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QU I Z 4. Deamination is damage typical for aDNA, not proteins

1. What is more conserved (not preserved!)? ) . o o
i True, in proteins we observe modification called deamiDation

e Proteins 5. Name a few of the factors in molecular preservation

MOLECULAR PRESERVATION
2. Who received the Nobel prize for palaeogenomics?

i Svante Pasbo & E 1

% @ X

6. What was the first organism we gained aDNA from?

3. How old is the oldest aDNA analysed (roughly)?

i 2M (sedaDNA) or 1M (mammoth genome)




BREAKTHROUGH WITH HTS

Fragmentary aDNA - ideal for High Throughput Sequencing (Massive Parallel Sequencing, Next
Generation Sequencing + Third Generation Sequencing)

~ 30-60 bp impossible to target by PCR-based methods
Cost per base pair significantly lower in HTS compared to Sanger

Sanger still applicable but in different settings
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Fig. 2| Experimental workflow. A wide range of remains are amenableto  and PCR amplification are carried out in regular molecular genetics
ancient DNA (aDNA) analysis. Prior to sample destruction, a research plan  facilities. Following next-generation sequencing (NGS), the sequence
should be agreed amongst the different stakeholders. The different  data are processed on computational servers and uploaded to public
wet-laboratory procedures must be carried out in specific aDNA facilities,  repositories. Results should be communicated to the stakeholders and any
minimizing environmental contamination, and include all pre-amplification  remaining sample should be returned as per the initial agreement. USER,
experimental steps, including sample preparation, DNA extraction, uracil-DNA—glycosylase (UDG) and endonuclease VIII (Endo VIII)

optional USER treatment and DNA

library construction. Target enrichment  (New England Biolabs).
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Figure 2. Overview of the experiments and bioinformatic analyses of ancient viral genomes. Ancient DNA can
be extracted from historical specimens such as bones and teeth. The extracted DNA is derived from human,
microbial, and viral genomes. Those mixed sequences can be determined by Sanger sequencing, whole
genome sequencing (WGS), or capture-based sequencing based on next-generation sequencing (NGS)
platforms. WGS can sequence untargeted DNA from humans, microbes, and viruses, and capture-based
methods use biotinylated specific bait libraries and magnetic beads to enrich the target sequences. Following
the preprocessing steps, contigs can be constructed by de novo assembly. Then, those contigs and
preprocessed reads can be utilized for sequence binning to cluster the sequences into individual groups and
obtain ancient viral sequences. Simultaneously, all contigs, preprocessed reads, and polymerase chain
reaction (PCR) amplicons can be aligned to known viral sequences to detect candidate ancient viral
sequences. Finally, the ancient viral sequences can be applied for downstream analyses: metagenomic
profiling, the reconstruction of ancient viral genomes, DNA authenticity testing, and phylogenetic analyses.
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Figure 1. Non-target DNA (approximately 95%) comprises the majority of surviving
DNA in ancient samples, whereas the desired or targeted endogenous DNA is only a
fraction (approximately 0—5%) of the overall constituents.

Marciniak et al., 2015 DOI: 10.1016/j.jhevol.2014.11.003



Table 1 A selection of paleogenomic case studies within the k=t years (as of Degcember 2016), ineluding information abou estimaed endogen ous conem
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Fig. 2 A pipeline for performing [llumina sequencing from ancient specimen. Following DNA
extraction, JPCR can be performed to examine endogenous DNA level for estimating input for
library preparation and targeted enrichment (Enk et al. 2013). [llumina sequencing libraries are
usually constructed through either (a) a double-stranded protocol (Meyer and Kircher 2010) or (b) a
single-stranded protocol (Gansauge and Meyer 2013). A bead capture enrichment protocol (Car-
penter et al. 2013; Enk et al. 2014) can be performed to enrich target sequences prior to sequencing

Lan and Lindqvist, 2018 (DOI: 10.1007/13836_2017_7)
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B) Double-stranded Library Preparation
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Figure 4. High-throughput sequencing strategies, including shotgun (direct sequencing) and targeted enrichment prior to sequencing (array- and in-solution based).
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Targeted SNP capture

Whole-genome capture

Whole-genome shotgun

Data characteristics

(GGenomic coverage

Targeted SNPs and alleles

Genome-wide

Genome-wide

Typical enrichment range 45-13,000 (6) 2-13x (79) None
Best use scenario Low endogenous DNA; Low endogenous DNA; Medium/high endogenous
low/medium complexity high complexity DNA; high complexity

Analyses characteristics®

Diploid genotyping

Possible with high coverage,

potential for allelic bias

Possible with high coverage,

potential for allelic bias

Possible with high coverage

Ascertainment bias

Specific to targeted SNP panel

None

None

Suitability for merging with

I'EfEI'EIlCE variant sets

Only variants overlapping with

capture panel

All variants

All variants

Basic population structure and Yes Yes Yes
admixture analyses

Demographic inference Methods not sensitive to Yes Yes
ascertainment bias and/or
allowing for correction

Rare variant analyses Only variants overlapping with | Yes Yes
capture panel

Recovery of host-associated Only if targeted with capture Only if targeted with Yes

pathogens

probes

capture probes

Cappellini et al., 2018, DOI: 10.1146/annurev-biochem-062917-012002



Table 1. Twenty-seven ancient DNA libraries experimentally characterized in this study

No. of 1,150,639 autosomal

SNPs covered after down-
sampling to 25 million
sequences
Library in shotgur Ref e for earlier publication of data from
Library ID type sequencing 1240k Arbor Twist same library
520720 ¥1.E1.L1 DS 0.10% 4247 3129 4383 n
S20721.Y1.E1.L1 DS 1.18% 38,513 29,958 43,375 n
S21299.¥1.E1.L1 DS 2.04% 332,624 227,616 379,349 n
S20703.Y1.E1.L1 DS 6.57% 648,971 483,408 823,496 n
S1633.E1.L1 DS 86.68% 812,084 647,823 1,042,602 (Lazaridis et al. 2016)*
S8432.E1.L9 SS 0.17% 10,719 4,353 13,013 n
S2818.Y1.E4.L1 SS 1.17% 19,856 13,245 24,538 n
S13982.¥1.E8.L1 SS 6.92% 92,627 58,034 148,083 (Lipson et al. 2022)"
S10872.E1.14 sS 4.20% 711,014 378,014 808,591 (Lipson et al. 2022)"
S10871.E1.L6 SS 42.21% 857,393 659,199 1,048,225 (Lipson et al. 2022)"
S2949E1.L7 DS 1.67% 7513 2476 8624 n
S11857.E1.L1 DS 7.46% 26,697 9,726 32,107 n
S10871.E1.1 DS 52.59% 857,393 659,199 1,048,225 (Lipson et al. 2020)
S4532.E1.L1 DS 69.12% 803,925 652,927 1,083,523 n
S1734E1.L0 DS 73.92% 808,314 676,065 1,076,264 (Mathieson et al. 2018)°
S4795E1.L1 DS 79.31% 817,750 649,362 1,066,996 (Olalde et al. 2019)*
S1507.E1.L1 DS 66.59% 816,665 683,200 1,077,678 (Mathieson et al. 2015)"
S1961.E1.L1 DS 76.18% 808,645 685996 1,063,387 n
S2514.E1.L1 DS 75.82% 753,037 621,223 1,008,821 n
S1960.E1.L1 DS 93.22% 824,903 700,631 1,072,129 n
S1965.E1.L1 DS 78.34% 810,646 669,482 1,066,051 n
S2861.E1.L1 DS 94.90% 789,102 675,731 1,074,256 (Lazaridis et al. 2016)"
S2520.E1.11 DS 87.29% 763,183 646,338 1,022,068 n
S1583.E1.L1 DS 68.66% 789,976 645,082 1,042,853 n
S5950.E1.L1 DS 69.63% 793,523 678,635 1,076,585 (Lipson et al. 2022)"
S5319.E1.11 DS 95.54% 806,669 679,549 1,074,390 (Lipson et al, 2022)"
S1496.E1.L1 DS 85.45% 809,418 683,539 1,072,954 (Lipson et al. 2022)"

The first 10 rows are for single-stranded (55) and double-stranded (DS) libraries of a range of human DNA percentages for which we, in almost every
case, obtained results from both one and two rounds of enrichment. The final 17 lines are for DS libraries that had extensive shotgun sequencing data
and for which we performed the originally recommended two rounds of enrichment for 1240k, two for Arbor Complete, and one for Twist Ancient
DNA. Statistics are computed on a core set of 1,150,639 SNPs on Chromosomes 1-22 targeted by all reagents, and we report the numbers of SNPs for
the originally recommended number of rounds of enrichment. The final column refers to the first paper to
library is newly reported. We show a superscript if capture data have been reported but shotgun has not: “n” means shotgun data are entirely new;
“a," part of the Allen Ancient Genome Diversity Project prepublication data release (ACDP; https://reich.hms.harvard.edu/ancient-genome-diversity-

project).

Rohland et al., 2022, DOI: 10.1101/gr.276728.122

data from this library or to “n” if the

Table 2. Effectiveness of enrichment in targeted subsets of the genome after duplicate removal

Targeted subset of the genome No. of positions (either SNPs or 1240k coverage Twist coverage Arbor coverage
(some categories overlap) tiled nucleotides) (vs. core set) (vs. core set) (vs. core set)
SNPs
Affymetrix Human Origins 597,573 0.984 1.109 1.045
Hlumina 650Y 660,611 0.959 0.899 0.963
Affymetrix 50K 58,559 0.392 0.544 0.771
1240k phenotypic supplement 45,969 1.005 0.929 0.960
1240k X content 49,704 0978 1.068 1.392
1240k Y content 32,670 0974 0.692 1.502
Twist phenotypic supplement 94,587 0.068 0.968 0.365
Twist Y content 81,925 0.446 0.680 1.182
Arbor ancestral supplement 852,068 0.140 0.157 0.695
Arbor Y supplement 46,218 0.150 0.624 1.060
Tiling nucleotides
Mitochondrial DNA 16,569 457 219 3250
Twist HAR supplement 857,339 (3171 HARs) 0.043 2.242 0.265
Twist gene sequencing supplement 2,577 (in three genes) 0513 2678 0.293
Twist methylation targets 80,000 (40,000 CpGs) 0.046 1.599 0.197

For each library, we down-sampled to 25 million reads, which is a typical number generated in a capture experiment; removed duplicates; and com-
puted the average coverage in the specified subset of the genome, divided by the average on the common core of 1,150,639 autosomal SNPs targeted
by all three reagents. The lines for autosomal regions show the mean of these ratios across all 27 libraries. The lines for X and Y Chromosome regions
show the average across males, after multiplying by a factor of two to show the effectiveness of enrichment on a per-genome-copy basis (males are
haploid on the sex chromosomes vs. diploid on the autosomes, so the factor of two adjusts for copy number difference). Numbers by library are in
Supplemental Table S2; before duplicate removal, in Supplemental Table S3.
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Figure 2. Different sequencing strategies are capable of characterizing different fractions of ancient DNA samples in terms of endogenous DNA content and fragment length.
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http://www.sixthresearcher.com/didactic-materials/

METABARCODING
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internally tr;al nscribed spacers
Type LSU SSU
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METABARCODING

A perfect metagenomics barcode/marker should...

be present in all the organisms, in all the cells

have variable sequence among different species

be conserved among individuals of the same species

be easy to amplify and not too long for sequencing

http://www.sixthresearcher.com/amplicon-sequencing-and-high-throughput-genotyping-metagenomics/



Which barcode to choose?

KressW.J. et al. (2014) DNA barcodes for ecology, evolution, and
conservation. Trends Ecol. Evol., 30, 25-35.

Tree of life

Land plants  |[rbcl/matK psbA-trnM/ITS

Color |Clade Primary Secondary
barcode(s) | barcode(s)

- Animals col €01, 165

. Fungi ITs LSU D1/02

- Green algae  [tufA LSV D2/D3

=

(|

Algae CO1-5p LSU D2/D3
Bacteria/ 165 RIF
Archae

CO1: cytochrome ¢ oxidase subunit 1
ITS: internally transcribed spacer
LSU: large subunit rRNA

D1/D2/D3: divergent domains

RIF: DnaA replication initiation factor

http://www.barcodeoflife.org/

http://www.sixthresearcher.com/amplicon-sequencing-and-high-throughput-genotyping-metagenomics/



Adjustments &

Metabarcoding Workflow
Improvements

Library preparation
* DNA quantification a) Fluorometric
* Template DNA quantification
OO0 standardization b) Technical replicates
S LE1EEiIiIiIi'iiii *  Primer selection ¢) Low number of PCR
.' .T.T.'l-l-l-x- . e i v .l b ﬁdditiﬂn Df ﬂﬂptﬂﬁ m'ﬂ
“TaTglole and barcodes d) Proof reading
T a) One step PCR polymerase
0l0lb.viviviviviviwivid b) Two step PCR e) PNA clamps

Francioli et al., 2021, DOI: 10.3390/microorganisms9020361



High-throughput sequencing

' * platform selection a) Sequencing chemistry
E b) PhiX Phage spiked-in
? c) Heterogeneity spacer

Bioinformatic analyses
a) Bioinformatic pipelines
: : available: QIIME2,
* Demultiplexing st DADED
’ 9“3",“" check 4 b) ASVinference based on
* Filtering and trimming error rate (oligotyping)
* Sequence clustering
. : c) OTU clustering by
* Taxonomic assignment similarity threshold
d) Choice of a curated and
updated reference

database: SILVA, RDP,
GenBank, UNITE

MICROBIOME INFORMATICS: OTU VS. ASV

Francioli et al., 2021, DOI: 10.3390/microorganisms9020361


https://zymoresearch.eu/blogs/blog/microbiome-informatics-otu-vs-asv

METABARCODING

« Cheaper - more samples, wider accessibility

* Potentially better results for targeted analysis,
lower yields, rare taxa..

0.002% other

\* 0.002% animal
0.005% fungi

\' 0.008% plant
0.062% virus
0.068% archaea

0.529% human

Warinner et al.,, 2014; DOI: 10.1038/ng.2906



METABARCODING

 Cheaper - more samples, wider accessibility
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Fig 1. Close-up views of dental calculus on the teeth from the sampled individuals of the Unko-in site.
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Figure 2. Conceptual illustration of joint analysis of aDMNA from multiple substrates. Red and black lines depict
hypothetical changes in effective population size (N inferred from the palasogenomes of two distinct taxa (e.g. from a
PSMC analysis). Filled bar colours represent three different ecosystem states (A—C) derived from sedaDNA. In this
example, there are two distinct ecosystem state shifts. The N, of taxon 1is in decline prior to the ecosystem state shift
from A to B. Its M. remains stable after humans appear {dark blue line} but crashes during the shift from ecosystem
state B to C. By contrast, the N, of taxon 2 rapidly increases during the first ecosystem state shift (A—B), and again
increases after the appearance of humans. The N, of taxon 2 is unaffected by the second ecosystem state shift (B—C).
Silhouettes are from PhyloPic.org. (Online wersion in colour)
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Table 2

Molecular damage and potential resolutions

Molecular damage

Cause

Effect

Resolution

Shortening lesions
Strand breaks

Cross-links

Oxidation
Miscoding lesions

a) Cytosine-uracil

b) Guanine-xanthine

¢) 5’-methylcytosine-thymine
d) Adenine-hypoxanthine

Biological (e.g., microorganisms), chemical
(e.g., post-mortem cellular processes)
DNA—DNA and DNA-protein reactions
(e.g., Maillard products)

Hydantoin derivatives from pyrimidines
(cytosine, thymine)

Hydrolytic damage deaminates amino
acid groups

Depurination reduces
size and amount of DNA
Block PCR replication

Block strand elongation

Misincorporation of bases,
still amplifiable

Short overlapping PCRs

PTB (N-phenylacyl thiazolium bromide)
breaks cross-links inconsistently

(see Rohland and Hofreiter, 2007b)

Short overlapping PCRs, polymerases
(e.g., Beta polymerase), cloning

Multiple extractions, independent PCRs,
special polymerases

e.g., Uracil-DNA-glycosylase, base excision
repair (BER)

Marciniak et al., 2015 DOI: 10.1016/j.jhevol.2014.11.003



EPIGENOMICS

DNA in ancient organisms
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Ancient epigenomics. Postmortem DNA decay leads to
specific sequence patterns in ancient DNA data, making
it possible to identify genes that are epigenetically
reprogrammed during evolution. One such patterns
results from deamination reactions that convert CpGs
and CpGs into UpGs and TpGs. Use of molecular tools
that detect only the latter reveal regions that were
methylated in ancient genomes. Patterns of coverage
variation along the genome can also help to track
ancient nucleosome occupancy.
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Fic. 1. Environmental paleoepigenetics builds on environmental epigenetics and paleoepigenetics. In environmental epigenetics, researchers study
how extrinsic and intrinsic factors affect the epigenome (blue arrows). Paleoepigenetics harnesses degradation signals in ancient DNA to recon-
struct premortem DNA methylation maps (green arrows). Environmental paleoepigenetics would use the reconstructed methylation maps of
ancient individuals to infer on the unknown extrinsic and intrinsic factors that shaped them (orange arrows).

Gokhman et al., 2017; DOI: 10.1093/molbev/msx211



THE CARP STORY

Garbage in, garbage out. But first you need to know
what garbage looks like.
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Figure 1. Carp in the soil. https://en.wikipedia.org/wiki/File:Cyprinus carpio.jpeg
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