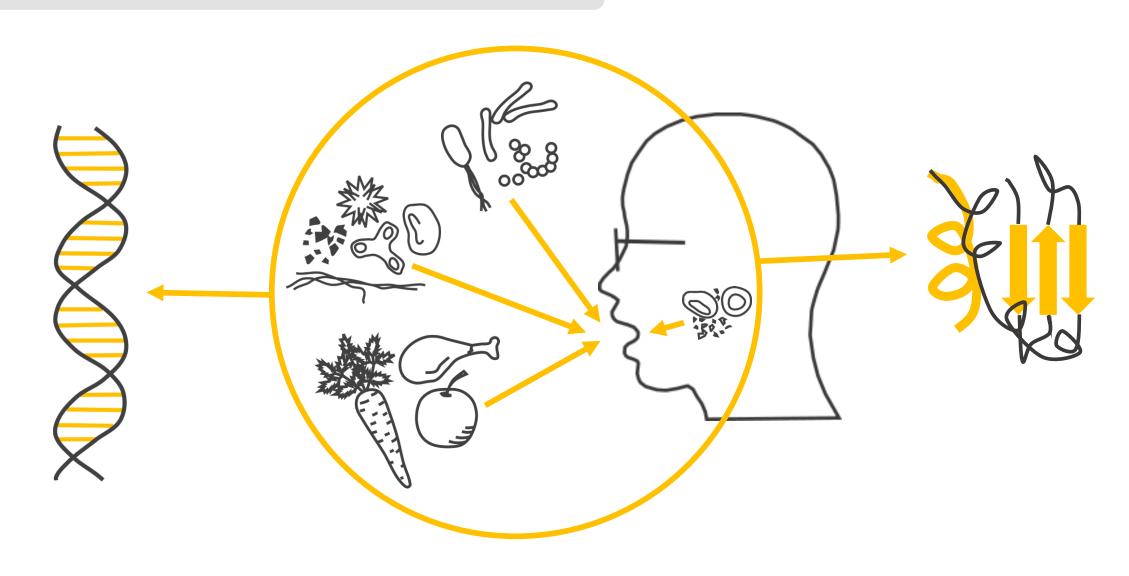
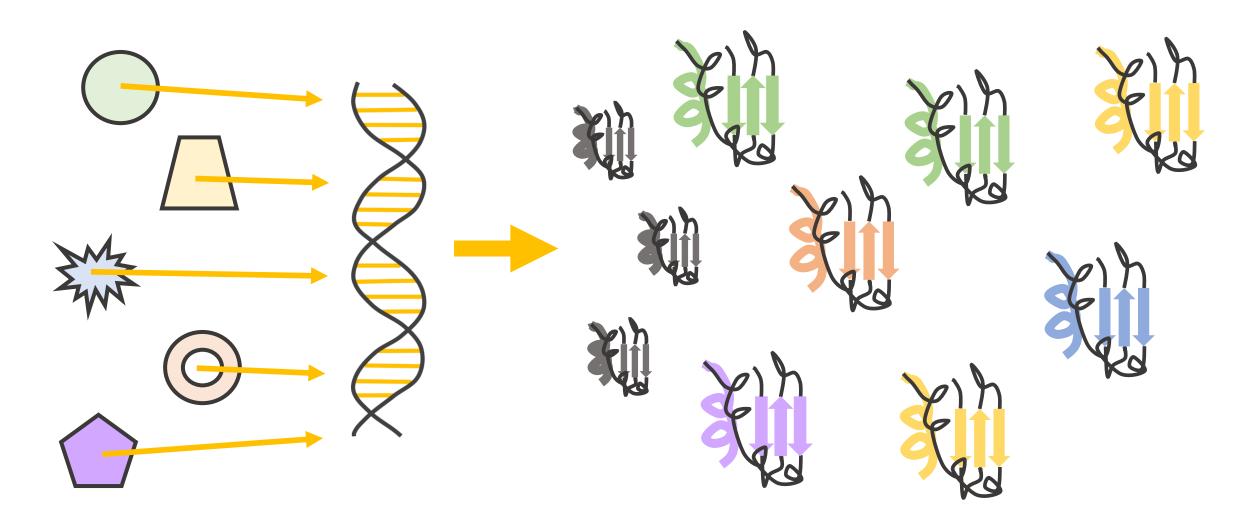
DENTAL CALCULUS

EVA CHOCHOLOVÁ


LABORATORY OF BIOLOGICAL AND MOLECULAR ANTHROPOLOGY
DEPARTMENT OF EXPERIMENTAL BIOLOGY

DENTAL CALCULUS



CONTENT

SAME DNA, DIFFERENT PROTEINS

AMPLIFICATION MISTAKES AND CONTAMINATION

NO AMPLIFICATION



AMPLIFICATION MISTAKES AND CONTAMINATION

CAN DISTIGUISH CLOSER SPECIES

NO AMPLIFICATION

OFTEN CONSERVED

AMPLIFICATION MISTAKES AND CONTAMINATION

CAN DISTIGUISH CLOSER SPECIES

WORSE PRESERVATION

NO AMPLIFICATION

OFTEN CONSERVED

BETTER PRESERVATION

AMPLIFICATION MISTAKES
AND CONTAMINATION

CAN DISTIGUISH CLOSER SPECIES

WORSE PRESERVATION

THE SAME FOR ALL CELLS

NO AMPLIFICATION

OFTEN CONSERVED

BETTER PRESERVATION

LIMITED AMOUNT

Contents lists available at ScienceDirect

Journal of Archaeological Science

journal homepage: http://www.elsevier.com/locate/jas

A unified protocol for simultaneous extraction of DNA and proteins from archaeological dental calculus

Zandra Fagernäs ^a, Maite I. García-Collado ^b, Jessica Hendy ^{a, c}, Courtney A. Hofman ^{d, e}, Camilla Speller ^{c, f}, Irina Velsko ^a, Christina Warinner ^{a, g, h, e}

- a Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, 07745, Germany
- b Department of Geography, Prehistory and Archaeology, University of the Basque Country, Leioa, 48940, Spain
- ^c Department of Archaeology, University of York, York, YO10 5NG, United Kingdom
- ^d Department of Anthropology, University of Oklahoma, Norman, 73019, United States
- ^c Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, 73019, United States
- f Department of Anthropology, University of British Columbia, Vancouver, V6T 1Z4, Canada
- ⁸ Department of Anthropology, Harvard University, Cambridge, 02138, United States
- h Faculty of Biological Sciences, Friedrich Schiller University, Jena, 07743, Germany

UNIFIED PROTOCOLS

MORE SENSITIVE METHODS

OMICS

Open Access
This article is licensed under CC-BY 4.0 (cc) (1)

pubs.acs.org/jpr

Article

Extraction Protocol for Parallel Analysis of Proteins and DNA from Ancient Teeth and Dental Calculus

Eva Chocholova, Pavel Roudnicky, David Potesil, Dana Fialova, Karolina Krystofova, Eva Drozdova,* and Zbynek Zdrahal*

KEYWORDS: bioarcheology, paleoproteomics, ancient DNA, ancient proteins, dental calculus

LIMITED AMOUNT

CONTAMINATION

LIMITATION OF PRE-LABORATORY CONTAMINATION

DECONTAMINATION

SPECIALISED LABORATORY

PROCESSING OF NEGATIVE CONTROLS AND SOIL

BIOINFORMATICS

INTERPRETATION

LIMITED AMOUNT

CONTAMINATION

SHORT TIME PERIOD

COMBINATION WITH OTHER METHODS

INTERPRETATION

LIMITED AMOUNT

CONTAMINATION

SHORT TIME PERIOD

FRAGILITY, LOSS

EARLIER SAMPLING

CARE IN HANDLING (E.G. WASHING SKELETAL MATERIAL)

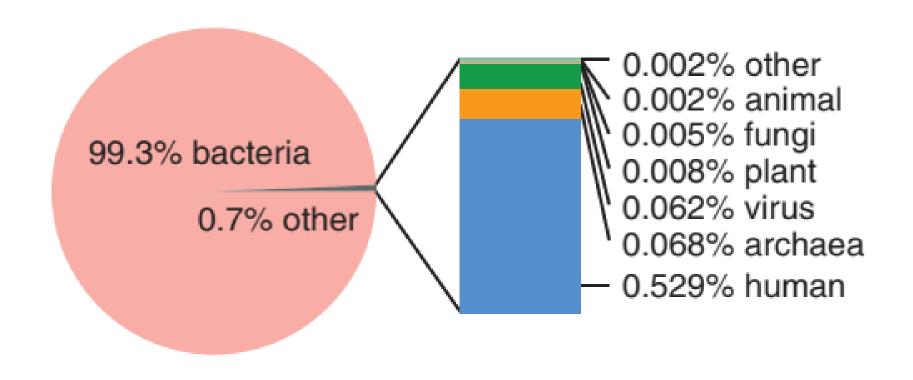
MODIFICATION OF DECONTAMINATION PROTOCOLS

LIMITED AMOUNT

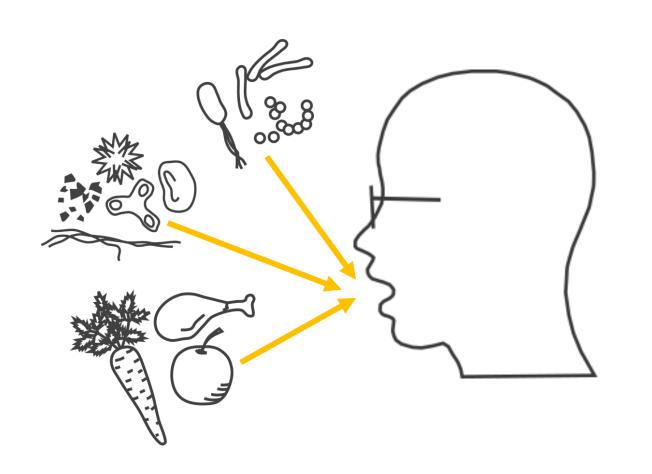
CONTAMINATION

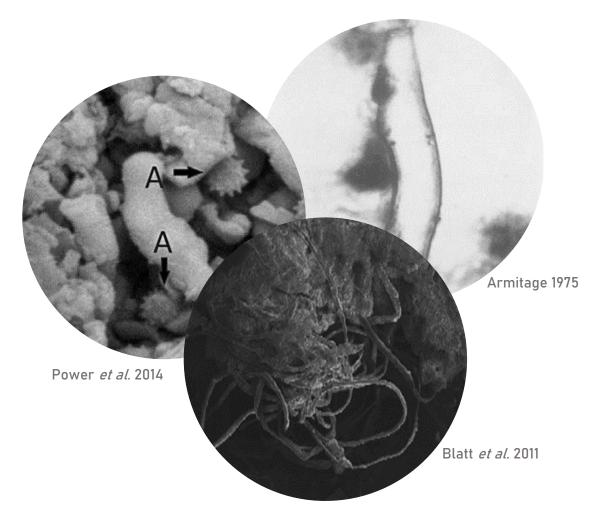
SHORT TIME PERIOD

FRAGILITY, LOSS

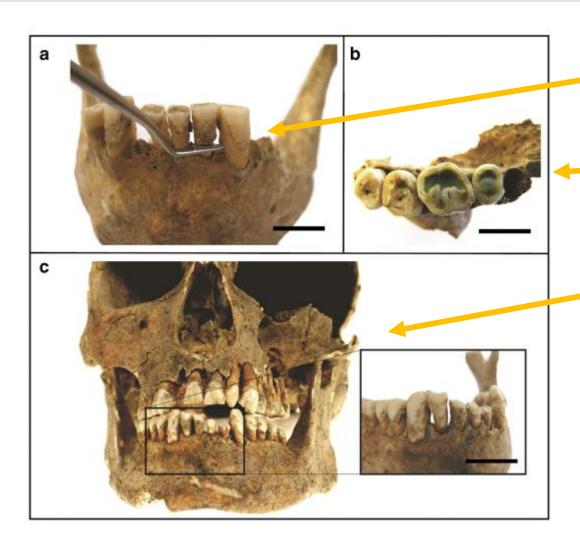

RESEARCH DESIGN AND OBJECTIVES

COMBINATION WITH OTHER METHODS


PATIENCE


UNPREDICTABILITY OF CONTENT, PREDOMINANCE OF MICROORGANISMS

UNPREDICTABILITY OF CONTENT



CONTENT

HABITS

USED GRINDING STONES

BRONZE GRAVE GOODS

OPENED PAPER CARTRIDGES

(GUNPOWDER + BULLET)

Figure 2. Images of the samples. Bar = 10 mm. **a:** The sampling of the ancient human dental calculus from a grave in Znojmo-Hradiště No. 464 in the Czech Republic. **b:** Green-coloured teeth of the man No. 53 from Devín-Za kostolom in the Slovak Republic. **c:** Man No. 801 from the site Majetín in the Czech Republic. Incisors of his lower jaw showed traces of a trauma with a military origin.

Fialová et al., 2017

HUMAN DNA

DENTAL CALCULUS AS AN ALTERNATE SOURCE OF MITOCHONDRIAL DNA FOR ANALYSIS OF SKELETAL REMAINS

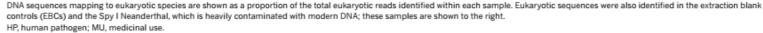
JILL BLACK
CENTRAL WASHINGTON UNIVERSITY, ELLENSBURG, WASHINGTON

SUSAN KERR Modesto Junior College, Modesto, California

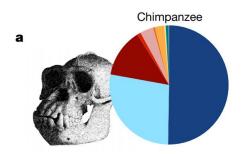
LOURDES HENEBRY-DELEON
CENTRAL WASHINGTON UNIVERSITY, ELLENSBURG, WASHINGTON

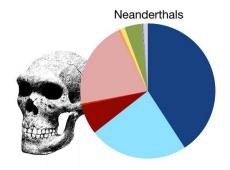
JOSEPH G. LORENZ
CENTRAL WASHINGTON UNIVERSITY, ELLENSBURG, WASHINGTON

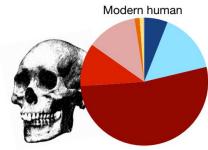
Mitochondrial DNA (mtDNA) is widely used in studies of affinities among living peoples and prehistoric populations represented by skeletal remains excavated at archaeological sites. Although many Indian groups see the utility of using mtDNA analysis as a means of connecting past and present, cultural norms regarding treatment of human remains prevent the use of destructive techniques in obtaining DNA. In this paper we discuss the utility of using dental calculus collected from a number of individuals comprising a pre-contact burial site (CA-SOL-357; A.D. 600-1000) as a possible source of mtDNA.

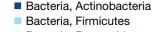

NEANDERTHALS

Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus

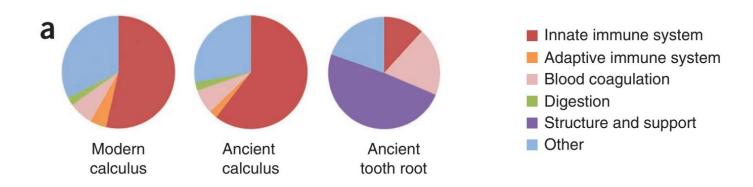

Laura S. Weyrich¹, Sebastian Duchene², Julien Soubrier¹, Luis Arriola¹, Bastien Llamas¹, James Breen¹, Alan G. Morris³, Kurt W. Alt^{4,5,6,7}, David Caramelli⁸, Veit Dresely^{5,6}, Milly Farrell⁹, Andrew G. Farrer¹, Michael Francken¹⁰, Neville Gully¹¹, Wolfgang Haak¹, Karen Hardy^{12,13}, Katerina Harvati¹⁰, Petra Held¹⁴, Edward C. Holmes², John Kaidonis¹¹, Carles Lalueza-Fox¹⁵, Marco de la Rasilla¹⁶, Antonio Rosas¹⁷, Patrick Semal¹⁸, Arkadiusz Soltysiak¹⁹, Grant Townsend¹¹, Donatella Usai²⁰, Joachim Wahl²¹, Daniel H. Huson²², Keith Dobney^{23,24,25} & Alan Cooper¹


Table 1 | Dietary information preserved in calculus


Scientific name	Common name of probable source	Hominid pathogen or medicinal use	El Sidrón 1	El Sidrón 2	Spy II	Chimpanzee	Modern human	Laboratory control (EBC)	Spy I*
		ara							
Zymoseptoria tritici	Plant (wheat) pathogen		4.13%	0	0	0	0	0	2.87%
Phaeosphaeria nodorum	Plant (wheat) pathogen		12.22%	0	0	3.98%	0	0	0.45%
Penicillium rubens	Food fungus	MU	3.97%	0	0	0	0	0	1.35%
Myceliophthora thermophila	Cellulose fungus		0	0	0.56%	0	0	0	0.13%
Coprinopsis cinerea	Edible mushroom (grey shag)		0	0	2.44%	0	0	0	0
Schizophyllum commune	Edible mushroom (split gill)		3.65%	0	0	0	0	0	0.10%
Malassezia globosa	Human fungal commensal		3.65%	8.89%	0	0	19.92%	0	5.49%
Enterocytozoon bieneusi	Intracellular parasite (microsporidia)	HP	8.10%	0	0	0	0	0	0
Ovis aries	Sheep (wild mouflon)		0	0	62.03%	0	0	0	1.17%
Ceratotherium simum	White rhinoceros (woolly rhinoceros)		0	0	34.40%	0	0	0	0.11%
Ixodes scapularis*	Tick		0	0	0	0	2.15%	0	0.15%
Physcomitrella patens	Moss		2.06%	0	0	0	0	0	0.09%
Pinus koraiensis	Pine tree		13.49%	19.60%	0	4.45%	0	0	0.40%
Populus trichocarpa	Poplar tree	MU	2.86%	0	0	0	0	0	0.44%
Total eukaryotic reads			630	551	532	427	3,760	5	25,294



^{*}Samples or taxa that are probably the results of contamination, as they do not represent biological processes (see Supplementary Information).



- Bacteria, BacteroidetesBacteria, Fusobacteria
- Bacteria, Proteobacteria
- Bacteria, SpirochaetesBacteria, Synergistetes
- Bacteria, other
- Archaea, Euryarchaeota
- Archea, other
- Viruses
- Plants
- Fungi
- Eukaryota

IMMUNE REACTION

Pathogens and host immunity in the ancient human oral cavity

Christina Warinner^{1,2}, João F Matias Rodrigues^{3,4}, Rounak Vyas^{3,4}, Christian Trachsel⁵, Natallia Shved¹, Jonas Grossmann⁵, Anita Radini^{6,7}, Y Hancock⁸, Raul Y Tito², Sarah Fiddyment⁶, Camilla Speller⁶, Jessica Hendy⁶, Sophy Charlton⁶, Hans Ulrich Luder⁹, Domingo C Salazar-García^{10–12}, Elisabeth Eppler^{13,14}, Roger Seiler¹, Lars H Hansen^{15,16}, José Alfredo Samaniego Castruita¹⁷, Simon Barkow-Oesterreicher⁵, Kai Yik Teoh⁶, Christian D Kelstrup¹⁸, Jesper V Olsen¹⁸, Paolo Nanni⁵, Toshihisa Kawai^{19,20}, Eske Willerslev¹⁷, Christian von Mering^{3,4}, Cecil M Lewis Jr², Matthew J Collins⁶, M Thomas P Gilbert^{17,21}, Frank Rühli^{1,22} & Enrico Cappellini^{17,22}

EXOTIC FOODS

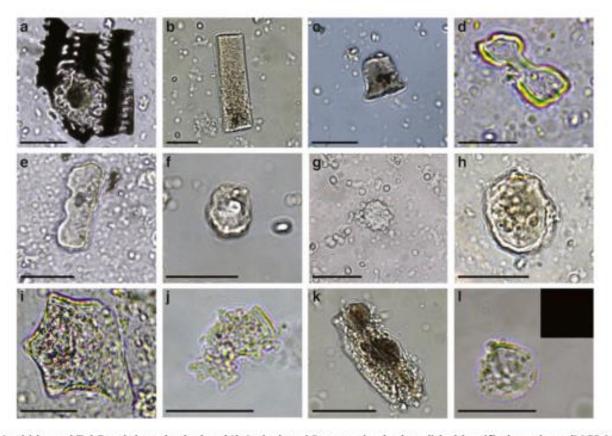
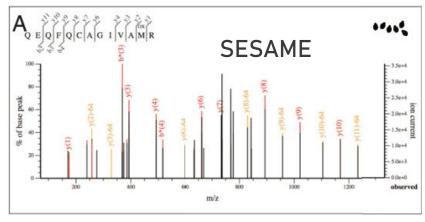
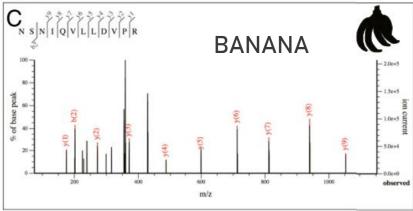
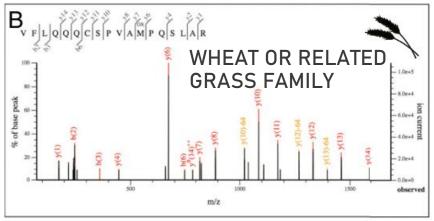
Exotic foods reveal contact between South Asia and the Near East during the second millennium BCE

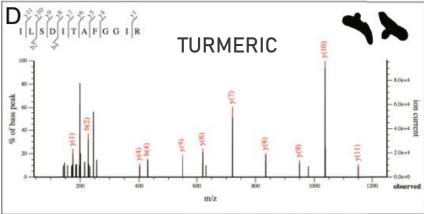
Ashley Scott^{a,b}, Robert C. Power^{b,c}, Victoria Altmann-Wendling^{b,d}, Michal Artzy^e, Mario A. S. Martin^f, Stefanie Eisenmann^{a,b}, Richard Hagan^{a,b}, Domingo C. Salazar-García^{g,h}, Yossi Salmon^e, Dmitry Yegorovⁱ, Ianir Milevski^l, Israel Finkelstein^f, Philipp W. Stockhammer^{a,b,1}, and Christina Warinner^{a,J,1}

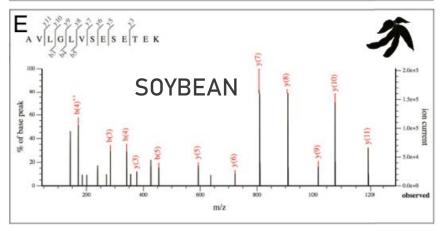
^aDepartment of Archaeogenetics, Max Planck Institute for the Science of Human History, 07743 Jena, Germany; ^bInstitute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University Munich, 80539 Munich, Germany; ^cDepartment of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; ^dInstitute for Egyptology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany; ^eLeon Recanati Institute for Maritime Studies, University of Haifa, 3498838 Haifa, Israel; ^fInstitute of Archaeology, Tel Aviv University, 69978 Tel Aviv, Israel; ^gIkerbasque-Basque Foundation for Science, Grupo de Investigación en Prehistoria IT-1223-19 (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 01006 Vitoria-Gasteiz, Spain; ^hDepartament de Prehistòria, Arqueologia i Història Antiga, University of València, 46010 València, Spain; ⁱArchaeological Research Department, Archaeological Division, Israel Antiquities Authority, Jerusalem 91004, Israel; and ^jDepartment of Anthropology, Harvard University, Cambridge, MA 02138

Edited by Dolores R. Piperno, Smithsonian Institution, Washington, DC, and approved November 10, 2020 (received for review July 21, 2020)

Fig. 1. Map of representative archaeobotanical evidence for the spread and trade of food crops prior to 500 BCE. See SI Appendix for data sources. Map Inset shows the location of the sites of Megiddo and Tel Erani on the southern Levantine coast; new dietary finds reported in this study are indicated for each site.


Fig. 3. Microremains in Megiddo and Tel Erani dental calculus. (A) Articulated Poaceae husk phytolith, identified as wheat (MGD001). (B) Poaceae stem/leaf phytolith (MGD001). (C) Poaceae short cell rondel (MGD001). (D) Wide-lobed bilobate short cell identified as panicoid (ERA017). (E) Poaceae polylobate short cell (MGD001). (F) Cone phytolith identified as sedge leaf (MGD018). (G) Spheroid echinate identified as date palm (MGD001). (H) Spheroid echinate phytolith, identified as nondiagnostic palm (MGD001). (I) Polyhedral plate phytolith, identified as eudicot (MGD011). (J) Decorated jigsaw phytolith, likely from fruit (MGD001). (K) Spheroid psilate phytolith, identified as bark type (MGD001). (L) Damaged Triticeae starch in brightfield, with Inset showing an absence of birefringence in cross-polarized light (MGD010). (Scale bars, 20 μm.)


EXOTIC FOODS

FAMINE

Relief food subsistence revealed by microparticle and proteomic analyses of dental calculus from victims of the Great Irish Famine

Jonny Geber^{a,1,2}, Monica Tromp^{b,c,1}, Ashley Scott^{d,1}, Abigail Bouwman^e, Paolo Nanni^f, Jonas Grossmann^f, Jessica Hendy^{d,g}, and Christina Warinner^{d,h}

^aSchool of History, Classics & Archaeology, University of Edinburgh, Edinburgh EH8 9AG, United Kingdom; ^bDepartment of Archaeology, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; ^cDepartment of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; ^dDepartment of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; ^eInstitute of Evolutionary Medicine, University of Zürich, 8057 Zürich, Switzerland; ^fFunctional Genomics Centre Zurich, University of Zürich/Eidgenössische Technische Hochschule Zürich, 8057 Zürich, Switzerland; ^gDepartment of Archaeology, University of York, York YO1 7EP, United Kingdom; and ^hDepartment of Anthropology, Harvard University, Cambridge, MA 02138

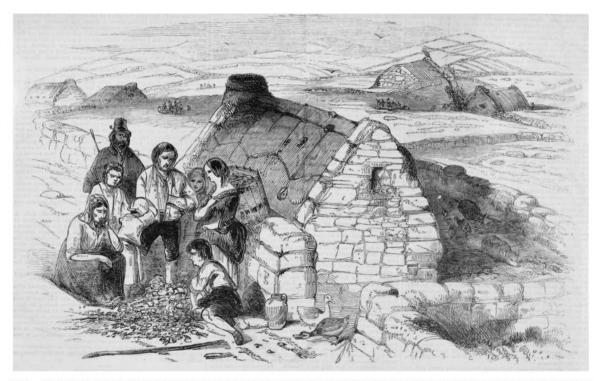
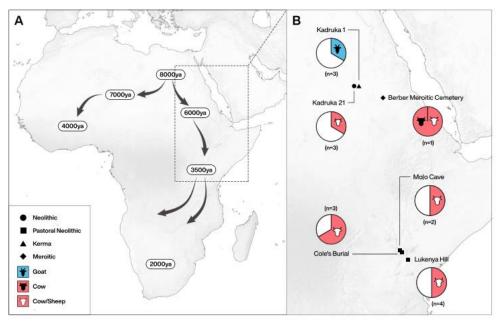
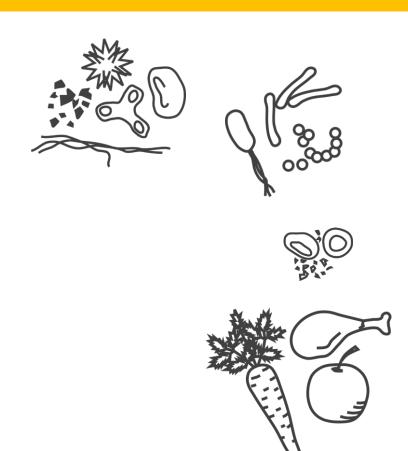



Fig. 1. "Destitution in Ireland. Failure of the potato crop" illustration was published in The Pictorial Times on 22 August 1846 (52). Image courtesy of the National Library of Ireland.

MILK CONSUMPTION


Ancient proteins provide evidence of dairy consumption in eastern Africa

Madeleine Bleasdale 1,2 M, Kristine K. Richter 1, Anneke Janzen 1,3, Samantha Brown 1, Ashley Scott 4, Jana Zech 1, Shevan Wilkin 1, Ke Wang 4, Stephan Schiffels 4, Jocelyne Desideri 5, Marie Besse 5, Jacques Reinold 6, Mohamed Saad 7, Hiba Babiker 8, Robert C. Power 1,9, Emmanuel Ndiema 1,10, Christine Ogola 10, Fredrick K. Manthi 10, Muhammad Zahir 11,11, Michael Petraglia 1,12,13, Christian Trachsel 14, Paolo Nanni 11, Jonas Grossmann 14, Jessica Hendy 1,15, Alison Crowther 1,12, Patrick Roberts 1,12, Steven T. Goldstein 1,12,13,16 M

Fig. 2 Map of sites with calculus containing milk proteins. A Area of study in relation to the spread of cattle-based pastoralism across Africa (after Marshall and Hildebrand³⁵). **B** Pie charts showing the number of individuals per site with milk proteins (shaded) proportionate to the total number of individuals that passed screening with Oral Signature Screening Database (see "Methods" and Supplementary Note 3 for full details). Neolithic: ~8000-5500 cal. BP; Kerma: ~4450-3450 cal. BP; Pastoral Neolithic: ~3500-1200 cal. BP; Meroitic: ~2300-1600 cal. BP. The maps were created for this study by Michelle O'Reilly (Graphic Designer for the Max Planck Institute for the Science of Human History, Jena, Germany) using QGIS 3.12 [https://qgis.org/en/site/] and the Natural Earth Database from [https://www.naturalearthdata.com/downloads/]. Additional edits were made using Adobe Illustrator CC.

COMPLEX MATERIAL

COMPLEX MATERIAL

WORTH STUDYING

COMPLEX MATERIAL

WORTH STUDYING

INTERDISCIPLINARY APPROACH, COMBINATION OF METHODS

COMPLEX MATERIAL

WORTH STUDYING

INTERDISCIPLINARY APPROACH,
COMBINATION OF METHODS

INTERPRETATION IS CRUCIAL

- What we can find
- Better preservation