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SYLLABUS

1. Introduction to palaeoproteomics and palaeogenomics. History, main principles and differences, molecular preservation.
2. Methods in palaeogenomics.

3. Palaeogenomics of human populations.

4. Metagenomics.

5. Palaeogenomics of pathogens.

6. Sedimentary ancient DNA.

7. Methods in palaeoproteomics |

8. Methods in palaeoproteomics Il

9. Collagens, keratins and other proteins used in taxonomy.

10. Palaeoproteomics of human populations. Sex typing, evolution, skeletal and mummified remains.
11. Metaproteomics. Diet, health and culture studied by proteomic approach.

12. Dental calculus as a complex material in biomolecular archaeology.

13. Opportunities, challenges, and ethics in palaeoproteomic and palaeogenomics research.



LESSON PLAN

Quiz
Lecture
Collection of important concepts/terms (1-3)

Online resources for voluntary self-directed learning.



ASSESSMENT METHODS

« Written examination with possibility to take an oral exam.
(A: 100-93 points, B: 92-85 points, C: 84-77, D: 76-69, E: 68-60, F: 60-0)

e Students can obtain up to 20 bonus points during the semester for voluntary assignments
(presentation, paper analysis, involvement in discussion).

Flash talk (5 points/each talk, up to 3 talks)
1) Choose a paper based on given topic
2) Read and analyse paper
3) Choose most important and interesting information
4) Prepare 1slide with this information
5) Present in 3 minutes

Case study (5 points)

Last lecture - choose a case study (archaeological situation), prepare and share suggested solution
and what analyses you would recommend.



PALAEOGENOMICS, PALAEOPROTEOMICS

* Importance
« Life of ancient populations
« Migrations and contact
* Evolutionary processes, adaptations
* Current organisms and diseases
« Extinct organisms
 Epidemiology and public health implications




NOBEL PRIZE - SVANTE PAABO

The Nobel Prize in Physiology or Medicine 2022
was awarded to Svante Paabo "for his discoveries
concerning the genomes of extinct hominins and
human evolution"

Ancient DNA

Chemical modifications
Fragmentation

Contamination
Mutations

Nuclear DNA Mitochondrial DNA
3,000,000,000 base pairs 16,500 base pairs




NOBEL PRIZE - SVANTE PAABO

Thanks to Svante Paabo’s discoveries, we now understand that archaic gene sequences from
our extinct relatives influence the physiology of present-day humans. One such example is the
Denisovan version of the gene EPAS1, which confers an advantage for survival at high altitude
and is common among present-day Tibetans. Other examples are Neanderthal genes that
affect our immune response to different types of infections.
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Figure 2. A. Paabo extracted DNA from bone specimens from extinct hominins. He first obtained a bone
fragment from Neandertal in Germany, the site that gave name to the Neanderthals. Later, he used a finger
bone from the Denisova Cave in southern Siberia, the site that gave name to Denisovans. B. Phylogenetic
tree showing the evolution and relationship between Homo sapiens and the extinct hominins. The
phylogenetic tree also illustrates the gene flows discovered by Paabo.



NOBEL PRIZE - SVANTE PAABO

1-2%
Neanderthal DNA

1-6%
Denisova DNA

Figure 3. Paabo's discoveries have provided important information on how the world was populated at the
time when Homo sapiens migrated out of Africa and spread to the rest of the world. Neanderthals lived in
the west and Denisovans in the east on the Eurasian continent. Interbreeding occurred when Homo sapiens
spread across the continent, leaving traces that remain in our DNA.
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BRIEF HISTORY OF PALAEOGENOMICS

 Genetics

Mitochondrial DNA,

identification

— GenomiCS

Whole genomes

« Quagga (Higuchi et al.,, 1984), Egyptian mummies (Paabo, 1985)

Last died in Amsterdam Zoo, 12 August 1883

L

Founder population, selected in Etosha in 1987 Ricky

Rain Current population, Nuwejaars Wetland 2022

https://www.quaggaproject.org/
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Neandertal Genome Project - 2006

https://www.mpg.de/13894984/neandertal-genome-project

Fu Qiaomei et al, 2022; DOI: 10.1016/j.cell.2022.06.009
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BRIEF HISTORY OF PALAEOGENOMICS

@ Non-human animal paleogenomes @ Hominin paleogenomes

@ Sedimentary ancient DNA records

Early Pleistocene

Middle Pleistocene Le

® Oldest marine
\ sedaDNA

Kap Kgbenhavn sediments
(oldest ancient DNA)
Krestovka

mammoth m .

(oldest paleogenome) —% O

® ’,o\ﬁ‘

b e
M

136
42
G 4.8

Early Pleistocene

Middle Pleistocene e

2.2 20 1.8 1.6 14 1.2 1.0 0.8
Million years ago (Ma)

0.6 04 0.2 0.0

Fig. 1. The temporal distribution of ancient DNA studies to date highlights gaps and opportunities for
deep-time paleogenomics and sedimentary ancient DNA.

Most ancient DNA studies fall within the last 50 ka and the most recent glacial cycle. The climate curve is
based on benthic 6'8-oxygen measurements [per mil; LRO4 stack from (42)]. Sedimentary ancient DNA data
are from the AncientMetagenomeDir (v23.06.0) (57) and (58), with metabarcoding records older than one
million years excluded. Paleogenomic data are available from (59). Paleogenomes older than 100 ka are an-
notated with a silhouette of the study taxon, with the deep-time paleogenomes including a 130-ka steppe bi-
son (36); 330-ka collared lemming (40); 360-ka cave bear (9), 430-ka cave bear and hominin (35, 60); 700-ka
horse (8); and 700-ka, 1.1-Ma, and 1.2-Ma mammoths (70). LF, Late Pleistocene; |G, Interglacial; G,

Glacial. silhe from PhyloPic hitps.//beta.phylopic.org/ and are redita to Zimicea {mammaoth, t
Robert Bruce Horsfa

n the public domain with credita to Zimices (mamrmr



BRIEF HISTORY OF PALAEOGENOMICS

Woolly mammoth
(Mammuthus primigenius)
>110,000 yr
Scimitar-toothed cat
- {Homotherium latidens)
Polar bear (Wi kI Grey wolf (Canis lupus)
Cave lion
Cave bear (Ursus sp) {Panthera spefaea)
~18,000 yr >50,000 yr
Gawr {Bos gaurus)
Woolly rhinoceros
(Coelodonta antiquitatis)
>120,000 yr M
Straight-tusked elephant
Cave hyena
(Pataeoloxodon antiquus) (Crocuta crocuta speloea)
Stilt-legged horse
Giant ponda (Haringtonhippus francisci)
(T:minlan tiger Little bush moa
Eastern lowland gorilla g
(Gorilla beringei graver}
Giant koala lemur
(Megaladapis edwardsi)
Trends in Ecology & Evolution

Mitchell et al., 2021; DOI: 10.1016/j.tree.2020.10.005



BRIEF HISTORY OF PALAEOGENOMICS

(A) (B)

North and Central America Europe Middle East North and Central Eurasia North and Central America Europe Middle East North and Central Eurasia

n=19 @
n=>56

n=333

(%

S oL
é T S N Animal genomes by time period
I > 10 000 BP .
; ) I 10 000-5000 B E ' ?
v ‘| # s000-2500 8 -
o <2500 BP . : - :
Human genomes by time period Plant genomes by time period South America Africa South and East Asia Oceania
I > 100006P South America Africa South and East Asia Oceania I > 10 000 BP
I :0000-5000 8P [ 10 000-5000 BP O ‘ @
I 5000-2500 8P Q Q Q G JI 5000-2500 BP nEq el n=1
<25008p S PRl n=46 n=33 <2500 8P =16 B n=8

Figure 1 Geographic and Temporal Distribution of Ancient Genomes Published through December 15, 2018. Marciniak and Perry [3] previously
reported a map of published human sequences. Here we generate an enhanced version of this figure, that reports both published genomic data
from (A) human individuals (points in purple, updated from Marciniak and Perry, n = 1909), and (B) non-human animal (red, n = 207) and plant (green,
n = 80) species. For the human samples, we restrict to individuals with »0.025X coverage on a genome-wide set of informative single nucleotide
polymorphism positions. For animals and plants, we restrict to samples in which multiple autosomal loci have been characterized. Samples with
only mitochondrial or chloroplast genomes are not included. Data can be found in the online supplementary data. Maps drawn by Miriam

Rothenberg in ArcGIS.

Brunson and Reich



Kistler et al., 2017; DOI:

10.1093/nar/gkx361
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Locations of 185 samples (n=%4 unique sites) used in paleogenomic meta-analysis, global variation in mean temperature and
temperature fluctuation, and timeline of sample ages. Mote the absence of sites with annual mean temperature =20°C, reflecting
known preservation bias toward cooler climates (22).



BRIEF HISTORY OF PALAEOPROTEOMICS
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https://doi.org/10.1126/science.1249274

PROTEINS

 Macromolecules, polypeptides
« Peptide - less than 30 AA

« Shape crucial for function

822

SEQF2407 00 Pyruvate kinase _Turicella otitidis

Sequence

SIGVLADLQGPK




Primary protein structure
i saquence of a chain of amino acids

Pleated sheet Alpha helix

occurs whan the saguance of amino acids
ara linked by hiydrogan boncs
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‘ Secondary protein structure
h %
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National Human Genome Research Institute



CENTRAL DOGMA OF MOLECULAR BIOLOGY
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CONSERVED PROTEINS

GCA GCG GCT TGC

Ala Ala Ala Trp




SAME DNA, DIFFERENT PROTEINS




DNA VS PROTEINS

AMPLIFICATION MISTAKES
AND CONTAMINATION

CAN DISTIGUISH CLOSER SPECIES

WORSE PRESERVATION

THE SAME FOR ALL CELLS

NO AMPLIFICATION

OFTEN CONSERVED

BETTER PRESERVATION

SHOWS FUNCTION AND
ACTIVE PROCESES - TISSUE
DIFFERENCES



MOLECULAR PRESERVATION
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MOLECULAR PRESERVATION
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PRESERVATION OF DNA
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Dalén et al., 2023; DOI: 10.1126/science.adh7943
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MOLECULAR PRESERVATION - DNA
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PRESERVATION OF DNA

h lysi
(a) G ydri ysis i)

NH,

few template molecules / short fragment length

|

contamination / short PCR products

Willerslev and Cooper, 2005; DOI: 10.1098/rspb.2004.2813



PRESERVATION OF DNA
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PRESERVATION OF DNA
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PRESERVATION OF PROTEINS

Hydrolysis, deamidation, racemination
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PRESERVATION OF PROTEINS

Hydrolysis, , racemination
0 0 H,O0  NH, 0 0
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asparagine and glutamine aspartic and glutamic acid
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PRESERVATION OF PROTEINS

Hydrolysis, deamidation,

L to D form, can break from the chain

c&en



UDG treatment

Relevance of older method

Extrapolation from ancient genomes is biased by sampling
Preservation influences

Quagga

Genes from Denisovans

Cultural objects

Oldest proteins (3.8 M), oldest aDNA (1 M, 2 M)
Deamination in aDNA, deamidation in proteins



