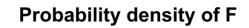
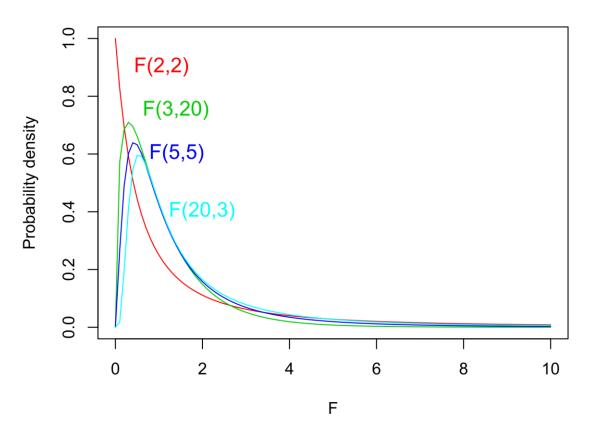
Chapter 8 *F-test ANOVA*

F-ratio

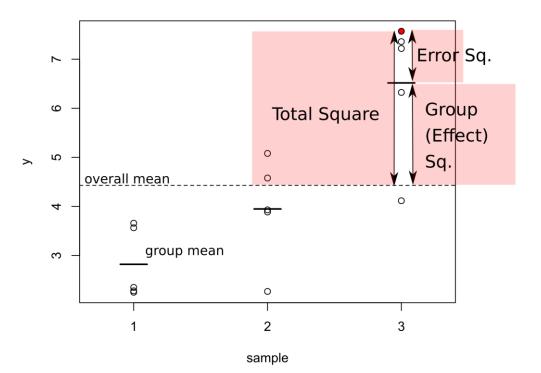
- Ratio of two variances
- $F = \frac{s_1^2}{s_2^2}$
- Can be used to test H0 that variances of two variables are equal
- Two DFs
 - DF(numerator) = n (sample 1) 1
 - DF(denominator) = n(sample 2) 1





Analysis of variance (ANOVA)

- Application of the F-test principle
- Allows comparisons of multiple mean values
- H0: means of all groups are identical
- Decomposes the total Sum of Squares (= numerator in the variance formula) into
 - Systematic component (Sum of squares effect) can be scaled by corresponding DF_{effect} (=number of groups – 1) to get Mean Square (MS_{effect})
 - Residual variability (Error Sum of Sq.) can be scaled by DF_{error} (= number of obs. 1 DF_{effect}) to obtain the MS_{error}
- F = MS_{eff}/MS_{error} to be compared with the F distribution with corresponding DFs
- *R*² (proportion of explained variability) = SS_{effect}/SS_{total}



ANOVA assumptions

- Homogeneity of variances (variances in all groups are equal)
- Normal distribution of residuals (= of values within individual groups)
- ANOVA may be unbalanced (= unequal sample size within groups)
- Formal tests exist to check the assumptions
 - Difficult to interpret
 - Graphical inspection of residuals using plot(anova.object) is a better option

Post-hoc comparisons

- Rejecting H0 in ANOVA means that all group means are not identical, i.e. at least one is different
- We wonder, which mean is significantly different from which
- Post-hoc pairwise comparisons are used for that
 - Tukey HSD test and others
 - Various control levels of type-I error in multiple comparisons
 - Results are best displayed on graphs (groups with different letters are significantly different)

