10: Data transformation and nonparametric tests

What to do if t-test assumptions are substantially violated?

- Large difference in variances
 - Welch approximation usable only when the difference is low to moderate (and with rather high number of observations)
 - The data might follow the log-normal distribution \rightarrow use transformation
 - Use a non-parametric test (but this might be tricky)
- Data do not come from a normal distribution
 - Check the log-normal possibility
 - Use non-parametric tests

The log-normal distribution

- log(X)~N(μ, σ²)
- Positively skewed
- Defined for numbers > 0
- Very common situation in biological research
 - Masses, dimension of biological objects
 - Counts can be approximated by log-normal distribution

Data transformation using log function

- Changes the scale from additive to multiplicative
 - geometric instead of arithmetic means; exp(mean(log-data) = geometric mean
 - H₀: The ratio between geometric means is 1.0
 - Results say how many times the mean is larger (e.g. 1.2 times = by 20%)
- If suitable, improves both normality and homogeneity of variances
- Test results do not depend on the type of logarithm used (just consistency is needed)

Some more tricky types of data

- Ordinal data
- e.g. behavioral experiments
 - Measures of reaction of an animal on an impulse
- Data do not follow the normal distribution
- Transformation provides no help
- Non-parametric tests
 - Do <u>not</u> test null hypotheses on parameters of the distributions

Various non-parametric analogues of t-tests

- Permutation tests
 - Based on the principle of repeated random reassignment of data to groups and calculating the t
 - P-value corresponds to number of observations for which t is higher than that calculated based on the original data/total number of permutations

Number of permutations ________, $\frac{x+1}{n+1}$ where $|t_{permut}| \ge |t_{data}|$ Total number of permutations _______ where $|t_{permut}| \ge |t_{data}|$

Non-parametric tests based on order

- Mann-Whitney test
 - Analogue of a two-sample t-test
 - Original values replaced by their order in the whole dataset
 - These are then used for the calculation of the U statistic
 - P-value based on direct comparison to theoretical U distribution
 - Or approximation to normalized normal distribution (Z) usually applied if ties are present
- Wilcoxon test
 - Analogue of a paired t-test
 - P-value based also mostly on normal (Z) approximation (if ties are present)
- Kruskal-Wallis test
 - Analogue of ANOVA
 - Dunn test for multiple comparisons
- Spearman correlation coefficient
 - Order-based non-parametric correlation coefficient

Non-parametric tests have also some assumptions

- Identical (though not normal) distributions from which the samples come
 - If we state the null hypothesis about the shift (i.e. difference of means)
- Homogeneity of variances, quite similar to ttest/ANOVA
- Same size of intervals for data on the ordinal scale