Chapter 5 *Hypothesis testing Goodness-of-fit test*

Hypotheses

- Basic components of scientific theories
- Formulated as *universal statements* (concerning all objects of a given class)
 - E.g. All mammals are viviparous, All plants contain chlorophyll
 - Informative about the members of the given class (even without knowledge of a specific case): A lion is a mammal -> it is also viviparous (
- Must be falsifiable = sensitive to empirical observations, which may demonstrate it is false
- A single contradictory observation can be used to reject a hypothesis no matter how many observations support it
 - Empirical singular statement not informative beyond the
- No hypothesis can be demonstrated universally true
- Science is a process of rejecting old hypotheses and replacing them with new ones which explain reality better

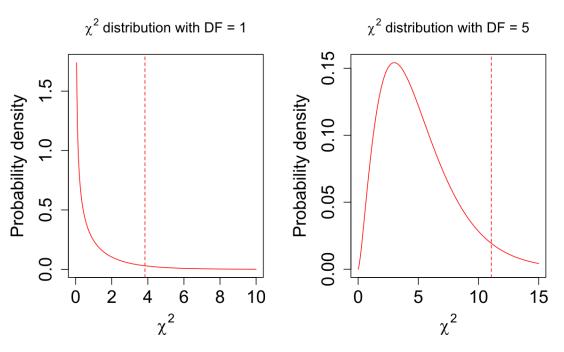
Platypus is an oviparous mammal.

Rafflesia arnoldii and *Lathraea squamaria* are parasitic plants containing no chlorophyll.

Statistical hypothesis testing

- Empirical evidence mostly comes from measurements of quantitative data
- Statistics quantifies the disagreement between a null hypothesis (H0) and empirical observations
 - Measured by a test statistic
 - E.g. *χ*², *t*, *F*-ratio
 - Test statistics have a known probability distribution
 - Allows computing the p-value = Type I Error probability (probability of making an error if rejecting the H0)
 - Acceptable error typically 0.05 (5%)
 - Shape of the distribution depends also on the degrees of freedom
 - These depend on the complexity of the system and/or number of observations

Possible outcomes of hypothesis testing by statistical tests. H ₀ = null hypothesis		Reality		
		H ₀ is true	H ₀ is false	
	Our Decision	Reject H _o	Type I Error	Ok
		Not reject H ₀	Ok	Type II Error


- Classical biostatistics quantifies precisely only the Type I Error
- Hypotheses cannot be confirmed!
- A non-significant test means that empirical evidence is not sufficient to reject the H0

Pattern detection

- Special cases when H0 = 0 (no effect, independence)
- Generic null hypotheses can be converted to pattern detection problems by subtracting hypothesis expectations from observed data
- Generally easy to compute
- Biology is still largely exploratory science
 - many biological problems have the pattern-detection nature

Goodness of fit test

- Suitable for frequencies (count data)
- Formula: $\chi^2 = \sum \frac{(O-E)^2}{E}$
 - O = observed frequencies = empirical counts
 - E = expected frequencies = counts predicted by the null hypothesis
- Degrees of freedom = number of categories
- Report: χ^2_{df} = value, p = value
- Colloquially called χ^2 test (chi-square square)

