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Spatially continuous data of environmental variables are often required for environmental sciences and
management. However, information for environmental variables is usually collected by point sampling,
particularly for the mountainous region and deep ocean area. Thus, methods generating such spatially
continuous data by using point samples become essential tools. Spatial interpolation methods (SIMs) are,
however, often data-specific or even variable-specific. Many factors affect the predictive performance of
the methods and previous studies have shown that their effects are not consistent. Hence it is difficult to
select an appropriate method for a given dataset. This review aims to provide guidelines and suggestions
regarding application of SIMs to environmental data by comparing the features of the commonly applied
methods which fall into three categories, namely: non-geostatistical interpolation methods, geo-
statistical interpolation methods and combined methods. Factors affecting the performance, including
sampling design, sample spatial distribution, data quality, correlation between primary and secondary
variables, and interaction among factors, are discussed. A total of 25 commonly applied methods are then
classified based on their features to provide an overview of the relationships among them. These features
are quantified and then clustered to show similarities among these 25 methods. An easy to use decision
tree for selecting an appropriate method from these 25 methods is developed based on data availability,
data nature, expected estimation, and features of the method. Finally, a list of software packages for
spatial interpolation is provided.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Spatially continuous data (or GIS layers) of biophysical variables
are increasingly required in environmental sciences and manage-
ment. They are usually not readily available and they are difficult
and expensive to acquire, especially in areas that are difficult to
access (e.g., mountainous or deep marine regions). Spatial distri-
bution data of biophysical variables are often collected from point
sources. However, environmental managers often require spatially
continuous data over the region of interest to make effective and
confident decisions and scientists need accurate spatially contin-
uous data across a region to make justified interpretations. There-
fore, SIMs become essential for estimating biophysical variables at
the unsampled locations. Spatial interpolation is defined as pre-
dicting the values of a primary variable at points within the same
region of sampled locations, while predicting the values at points
outside the region covered by existing observations is called
extrapolation (Burrough and McDonnell, 1998). In this review, we
fax: þ61 (02) 6249 9956.
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mainly concentrate on the interpolation and also briefly discuss the
limitations for extrapolation in relevant sections.

SIMs, including geostatistics, have been developed for and
applied in various disciplines, such as mining engineering (Journel
and Huijbregts, 1978) and environmental sciences (Burrough and
McDonnell, 1998; Goovaerts, 1997; Webster and Oliver, 2001).
Geostatistics is usually believed to have originated from thework in
geology and mining by Krige (1951), but it can be traced back to the
early 1910s in agronomy and 1930s in meteorology (Webster and
Oliver, 2001). It was developed by Matheron (1963) with his the-
ory of regionalised variables (Wackernagel, 2003). Kriging is a
generic name for a family of generalised least-squares regression
algorithms, used in recognition of the pioneering work of Danie
Krige (1951). The top 10 fields which employ geostatistics are: 1)
geosciences, 2) water resources, 3) environmental sciences, 4)
agriculture or soil sciences, 5) mathematics, 6) statistics and
probability, 7) ecology, 8) civil engineering, 9) petroleum engi-
neering and 10) limnology (Zhou et al., 2007).

Different SIMs are developed for specific data types. Many fac-
tors affect the predictions of SIMs (Li and Heap, 2011; Li et al.,
2011b). There are no consistent findings about how these factors
rights reserved.
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affect the performance of SIMs. It is difficult to address the key issue
in the application of the methods to environmental data; namely
how to select an appropriate method for a given input dataset
(Burrough and McDonnell, 1998). Therefore, a thorough review of
commonly applied SIMs is necessary.

This review aims to provide guidelines and suggestions for
environmental scientists, including marine scientists, regarding
application of SIMs to biophysical data. It covers: 1) the commonly
used SIMs in environmental sciences; 2) the features and theoret-
ical comparison of 25 SIMs; 3) factors affecting the performance of
SIMs; 4) classification of these 25 methods to illustrate their rela-
tionship structure; 5) an easy to use decision tree for selecting an
appropriate method from these methods based on data nature,
expected estimation and features of the method; and 6) a list of
software packages for spatial interpolation.
2. Spatial interpolation methods

In this section, terms used for SIMs are clarified, and SIMs are
then introduced and classified. The trend of spatial interpolation
field is depicted; and methods newly introduced and novel hybrid
methods developed for spatial interpolation are briefly introduced
and discussed. Finally, potential methods for spatial interpolation
in environmental sciences are discussed.

A number of methods have been developed for spatial inter-
polation and many terms have been used to distinguish them,
including: ‘deterministic’ and ‘stochastic’ methods (Myers, 1994),
or “interpolating” and “non-interpolating” methods, or “in-
terpolators” and “non-interpolators” (Laslett et al., 1987). In this
review, all methods are referred to as SIMs. The SIMs covered in this
review are only those commonly used or cited in environmental
studies. As such, the list of the methods in this review is not an
exhaustive one.

A total of 38 methods for spatial interpolation, which are briefly
described by Li and Heap (2008), are listed in Table 1. They fall into
three categories: 1) non-geostatistical methods, 2) geostatistical
methods and 3) combined methods. Estimations by nearly all SIMs
can be represented as weighted averages of sampled data (Webster
and Oliver, 2001). Because this is a review for environmental sci-
ence researchers, jargon and mathematical and statistical formulae
are avoided whenever possible, but relevant references can be
sourced in Li and Heap (2008, 2011) for further reference. Nearly all
these methods share the same general estimation formula, as
follows:
Table 1
The SIMs considered in this review.

Non-geostatistical Geostatistical (kriging)

Univariate Multiva

Nearest neighbours (NN) Simple kriging (SK) Univers

Triangular irregular network
related interpolations (TIN)

Ordinary kriging (OK) SK with

Natural neighbours (NaN) Factorial kriging (FK) Kriging
Inverse distance weighting (IDW) Dual kriging (DuK) Simple
Regression models (LM) Indicator kriging (IK) Ordinar
Trend surface analysis (TSA) Disjunctive kriging (DK) Standar

Splines and local trend surfaces (LTS) Model-based kriging (MBK) Principa
Thin plate splines (TPS) Colocat
Classification (Cl) Kriging
Regression tree (RT) Multiva

IK with
Indicato
Probabi
bzðx0Þ ¼
Xn

lizðxiÞ (1)

i¼1

where bz is the estimated value of the primary variable at the point of
interest x0, z is the observed value at the sampled point xi, li is the
weight assigned to the sampled point, and n represents the number
of sampled points used for the estimation (Webster and Oliver,
2001). Taking two most commonly compared method, inverse dis-
tanceweighting (IDW)andordinary kriging (OK) (Li andHeap, 2011)
as an example, the weight for IDW is: li ¼ 1=dpi =

Pn
i¼1 1=d

p
i , where

di is the distance between x0 and xi, and p is an exponent; while the
weight for OK is estimated by minimising the variance of the pre-
diction errors (Isaaks and Srivastava, 1989). Basic concepts (e.g.,
kriging and semivariogram) and assumptions of kriging and some
other SIMs are briefly reviewed by Li and Heap (2008) and detailed
in Cressie (1993), Goovaerts (1997), Isaaks and Srivastava (1989),
Journel and Huijbregts (1978), Wackernagel (2003) and Webster
and Oliver (2001).

The field of geostatistics reached its peak around 1996e1998 in
terms of the annual total citation of articles and the total number of
annually published articles is still growing (Zhou et al., 2007), but
Hengl et al. (2009) found that the field of geostatistics has stabilised
since 1999 in terms of average citation. The development of com-
bined methods is certainly ongoing and the methods will continue
to evolve both from theoretical and practical aspects (Hengl, 2007).
Five developments are anticipated in the near future in geostatistics
according to Hengl (2007): 1) design of more sophisticated pre-
diction models, 2) derivation of local regression-kriging, 3) devel-
opment of user-friendly sampling optimisation packages, 4)
intelligent data analysis reports generation and 5) introduction of
multi-temporal, multi-variate prediction models.

A number of methods from the machine learning field have
been recently introduced to the spatial interpolation of environ-
mental variables and several novel hybrid methods have been
developed. These methods include:

1) support vector machine (SVM) (Gilardi, 2002; Li et al., 2011c,
2010),

2) random forest (RF) (Bustamante et al., 2011; Li et al., 2011a,
2011b, 2012),

3) neural network (Kanevski et al., 2008; Li et al., 2010; Lin and
Chen, 2004),

4) neuro-fuzzy network (Friedel and Iwashita, 2013; Klesk,
2008; Özkan, 2006; Salski, 2003; Strebel et al., 2013),
Combined methods

riate

al kriging (UK) Classification combined with other
interpolation methods

varying local means (SKlm) Trend surface analysis combined with kriging

with an external drift (KED) Lapse rate combined with kriging
cokriging (SCK) Linear mixed model (LMM)
y cokriging (OCK) Regression trees combined with kriging
dised OCK (SOCK) Residual maximum likelihood-empirical best

linear unbiased predictor (REML-EBLUP)
l component kriging (PCK) Regression kriging (RK)
ed cokriging (CCK) Gradient plus inverse distance squared (GIDS)
within strata (KWS)
riate factorial kriging (MFK)
an external drift (IKED)
r cokriging (ICK)
lity kriging (PK)
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5) boosted decision tree (BDT) (Li et al., 2012),
6) the combination of SVM with IDW or ordinary kriging (OK)

(Li et al., 2011a, 2011b),
7) the combination of RF with IDW or OK (RFIDW, RFOK) (Li

et al., 2011a, 2010, 2012),
8) general regression neural network (GRNN) (Li et al., 2011c),
9) the combination of GRNN with IDW or OK (Li et al., 2012),

and
10) the combination of BDT with IDW or OK (Li et al., 2012).

These methods, especially the newly developed hybrid methods
RFIDWand RFOK, may play a significant role in spatial interpolation
in the future because of their high prediction accuracy (Li, 2013; Li
et al., 2011b, 2012; Sanabria et al., 2013). However, their applica-
tions are still rare, and so they are not further discussed in this
review.

Geographically weighted regression (GWR) (Fotheringham
et al., 2002) has potential for the spatial interpolation of the envi-
ronmental data. The advantages of this method are that it is based
on the traditional regression framework and incorporates local
relationships into the framework in an intuitive and explicit
manner (Fotheringham et al., 2002). The application of this method
to spatial interpolation would be worthwhile (Wheeler and Páez,
2010); but its applications to environmental sciences are still rare
(Harris et al., 2011) and should be cautiously exercised particularly
when sample size is small (Páez et al., 2011).

A few further developments in spatial interpolation are worth
attention, although their applications to environmental sciences
are rare. The first is its extension to spatio-temporal data. Since the
publication of the review of geostatistical space-time models
(Kyriakidis and Journel, 1999), there are rapid developments in
statistics for spatio-temporal data (Banerjee et al., 2004; Cressie
and Wikle, 2011). The second is the Bayesian kriging using prior
information (Handcock and Stein, 1993; Pilz et al., 2012; Strebel
et al., 2013). The third is the ability to account for the spatial sup-
port in kriging (Goovaerts, 2008; Gotway and Young, 2002, 2007).
The fourth is the hierarchical Bayesian spatio-temporal modelling
(Bakar and Sahu, 2012; Cressie andWikle, 2011). As more and more
spatial data and prior information become available over time in
environmental sciences, statistical methods for such data shall get
increasingly important and their applications would increase. And
the last is new developments in the combined methods such as
clustering assisted regression method (Tang et al., 2012).

3. Features and theoretical comparison of SIMs

3.1. Important features

3.1.1. Global versus local
Global methods use all available data in the region of interest to

derive the estimation and capture the general trend(s). Local
methods operate within a small area around the point being esti-
mated (i.e., using samples in a searchwindow) and capture the local
or short-range variation(s) (Burrough and McDonnell, 1998).

3.1.2. Exactness
A method that generates an estimate that is the same as the

observed value at a sampled point is called an exact method. All
other methods are inexact, which means that their predicted value
at the point differs from its known value (Burrough andMcDonnell,
1998).

3.1.3. Deterministic versus stochastic
Stochastic methods incorporate the concept of randomness and

provide both estimations (i.e., deterministic part) and associated
errors (stochastic part, i.e., uncertainties represented as estimated
variances). All other methods are deterministic because they do not
incorporate such errors and only produce estimations.

3.1.4. Gradual versus abrupt
Some methods (e.g., nearest neighbours (NN)) produce a

discrete and abrupt surface, while other methods (e.g., distance-
based weighted averages) produce a smooth and gradual surface.
The smoothness depends on the criteria used in the selection of the
weight values in relation to the distance between the point of in-
terest and sample points. Criteria include simple distance relations
(e.g., IDW), minimisation of variance (e.g., kriging methods) and
minimisation of curvature and enforcement of smoothness (e.g.,
splines).

3.1.5. Convex versus non-convex
Convex methods (e.g., IDW) yield estimates that are always

valued between the minimum and maximum of the observed
values, whereas non-convex methods (e.g., kriging methods) can
yield estimates outside of the range of the observed values
(Goovaerts, 1997; Li and Heap, 2008). Convexity of the estimators
may depend on factors such as weights assigned for samples and
difference between the ranges of predictors for the samples and for
the unobserved locations. Possible negative weights resulting from
screen effect (Journel and Huijbregts, 1978; Webster and Oliver,
2001) for kriging methods could lead to non-convex estimates
(Goovaerts, 1997), while weights for IDW are always positive thus
result in convex estimates. When the ranges of the predictors for
samples are shorter than those for the unobserved locations, non-
convex predictions would be produced by regression related
methods (Li et al., 2010, 2012).

3.1.6. Univariate versus multivariate
Spatial interpolation methods which only use samples of the

primary variable in deriving the estimation are termed “univariate”
methods. Methods which also use explanatory variables (i.e., the
secondary variables) are often referred to as “multivariate”
methods in geostatistics (see Wackernagel, 2003), which is how-
ever often termed as “multiple” (e.g., multiple regression). The
“multivariate” usually refers to multiple responses/dependent
variables in classic statistics (e.g., multivariate analysis, multivariate
ANOVA), despite the fact that in some references it also refers to
more than one explanatory variable (that is usually referred to as
multiple variables); and univariate refers to only one response
variable in classic statistics. In geostatistics, methods accounting for
a single variable, such as simple kriging (SK) and OK, are univariate;
and methods accounting for secondary information, like simple
cokriging (SCK), ordinary cokriging (OCK), kriging with an external
drift (KED), are multivariate. Although universal kriging (UK) is
classified as a method accounting for a single variable by Goovaerts
(1997), it is considered as a multivariate method in this review
because it uses coordinate information. Thin plate splines (TPS) can
also be extended to include a multivariate spline function
(Burrough and McDonnell, 1998; Hutchinson, 1995; Mitasova et al.,
1995; Wahba, 1990).

It should be noted that in the gstat package in R, multivariate
kriging means that there are several variables which can be either
primary variables or both primary and secondary variables, while
multiple kriging implies that several primary variables are kriged
separately at the same time (pers. comm. with E. Pebesma, August
2008).

3.1.7. Linear versus nonlinear
Geostatistical methods are often classified as linear or nonlinear

(Moyeed and Papritz, 2002; Papritz and Moyeed, 1999). Linear
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kriging can be defined as kriging methods which derive the esti-
mation using observed values by assuming a normal distribution of
samples, such as SK, OK and UK. Non-linear kriging are those
methods which derive predictions based on the transformed values
of the observed data, such as disjunctive kriging (DK), indicator
kriging (IK), lognormal OK and model-based kriging (MBK).
Nonlinear kriging methods have two major advantages over linear
kriging, namely they give an estimate of its probability distribution
conditional on the available information and their estimations
should theoretically be more precise when a Gaussian random
process is inappropriate to model the observations.

3.2. Comparison of SIMs

SIMs, both non-geostatistical and geostatistical methods, are
compared in terms of their features in Table 2. Features of SIMs vary
from one method to another, so it is difficult to summarise the
features of all methods in one table. The rest of this section intends
to explain Table 2 and also provides further supplementary infor-
mation. Non-geostatistical methods are first compared with geo-
statistical methods. Geostatistical methods are then compared
amongst themselves.

3.2.1. Non-geostatistical methods and kriging methods
NN is a special case of IDW with p being zero and n equal to 1

(Brus et al., 1996; Laslett et al., 1987). NN is best for qualitative data
when other SIMs are not applicable (Burrough and McDonnell,
1998; Hartkamp et al., 1999). The disadvantages are only one
sample point considered and other nearby sampled points ignored
for estimated values, with no error estimate (Webster and Oliver,
2001).

Triangular irregular network (TIN) is more accurate than NN,
although each estimate still depends on only three samples
(Webster and Oliver, 2001). The estimated surface is continuous but
with abrupt changes in gradient at the margins of the triangles
(Webster and Oliver, 2001).

Natural neighbours (NaN) is somewhat better than NN and TIN
because its estimated surface is continuous and smooth except at
the data points where its derivative is discontinuous (Webster and
Oliver, 2001). However, such abrupt changes can be smoothed
(Sibson, 1981). At local maxima and minima in such data it can
generate an artefact known as “Prussian helmets” (Sibson, 1981;
Webster and Oliver, 2001).

IDW works well with regularly spaced data, but it is unable to
account for spatial clustering of samples (Isaaks and Srivastava,
1989).

Trend surface analysis (TSA) is considered to be a stochastic
method (Collins and Bolstad, 1996). However, in other publications
it is described as a deterministic method with a local stochastic
component (Burrough and McDonnell, 1998).

Classification method (Cl) assumes that all spatial changes take
place at boundaries, which are sharp instead of gradual (Burrough
and McDonnell, 1998).

Splines retain small-scale features, but there are no direct esti-
mates of the errors (Burrough and McDonnell, 1998). The pre-
dictions are very close to the values being interpolated, providing
the measurement errors are small (Burrough and McDonnell, 1998;
Mitasova et al., 1995). Exact splines may produce local artefacts of
excessively high or low values. These artefacts can be removed
using TPS, where an exact spline surface is replaced by a locally
smoothed average (Burrough and McDonnell, 1998; Wahba, 1990;
Wood, 2006). TPS can also be extended to include a multivariate
spline function (Burrough and McDonnell, 1998; Hutchinson, 1995;
Mitasova et al., 1995; Wahba, 1990). TPS can be viewed as an
extension of linear regression where the parametric model is
replaced by a smooth non-parametric function, and TPS allows an
estimate of prediction uncertainty (Haylock et al., 2008). In contrast
to local regression methods, one strength of TPS is its dependence
on all samples (McKenney et al., 2011). TPS may produce unreal-
istically smooth results and thus be misleading (Burrough and
McDonnell, 1998).

Kriging provides the best linear unbiased estimate, and a mea-
sure of the error or uncertainty (Burrough and McDonnell, 1998;
Goovaerts, 1997; Journel and Huijbregts, 1978; Nalder and Wein,
1998). It does not produce edge-effects resulting from forcing a
polynomial to fit data as with TSA (Collins and Bolstad, 1996).
However, its assumption of data stationarity is usually not true,
although this assumption can be relaxed with specific forms of
kriging. The exactness of kriging (Burrough and McDonnell, 1998;
Goovaerts, 1997) is also debatable due to the measurement error
component in the nugget effect (Cressie, 1993). Definition of the
required variogram models is time consuming and subjective. Data
transformation may be needed for non-stationary data and
anisotropy needs to be considered.

Kriging variance is independent of data values. Hence, it does
not reflect the uncertainty expected at a specific point (Goovaerts,
1997). It is a ranking index of data geometry (and size) and is not
a measure of the local spread of errors (Goovaerts, 1997). The error
variance provided by kriging algorithms is also poorly correlated
with actual estimation error. Therefore, in general, the kriging
variance cannot be used alone as a measure of local uncertainty
(Goovaerts, 1997). However, this independence is expected because
of data stationarity assumption of kriging methods (Webster and
Oliver, 2001; pers. comm. with Noel Cressie in December 2010).

3.2.2. Geostatistical methods
The features of 15 geostatistical methods are summarised in

Table 3 according to the findings in Goovaerts (1997) and other
studies cited in Li and Heap (2008). Some of the methods listed in
Table 1 are excluded because either they are for uncertainty
assessment or for categorical variables; and a few frequently used
variants or sub-methods are included.

Simple kriging versus ordinary kriging: OK is usually preferred to
SK because 1) OK requires neither knowledge nor stationarity of the
mean over the region of interest; 2) OK allows one to account for
local variation of the mean; 3) OK estimates better follow the data
fluctuations than SK estimates; and 4) OK estimates
change proportionally with the local data means (Goovaerts, 1997).
Hence the OK with local search neighbourhood already accounts
for trends (varying mean) in the values of the primary variable
(Goovaerts, 1997). However, OK requires a stationary mean of the
local search window. If the mean of the primary variable is not
constant (or non-stationary) within the search window, regression
kriging (RK) (Knotters et al., 1995), universal cokriging (Stein et al.,
1988), KED and UK (Verfaillie et al., 2006) could be used to deal
with such data.

Ordinary kriging versus universal kriging: OK and UKyield similar
interpolating estimates, but quite different extrapolating estimates,
depending on the trend fitted to the last few data values (Goovaerts,
1997). OK with local search neighbourhoods is preferred in in-
terpolations because it provides results similar to UK estimates, but
is easier to implement. In extrapolations, UK should be used
whenever the primary variable suggests a particular function form
for extrapolating a trend fitted from the sampled data. UKmay yield
aberrant extrapolation estimates (e.g., negative estimates depend-
ing on the trend fitted to the last few values, Goovaerts, 1997).

Kriging with external drift versus simple kriging with varying local
means: KED amounts to evaluating the regression coefficients from
samples within each search window, estimating the trend
component at all primary data points and at the point being



Table 2
Comparison of non-geostatistical SIMs and kriging as a generic model for geostatistical methods.

Method Assumption Univariable/
multivariable

Deterministic/
stochastic

Local/global Exact/
inexact

Abrupt/
gradual

Convex/
non-convex

Limitation of the procedure Computing
load

Output data
structure

Suitability

Nearest
neighbours
(NN)

Best local predictor is
nearest data point

Univariable Deterministic Local Exact Abrupt Convex No error assessment, only
one data point per polygon.
Tessellation pattern depends
on distribution of data.

Small Polygons or
gridded surface

Nominal data from
point observations

Triangulation
(TIN)

Best local predictors
are data points on the
surrounding triangle

Univariable Deterministic Local Exact Abrupt Convex No error assessment. TIN pattern
depends on distribution of data
and there a few ways to form
triangulation and no one is
better than any other.

Small Triangles or
gridded surface

Quick interpolation
from sparse data on
regular or irregularly
spaced samples.

Natural
neighbours
(NaN)

Best local predictors
are data points in the
surrounding polygons

Univariable Deterministic Local Exact Gradual or
abrupt

Convex No error assessment Small Gridded surface Quick interpolation
from sparse data on
regular or irregularly
spaced samples.

Inverse distance
weighting
(IDW)

Underlying surface is
smooth

Univariable Deterministic Local Inexact
(but can
be forced to
be exact)

Gradual Convex No error assessment. Results
depend on size of search
window and choice of
weighting parameter. Poor
choice of window can give
artefacts when used with
high data densities such as
digitised contours.

Small Gridded surface,
contours

Quick interpolation
from sparse data on
regular grid or
irregularly spaced
samples.

Regression
models (LM)

Samples are
independent, normal
and homogeneous in
variance

Univariable/
multivariable

Stochastic Global Inexact Abrupt/
gradual

Can be
non-convex

Results depend on the fit
of the regression model and
the quality and detail of the
input data surfaces. Error
assessment possible if input
errors are known.

Small Polygons or
continuous,
gridded surface

Simple numerical
modelling of
expensive data
when better
methods are not
available or budgets
are limited

Trend surface
analysis (TSA)

Phenomenological
explanation of trend,
normally distributed
data

Multivariable Stochastic Global Inexact Gradual Can be
non-convex

Physical meaning of trend may
be unclear. Outliers and edge
effects may distort surface. Error
assessment limited to goodness
of fit.

Small Continuous,
gridded surface

Quick assessments
and removal of
spatial trend

Splines & local
trend surfaces
(LTS)

Best local predictor
is the nearest data
point and data
normality

Multivariable Stochastic Local Inexact Gradual Convex Results depend on span
parameter and detail of the
input data surfaces.

Moderate Continuous,
gridded surface

Quick interpolation
from sparse data on
regular grid or
irregularly spaced
samples.

Classification (Cl) Homogeneity within
boundaries

Univariable Deterministic
“soft”
information

Global Inexact Abrupt Convex Delineation of areas and classes
may be subjective. Error
assessment limited to within-
class standard deviations.

Small Classified
polygons

Quick assessments
when data are sparse.
Removing systematic
differences before
continuous
interpolation from
data points

Regression
tree (RT)

Phenomenological
explanation of
variance

Multivariable Stochastic Global Inexact ? Convex ? Small Gridded surface

(continued on next page)
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Table 2 (continued )

Method Assumption Univariable/
multivariable

Deterministic/
stochastic

Local/global Exact/
inexact

Abrupt/
gradual

Convex/
non-convex

Limitation of the procedure Computing
load

Output data
structure

Suitability

Thin plate
splines (TPS)

Underlying surface is
smooth everywhere

Univariable/
multivariable

Stochastic Global Exact/
inexact

Abrupt/
gradual

Can be
non-convex

Error assessment of spatial
predictions is possible, but within
the assumptions that the fitted
surface is perfectly smooth.

Small Gridded surface,
contours

Quick interpolation
(univariate or
multivariate) of
digital elevation
data and related
attributes to create
digital elevation
models (DEM) from
moderately detailed
data

Kriginga Interpolated surface is
smooth. Statistical
stationarity and the
intrinsic hypothesis.

Univariable/
multivariable

Stochastic Local Exact Gradual Can be
non-convex

Error assessment depends on
variogram and distribution of data
points and size of interpolated
blocks. Requires care when
modelling spatial correlation
structures.

Moderate Gridded
surface

When data are
sufficient to compute
variograms, kriging
provides a good
interpolator for
sparse data. Binary
and nominal data
can be interpolated
with Indicator
kriging. Soft
information can also
be incorporated as
trends or stratification.
Multivariate data can
be interpolated with
co-kriging.

Mainly modified from Burrough and McDonnell (1998).
a Kriging methods can be either point kriging or block kriging (BK). In this study, all kriging methods refer to point kriging methods unless otherwise specified. BK methods are extensions of point kriging methods and are

inexact and the most commonly used BK is block OK (Burrough and McDonnell, 1998; Goovaerts, 1997; Isaaks and Srivastava, 1989).
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Table 3
A comparison of geostatistical SIMs.

Geostatistical method Univariable/
multivariable

Stationary/
local mean

Local
trend

Information
of coordinates

Secondary
variable

Exhaustive
secondary
information

Stratification Orthogonalisation
of secondary
information

Single or
multiple
samples in
the search
window

Simple kriging (SK) Univariate Stationary No No No na No na Multiple
Ordinary kriging (OK) UNIVARIATE Local No No No na No na Multiple
Universal kriging (UK) Multivariate Local Yes Yes No Yes No No Multiple
SK with varying local means (SKlm) Multivariate Local No/yesa No Yes Yes No No Multiple
Kriging with an external drift (KED) Multivariate Local Yes Yes Yes Yes No No Multiple
Simple cokriging (SCK) Multivariate Stationary No No Yes No No No Multiple
Ordinary cokriging (OCK) Multivariate Local No No Yes No No No Multiple
Standardised OCK (SOCK) Multivariate Bothb No No Yes No No No Multiple
Principal component kriging (PCK) Multivariate Local No No Yes No No Yes Multiple
Simple colocated cokriging (SCCK) Multivariate Stationary No No Yes No No No Single
Ordinary colocated cokriging (OCCK) Multivariate Local No No Yes No No No Single
Simple kriging within strata (SKWS) Multivariate Within strata

stationary
No No No na Yes na Multiple

Ordinary kriging within
strata (OKWS)

Multivariate Local No No No na Yes na Multiple

Simple cokriging within
strata (SCKWS)

Multivariate Within strata
stationary

No No Yes No Yes No Multiple

Ordinary cokriging within
strata (OCKWS)

Multivariate Local No No Yes No Yes No Multiple

a The local trend is “no” if the secondary variable is categorical and “yes” if it is continuous.
b Need the stationary means of both the primary and secondary variables.

J. Li, A.D. Heap / Environmental Modelling & Software 53 (2014) 173e189 179
estimated, and then performing SK on the corresponding residuals
(Goovaerts, 1997). KED and SKlm differ in their definition of the
trend component. The trend coefficients are derived once and
independently of the kriging system in SKlm, but are implicitly
estimated through the kriging system within each search window
in KED (Goovaerts, 1997).

Simple kriging versus simple cokriging: The SK and SCK are
compared according to Goovaerts (1997). SCK is theoretically better
than SK because its error variance is always smaller than or equal to
the error variance of SK, but SCK needs additional modelling and
computational requirements. Both methods produce identical es-
timates when either the primary and secondary variables are un-
correlated or the primary and secondary variables are measured at
the same locations and the cross covariance is proportional to the
primary autocovariance. Their estimates are essentially the same in
the isotropic case and the difference between estimates increases
as the samples of secondary variables becomemore numerous than
those of the primary variable. Cokriging (CK) improves over kriging
only when the secondary variables are better sampled than the
primary variable, or more accurately reflect the real world. The
contribution of the secondary variable to the SCK estimate should
depend on: 1) correlation between the primary and secondary
variables, 2) its pattern of spatial continuity, 3) the spatial config-
uration of the primary and secondary sample points and 4) the
sample density of each variable. The secondary variable may screen
the influence of the colocated primary data when both the primary
and secondary variables are highly correlated and the secondary
variable varies more continuously in space than the primary
variable.

Ordinary kriging versus ordinary cokriging: If both the primary
and secondary variables are all measured at the same points then
OCK will not produce estimates which are different from OK
(Burrough and McDonnell, 1998).

Colocated cokriging versus cokriging: Colocated cokriging (CCK) is
a valuable alternative to CK when the sample density is high for the
secondary variables (Goovaerts, 1997). It avoids instability caused
by highly redundant secondary data and it is computationally fast.
However, it requires the samples of the secondary variables at all
points being estimated and knowledge of the stationary means of
the primary and secondary variables. CK and the computationally
fast CCK give similar results.

Colocated cokriging versus kriging with external drift: CCK and
KED use exhaustively sampled secondary information, but they
differ in many aspects (Goovaerts, 1997). In CCK the colocated da-
tum directly influences the primary cokriging estimate and CCK
accounts for the global linear correlation between primary and
secondary variables as captured by semivariogram. In KED the
secondary information provides information only about the pri-
mary trend of the point of interest and tends to influence strongly
the estimate especially when the estimated slope of the local trend
model is large. The influence of the residual covariance required by
KED is not straightforward. Modelling direct and cross semivario-
grams in CCK is straightforward although computationally
demanding.

Block kriging versus point kriging: Block kriging (BK) smooths out
short-range variation of the primary variable and can erase the
artefact discontinuities near sample points as often observed in the
predictions of point kriging. BK estimates vary more smoothly in
space than point kriging estimates such as block OK estimates vs.
OK estimates (Burrough and McDonnell, 1998; Isaaks and
Srivastava, 1989); and the smoothness increases with increasing
size of the block (Goovaerts, 1997). As such, predictions of BK are
not exact. BK is preferred to point kriging for mapping large-scale
features (Goovaerts, 1997).

Regression kriging versus other related methods: RK is mathe-
matically equivalent to UK and KED, RK combines a regression of
the primary variable on secondary variables with SK of the
regression residuals, but UK and KED use secondary variables
directly to solve the kriging weights (Hengl et al., 2007). However,
KED and UK differ from RK as the formers conduct a local assess-
ment of the relationship between the primary variable and sec-
ondary variables when a local search window is used. Six types of
RK (i.e. RK-A to RK-F) have been identified by Li and Heap (2008).
The advantage of RK is its ability to extend the method to a broader
range of regression techniques such as generalised additive models
(GAM) and regression trees (RT) (Bishop andMcBratney, 2001), and
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generalised linear models (GLM) (Gotway and Stroup, 1997), and to
allow separate interpretation of the two interpolated components
(Hengl et al., 2007).

Knotters et al. (1995) discussed the advantages and disadvan-
tages of RK in comparison with CK: 1) in RK, the relationship be-
tween the primary and the secondary variable can have any form
and is physically interpretable, but CK does not use physically
interpretable relationships and assumes a linear relationship; 2) RK
is less computationally demanding and is more efficient than CK;
and 3) RK also considers the local trend within the search window
by kriging non-stationary data. A disadvantage of RK is that the
errors of the predictions are assumed to be unsystematic, not auto-
correlated and not correlated with the variable. However, the
kriging component of RK does assume the errors to be spatially
correlated. Knotters et al. (1995) suggested that by adding variables
to the regression model, thereby explaining a greater part of the
variance, the assumption of the absence of autocorrelation of the
errors will be better satisfied. Several limitations of RK were also
discussed by Hengl (2007), including data quality, sample size,
reliable estimation of the covariance/correlation structure, extrap-
olation outside the sampled feature space, secondary variables with
uneven relationships to the primary variable, and intermediate-
scale modelling.

4. Factors affecting the performance of SIMs

The predictive performance of SIMs that is usually measured
using prediction errors (Bennett et al., 2013; Li and Heap, 2011) is
affected by many factors. In this review, we focus on those factors
which were commonly encountered in previous studies.

4.1. Sampling design and spatial distribution of samples

4.1.1. Data density
High density: When data density is high, most methods produce

similar results (Burrough and McDonnell, 1998). In analysing
rainfall data, Dirks et al. (1998) found that kriging does not show
significantly greater improvement in prediction than simpler
methods, such as inverse distance squared (IDS) and NN for high-
density networks (i.e., 13 rain gauges over a 35 km2 region). In
processing soil data, Bregt (1992) compared local mean, global
mean, IDW and kriging at several grid densities ranging from 8 to
200 samples per km2 for the depth to the pyritic layer and found no
statistically significant differences between these methods at any
density. Little difference was also found in the performance of OK,
UK, UK with a linear drift, IDS and TSA for an intensively sampled
region, however the interpolated surfaces were very different,
resulting in a preference for OK (Hosseini et al., 1993). Using
datasets of regularly spaced and high density samples, Gotway et al.
(1996) found that the use of more widely spaced samples greatly
reduced the information in the resultant maps, although the sam-
ple density was still relatively high.

Low density: When data are sparse, the underlying assumptions
about the variation among samples may differ and the choice of a
SIM and parameters may become critical (Burrough and
McDonnell, 1998; Hartkamp et al., 1999). The performance of
SIMs is better when the sample density is greater (Englund et al.,
1992; Isaaks and Srivastava, 1989; Stahl et al., 2006). However, it
is claimed that the accuracy of regression modelling is not depen-
dent on the sampling density, but rather on how well the data are
sampled and how strong the correlation is between the primary
variable and secondary variable(s) (Hengl, 2007). Sample density
also affects the predicted error. It was found that with low sample
density, both UK and DK may dramatically over- or under-predict
the prediction error (Puente and Bras, 1986). This suggests that
such prediction errors should not be used in an absolute sense, but
as a relative measure of spatial estimation accuracy (Puente and
Bras, 1986). However, the effects of sample density on the predic-
tion accuracy are found to be marginal in a review of 32 methods
applied in 80 application cases (Li and Heap, 2011). In addition, it
was found that the smoothness of the estimations increased at
lower sample densities (Goovaerts, 1997). Issues relating to sample
size are further discussed below.

4.1.2. Spatial distribution of samples
Sample spatial distribution may affect the performance of SIMs.

Splines perform better when dense, regularly-spaced data are used,
than for irregular-spaced data (Collins and Bolstad, 1996). However,
application of splines and other nonparametric regression models
to data on a grid is sometimes questionable, because the data does
not have the direct information needed for reliable prediction and
yields no direct information on residual variance (Laslett, 1994). For
irregularly-spaced data, the interpolated surface is more variable
where sample density is high thanwhere it is low, whichmay result
in structures which are pure artefacts of data configuration. One
potential solution is to use simulation algorithms instead of kriging
algorithms (Goovaerts, 1997). In contrast, sample patterns (i.e.,
random, cellular stratified and regular grid) were found not to be
significant in determining the performance of OK (Englund et al.,
1992).

Spatial clustering of samples affects the accuracy of the esti-
mations and the effects may depend on SIMs. High clustering: 1)
reduced the correlation coefficient between the observed and
estimated values for all four methods studied, OK, IDS, TIN and NN;
2) reduced the mean absolute error (MAE) for OK, TIN and NN and
increased the MAE for IDS; 3) reduced the mean squared error
(MSE) for OK and NN; 4) increased the MSE for IDS and 5) had little
influence on the estimations from TIN (Isaaks and Srivastava, 1989).
SK outperformed cubic splines if the sample points were highly
clustered (Laslett, 1994). In addition, sample clustering reduced the
accuracy of OK, UK and IDS (Zimmerman et al., 1999).

The chosen sampling scheme also affects the performance of
SIMs through the variation in the data. Data should be collected at a
range of separations to capture changes in the scales of the varia-
tion (Laslett, 1994).

4.1.3. Temporal variation
Seasonal changes in data have been shown to play a significant

role in predictions (Stahl et al., 2006). Where temporal scales are
short, preliminary data analyses are especially important to
determine the suitability of a particular SIM (Collins and Bolstad,
1996).

4.1.4. Surface type and landscapes
The variation in the surface substantially increases the estima-

tion error of SIMs; and the estimation error consistently increases
with an increasing rate as sample size decreases (MacEachren and
Davidson, 1987). The performance of SIMs decreases with
increasing variation in the surface (Zimmerman et al., 1999).
Distinct and sharp spatial changes, like changing soil types across a
region, may also cause problems (Stein et al., 1988; Voltz and
Webster, 1990). The existence of physical barriers and the differ-
ence in landscapes may also affect the performance of SIMs and the
accuracy of spatial predictions (Jensen et al., 2006; Little et al., 1997;
López-Quílez and Muñoz, 2009; Zhu and Lin, 2010).

4.1.5. Sample size, sampling design and variogram
Sample size and sampling design affect the reliability of the

variogram. Generally, if the sample size is <50, the variograms
derived are often erratic with little or no evident spatial structure
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(Webster and Oliver, 2001). The larger the sample size from which
the variogram is computed, the more precisely is it estimated,
although the precision is unknown in most instances (Brus and de
Gruijter, 1994; Webster and Oliver, 2001). If the sample size is too
small, a noisy variogram is generated (Burrough and McDonnell,
1998).

Sampling design has significant influence on the prediction
accuracy with irregular designs preferred to regular ones (Li and
Heap, 2011). Sample spacing must relate to the scale or scales of
the variation of the primary variable in a region, otherwise samples
might be too sparsely spaced to identify correlation and could
result in a pure nugget (Webster and Oliver, 2001). In such cases,
the prediction accuracy might be reduced, as demonstrated by
Gotway et al. (1996) which show that wider sampling spacings
greatly reduce the information in the resultant maps. In addition,
the smoothness of the estimations (or map) will increase with the
relative nugget effect (Goovaerts, 1997).

The spatial structure of data may also affect sample size and
variogram. For data with a short range of variograms, intensive
sampling with a large proportion of clustered points is required;
and conversely for variables with a long range, fewer and more
evenly spaced samples are required (Marchant and Lark, 2006). The
variogram is also sensitive to sample clustering, particularly when
it is combined with a proportional effect that is a form of hetero-
scedasticity (i.e., the local mean and local variance of data are
related) (Goovaerts, 1997). Sample size is important in variogram
modelling because the number of pairs of samples at each lag is an
important factor for generating reliable variogram parameters. A
rule-of-thumb, as suggested by Burrough and McDonnell (1998), is
that at least 50e100 samples are necessary to achieve a stable
variogram; or at least 100, to produce a reliable estimation of the
variogram (Webster and Oliver, 1992). Alternatively, 30e50 pairs of
samples with the lag distance less than half of the dimension of
sampled region are required to achieve the same result (Journel and
Huijbregts, 1978). This requirement could be overcome by using the
residual maximum likelihood method (REML) variogram (Kerry
and Oliver, 2007). Predictions based on REML variograms were
generally more accurate than those from the conventional moment
variograms with fewer than 100 samples, and a sample size of 50
appears adequate for REML variograms (Kerry and Oliver, 2007).
Even a sample size of as low as 28 has been suggested for kriging
and CK (Chang et al., 1998). Another rule-of-thumb is that the
product of the lag interval distance and the number of lags should
not exceed half of the largest dimension of the region of interest
(Verfaillie et al., 2006).

In addition, there is a bias at long lags when the variogram of the
residuals were estimated using RK-C (Lark et al., 2006; Li and Heap,
2008). Such biasmay be reduced but not removedwhen using RK-D
(Lark et al., 2006; Li and Heap, 2008). However, the bias in the
variance for REML is very small and negligible by comparison with
the bias for RK-C (Lark et al., 2006). Such bias will have two con-
sequences: 1) underestimation of the overall variation of the
random variable; and 2) incorrect estimation of spatial structure
(Lark et al., 2006). Therefore, residual maximum likelihood-
empirical best linear unbiased predictor (REML-EBLUP) was rec-
ommended over various RK types unless datasets are very large
because REML-EBLUP is applicable only when the sample size is
small (<200) (Minasny and McBratney, 2007).

4.1.6. Sample size and SIMs
The impacts of sample size on the estimation depend on SIMs.

RK-D performed better than SK in terms of the level of detail and
accuracy, and RK-D (with 222 samples) even performed better than
SK (with 2251 samples), leading to a suggestion that future studies
should focus more on the quality of sampling and on quality of
auxiliary environmental predictors, rather than on making more
observations (Hengl, 2007). In practice, we believe there is a
threshold beyond which any increase in sample size would not
significantly improve the accuracy of the estimations; otherwise
sample size is still a critical factor. Other factors like variance
inherited in the data also play a significant role (as discussed
below). Therefore, care should be taken in applying this suggestion.

OK, OCK and RK-E (Li and Heap, 2008) were compared for
sample sizes of 40, 70, 100, 130 and 160 (Li et al., 2007). The results
showed that as sample size increases, the performance of all three
methods improves, with exceptions of that: 1) OK and OCK are
more accurate when sample size is 70 thanwhen sample size is 100
and 2) RK-E is less accurate at a sample size of 160 compared with a
sample size of 130, 100 and 70. A similar result is observed byWang
et al. (2005) for combined methods TSA-OK and TSA-OCK.

KED and linear regression model (LM) were applied for sample
sizes of 40, 50, 75, 100, 125 and 150 (Bourennane et al., 2000). The
results revealed that despite a couple of anomalies, generally KED
performs better when the sample size increases. The performance
of LM remains largely stable across all the sample sizes, which
implies that 40 samples provide sufficient information or there is
no useful information contained in the extra samples for the linear
model.

The exceptions found in these studies imply that factors other
than sample size may play a major role in determining the per-
formance of a SIM. It is likely that in these cases, other data prop-
erties, such as spatial distribution and spatial structure, also
influenced the performance. Notwithstanding these additional
factors, the results of these studies into the effects of sample size
suggest that its effect on the performance of SIMs depends largely
on the features of the methods themselves.

4.2. Data nature and quality

Five major factors relevant to data quality are discussed in
relation to the performance of SIMs: distribution, isotropy and
anisotropy, variance and range, accuracy, and spatial correlation
and relevant factors. The sources of errors in spatially continuous
data and factors affecting the reliability of spatially continuous data
have been discussed by Burrough and McDonnell (1998).

4.2.1. Distribution
Data normality can influence the estimation of certain SIMs

which assume that the input data are distributed normally about
their mean. If this assumption is not met, log transformation is
commonly applied, thus resulting in lognormal methods (e.g.,
lognormal kriging; Cressie, 1993). Other transformation functions
may also be used to achieve the normality, resulting in trans-
Gaussian kriging and multi-Gaussian kriging (Cressie, 1993). Rank
and normal score transformation could also be applied prior to
kriging (Rossi et al., 1992; Weber and Englund, 1992; Wu et al.,
2006). In addition, the prediction error may also be used to deter-
mine whether the data should be transformed (Nalder and Wein,
1998).

In interpolating soil zinc data, Wu et al. (2006) found that
transformation of highly skewed data generally improved the es-
timations by OK and OCK, especially for low concentrations of zinc,
but the differences among normal score, log-normal and rank-
order transformations were relatively small for OCK. Kravchenko
and Bullock (1999) also found that log-transformation generally
improved the performance of OK. OK failed tomodel themarginally
skewed data (Moyeed and Papritz, 2002). In contrast, log trans-
formation was found to have little effect on the performance of OK
(Moyeed and Papritz, 2002), or even could reduce the accuracy of
OK prediction (Weber and Englund, 1992). These findings suggest
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that the effects of data transformation on the performance of
kriging methods vary with studies and should be examined in the
future individual studies.

4.2.2. Isotropy and anisotropy
Isotropy of data is assumed for kriging methods. Data may

display evidence of anisotropy which should be considered,
otherwise biased estimations may result. However, in some cases,
the anisotropy could be ignored to simplify model fitting and to
maintain some consistency between the semivariograms in the
multivariate model (Martínez-Cob, 1996). Conditions which allow
for this are: 1) anisotropy is not evident within the specified search
window; 2) the secondary and primary variable are colocated, thus
the influence of surrounding values would be small, so anisotropy
would make little difference; and 3) the directions of maximum
and minimum spatial variability for the different variables do not
coincide. Haberlandt (2007) also found no significant differences in
prediction performance between isotropic and anisotropic vario-
grams, although anisotropy was clearly present in the data.

4.2.3. Variance and range
The variance of data negatively affects the performance of SIMs

and the resultant predictions. Their performance decreases rapidly
when the coefficient of variation (CV) increases as evidenced in
previous studies (Martínez-Cob,1996; Schloeder et al., 2001) and as
further examined and confirmed based on 80 published application
cases by Li and Heap (2011). As the data range increased, the per-
formance of all methods compared improved significantly (Collins
and Bolstad, 1996).

4.2.4. Accuracy
Data noise can negatively affect the performance of SIMs,

including OK, UK and IDS (Zimmerman et al., 1999), and NaN
(Webster and Oliver, 2001). When data are too noisy, a pure nugget
effect is produced in the variogram and the resultant interpolation
is not sensible (Burrough and McDonnell, 1998). In contrast, sam-
pling precision was found not to be significant in determining the
performance of OK in certain circumstances (Englund et al., 1992).
When data are not representative of the surface being modelled,
interpolation biases may result (Collins and Bolstad, 1996).

Outliers affect the performance of SIMs and also interact with
sampling schemes. The variogram is sensitive to outliers and to
extreme values (Webster and Oliver, 2001). Exceptionally large or
small values will distort the average of semivariance as evident
from its definition. The effects depend on the location of data points
in the region and also on the spatial pattern of data (Webster and
Oliver, 2001). Outliers should be removed if they are believed to
not belong to the population and strongly skewed distributions
need to be transformed to approximately normal before conducting
geostatistical analyses (Webster and Oliver, 2001). Removal of
outliers can result in considerable improvement in the perfor-
mance of SIMs, particularly when additional samples are included
to allow estimation of short-range variation (Laslett andMcBratney,
1990).

4.2.5. Spatial correlation and relevant factors
Spatial correlation in samples is essential for reliable estimation.

The performance of OK, UK and IDS is negatively affected when the
spatial correlation between samples decreases (Zimmerman et al.,
1999).

The performance of different SIMs changes with the variable
estimated. The best methods vary as a function of the region and
the spatial scale required for estimation (Vicente-Serrano et al.,
2003). In their study on interpolating annual precipitation and
temperature, the accuracy is lower in regions of great topographic
complexity and regions with contrasting atmospheric or oceanic
influences than in flatter regions or regions with constant atmo-
spheric patterns. Even the performance of the same SIM differs
considerably with different variables due to difference in the data
variance and range.

4.3. Correlation between primary and secondary variables

Correlation between primary and secondary variables is critical
for SIMs which use secondary information. In these methods, sec-
ondary variables are assumed to be well and accurately sampled at
a large number of locations in space or at some resolution (e.g.,
optical remote sensing data or acoustic backscatter data) and to
provide an accurate representation of the underlying structure of
the primary variable. This means they need to be strongly corre-
lated with the primary variable(s) (Ahmed and De Marsily, 1987). A
number of studies have shown that the strength of the correlation
between the primary and secondary variables can considerably
affect the performance of CK and OCK (Ahmed and De Marsily,
1987; Goovaerts, 1997; Hernandez-Stefanoni and Ponce-
Hernandez, 2006; Juang and Lee, 1998; Li et al., 2011c, 2010). In
addition, the performance of GAM, LM, RT, OK, KED, RK-C and RK-F
depended on the choice of secondary information (Bishop and
McBratney, 2001; Li et al., 2011c, 2010). Conversely, Optimal IDW
(OIDW) was found to be superior over kriging when data were
isotropic and the primary variable was not correlated with sec-
ondary variable (Collins and Bolstad, 1996).

As the correlation increases, information provided by the sec-
ondary variable to the primary variable increases (Goovaerts, 1997).
Stronger correlations result in more accurate estimations of CK and
OCK (Goovaerts, 1997), and SKlm, KED and ordinary colocated
cokriging (OCCK) (Goovaerts, 2000). In one particular study, as
correlation between elevation and temperature increases, the
performance of SIMs using elevation as ancillary information im-
proves significantly (Collins and Bolstad, 1996). For a correlation
>0.4, SCK and OCK perform better than other methods (SK, OK and
LM), and KED is almost as accurate as CK (Asli and Marcotte, 1995).
When the correlation increased from 0.77 to 0.99, the root mean
squared error (RMSE) for CK was reduced by 48.3% (Wang et al.,
2005).

Erxleben et al. (2002) suggest that the bivariateMoran’s I should
be used to test whether the primary variable and the secondary
variable are spatially independent in terms of cross-correlation
statistics. They conclude that only variables which are spatially
cross-correlated with the primary variable should be included in
OCK models.

4.4. Interaction among factors

Interactions among different factors may also exist and should
be considered in evaluating the performance of SIMs. All two-way
interactions of method, surface type, sampling pattern, noise and
correlation, and three way interactions of method-surface type-
sampling patterns, method-surface type-noise, and surface type-
sampling pattern-noise, were found to significantly affect the per-
formance of SIMs (Zimmerman et al., 1999). Sample density, data
variation and sampling designwere also found to have significantly
interactive effects on the prediction accuracy of SIMs in a review of
80 application cases in environmental sciences (Li and Heap, 2011).

4.5. Other issues

The choice of semivariogram models may play a significant role
in the resultant estimation. First-order trend OK performs better
with a Gaussian semi-variogram model than with spherical and
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exponential models (Hu et al., 2004). Some practical guidelines for
selecting an appropriate variogram model are provided by
Hartkamp et al. (1999), Goovaerts (2000) and Cressie (1993).

Grid size (resolution) can also affect the accuracy of estimations.
As the grid becomes coarser, the overall information content will
progressively decrease (Hengl, 2007). The accuracy may increase as
the grid size decreases, but computing time will also increase
(Hengl, 2007).

5. Classification of SIMs

SIMs are classified based on their features to provide an over-
view of their differences and relationships. These features are then
quantified and clustered to show similarities and relationships
among these SIMs.

5.1. Classification tree of SIMs

Classification of SIMs has not been addressed before apart from
a study by Lam (1983) who proposed a simple classification of four
types of SIMs. In this review, we adopt an approach used in tax-
onomy to classify the 25 SIMs according to their features (Fig. 1). In
this figure, SIMs are classified based on their features summarised
in Tables 2 and 3 and their comparisons in Section 3. This classifi-
cation tree illustrates the relationship structure among these
methods and forms a basis for a decision tree to select an appro-
priate method in practice in Section 6.

5.2. Similarity between SIMs

The similarity between 25 SIMs is analysed. A total of 23 features
extracted from Tables 2 and 3 and from those used for the classi-
fication (Fig. 1) are converted into variables with factor levels being
either 0, 1 or not applicable (na) (Table 4). Information of each
feature for each of the 25 methods is summarised in Table 5. These
data were analysed using hierarchical cluster analysis on Gower’s
distance in R 2.6.2 (R Development Core Team, 2007) and the re-
sults are shown in Fig. 2. If a threshold line is placed at Height¼ 0.2
in Fig. 2, these methods could be classified into 11 groups:

� Group 3: NN, TIN and NaN are similar for most of the features
considered except the output and the smoothness.

� Group 4: SK and OK are most similar and they do not use sec-
ondary information. Their difference is the choice of the sta-
tionary mean or local means.

� Group 5: Simple kriging within strata (SKWS) and ordinary
kriging within strata (OKWS) form a group of kriging methods
which do not use secondary information but apply stratification.
They differ due to the stationary mean for SKWS and local
means for OKWS.

� Group 6: All cokriging methods are grouped together. In this
group there are two subgroups distinguished by the application
of stratification. Methods with stratification (simple cokriging
within strata (SCKWS) and ordinary cokriging within strata
(OCKWS)) differ in the choice of mean. Methods without strat-
ification (simple colocated cokriging (SCCK), ordinary colocated
cokriging (OCCK), PCK, standardised OCK (SOCK), SCK and OCK)
differ in the choice of mean, use of secondary information, the
number of samples in a search window, and orthogonalisation
in producing their estimations.

� Group 7: SKlm, UK and KED are similar and use secondary in-
formation and/or coordinate information in making their esti-
mations. They are different in local trend and utilisation of
coordinate and secondary information.
� Group 8: TSA and local trend surfaces (LTS) form a group that
uses coordinate information in deriving the estimations. TSA is a
global approach and LTS is a local one.

� Cl, IDW, TPS, LM, and RT form single method group and they are
groups 1, 2, 9, 10 and 11 respectively, which indicate that they
are different from each other and also from all the other
methods.

The relationship among these 11 groups can be further explored
if a threshold line is placed at Height¼ 0.4 in Fig. 2 and these groups
can be merged into three major groups. The first major group,
containing groups 1, 2 and 3, is non-geostatistical, deterministic,
univariate, local and non-utilisation of coordinate and secondary
information. The second one consists of groups 4, 5, 6 and 7 and is
geostatistical, stochastic, local, exact and gradual. The last one
formed by groups 8, 9, 10 and 11 is non-geostatistical, multivariate,
stochastic and inexact.

6. Selection of SIMs

Selection of an appropriate SIM for the data at hand is critical,
but not easy. The performance of SIMs depends on many factors.
There is no simple answer regarding the choice of an appropriate
SIM, because a method is “best” only for specific situations (Isaaks
and Srivastava, 1989). A number of factors should be considered in
making an appropriate selection. The choice of method may
depend on the assumption and properties of each method, the
nature and spatial structure of data for the primary variable, sample
size and distribution, the availability of secondary information and
many other factors as discussed in Section 4. They can be used to
eliminate some inappropriate methods. The availability of software
may also be an important issue. The computational demands are
also crucial depending on sample size, the power of computer and
the efficiency of software.

Guidelines have been proposed in previous studies for selecting
a SIM from subsets of the methods listed above. For instance, a
decision tree for selecting a suitable spatial predictionmethod from
four methods (RK, OK, IDW and LM) was developed by Hengl
(2007). Pebesma (2004) and Bivand et al. (2008) proposed a deci-
sion tree for IDW, TSA and three kriging methods in gstat package
in R. There are also guidelines for choosing between DK and IK
according to the nature and structure of data (Lark and Ferguson,
2004). A general method has been developed for selecting among
SIMs based on unbiased estimation of MSE by Huang and Chen
(2007) and they applied this method to OK, UK and TPS. In addi-
tion, several steps have been provided for using kriging methods by
Burrough and McDonnell (1998).

In this review, we develop a decision tree according to the
availability and nature of data and the expected estimation in
combination with the features of each SIM (Fig. 3). All 25 methods
in Table 5 are considered. The decision tree is illustrated in a
taxonomic fashion. It provides guidelines for selecting an appro-
priate SIM from these methods. It is easy to use for selecting a
method based on the information available. For example, for a
continuous primary variable (2) with spatial structure (with a non-
linear variogram) (1) to make predictions using local means (4*)
and without secondary variable (3), the candidate interpolation
method is OK in Fig. 3.

Many other factors as discussed in previous sections could in-
fluence the choice of a SIM. For example, one might use a SIM that
does not incorporate secondary information even if such infor-
mation is available if it is considered as a reasonable approach.
Joint application of two SIMs might produce additional benefits
such as the combined procedures in Li and Heap (2008). If distinct
spatial changes, such as those in soil and rock types, vegetation



J. Li, A.D. Heap / Environmental Modelling & Software 53 (2014) 173e189184
classes and habitat types, are expected, stratified SIMs may be
used to improve the estimation (Hernandez-Stefanoni and Ponce-
Hernandez, 2006; Stein et al., 1988; Voltz and Webster, 1990).
Moreover, if more than one method can be applied, cross-
validation in combination with the measures of predictive errors
(Bennett et al., 2013; Gneiting et al., 2007; Li, 2013; Li and Heap,
2008; Li et al., 2011b) can be used to select a method that mini-
mises the predictive error.

For kriging methods, a number of factors, including sample size,
and isotropy and anisotropy of data, need to be considered for
selecting appropriate variogram models. Data transformation may
1 Non-geostatistical, no error assessment (except TPS)
2 Deterministic

3 Global ………………………………………………...…........
3* Local 

4 Exact 
5 Abrupt

6 Tessellation and using one sample.…..........................
6* Using more than one sample

7 Triangulation and using three samples.....................
7* Combination of triangulation & tessellation .........

5* Gradual…... ………..……......…...................................
4* Inexact …………………………........................................

2* Stochastic
8 Global

9 Coordinates only…………………………………….………
9* Coordinates and other secondary variables

10 Abrupt………………………….………………………
10*Gradual and can be abrupt if categorical secondary var

11 No error assessment ……………………..…………
11* With error assessment ………………………………

8*Local…………………………………………………………
1* Geostatistical, with error assessment

12 Univariate
13 Stationary mean………………………………………………
13* Local means…………………………………………………

12* Multivariate
14 Stationary mean

15 Non-stratification
16 Search window with multiple samples………...………
16* Search window with single sample…….………..……

15* Stratification 
17 Non-continuous secondary information……….…..……
17* With continuous secondary information……….………

14*Local means
18 Exhaustive secondary information and/or local trend

19 Coordinates only……………………….………………
19* Non-coordinate secondary variable

20 A secondary variable and search window with multip
21 Regression coefficients estimated within each sea
21* Regression coefficients estimated once……...…

20* One or more secondary v
sample……………………………………………………

18* Non-exhaustive secondary information and no local tren
22 Stratification 

23 No secondary information……………………………
23* Secondary information………………………………

22* Non-stratification
24 Orthogonalisation of secondary information………..
24* Non-orthogonalisation of secondary information

25 No information of the stationa
variables………………………………………………
25* With information of the stationary
variables...……………………………………..…...…

Fig. 1. Classification tree of 25 S
need to be considered when the data are skewed and anisotropic.
Three methods of data transformation (logarithms, standardised
rank order and normal scores) can be employed to reduce the
skewness (Wu et al., 2006). Non-stationary methods like KED
should be used in cases with a general anisotropy or trend (i.e. drift)
(Verfaillie et al., 2006). If different types of nonstationarity exist
inside a study region, application of different SIMs to each typemay
be a good practice because the estimation resulted from the com-
bination of the results from different methods can be more precise
than when only a single method is used (Meul and Van Meirvenne,
2003).
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Table 4
Conversion between feature status and factor levels.

No Feature Level

0 1 naa

1 Univariate No Yes
2 Multivariate No Yes
3 Deterministic/stochastic Deterministic Stochastic
4 Local/global Global Local
5 Exact No Yes
6 Inexact No Yes
7 Abrupt transition No Yes
8 Gradual transition No Yes
9 Convex No Yes
10 Output: polygons No Yes
11 Output: triangular No Yes
12 Output: grids No Yes
13 Stationary/local mean Stationary Local na
14 Stationary mean of secondary

variable
No Yes na

15 Local trend-constant No Yes na
16 Local trend-non-constant No Yes na
17 Info of coordinates No Yes
18 Secondary variables No Yes
19 Point/block Point Block
20 Exhaustive secondary information No Yes na
21 Stratification No Yes
22 Orthogonalisation of secondary

information
No Yes na

23 Single or multiple samples in the
search window

Single Multiple

a na: not applicable.

Table 5
The quantified data of the 23 features of 25 SIMs. For the feature corresponding to each
results from Fig. 1. The bold values highlight the key differences among the methods wi

Method 1 2 3 4 5 6 7 8 9 10 11 12

Cl 1 0 0 0 0 1 1 0 1 1 0 0

IDW 1 0 0 1 0 1 0 1 1 0 0 1

NN 1 0 0 1 1 0 1 0 1 1 0 1
NaN 1 0 0 1 1 0 1 1 1 0 0 1
TIN 1 0 0 1 1 0 1 0 1 0 1 1

OK 1 0 1 1 0 0 0 1 0 0 0 1
SK 1 0 1 1 0 0 0 1 0 0 0 1

OKWS 0 1 1 1 1 0 0 1 0 0 0 1
SKWS 0 1 1 1 1 0 0 1 0 0 0 1

OCKWS 0 1 1 1 1 0 0 1 0 0 0 1
SCKWS 0 1 1 1 1 0 0 1 0 0 0 1
SCCK 0 1 1 1 1 0 0 1 0 0 0 1
SCK 0 1 1 1 1 0 0 1 0 0 0 1
SOCK 0 1 1 1 1 0 0 1 0 0 0 1
PCK 0 1 1 1 1 0 0 1 0 0 0 1
OCCK 0 1 1 1 1 0 0 1 0 0 0 1
OCK 0 1 1 1 1 0 0 1 0 0 0 1

SKlm 0 1 1 1 1 0 0 1 0 0 0 1
KED 0 1 1 1 1 0 0 1 0 0 0 1
UK 0 1 1 1 1 0 0 1 0 0 0 1

LTS 0 1 1 1 0 1 0 1 1 0 0 1
TSA 0 1 1 0 0 1 0 1 0 0 0 1

TPS 0 1 1 0 1 1 1 1 0 0 0 1

LM 1 1 1 0 0 1 1 1 0 1 0 1

RT 1 1 1 0 0 1 1 0 1 0 0 1

Fig. 2. Classification of 25 SIMs based on the 23 binary features in Table 5 using hi-
erarchical cluster analysis.
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It is recommended that one should try several search strategies
on a test subregion before running any kriging over an entire re-
gion (Goovaerts, 1997). Cross-validation can be used to evaluate
the effects of different search parameters on the estimations, but it
should be noted that the search strategy that generates the best
cross-validated results may not necessarily produce the best
number please see Table 4. The methods are arranged in an order according to the
thin each non-single-method group.

13 14 15 16 17 18 19 20 21 22 23

na na na na 1 1 1 1 0 na 0

na na na na 0 0 0 na 0 na 1

na na na na 0 0 1 na 0 na 0
na na na na 0 0 1 na 0 na 1
na na na na 0 0 1 na 0 na 1

1 na 1 0 0 0 0 na 0 na 1
0 na 1 0 0 0 0 na 0 na 1

1 0 1 0 0 0 0 na 1 na 1
0 0 1 0 0 0 0 na 1 na 1

1 0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1
1 1 1 0 0 1 0 0 0 0 1
1 0 1 0 0 1 0 0 0 1 1
1 0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 1

1 0 1 1 0 1 0 1 0 0 1
1 0 0 1 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1 0 0 1

na 0 na na 1 0 0 na 0 na 1
na 0 na na 1 0 0 na 0 na 1

na na 0 1 1 1 0 1 0 na 1

na 0 1 1 1 1 0 1 0 0 1

na 0 na na 1 1 0 1 0 0 1



1 Data or residuals show spatial structure or a non-linear variogram 
2 Estimation of continuous variable 

3 No information of secondary variables available 
4 Global mean known ………………………………...…..............................................................................................SK
4* Global mean unknown and using local means...........................................................................................................OK

3* Information of secondary variables available 
5 Global mean known

6 Secondary variable is only categorical
7 Stratification…………………….…………………………………..................................................................SKWS
7* Non-stratification………………………………………..…..………...............................................................SKlm

6* Secondary variable is not only categorical
8 Stratification………………….……………………………………...............................................................SCKWS
8* Non-stratification

9 Sparse samples of secondary variable and multiple samples in search 
window………….…………………………………………………...….............................................................SCK
9* Dense samples of secondary variable and single sample in search 
window.…………………………………..…..……………………… ............................................................SCCK

5* Global mean unknown and using local means
10 Secondary information available for each point being estimated

11 Spatial trend is apparent and only coordinates available ………..……................................................................UK
11* Other secondary variable available

12 An apparent global relation with the secondary variable…………...............................................................SKlm
12* The relation is not so apparent…………………………….……….............................................................KED

10* Secondary information not available for each point being estimated
13 Secondary variables including a categorical variable

14 Only a categorical variable available
15 Multiple samples in search window……………..……….…….............................................................OKWS
15* Dense samples of secondary variable and single sample in search 

window………………………………………...….…………………..............................................................OCCK
14* Other secondary information available………………………..............................................................OCKWS

13* Secondary variables without categorical variable
16 Sparse samples of secondary variable and multiple samples in search window

17 Many secondary variables and PCA needed..…………………… ............................................................PCK
17* PCA not needed to reduce the number of secondary variables

18 Avoid negative weights and artificially limiting the effect of secondary 
variable……………………………………………………..............................................................................SOCK

18* Accept above two drawbacks…………………………………...........................................................OCK
16* Dense samples of secondary variable and single sample in search 
window………………………………………………………………..............................................................OCCK

2* Estimation of categorical variable or uncertainty assessment….....................................................................IK & its variants
1* Data or residuals show no spatial structure or linear variogram or sample size is too small to derive a reliable variogram

19 No secondary variables available
20 Abrupt estimation acceptable

21 Using single sample for estimation…………………………………..……...................................................................NN
21* Using multiple samples for estimation

22 Using three samples for estimation……………………………………...................................................................TIN
22* Using more than three natural neighbour samples for estimation……..................................................................NaN

20* Abrupt estimation unacceptable
23 Using more than three natural neighbour samples weighted by area...…....................................................................NaN
23* Using nearest several samples weighted by distance…………...………..................................................................IDW

19* Secondary variable available
24 Using information of coordinates

25 Only coordinates information used with inexact estimation
26 Using nearby samples……..………………………………...................................................................Splines & LTS
26* Using all samples………………………………………………...…….................................................................TSA

25* May use other variables with exact or inexact estimation…...…………...................................................................TPS
24* Not using information of coordinates

27 Only categorical secondary information available
28 Only one variable available………………………....…………………….................................................................Cl
28* Multiple variables available…………………………………………….................................................................RT

27* Continuous secondary information available
29 Univariate or multiple secondary information……………………….…..................................................................LM
29* Require multiple secondary information………………………………..................................................................RT

Fig. 3. A decision tree of the SIMs.
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Table 6
Availability of the SIMs in several commonly used software packages.

Method/package ArcGISa GSþ R S-PLUSb SURFER

stats akima deldir fields geoR geoRglm GRASS Gstat spatial Sgeostat RandomFields Tripack

NN Yes Yes Yes Yes Yes
TIN Yes Yes Yes Yes Yes
NaN Yes Yes
Cl Yes Yes Yes
TSA Yes Yes Yes
IDW Yes Yes Yes Yes
LM Yes Yes Yes Yes Yes
TPS Yes Yes Yes Yes Yes Yes
SK Yes Yes? Yes Yes Yes? Yes
OK Yes Yes Yes Yes Yes Yes Yes Yes
UK Yes Yes Yes Yes Yes Yes Yes
SCK Yes Yes
OCK Yes Yes Yes
Universal CK Yes Yes
SCCK Yes
KED Yes Yes
StOK/StSK Yes Yes
IK Yes Yes
MBK Yes Yes

a Including ArcGIS Geostatistical Analyst, an extension to ArcGIS.
b Including the SþSpatialStats module (Kaluzny et al., 1998).
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estimations at unsampled locations when samples may not be
representative of the study area such as samples being scarce and
preferentially located (Goovaerts, 1997). Visual examination of the
predictions is an essential and further step to validate the pre-
dictions (Li et al., 2011a, 2011b, 2011c).

When datasets consist of relatively few samples, it is recom-
mended that least square error and ranking procedures should be
used rather than Delfiner’s methodology for estimating the
generalised covariance function (Puente and Bras, 1986).
7. Software packages

Many software packages contain functions to interpolate spatial
point data to spatially continuous data (Table 6). The list of software
packages and SIMs in each package is acquired fromvarious sources
and is not exhaustive. However, for each method there is at least
one software package provided.

Several packages in R perform spatial interpolation, including:
akima, deldir, fields, geoR, GeoRglm, GRASS, gstat, spatial, sgeostat,
RandomFields and tripack. Large parts of the geoR and GeoRglm
packages address the uncertainty of estimated covariance parame-
ters in a Bayesian framework (also known as MBK; Diggle and
Ribeiro, 2007; Pebesma, 2004). Due to heavy computational re-
quirements, MBK seems to be only relevant to datasets of small
sample sizes (Moyeed and Papritz, 2002). However, this and previ-
ous relevant statements about the computation requirements may
no longer be valid because of the increase in computing power since
then and adoption of some improved algorithms. For example, a
sample size of 10,000 can be easily handled in geo-statistics now
(pers. comm. with E. Pebesma, 9 July 2008). Some other R packages
that are not included in this study can be found at CRAN task views:
analysis of spatial data (http://cran.r-project.org/web/views/Spatial.
html) andhandling and analysing spatio-temporal data (http://cran.
r-project.org/web/views/SpatioTemporal.html).

A few SIMs are also available in GSþ (Robertson, 2000), ArcGIS
Geostatistical Analyst (an extension to ArcGIS�) and SURFER. Two
types of SIMs, OK and UK, are provided in the SþSpatialStats
module in S-PLUS (Kaluzny et al., 1998). TPS is also implemented in
the ANUSPIN software (Hutchinson, 1995, 2011; Xu and
Hutchinson, 2013).
A list of geostatistical software (including e.g., SGeMS, Space-
time routines, WinGslib) with some kriging methods are
compared and discussed by Goovaerts (2010). Computer programs
available for surface pattern analysis are listed and briefly described
by Legendre and Legendre (1998). They include Geo-EAS, GEOSTAT,
GSLib, ISATIS, Kellogg’s,MACGRIDZO and UNIMAP, which also include
SIMs. The computing capacities of some popular statistical and GIS
packages were compared by Hengl (2007).

In addition, besides above packages for SIMs, software available
for optimal spatial sampling design to improve spatial interpolation
was reviewed by Spöck (2012). Moreover, a MATLAB and Octave
toolbox was developed for spatial sampling design optimisation
(Spöck, 2012).
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