the
skewness coefficient to assess the distribution.
Fig. 4. The geometry in two dimensions for discretizing the lag into bins by distance and
direction. The shaded area is one bin.
The distributions of many environmental variables are positively
skewed, some strongly so. In many instances they are approximately
log-normal, as Ahrens (1965) noted for the chemical elements in the
earth. If the skewness coefficient of your data exceeds 1 then try fitting
a three-parameter log-normal curve to them, and if that fits well then
youwould dowell to transform the data to logarithms and do all further
analyses on the logarithms, as in the example of exchangeable K+ in the
soil at Broom's Barn Farm. After kriging (see below) you may wish to
transform your predictions back to the original scale of measurement,
and there are standard formulae for that (see Webster and Oliver,
2007, page 185). If the skewness is less pronounced, with a coefficient
between 0.5 and 1, transformation to square roots might normalize
the distribution approximately. Other variables, such as proportions of
particle-size fractions in the soil, are constrained between 0 and 1,
and for these you might find it efficient to transform them to angles
by φ ¼ arcsin

ffiffiffi
q

p
where q is the proportion.

Outliers cause more serious distortions in geostatistics. They are not
simply extremes or near extremes in a frequency distribution, but are
unexpectedly large or small values (Barnett and Lewis, 1994). They are
values that seemhighly unlikely to belong to the populations of interest.
Examples include the phosphorus concentration in the soil under
Fig. 5. Box-plot computed from a field of 400 values simulatedwith a spherical variogram
functionwith c0 = 0, c = 1and r = 75 and contaminatedwith five outliers,■, which are
three times beyond the interquartile range, and ● are the near outliers.
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Fig. 6. Experimental variograms (symbols) and fittedmodels (solid lines) computed from
a field of 400 values simulated with a spherical variogram function with zero nugget
(lower line in (a)): (a) contaminatedwith five outliers and (b)with the outliers removed.
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former dung heaps in arable fields and hydrocarbons left by spilled oil
on derelict industrial land (brown-field). They can also be mistakes in
a chemical analysis or transcription of data. Like data in long tails of a
distribution they inflate variograms; but in these instances they can fal-
sify descriptions of theprocesses of interest, and they certainly do if they
are mistakes.

A histogram or box-plot should help you to identify outliers beyond
the limits of themain distribution. Having identified an outlier youmust
then decidewhat to dowith it. If it seems amistake then remove it from
the data or replace it with a correct value. If it seems genuine but seems
Fig. 7. Experimental variograms computed by Matheron's method of moments (×) a
to belong to some population other than the one you are investigating
then again remove it. These instructions might seem obvious when
stated, but many authors do not notice such anomalies until referees
and editors point them out.

To show the effect of outliers Kerry and Oliver (2007b) created a
normally distributed random field, N (0,1), of 400 values on a 10-m
grid generated by a spherical function with c0 = 0, c = 1 and r = 75
m, Equation (7). Five grid nodeswere contaminated by a secondary pro-
cess drawn from a normally distributed random population with unit
variance and mean of 1.5. These values were added to the original
values of the primary process to give values greater than4.0 and a skew-
ness coefficient of 1.5. Fig. 5, a box-plot of the field, shows these clearly.
We computed and modelled an experimental variogram from all the
values, Fig. 6(a). The nugget variance has increased dramatically to
0.617 and the sill variance to 1.341, showing the effect of adjacent dispa-
rate values, and bothmuch larger than those of the generator, shown by
the lower line. Fig. 6(b) shows the experimental variogram and model
for the same field, but with the outliers removed. The parameters are al-
most identical to those of the generator, namely c0 = 0, c ≈ 1.0 and
r = 73.6 units. Clearly, a variogram containing outliers would mislead
us if those outliers belong to a process other than the one in which we
are interested; we should remove them if we suspect them as
contaminants.

There are situations, however, in which it is difficult to decide
whether what seem to be outliers belong to a different process or
where the locations of areas with very large values of some pollutant
need to be known. In such situations you may wish to retain these
values when you subsequently krige, and if you do then you should
use one of the robust variogram estimators, such as those of Cressie
and Hawkins (1980), Dowd (1984) and Genton (1998). All of these
downplay the effects of outliers. Their formulae are listed in Appendix
A. We illustrate their merits below.

Experimental variogramswere computedwith the three robust esti-
mators above and Matheron's method of moments for the simulated
fields with skewness coefficients of zero and 1.5. Fig. 7(a) shows that
the experimental values for the four estimators give similar results
and follow the spherical generating function of the simulated field
closely. For the field contaminated with five outliers, both variograms
computed by the Matheron and Genton estimators, Fig. 7(b), depart
considerably from the generating function, but the sill of the former is
the more inflated. The variograms estimated by Cressie and Hawkins's
and Dowd'smethods, Fig. 7(b), are similar to each other and to the gen-
erating function. These variograms could be modelled and used for
kriging with the outliers remaining in the data. Although these results
illustrate the success of the Cressie and Hawkins and Dowd estimators,
you should try them all to see which performs best for your data.
nd the robust estimators of Cressie and Hawkins (●), Dowd ( ) and Genton (⋆).

image of Fig.�7
image of Fig.�6


Fig. 8. Two-dimensional anisotropic experimental variogram of a simulated field of
100 000 values computed to 11 intervals on the principal axes.

Table 3
Diagnostics from cross-validation of variogram models fitted to experimental variograms
of log10K+ at Broom's Barn and typical punctual kriging variances.

Data set
and model

Kriging
varianceaME MSE MSDR

Full set (434)
Spherical 0.000363 0.00761 1.031
Exponential 0.002321 0.00744 0.590
Power 0.000827 0.00753 0.634

Subset (87)
Spherical 0.001394 0.01314 0.977 0.00866
Exponential 0.004374 0.01366 0.703 0.00159
Power 0.001934 0.01341 0.903 0.01100

a At the centres of grid cells surrounded by data at 16 grid nodes.
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3.2.4. Anisotropy
In many instances variation is anisotropic, yet investigators either

fail to detect it, disregard it when they have detected it or model it im-
properly. The result is that they present misleading views of the true
situations.

If the anisotropy is geometric, which is often approximately the case,
then a simple linear transformation of the spatial coordinates will make
the variation isotropic. The equation for the transformation is

Ω ϑð Þ ¼ A2cos2 ϑ−φð Þ þ B2sin2 ϑ−φð Þ
n o1=2

; ð10Þ

whereΩ(ϑ) defines the anisotropy, φ is the direction of maximum con-
tinuity and ϑ is the direction of the lag. For a spherical or exponential
variogram, A is the distance parameter in the direction of greatest con-
tinuity, i.e. the maximum value, and B is the distance parameter in the
perpendicular direction, the direction of least continuity or greatest var-
iation, and is theminimum. For a power function, the roles ofA and B are
Fig. 9. The same experimental variogram as in Fig. 8 butwith values projected into one di-
mension and the envelope of the fitted anisotropic exponential model shown by the
dashed lines. The directions are in 45° segments anticlockwise from φ = 23.8°.
reversed: A has the larger gradient in the direction of the greatest rate of
change and B has the smaller gradient in the direction of least change.

Fig. 8 displays a two-dimensional experimental variogram in which
the effective range varies with changes in direction. It shows semi-
variances, shaded from light (small) to dark (large), that have been
computed from a field of 100 000 simulated values on a grid of
100 × 100with unit interval generatedwith an anisotropic exponential
function. The anisotropy is evident, with continuitymost pronounced in
the direction approximately −20° (≈70° clockwise from north).

Fig. 9 shows the same semivariances projected into the familiar one-
dimensional form with lag distance on the abscissa. It also shows by
dashed lines the envelope of the fitted anisotropic exponential model:

γ h;ϑð Þ ¼ c0 þ c 1− exp − hj j
Ω ϑð Þ

� �	 

; ð11Þ

where |h| = h is the lag distance, c is the maximum of the correlated
variance and Ω(ϑ) is as defined in Equation (Deutsch & Journel, 1998)
above. Table 4 lists the values of the parameters of the model.

For irregularly scattered data, one must group the separations by
both direction and distance, as in Fig. 4. The angle, α, within which
data are included in estimating the semivariance should initially allow
complete cover, e.g. α = π/4 for four principal directions; all compari-
sons will then fall within one and only one of those directions. The
procedure loses some directional information. If it reveals anisotropy
then you should narrow α to emphasize its expression and hope to ob-
tain a better idea of the direction of maximum continuity, φ in Equation
(10). As α becomes smaller, however, the number of paired compari-
sons in each estimate of γ(h) becomes fewer and the error in it in-
creases, unless you increase the size of the sample. Binning is a
compromise, but it always leads to an underestimate of the anisotropy
ratio, A/B, even with very large samples.

3.2.5. Trend
Trend in geostatistics is gradual variation in space. It adds to the ran-

dom variation that we have already encountered. Equation (6) esti-
mates the theoretical variogram, γ(h), only where the underlying
process is wholly random. We can represent the two together theoreti-
cally by the model:

Z xð Þ ¼ u xð Þ þ ε xð Þ: ð12Þ
Table 4
Parameters of the anisotropic exponential function fitted to the experimental variogramof
the simulated anisotropic field, Figs. 9 and 10, accounting for 76.6% of the variance.

c0 c φ A B A/B

0.327 0.545 23.8° 4.261 1.246 3.82

The symbols for the parameters are defined in the text.
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This model contains the term u(x) for the trend to replace the con-
stant mean μ in Equation (1) because with trend the mean varies
according to geographical position in a predictable way. In practice it
presents us with a problem: how do we decide whether there is
trend? There is not necessarily an easy answer; what may appear as
smooth variation at one scale can appear as random at another. Only if
the trend is global is the answer easy. You should be able to detect a
global trend by mapping the data with a suitable graphics program. If
the map shows gradual continuous change rather than a patchy distri-
bution then youhave identified trend. You should suspect trend if an ex-
perimental variogram increaseswithout bound evermore steeply as the
lag distance increases. Youmust take it into account, otherwise itwill af-
fect the reliability of any kriged estimates.

You should be able to confirm the presence of trends byfitting a sim-
ple trend surface, say linear or quadratic, and mapping the residuals.
Such a surface is not optimal in the sense we have used it, however;
the variance of the residuals is not minimized, and the residuals them-
selves are not independent of one another. What is more, these resid-
uals are not those of the true residuals ε(x) above, for which the
variogram is

γ hð Þ ¼ 1
2
E ε xð Þ−ε x þ hð Þf g2
h i

: ð13Þ

Where there is a dominantly linear global trend (by ‘global’wemean
a trend that extends throughout the region of interest) a statistically
sound procedure is to identify the principal direction of the trend and
compute the experimental variogram in the direction perpendicular to
it. This variogram is free from trend. Its weakness is that the computa-
tion can use only a small proportion of the comparisons, and so there
are likely to be large errors in the estimates from small sets of data.

A more general solution to the problem is to estimate the trend and
the variogram of the random residuals from it simultaneously. The cur-
rent best practice is to do this by residual maximum likelihood (REML)
(Lark, 2012; Lark et al. 2006; Webster and Oliver 2007). In this short
guide we cannot describe this method in detail. Instead we illustrate
the problem and its solution with data from a case study by Oliver and
Carroll (2004) of a field on the Yattendon Estate, Berkshire, England.

The soil's apparent electrical conductivity (ECa) was recorded at the
nodes of a 30-m grid with additional samples along transects at 15-m
intervals. The experimental variogram of the data, shown by the grey
triangles in Fig. 10, increases without bound, and on the right-hand
Fig. 10. Variograms computed from the soil's apparent electrical conductivity (ECa) mea-
surements in a field on the Yattendon Estate, Berkshire, England: Δ experimental
variogram of the original values, ● experimental variogram of OLS residuals and the
variogram estimated by REML, the line.
side of the figure the semivariances appear to increase at an ever in-
creasing rate. If we fit a global trend surface, in this case quadratic, to
the data by ordinary least squares analysis (OLS) then we can obtain
an experimental variogram of the residuals from it. This is shown as
the black discs in Fig. 10. A mixed model of quadratic trend and expo-
nential variogram of the random residuals optimized by REML gives
the exponential function shown by the solid line; the parameters of
this function are a sill c = 28.26 and distance parameter a = 69.4 m.

As it happens in this instance the variogram of the REML residuals is
little different from that of the residuals from an ordinary quadratic
trend surface at the short lags. As the lag distance increases, however,
the experimental semivariances of theOLS residuals increasingly under-
estimate the true values; the variogram becomes increasingly biased,
as explained by Cressie (1993). If you were to krige the residuals, the
estimates would be unbiased but the kriging variances would be
underestimated.

Lark and Webster (2006) found larger discrepancies between the
variogram of OLS residuals and one estimated by REML when analysing
data on the depths of the Lower Chalk beneath the Chiltern Hills in
south east England and that the kriging variances were seriously
underestimated by the simple OLS technique. In Fig. 10, the underesti-
mation by OLS is not so severe. Nevertheless, we now know that the
OLS approach is not best practice and should be replaced by REML.
Unfortunately, we know of no GISs that have the facility for doing so,
and even the professional statistical programs GenStat, SAS and R
have limited pre-programmed options.

3.3. Inference

Numerous authors of the papers we see want to draw inferences
from the variograms they have computed. They should do so with cau-
tion, however; they will usually need additional information from the
field or general back-ground knowledge to gain insight into the physi-
cal, geological or geomorphic processes.

For example,Webster and Cuanalo (1975), studying the soil over the
Jurassic sediments in the English midlands, obtained experimental
correlograms of several soil properties that decreased to minima at ap-
proximately the same lag distance, beyond which the correlations
remained nearly constant. They interpreted that lag, whichwe now rec-
ognize as the correlation range, as an expression of the averagewidth of
outcrops of the strata in the region. Their interpretation proved to be
correct when matched to the geological map of the region. But as Lark
(2010) pointed out, such forms of correlograms could equally well
arise from a moving average process (Webster and Oliver, 2007, pages
85 and 86); there is no way of distinguishing from the variograms
alone without other information.

A second example arises when a variogram increases without bound.
Some authors see this as a sign of trend. If the rate of that increase itself
increases as a power of |h|, as in the function γ(|h|) = b|h|η with η ≥ 2,
then there is almost certainly a trend. If η b 2 then greater caution is
needed. The outcome of simple Brownianmotion, a purely randomphys-
ical process, has an unbounded linear variogram: i.e. a power function
with exponent η = 1. With stronger correlation in the process η will lie
between 1 and 2. So any inference to be drawnon trendmust bematched
by other evidence, and the bestway to see that is bymapping the variable
of interest.

We mention one other matter under this heading. It is the use, or
rather abuse ad nauseam, of the nugget-to-sill ratio of the empirical
variogram. The nugget of this variogram is the intercept of the fitted
model on the ordinate, and the sill, if it exists, is the fitted upper
bound. Numerous authors have been deluded and continue to be delud-
ed into using this ratio as a measure of spatial dependence. Its source
has three flaws.

1. The empirical nugget variance embodies measurement error plus
error arising from the uncontrolled fitting over distances shorter
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than the shortest lag for which there are estimates of γ(h). It also de-
pends on the choice of model, as is evident in Fig. 1, in particular on
the left-hand side in which the three equally plausible models have
disparate nugget variances. For the spherical model the ratio is
0.41, whereas for the exponential model it is 0.07; for the power
model it cannot be calculated at all, of course.

2. The samplingfluctuation at long lags (Fig. 2)means that the fitted sill
is an uncertain estimate of the sill of the underlying process.

3. The ratio takes no account of the correlation range, which can lead to
sensible inference, as mentioned above.

This ratio of the empirical variogram undoubtedly has important
practical implications for prediction, and we describe them below in
the section on kriging. It also has merit in mining where gold nuggets,
which are typically isolated and unpredictable discontinuities in ore
bodies, give rise to real nugget variances. A large ratio can warn us of
large measurement errors or of the need to sample more densely, or
both. But the ratio tells us nothing about the underlying variation of
properties of the soil or water that vary continuously in space. Variables
such as the potassium concentration and water potential of the soil do
not have ‘nuggets’; they do not contain what acoustic engineers call
‘white noise’. The nugget-to-sill ratio of the empirical variogram is sim-
ply that, and you should not use it for inferences about the underlying
processes.
4. Kriging

As mentioned above, kriging is a generic term for a range of least-
squares methods to provide the best linear unbiased predictions
(BLUP), best in the sense of minimum variance. Ordinary kriging in
Matheron's (1965) original formulation is the most popular, and with
good reason; it serves well in most situations with its assumptions eas-
ily satisfied. That is why it is often regarded as the ‘work-horse’ of
geostatistics. It requires only knowledge of the variogram function and
data for its implementation. It is also robustwith regard tomoderate de-
partures from those assumptions and a less than optimal choice of
model for the variogram.

Kriging solves a set of linear equations, known as the kriging system,
which contain semivariances drawn from a fitted variogram function.
The equations for ordinary kriging are set out in Appendix A. If that
were all then kriging could be completely automatic, but there are es-
sential choices that must be made and we focus on these below.
4.1. Punctual or block kriging

You must first choose whether to predict values at points (punctual
kriging) or over larger blocks (block kriging). In punctual kriging the
points, denoted x0, have the same supports as the data, xi i = 1,2,….
Geostatisticians' clients more often want predictions for larger bodies;
they want averages for areas or volumes larger than the punctual sup-
ports on which the measurements are made. In Appendix A we denote
these larger bodies by B, which may of any reasonable size and shape.

In mining, for example, a company is likely to want to know how
muchmetal there is in blocks of rock the size of a truck-load so as to de-
cide whether to extract them, and, if it has to extract them, whether to
send them to a processing plant or to waste. In environmental protec-
tion, agencies want estimates of pollutants in blocks that are of a size
convenient for remediation. In soil science the principal reason for
block kriging is to help farmers with their applications of agricultural
chemicals such as lime, fertilizers and pesticides, a practice that is be-
coming increasingly important in precision agriculture (Oliver, 2010).
The size of the block is then determined by the width of farmers' ma-
chinery. In Europe this is typically 24 m wide, so blocks should be of
that width also.
The choices here depend largely on the purpose for which predic-
tions are required, and for practical purposes block kriging will usually
be more appropriate than punctual kriging.

We draw attention to another distinction. In punctual kriging the
kriging variance, σ2(x0), includes the nugget variance of the empirical
variogram (except at data points themselves), and that limits the preci-
sion of prediction; the kriging variance cannot be less than the nugget
variance.

The best fitting model may have a larger nugget variance than other
reasonable models, and consequently when used for kriging it can lead
to larger estimates of the true absolute errors of predictions than others
would. Fig. 1b illustrates the situation; the spherical model fits best
overall, but its nugget variance is the largest.

In block kriging the nugget variance is subsumed into the within-
block variance and so does not contribute to the kriging variance.
Block kriging variances are therefore typically less than the correspond-
ing punctual kriging variances from otherwise similar kriging systems.
How much less depends on the sizes of the nugget variances, and they
depend on the models you chose for the empirical variograms. Now,
however, the model of Fig. 1(b) is likely to lead to underestimates of
the true absolute errors.

4.2. Kriging neighbourhood

The kriging systems, Equations (22) and (26) in Appendix A con-
tain the semivariances for all pairs of N data points. In other words
they imply the use of all the available data. Practically, however,
this is hardly ever the case for at least three reasons.

1. Kriging is a local predictor, and only the nearest few points to the tar-
get point or block carry significant weight, especially if the nugget
variance is a small proportion of the total variance. This means that
we can replace N in kriging equations by a much smaller number of
data, n ≪ N, within the kriging neighbourhood. This has the advan-
tages of reducing computing time with large sets of data and of the
inversion of much smaller matrices, thereby avoiding the instability
that can arise with large matrices.

2. The local nature of ordinary kriging means that we can restrict
the assumption of stationarity of the mean to that within
neighbourhoods.

3. The local nature of krigingmeans that only semivariances close to the
ordinate of the variogram are used, and so one needs to estimate and
model the variogram well over the first few lags only.

Mapping programs tend to take advantage of the local nature of
kriging and move a window based on a chosen size of neighbourhood
over each target point or block in a region. Automation of the procedure
carries a risk, however. In the extreme with a variogram that is all nug-
get the correct prediction would be the same everywhere; it would be
themean of the data. If youwere to krigewith amovingwindow the re-
sult would be a surface with fluctuations that depended solely on the
local values caught in the window as it moved. With a pure nugget
variogram it is unwise to attempt any type of interpolation.

There are no rules for defining the kriging neighbourhood, but we
provide some guidance below.

1. If the data are dense and the variogram is bounded and has a small
nugget variance then the radius of the neighbourhood can be set
close to the range or effective range of the variogram because data
beyond the range will have negligible weight. The predicted surface
should be smooth (except at the data points in punctual kriging).

2. For a variogram with a large nugget variance, the radius of the
neighbourhood should be greater than the range because distant
points are likely to carry some weight. The same applies if the data
are sparse and points beyond the range may carry sufficient weight
to be important.
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3. You may choose to set the neighbourhood in terms of a minimum
and maximum number of nearest data to the target; we usually
recommend a minimum n ≈ 7 and a maximum n ≈ 25.

4. If the data are very unevenly scattered it is good practice to divide the
neighbourhood into octants so that there are at least two points in
each.

5. When you start to analyse new data it is instructive to examinewhat
happens to the kriging weights as you change the neighbourhood,
especially where the data are irregularly scattered and the
neighbourhood moves as it does to estimate a field of values for
mapping. We have illustrated a range of situations in Webster and
Oliver (2007), pages 160–173.
Fig. 11. Scatter diagram of observed values of log10K+ at Broom's Barn plotted against
values predicted by ordinary punctual kriging during cross-validation. The solid line
(approximately 1:1) is the regression of observed on predicted values, the dashed line is
the principal axis. The variances are 0.01800 and 0.00990 respectively.
From Webster and Oliver (2007).
4.3. Cross-validation

We mentioned above that cross-validation provides a means of
choosing among plausiblemodels for variograms, butwe delayed its ex-
planation until we had dealt with kriging. The technique is simple: each
and every one of theN data points is omitted in turn from the set of data
and its value there is predicted by ordinary punctual kriging with the
proposed model. Three statistics are then calculated; they are the
mean error (ME), themean squared error (MSE) and themean squared
deviation ratio (MSDR), which is themean of the squared errors divided
by the corresponding kriging variances. We list the equations in
Appendix A.

Ideally themean error is zero: kriging is unbiased, evenwith a poorly
chosen model. So the ME is of little help. Kriging should minimize
the MSE, and so the MSE is a better diagnostic; but it will not identify
a ‘correct’ model. The most telling of the three criteria is the MSDR. It
should equal 1, and so for kriging one might choose the model for
which the MSDR is closest to 1.

By applying this technique to the data on log10K+ for Broom's Barn
we obtain the results listed in Table 3. The mean errors are all close to
0, as we should expect. The mean squared errors are small and approx-
imately the same for the three models within each set of data; they are
clearly larger for the subset, however, as we should expect. The big dif-
ferences are in the MSDR, and judged on that criterion the spherical
function is the one we should use for kriging in both cases.

To complete the picture, in Fig. 11 we graph the observed values for
log10K+ at Broom's Barn against the cross-validation predictions obtain-
ed with the spherical variogram.

4.4. Smoothing

Kriging smooths; it loses variance. This often surprises investigators,
though it should not. It is no different from ordinary least-squares re-
gression in this respect; it tends to under-estimate large values and
over-estimate small ones. The effect is evident in Fig. 11. In it the spread
of predictions on the abscissa is clearly less than that of the observations
on the ordinate. The variance of the observations is 0.01800, whereas
that of the predictions is only 0.00990; so kriging has lost approximately
half of the variance in the data. In fact, the degree of smoothing depends
on the nugget-to-sill ratio; the larger is that ratio the greater is the
smoothing, and in the limit when the ratio is 1 the kriged surface is
flat, as mentioned above.

Though a kriged surface shows our best estimates it can give a mis-
leading picture of the variation in a region. If youwant a realistic picture
of the variation then you must switch to simulation. There are several
techniques fromwhich to choose; they include the Cholesky decompo-
sition of the covariancematrix, sequential Gaussian simulation and sim-
ulated annealing. There is also themethod of turning bands, the earliest
but little used nowadays. Each run of any of these methods will give its
unique outcome and retain the variance in the data, or at least in the
variogram model, and a map will show the fluctuation to expect. The
simulation can be conditioned on the data so that the true values are
retained in the outcome and the fluctuations never stray far from
actuality.

Some practitioners run numerous conditional simulations and from
them compute averages. You should realize that such averages con-
verge on kriged estimates as the number of simulations increases. If
you want averages then krige directly; you cannot do better by
simulation.

4.5. Kriging in the presence of trend

Matheron (1969) recognized theproblemof dealingwith trends and
deviseduniversal kriging to take it into account. Themethod involves an
elaboration of the kriging system with semivariances drawn from the
variogram of the residuals, i.e. from estimates of Equation (13). What
he did not specify was how to find those estimates. A practical solution
recommended by Stein (1999) is to compute the empirical best linear
unbiased predictor (E-BLUP) with a variogram estimated by maximum
likelihood.

Closely related to kriging in the presence of trend is kriging with ex-
ternal drift. Universal kriging effectively treats the geographic coordi-
nates as auxiliary variables. There can be other variables with which
the target variable Z is simply related and which are known or can be
calculated everywhere. These too, known as external drift variables,
can be treated as auxiliary variables. Hudson and Wackernagel (1994)
presented an early example in which they took into account the height
of the land as an auxiliary variable when mapping the annual rainfall in
Scotland. Nowadayswe can estimate simultaneously the regression rela-
tion between the target variable and the auxiliary variable(s) and the
variogram of the residuals from that regression by residual maximum
likelihood (REML). Lark et al. (2006) described and illustrated themeth-
od, and more recently Lark (2012) has summarized it. You can find fur-
ther details and another example in Webster and Oliver (2007). A
stumbling block to its widespread use in the past was the lack of soft-
ware with the desired flexibility in the public domain. The ‘proc
(MIXED)’ procedure in SAS has included some of the standard variogram
models for several years (http://support.sas.com/documentation). Now
the most recent release of GenStat (Payne, 2013) contains the facilities,

http://support.sas.com/documentation
image of Fig.�11
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as does R (Pinheiro et al., 2013; R Development Core Team, 2010). There
is no longer an excuse for inferior practice.

5. General conclusion

Weclosewith a list of steps and ofwhat you should report in an inves-
tigation that requires only straightforward least-squares geostatistical
analysis.

1. Sample sufficiently without bias. For the variogram aim for a mini-
mum of 100–150 points to provide six to ten estimates within the
expected effective range. For mapping by kriging sample evenly to
give even coverage at intervals of less than half the effective range.

2. Compute the marginal distribution of each variable, identify outliers
and decide what to do about them, and transform the data to stabi-
lize variances if necessary. Summarize the statistics and report your
treatment of outliers and any transformation.

3. Compute the variogramon the rawor transformed data by themeth-
od of moments (or a more robust method), fit plausible models by
weighted least squares approximation. State the steps in which lag
was incremented, your binning and the model you finally choose,
and display that model on a graph of the experimental variogram.

If you identify a trend then estimate the trend and variogram of the
residuals from the trend by REML. State the equation for the trend and
display the variogram of the residuals.

4. Krige at points or over blocks of a size suitable for the application. In
the absence of trend use ordinary kriging; if there is a trend then use
universal kriging. Krige from a global kriging system or local ones in
a moving window. State your choices.

5. Map the kriged estimates and their associated kriging variances.

Finally, bear inmind that inwriting for Catena you should discuss the
relevance of your results. What have you learned about the soil, geo-
morphology or hydrology that was not known before? Or perhaps,
how might your results be used to manage land or water resources?
Telling us no more than what you did is not enough. Geostatistics is a
technological means to an end; it is not an end in itself.

Acknowledgements

We thank Dr R. Kerry for the simulated anisotropic field, Dr B.P.
Marchant for fitting the REML variogram (Fig. 10), Dr A.E. Milne for
Fig. 8 and the Home-Grown Cereals Authority for its support in
obtaining the data on the Yattendon Estate. All the other analyses
have been programmedbyus in GenStat (Payne, 2013)with specifically
its FITNONLINEAR directive to fit the models to the variograms.

Appendix

Models for variograms

The equations of the popular models for variograms are given below
in their isotropic formwith lag in distance only, i.e. for h = |h|, andwith
an uncorrelated nugget component, c0.

Spherical

γ hð Þ ¼ c0 þ c
3h
2r

−1
2

h
r

� �3� �
for 0bh≤r

¼ c0 þ c for hNr

¼ 0 for h ¼ 0:

ð14Þ

Here c is the spatially correlated variance, and r is the range. The
quantity c0 + c is known as the ‘sill’.
Exponential

γ hð Þ ¼ c0 þ c 1− exp −h
a

� �� �
for 0bh

¼ 0 for h ¼ 0:
ð15Þ

The parameter c is as for Equation (Cressie, 1985), and a is a distance
parameter. The function approaches its sill asymptotically and so has no
finite range. Its effective range is usually taken as r′ = 3a.

Gaussian

γ hð Þ ¼ c0 þ c 1− exp −h2

a2

 !( )
for 0bh

¼ 0 for h ¼ 0:

ð16Þ

Theparameters are the sameas for the exponentialmodel. The effec-
tive range, however, is less: r′ ¼

ffiffiffiffiffiffi
3a

p
.

Power

γ hð Þ ¼ c0 þ bhη for 0bh
¼ 0 for h ¼ 0;

ð17Þ

with the strict constraint 0 b η b 2.

Robust variogram estimators

Cressie–Hawkins (Cressie and Hawkins, 1980)

2γ̂CH hð Þ ¼
1

m hð Þ
Xm hð Þ

j¼1
jz x j

� �
−z x j þ h
� �

j1=2
� �4

0:457þ 0:494
m hð Þ þ 0:045

m2 hð Þ
: ð18Þ

Dowd (Dowd, 1984)

2γ̂D hð Þ ¼ 2:198 medianjyj hð Þj
n o2

; ð19Þ

where yj(h) = z(xj) − z(xj + h), j = 1, 2, …, m(h).
Genton (Genton, 1998)

2γ̂G hð Þ ¼ 2:219 jyj hð Þ−yk hð Þj; jbkg H
2

� �
8>><
>>:

3
775
2

;

2
664 ð20Þ

where H is the integral part of 1 + m(h)/2.

The ordinary kriging system

Let z(xi),i = 1,2,…,N, be observed values of variable z at points
x1,x2,…,xN, where in two dimensions xi ≡ {xi1,xi2}T. For any new point
x0 we predict Z by

Ẑ x0ð Þ ¼
XN
i¼1

λiz xið Þ: ð21Þ
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The λi,i = 1,2,…,N, are the weights chosen to minimize the predic-
tion error variance by solution of the following set of equations:

XN
i¼1

λiγ xi−x j

� �
þ ψ x0ð Þ ¼ γ x j−x0

� �
forall j

XN
i¼1

λi ¼ 1:

ð22Þ

Here γ(xi − xj) is the semivariance between data points i and j,
γ(xj − x0) is the semivariance between data point j and the target
point x0, and ψ(x0) is a Lagrange multiplier introduced for the minimi-
zation of the error variance. We can write this in matrix terms thus

Aλ ¼ b: ð23Þ

We invert matrix A, and we post-multiply the result by b to obtain
the optimalweights λ ≡ {λ1,λ2, …,λN}T whichwe then insert into Equa-
tion (21) to obtain the predictions. The prediction error variance is
given by

σ2 x0ð Þ ¼ bTλ: ð24Þ

The predictions for blocks, B, are still weighted sums of the data:

Ẑ Bð Þ ¼
XN
i¼1

λiz xið Þ; ð25Þ

but now the kriging system to be solved is

XN
i¼1

λiγ xi−x j

� �
þ ψ Bð Þ ¼ γ x j;B

� �
forall j

XN
i¼1

λi ¼ 1;

ð26Þ

where γ x j;B
� �

is the average semivariance between the data and the
target block and b now comprises the right-hand sides of Equation
(Matheron, 1969). The error variance is then

σ2 Bð Þ ¼ bTλ−γ B;Bð Þ; ð27Þ

in which γ B;Bð Þ is the within-block variance.

Cross-validation statistics

Mean error: ME

ME ¼ 1
N

XN
i¼1

z xið Þ−Ẑ xið Þ: ð28Þ

Mean squared error: MSE

MSE ¼ 1
N

XN
i¼1

z xið Þ−Ẑ xið Þ
n o2

: ð29Þ

Mean squared deviation ratio: MSDR

MSDR ¼ 1
N

XN
i¼1

z xið Þ−Ẑ xið Þ
n o2

σ̂2
K xið Þ : ð30Þ

In these equations z(xi) is the ith datum at xi, Ẑ xið Þ is the kriged pre-
diction there, and σ̂2

K xið Þ is the kriging variance.
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