

PROTEIN ENGINEERING

7. Rational and semi-rational design

Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno

Outline

- Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Outline

Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Protein engineering

- □ altering protein structure to improve its properties
- □ three main approaches
 - rational design
 - directed evolution
 - semi-rational design

Protein engineering approaches

SEMI-RATIONAL DESIGN DIRECTED EVOLUTION RATIONAL DESIGN Computer-aided design Mutagenesis Recombination techniques Controlled randomization Random Selection or screening Mutagenesis Site-directed 0 Characterization Characterization

Protein engineering approaches

	Rational design	Directed evolution	Semi-rational design
high-throughput screening/selection	not essential	essential	advantageous but not essential
structural and/or functional information	both essential	neither essential	either is sufficient
sequence space exploration	low	high, random	moderate, targeted
probability to obtain synergistic mutations	moderate	low	high

Structural information

worldwide Protein Data Bank (wwPDB)

- http://www.wwpdb.org/
- central repository of ~220,000 experimental macromolecular structures
 - (April 2024)
- **RCSB PDB**

- https://www.rcsb.org
- **D PDBe**

- https://www.ebi.ac.uk/pdbe
- D PDBj

https://pdbj.org

Structural prediction

Alpha Fold 2

- Galaxy: <u>https://usegalaxy.eu/?tool_id=alphafold</u>, Colab: <u>https://colab.research.google.com/github/deepmind/alphafold/blob/</u> main/notebooks/AlphaFold.ipynb
- structure prediction directly from sequence using deep learning, evolutionary information (MSA), and structure optimization
- Multimer mode lower accuracy
- Not precise in sidechain orientations prediction (not appropriate for protein-ligand interaction - molecular docking)
- Rare folds, alternative conformations, and co-factors not predicted

Structure prediction

Alpha Fold database

- https://alphafold.ebi.ac.uk
- Database of protein structures predicted by Alpha Fold 2
- Over 200 million sequences modeled (available also in UniProt)

Free fatty acid receptor 2

□ Protein engineering approaches

Semi-rational design

- identification of hot-spots
- evaluation of hot-spots
- selection of substitutions
- design of library
- mutagenesis and screening
- Rational design
 - molecular modeling

Semi-rational design

- combine advantages of rational and random approaches
- \Box selection of promising target sites (hot-spots) \rightarrow mutagenesis

→ creation of small "smart" libraries

- □ based on knowledge of protein structure and function
- □ ☺ high-throughput screening usually not needed
- ③ increased chance of obtaining variants with desired properties
- Sertain knowledge of protein structure-function
 relationships is still required, Setup but not that much

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Identification of hot-spots

- □ hot-spots for engineering catalytic properties
- hot-spots for engineering thermostability

Hot-spots for engineering catalytic properties

- □ residues mediating substrate binding, transition-state
 stabilization or product release → mutations can improve or
 disrupt binding, catalysis or ligand transport
 - residues involved in protein-ligand interactions
 - residues located in binding pockets
 - residues located in access tunnels

→ these residues also include catalytic or other essential residues which generally should not be mutated!

Analysis of protein-ligand interactions

- requires 3D structure of protein-ligand complex
 - experimental structure (wwPDB, PDBbind)
 - theoretical model (molecular docking)

Analysis of protein-ligand interactions

schematic diagrams of protein-ligand interactions

- binding and active sites of enzymes are often associated
 with structural pockets and cavities
 - most amino acid residues located in these pockets may come into contact with the ligands during the catalytic cycle
 - → one can accurately predict which residues may interact with the ligand even without precise knowledge of ligand orientation in the active site
- requires 3D structure of protein
- software for detection of pockets
 - CASTp, fPocket, CavityPlus, etc.

detailed characterization of all pockets in the structure

Cavity	Plus	INT	RODUCTION CO	MPUTING RESU	LTS TOOL	BOX TU	TORIAL REFERENCE RESOURC	E CONTACT US
*						 ◆ ◆ ◆ ◆ ○ ○<th>Cavity CavPharmer Step 1: Select a cavity Select a cavity Cavity_1 Cavity_2 Cavity_4 Cavity_5 Cavity_7 Step 2: Choose mode Mode Use Ligand Mode Submit</th><th>Cavity_3 Cavity_6</th>	Cavity CavPharmer Step 1: Select a cavity Select a cavity Cavity_1 Cavity_2 Cavity_4 Cavity_5 Cavity_7 Step 2: Choose mode Mode Use Ligand Mode Submit	Cavity_3 Cavity_6
Cavity F	Results					^	CorrSite	^
Cavity F	Results				Download	^	CorrSite Step 1: Select/Upload an orthost	eric pocket
Cavity F # 1↓	Results Pred Max pKd 14	Pred Ave pKd î↓	DrugScore 11	Druggability ↑↓	<u>Download</u> Surface	results More	CorrSite Step 1: Select/Upload an orthost InputType CAVITY result	eric pocket
Cavity F # 1↓ 1	Results Pred Max pKd 11 10.19	Pred Ave pKd 1↓ 6.11	DrugScore 1↓ 493.00	Druggability 1↓ Medium	Download Surface	A results More	CorrSite Step 1: Select/Upload an orthost InputType CAVITY result Cavity_1 Cavity_2	eric pocket
Cavity F # 11 2	Results Pred Max pKd 11 10.19 8.87	Pred Ave pKd ↑↓ 6.11 5.66	DrugScore 11 493.00 -745.00	Druggability 1↓ Medium Weak	Download Surface	A results	CorrSite Step 1: Select/Upload an orthost InputType CAVITY result Cavity_1 Cavity_2 Cavity_4 Cavity_5 Cavity_7	eric pocket Cavity_3 Cavity_6

CavityPlus

 buried binding or active sites are connected with bulk solvent by access tunnels

buried binding or active sites are connected with bulk
 solvent by access tunnels

buried binding or active sites are connected with bulk
 solvent by access tunnels

buried binding or active sites are connected with bulk
 solvent by access tunnels

- buried binding or active sites are connected with bulk
 solvent by access tunnels
 - adjusted to permit transport of specific molecules
 - mutations can speed-up or hinder transport of molecules as well as allow transport of other molecules
- requires 3D structure of protein
- software for detection of tunnels
 - Caver, Mole, HOLE, PoreWalker

□ Caver Web

Hot-spots for engineering thermostability

- □ highly flexible residues introduction of rigidifying mutations
- residues located in access tunnels

 \rightarrow these residues may also include catalytic or other essential residues which generally should not be mutated!

Identification of highly flexible residues

- prediction based on crystallographic B-factors
 - reflect the degree of thermal motion, and thus the flexibility of individual residues

- requires 3D structure of protein
 - experimental structure determined by X-ray crystallography (wwPDB)

Identification of highly flexible residues

□ average B-factor of each residue in the target protein

Title: CRYSTAL STRUCTURE OF NIDOGEN/LAMININ COMPLEX (The highest 20 averaged B values are shown only.)							
Chain identifier of chain no. 1 : A							
Resid	ue Name	Residue seq. no.	B value	Rank			
ARG	Α	931	48.46	1			
GLU	Α	930	46.87	2			
SER	Α	151	46.50	3			
ALA	Α	149	45.90	4			
ILE	Α	150	45.69	5			
GLU	Α	981	45.63	6			
ASN	Α	932	44.67	7			
GLY	Α	979	44.39	8			
PHE	Α	89	44.32	9			
LYS	А	152	43.64	10			
GLY	A	980	43.33	11			
HIS	Α	978	42.84	12			
LEU	Α	148	42.76	13	T		
•					►		

B-FITTER

saturation mutagenesis in tunnel residues has 2× better
 chance to significantly improve stability than mutagenesis in
 other protein regions (based on computational predictions)

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

 hot-spots identified by computational tools can be further evaluated to prevent replacing indispensable amino acid residues and to prioritize the hot-spots (i.e., order the hotspots based on their suitability for mutagenesis)

- analysis of evolutionary conservation
- prediction of effects of mutations on protein stability or function

Analysis of evolutionary conservation

- residues essential for maintaining structural or functional properties of a protein tend to be conserved during evolution
 - conserved residues are generally not recommended as suitable targets for mutagenesis - their replacement often leads to the loss of protein function
 - mutagenesis targeting highly mutable positions provides a significantly higher proportion of viable variants than random mutagenesis
 - targeting moderately or highly variable positions, which are expected to be tolerant to a wide range of substitutions, represents a good approach for producing efficient smart libraries (i.e., libraries with a high proportion of correctly folded and active variants)
Analysis of evolutionary conservation

residue conservation can be derived from a multiple
 alignment of a set of related proteins (3D structure not required)

1 ITLVVHDWGGMIGMGYAARYPERIK

Analysis of evolutionary conservation

residue conservation can be derived from a multiple
 alignment of a set of related proteins (3D structure not required)

Analysis of evolutionary conservation

- evolutionary conservation of individual positions in protein
 - mapped on protein 3D structure

ConSurf

- computational tools for the prediction of effect of amino acid substitutions on protein stability or protein function
 - *in silico* site-saturation mutagenesis of identified hot-spots check if mutations at a given site are likely to be tolerated
 - many highly destabilizing/deleterious mutations predicted for a certain position given site is not a very good target for mutagenesis

- effects on protein stability usually requires 3D structure of protein
 - experimental structure (wwPDB)
 - theoretical model (AlphaFold, homology modeling)
- effects on protein function sequence information often sufficient

- prediction of effect of substitutions on protein stability
 - Evaluation of the change of protein free energy upon mutation
 - Evaluation of contributions of individual interactions to total energy
 - Usually requires structural information
- □ software for prediction of effect of mutation on stability
 - Rosetta, FoldX, CUPSAT, ERIS

prediction of effect of substitutions on protein stability

Singlepoint	stability resu	ults											_	X
										Stabilizing mu	itations	s Destabilizi	ng mutatio	ns
	1		1	1		1						Energy	is in Kcal/m	101
chain	position	residue	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Lys	
A	169	Phe	3.5	7.1	5.4	6.5	6.0	4.2	5.1	5.9	5.7	45.7	5.8	
A	135	Ala	-	35.9	4.1	4.5	2.4	17.2	15.5	2.1 2	25.7	12.5	17.9	
A	11	Lys	-0.2	2.3	0.1	1.7	2.0	0.2	1.3	1.3	-1.9	-1.1	-	
А	264	Thr	-0.1	0.9	0.6	1.8	1.9	0.0	0.7	1.3	-0.7	-0.3	0.8	
А	126	Gln	1.3	1.3	3.1	3.4	5.5	-	-0.5	3.3	1.4	28.7	1.6	
А	259	Thr	-0.2	-0.3	-0.5	0.3	1.7	-1.1	-0.1	0.6	-0.4	4.9	-1.0	
4				111										>
Exp	ort table to C	SV								Codon usa	age :	Escherichia	coli K12	~
Evaluate n	nultiple point	t stability										Genera	te report	
				Rose	etta i	n Ho	tSpot	t Wiz	ard					

- prediction of effect of substitutions on protein function
 - Evaluation if a mutation would impair protein function
 - Hard to describe by physico-chemical properties > machine learning
 - Usually sequence based calculation
- □ software for prediction of effect of mutation on function
 - PredictSNP, SIFT, MAPP, PhD-SNP...

prediction of effect of substitutions on protein function

INPUT																																							Lo	bad	lex	amp	ole	
nsert prote	in s	equ	ler	ice	in	FA	ST	A f	orn	nat	:																																	
>HBA_HUM MVLSPADK KKVADALT AVHASLDK	AN TNV NAV FL3	'KA 'AH .SV	AW VD ST	GK DMI VL	VG. PN. TSI	AHJ ALS KYI	1GI BAI R	EY	3AI DLI	EAI	LER	MF RV	LS DP	FP	TT: FK.	KTI	YFI	PHE	FDI 171	131	IGS \AI	SAC ILF	VK AE	GHG																				
					L	.oa	d																																					
MUTATIO	DNS	5																																				ľ	P	/lan	nual	inp	ut	7
elect posit	tion	s:																																										
1	N	1 V	ίι	. 5	5 F	, د	A	D	Κ	Т	Ν		V	к	A	A	W	G	ĸ	()	/ (G /	Ą	H	A	G	E	Y	G	A	E	A	L	E	R	Μ	F	L	S	\$ F	P	т	Т	
41	۲	СТ)	F	- 1	P	н	F	D	L	s		н	G	s	A	Q	V	ĸ	((G I	н	G	k	K	V	A	D	A	L	т	Ν	А	V	A	н	V	D	C) N	1 P	N	A	
81	L	. s	5 A	A L	. :	5 (D	L	н	А	н		К	L	R	V	D	P	v	1	1	Fł	K	L	L	S	Н	С	L	L	V	Т	L	A	A	н	L	Ρ	Α	E	F	т	Ρ	
121	A	(V	/	HA	4 5	5 1	L	D	к	F	L		A	s	V	s	Т	٧	Ľ		F :	s I	K	Y	R																			
Pos *	V	Vilc	l-ty	pe		N	/lut	atio	ons	ŝ																															С	lea	r	
5	59	н				1	Y -	Ту	r																																	0		*
6	60	G				[D -	As	sp,	۷-	Va	I																														0		-
6	3	V					τ-	Th	ır																																	0		
6	8	Т				١	V -	Va	al																																	0		
7	2	A				E	Ξ-	GI	u, '	v -	Val																															0		+
																																						Cle	ar	all	mu	tatio	ons	;

7 TOOLS FOR EVALUATION

			-
	Tool name	Time demands	Expected accuracy
	PredictSNP	32 min	73.4%
	MAPP	10 min	70.7%
	PhD-SNP	32 min	71.5%
V	PolyPhen-1	15 min	68.1%
	PolyPhen-2	15 min	69.2%
	SIFT	15 min	70.3%
	SNAP	30 min	67.6%

JOB INFORMATION

ID: vb17zolzbvrteajgmdyd5fvt3u7cg4nzsqf2z6logfjbgz3pht

RESULTS			neutral	deleter	ious XX % ex	pected accuracy	Expand	all annotations	
Annotation	Mutation	PredictSNP	MAPP	PhD-SNP	PolyPhen-1	PolyPhen-2	SIFT	SNAP	
▶	H59Y	87 %	63 %	82 %	74 %	65 %	79 %	85 %	-
₽	G60D	87 %	88 %	68 %	59 %	55 %	79 %	85 %	
₽	G60V	87 %	91 %	82 %	74 %	59 %	53 %	72 %	
	V63T	87 %	76 %	61 %	74 %	63 %	79 %	62 %	
	T68V	71 %	41 %	72 %	67 %	75 %	46 %	67 %	
Þ	A72E	74 %	70 %	58 %	67 %	87 %	65 %	77 %	=
₽	A72V	60 %	59 %	73 %	67 %	76 %	53 %	71 %	
₽	N79H	74 %	72 %	55 %	67 %	87 %	46 %	67 %	
₽	V97W	61 %	46 %	45 %	74 %	81 %	79 %	58 %	
▶	L110R	87 %	88 %	88 %	74 %	81 %	79 %	62 %	U
	A112T	83 %	75 %	58 %	67 %	74 %	67 %	83 %	
₽	P115S	65 %	72 %	59 %	67 %	75 %	46 %	77 %	
b.	F117A	68 %	<i>46</i> %	55 %	67 %	87 %	13 %	67 %	-

Summary table Raw results

PredictSNP

DOWNLOAD

AlphaMissense

- https://github.com/google-deepmind/alphamissense
- deep learning predictor based on AlphaFold
- analysis of human and primate missense mutations
- trained on population frequency data and uses sequence and
- predicted structural context
- all single-amino acid substitutions in the human proteome are provided Structure context **Training variants**

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

substitutions introduced using degenerate codons

e.g., NNK (N = A/T/G/C; K = T/G)

symbol	base	symbol	base
А	adenosine	М	A C (amino)
С	cytidine	S	G C (strong)
G	guanine	W	A T (weak)
Т	thymidine	В	GTC
U	uridine	D	G A T
R	G A (purine)	Н	АСТ
Υ	T C (pyrimidine)	V	G C A
К	G T (keto)	Ν	A G C T (any)

IUPAC Nucleotide Nomenclature Table

- □ all possible substitutions NNK or NNS degenerate codons
 - © encode all 20 amino acids with the lowest redundancy and price (mixture of 32 codons)
 - Second redundancy is not completely eliminated (3× Arg, Leu, Ser, 2× Ala, Gly, Pro, Thr and Val)

- □ all possible substitutions NNK or NNS degenerate codons
- introduction of only selected substitutions using

degenerate codons encoding reduced amino acid alphabets

- Observation of the second secon
- \odot decreased library size \rightarrow improved screening efficiency
- NDT balanced set of 12 amino acids (12 codons)

□ all possible substitutions - NNK or NNS degenerate codons

introduction of only selected substitutions using

degenerate codons encoding reduced amino acid alphabets

Table 1. and ND	Table 1. Oversampling necessary for 95% coverage as a function of NNK and NDT codon degeneracy.												
NNK NDT													
No. ^[a]	Codons	Transformants	Codons	Transformants									
		needed		needed									
1	32	94	12	34									
2	1 0 2 8	3 0 6 6	144	430									
3	32768	98 163	1 728	5175									
4	1048576	3 141 251	20736	62 118									
5	33 554 432	100 520 093	248 832	745 433									
6	$> 1.0 \times 10^{9}$	$> 3.2 \times 10^{9}$	> 2.9 × 10 ⁶	$> 8.9 \times 10^{6}$									
7	$>$ 3.4 \times 10 ¹⁰	$>$ 1.0 \times 10 ¹¹	$> 3.5 \times 10^{7}$	$> 1.1 \times 10^{8}$									
8	$> 1.0 \times 10^{12}$	$>$ 3.3 \times 10 ¹²	$> 4.2 \times 10^{8}$	$> 1.3 \times 10^{9}$									
9	$>$ 3.5 \times 10 ¹³	$> 1.0 \times 10^{14}$	$> 5.1 \times 10^{\circ}$	$> 1.5 \times 10^{10}$									
10	$> 1.1 \times 10^{15}$	$>$ 3.4 \times 10 ¹⁵	$> 6.1 \times 10^{10}$	$> 1.9 \times 10^{11}$									
[a] Num	[a] Number of aa positions at one site.												

- □ introduction of amino acids exhibiting certain properties
 - VRK 8 hydrophilic amino acids (12 codons)
 - NYC 8 hydrophobic amino acids (8 codons)
 - KST 4 small amino acids (4 codons)
 - ...

- □ introduction of amino acids exhibiting certain properties
- □ introduction of a balanced set of amino acids
 - NDT balanced set of 12 amino acids (12 codons)

- introduction of amino acids exhibiting certain properties
- introduction of a balanced set of amino acids
- introduction of substitutions existing (at a given site) in known natural proteins
 - likely increasing the proportion of viable variants in the resulting library
 - can be obtained by analysis of multiple sequence alignment

- □ introduction of amino acids exhibiting certain properties
- introduction of a balanced set of amino acids
- introduction of substitutions existing (at a given site) in known natural proteins
- discarding amino acids with potentially destabilizing/ deleterious effects
 - can be obtained by prediction of effects of mutations on protein stability or function

- meta-server combining several tools
 - automatic identification of hot-spots for engineering of enzyme catalytic properties
 - prioritization of hot-spots by their mutability
 - distribution of amino acids at individual positions
 - prediction of stability
 - molecular docking
 - design of smart libraries

1. protein structure

 residues indispensable for protein function: catalytic and binding residues

3. functional residues: active site pocket and tunnels

4. mutability of individual positions of protein

Functional hot spots of 1CV2

074

Viewer										Visualizat	ion settings		
										Structur B Visualiza 1 Tunnels id Startir	e visualization Wireframe Sticks alls & sticks Hide all v S F ation quality: length (<i>i</i> and from pocke	Ball: Ball: ave im Reset v	ed r age iew
		-	7 🛛 🖌	4		~				id	chain rel	evance	e (
			h	H		1				O 1	A	100	
											A	62	
			S	VV								02	_
										Molecular	docking		
											Ru	in Doo	kin
											job id	lig	and
									JSmol		ztapvt	gala	/P-
											pxlsok	уре	rite
Residue fe	eatures								-		dymxo8	liga	nd5
Exclu	ude correlated p	oositions 📃 Ex	clude catalytic poc	kets 📃 Exclude	e tunnels	Exclude a-hel	ices and β-sheets	Show all resid	dues		vquhab	уре	rite
Exclu	ude buried resid	lues 📃 In	clude residues with	moderate mutabi	lity						nkw1yt	уре	rite
1	chain	position	residue	mutable *	non-essential	in tunnel	in catalytic pocket	HotSpot	-		x5yh9u	ligar	nd10
Chain	A	position	1001000	madule	non coseniar	in turinel	in catalyne pocket	notopor		Residues	selected for n	nutade	enes
00	A	136	Met	1	1	¥	1	1	6	70	m residues		
00	Δ	146	Gin	4	1	^		1	1	200	in residues		
00	Δ	143	Asn	4		4	*		m	Stabil	ity evaluation		_
00	Δ	173	Val	~	4		v /	,		Evalua	ated stabilities	5	0
	Δ	2/9	Thr	~	v (v /	v v	1	6		chain posi	tion	resi
	^	240	Mot	v	v	v	^	,	62				
	А	200	wiet	~	V	×	~	V					

000

Return to Results browser

truc	ture	visualizatio	on style:		
	٧	Vireframe		Cartoon	
		Sticks		Trace	
	Ba	Ills & sticks		Backbone	
			Balls		
		Hide all	visualized r	esidues	
			Save image		
			Reset view		
sua 1	liza	tion quality:			
nel	s				
	id	length (Á) botti	eneck radius	(Å)
Sta	run	д пот роск	et: 1		
	IU	chain re	levance (volume (Å ³	5
)	1	A A	levance (100	volume (Å ³ 514	
	1 2	A A	levance (100 82	volume (Å ³ 514 907	
	1 2 3	A A A A	levance (100 82 62	volume (A ³ 514 907 245	h)
ecu	1 2 3 Ilar (A A A docking	levance (100 82 62	volume (A ³ 514 907 245	
)] ecu	1 2 3 Ilar (chain re A A A docking	levance (100 82 62 un Docking	volume (A ³ 514 907 245	
lecu	1 2 3 Ilar (A A A docking job id	levance (100 82 62 un Docking ligand	volume (Å ³ 514 907 245 9 9	
]] ecu	1 2 3 Ilar (A A A docking job id ztapvt	levance (100 82 62 un Docking ligand UDP- relactors	volume (Å ³ 514 907 245 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
ecu	1 2 3 Ilar (A A A docking job id ztapvt pxlsok	levance (100 82 62 un Docking ligand UDP- galactose yperite	volume (Å ³ 514 907 245 9 9 9 9 9 9 9 9 9 9 9 9 1	
) 	1 2 3 ilar o	A A A docking job id ztapvt pxlsok dymxo8	levance (100 82 62 un Docking ligand UDP- galactose yperite ligand5	volume (Å ³ 514 907 245 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
)]]]]]	1 2 3 ilar (A A A docking fob id ztapvt pxlsok dymxo8 vquhab	levance (100 82 62 un Docking ligand UDP- galactose yperite ligand5 yperite	volume (Å ³ 514 907 245 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
lecu	1 2 3 Ilar (Chain re A A A docking job id ztapvt pxlsok dymxo8 vquhab nkw1yt	In the second se	volume (Å ³ 514 907 245 9 9 9 9 9 1 1 1 5 1	
ecu	1 2 3 ilar o	Chain re A A A docking job id ztapvt pxlsok dymxo8 vquhab nkw1yt x5yh9u	levance (100 82 62 un Docking ligand UDP- galactos yperite ligand5 yperite ligand10	volume (Å ³ 514 907 245 9 9 9 9 1 1 1 5 1 1 5 1 1 3	
ecu	1 2 3 Ilar (Chain re A A A docking job id ztapvt pxlsok dymxo8 vquhab nkw1yt x5yh9u xelected for	levance (100 82 62 un Docking ligand UDP- galactose yperite ligand5 yperite ligand10 mutagenes	volume (Å ³ 514 907 245 9 9 0 0 0 0 0 0 0 0 1 1 1 5 1 1 5 1 1 3 3 1 3 1 3 1 1 1 5 1 1 1 1	
ecu	1 2 3 illar of es s Zooi	Chain re A A A docking job id ztapvt pxlsok dymxo8 vquhab nkw1yt x5yh9u welected for m residues	levance (100 82 62 un Docking ligand UDP- galactose yperite ligand5 yperite ligand10 mutageness	volume (Å ³ 514 907 245 9 9 9 9 9 9 9 9 9 9 9 1 1 1 5 1 1 5 1 1 5 1 1 3 8 8 8 8 8 8 8 8 9 9 7 245	
ecu]]]] iidu	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	chain re A A A A docking R job id ztapvt pxlsok dymxo8 vquhab nkw1yt x5yh9u selected for m m residues ty evaluation	In the second se	volume (Å ³ 514 907 245 9 9 9 9 9 9 9 9 9 1 1 1 5 1 1 1 5 1 1 1 3 3 8 8 8 8 8 8 8 9 9 7 245	
lecu lecu lidu	1 2 3 ilar (, , , , , , , , , , , , , , , , , , ,	Chain re A A A docking job id ztapvt pxlsok dymxo8 vquhab nkw1yt x5yh9u kelected for m residues ty evaluation	In the second se	volume (Å ³ 514 907 245 9 9 9 9 1 1 1 5 1 1 5 1 1 3 3 is Reset view Design libr	h)

Functional hot spots of 1CV2

Return to Results browser

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Design of library

- decisions to be made after evaluation and prioritization of hot-spots:
 - how many and which positions to target?
 - should the positions be randomized simultaneously or separately?
 - should all or only a reduced set of amino acids be introduced at individual positions?
- \rightarrow dramatic effect on the size of the resulting library

Design of library – HotSpot Wizard

Functional hot spots of 1CV2

Viewer										Visua	lization s	ettings			
* (GWG)			R							Stru Visu	cture vis Wirei Sti Balls &	ualization frame cks k sticks Hide all vis Sa Re quality:	style: Balls ualized resiv ve image set view	Cartoon Trace Backbone dues	
							F			Pock	id id ets id ch 1 2 3 cular docl	length (Å) pm pockets ain relev A A A king	bottlene 1 rance (vr 100 82 62	olume (Å ³ 514 907 245	(Å)
												Run	Docking		
					5							job id	ligand	pose	
									JSmol		¥	ztapvt	UDP- galactose	1	-
											 I 	oxlsok	yperite	1	C.
Residue fe	atures								-		🖌 d	ymxo8	ligand5	1	C,
Exclu	ide correlated	positions 📃 Exe	clude catalytic poch	kets 📃 Exclude	e tunnels	Exclude α-heli	ces and β-sheets	Show all re-	sidues		🖌 V	quhab	yperite	5	
Exclu	ide buried res	idues 📃 Inc	lude residues with	moderate mutabi	lity						v r	ikw1yt Sub0u	yperite	1	
	chain	position	residue	mutable *	non-essential	in tunnel	in catalytic pocket	HotSpot	-		▼ ×	зупэц	iigano iu	ა	
🖃 Chain /	A									Resid	ues seleo	cted for mu	itagenesis		
•	A	136	Met	1	1	×	1	√			Zoom re	sidues		Reset viev	1
•	А	146	GIn	1	1	1	1	1		5	tability e	valuation	De	esign libra	iry
•	А	147	Asp	1	1	1	1	1		E	aluated	stabilities	Des	gned libra	aries
۵ ن	А	173	Val	1	1	1	1	1			chai	n positio	n residu	e HotSi	oot
	А	249	Thr	1	1	1	×	1		-	Gria	positi			
		10000													see .
	A	253	Met	~	~	×	1	~							

Return to Results browser

8

Design of library – HotSpot Wizard

Libra	ry desig	n										-		
:	Standard	SwiftLi	b											
AA	\s selecti	ion mode : A	mino acid fre	quency	♥ Minimal fr	requency (%) :	5 Include w	ild-t	/pe Exclue	le wild-ty	rpe			
V	chain	position	residue			desired amind	o acids		codon		desired ratio (%)	stop ratio (%)		
	Α [136	Met	Ala, Lys,	Pro, Gln, Arg, Thr	r		~	VVR		77.8	0.0		
	Α	146	Gln	Ala, Asp,	, Glu, Gly, Pro, Glr	n, Ser		~	BVV	0	63.0	11.1		
	Α [147	Asp	Ala, Phe,	, Gly, Leu, Met, Th	ır, Val		~	DBS		61.1	0.0		
				codon	desired ratio (%)	stop ratio (%)	desired amino acids			encode	d amino acids			
				DBS	100.0	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu:1 Thr:2 Val:2 Trp:1	1 Me	t:1 Arg:1 Ser:3	Ala:2 C Thr:2 V	ys:1 Phe:1 Gly:2 lle al:2 Trp:1	:1 Leu:1 Met:1 Arg	:1 Ser:3	*
				DBK	100.0	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu:1 Thr:2 Val:2 Trp:1	1 Me	t:1 Arg:1 Ser:3	Ala:2 C Thr:2 Va	ys:1 Phe:1 Gly:2 lle al:2 Trp:1	:1 Leu:1 Met:1 Arg	:1 Ser:3	
				DBB	100.0	0.0	Ala:3 Cys:2 Phe:2 Gly:3 lle:2 Leu:1 Thr:3 Val:3 Trp:1	1 Me	t:1 Arg:1 Ser:5	Ala:3 C Thr:3 Va	ys:2 Phe:2 Gly:3 lle al:3 Trp:1	:2 Leu:1 Met:1 Arg	:1 Ser:5	1
				DBN	97.2	2.8	Ala:4 Cys:2 Phe:2 Gly:4 lle:3 Leu:2 Thr:4 Val:4 Trp:1	2 Me	t:1 Arg:2 Ser:6	Ala:4 C <u>y</u> Thr:4 Va	ys:2 Phe:2 Gly:4 lle al:4 Trp:1	:3 Leu:2 Met:1 Arg	:2 Ser:6	
				DBV	96.3	3.7	Ala:3 Cys:1 Phe:1 Gly:3 lle:2 Leu:2 Thr:3 Val:3 Trp:1	2 Me	t:1 Arg:2 Ser:4	Ala:3 C Thr:3 Va	ys:1 Phe:1 Gly:3 lle al:3 Trp:1	:2 Leu:2 Met:1 Arg	:2 Ser:4	
				DBD	96.3	3.7	Ala:3 Cys:1 Phe:1 Gly:3 lle:2 Leu:2 Thr:3 Val:3 Trp:1	2 Me	t:1 Arg:2 Ser:4	Ala:3 C Thr:3 V	ys:1 Phe:1 Gly:3 lle al:3 Trp:1	:2 Leu:2 Met:1 Arg	:2 Ser:4	
				NBS	91.7	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu:3 Thr:2 Val:2 Trp:1	3 Me	t:1 Arg:3 Ser:3	Ala:2 C Ser:3 Ti	ys:1 Phe:1 Gly:2 lle hr:2 Val:2 Trp:1	:1 Leu:3 Met:1 Pro	:2 Arg:3	
				NBK	91.7	0.0	Ala:2 Cys:1 Phe:1 Gly:2 lle:1 Leu:3 Thr:2 Val:2 Trp:1	3 Me	t:1 Arg:3 Ser:3	Ala:2 C Ser:3 Ti	ys:1 Phe:1 Gly:2 lle hr:2 Val:2 Trp:1	:1 Leu:3 Met:1 Pro	:2 Arg:3	
				NBB	91.7	0.0	Ala:3 Cys:2 Phe:2 Gly:3 lle:2 Leu:4 Thr:3 Val:3 Trp:1	4 Me	t:1 Arg:4 Ser:5	Ala:3 C Ser:5 Ti	ys:2 Phe:2 Gly:3 lle hr:3 Val:3 Trp:1	:2 Leu:4 Met:1 Pro	:3 Arg:4	
				NBN	89.6	2.1	Ala:4 Cys:2 Phe:2 Gly:4 Ile:3 Leu:6 The:4 Vol:4 Ten:4	6 Me	t:1 Arg:6 Ser:6	Ala:4 C	ys:2 Phe:2 Gly:4 lle	:3 Leu:6 Met:1 Pro	:4 Arg:6	Ŧ
		Library	size : 7315						с	odon us	age : Escherichi	ia coli K12	~	
	Ex	pected cover	rage: 0.95								Ger	erate report		
P	robabilit	y of full cover	rage: O											

□ Protein engineering approaches

- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling

Mutagenesis and screening

□ saturation mutagenesis - next lecture ☺

- □ Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening

Rational design

■ molecular modeling → design of mutations

Rational design

- □ site-specific changes on the target enzyme
- few amino-acid substitutions that are predicted to elicit
 desired improvements of enzyme function
- based on detailed knowledge of protein structure, function and catalytic mechanism
- □ ☺ relatively simple characterization of constructed variants
- □ ⁽²⁾ complexity of protein structure-function relationships
- □ ⁽³⁾ molecular modeling expertise usually required

- □ Protein engineering approaches
- Semi-rational design
 - identification of hot-spots
 - evaluation of hot-spots
 - selection of substitutions
 - design of library
 - mutagenesis and screening
- Rational design
 - molecular modeling → design of mutations
Molecular modeling

- "Theoretical or computational technique that provides insight into the behavior of molecular system."
- Ligand binding
 - Molecular docking
- **Protein dynamics and transport of molecules**
 - Molecular dynamics
- Reaction barriers and mechanisms
 - Quantum chemistry or QM/MM
- Protein design
 - Molecular mechanics, machine learning

Molecular docking

□ predicts structure of receptor (protein) – ligand complex

Molecular docking

□ Two components procedure

- searching finding the
 conformation of ligand in the
 active site of the enzyme
- scoring evaluation of the binding free energy
- Docking software
 - Autodock, Vina, Gold,
 Medusa, Rosetta Dock...

Molecular docking

- Virtual screening
 - database of compounds + protein structure > molecular docking >
 - re-scoring > compound prioritization > experimental testing

Molecular dynamics

D Principle

- physical description of interactions within the system (force field)
- Newton's laws of motions
- forces acting on all atoms due to all atoms
- Provides information on energetics, amplitudes, and time scales of local motions on the atomic level

Molecular dynamics

Ligand conversion

Interaction with membrane

Quantum chemistry

- Modeling of reaction barriers
- Enzymes increase speed of chemical reactions by decreasing

activation barrier

Kinetic rate:

$$\kappa = Ae^{\frac{-E_a}{RT}}$$

(Arrhenius equation)

- lower $E_a \rightarrow higher k$
 - ⇔ faster reaction

Quantum chemistry

- □ Using quantum mechanics to create or break bonds (usually
- hybrid quantum mechanics/ molecular mechanics simulation)

Design of stability

- https://loschmidt.chemi.muni.cz/fireprotweb
- In silico analysis of all mutations
- Energy- and evolution-based analyses
- Multiple-point mutants for gene synthesis
- Single-point prediction
- User-defined mutations

□ FireProt

Consensus		Energy low risk		Energy high risk		Comb. low risk	Comb. high risk		Ancestral design		All residues
\checkmark	Chain	Position	Ref	Alt	Conser	vation Majority	y Ratio	Fold	x	Rosetta	Add to Design
\checkmark	А	11	D	Р	4	false	false	-1.40)276	-3.423	+
\checkmark	А	13	Н	F	5	false	false	-1.2	1777	-2.16	+
\checkmark	А	23	н	А	6	true	false	0.45	1804		+
\checkmark	А	33	Т	Ι	4	false	false	-1.5	5239	-2.294	
\checkmark	А	80	F	R	5	true	true	-0.52	21484		
\checkmark	А	82	D	W	1	false	false	-1.32	2168	-3.595	66
\checkmark	А	119	Ν	Н	6	true	false	-1.14	1059		
\checkmark	А	128	С	F	6	true	true	-1.13	3013		
\checkmark	А	145	А	L	2	false	false	-2.84	401	-2.366	5
\checkmark	А	148	Т	М	2	false	false	-2.13	3847	-2.842	

Rows per page: 10 ▼ 1-10 of 26

Design of stability

□ FireProt^{ASR}

- https://loschmidt.chemi.muni.cz/fireprotasr
- ancestral sequence reconstruction
- Analysis of protein evolution, sequence-based protein stabilization
- Ancestrals are highly stable, have broad specificity and good yields

Design of stability

□ FireProt^{ASR}

Design of solubility

ProteinMPNN

- https://huggingface.co/spaces/simonduerr/ProteinMPNN
- deep learning model for protein optimization via mutations
- takes structure on the input and provides optimized sequence

folding into the same backbone

good for improving yields and rescuing folding-compromised designs

Design of protein-protein interactions

AffiLib

- https://affilib.weizmann.ac.il/bin/steps
- RosettaDesign and evolution analysis to optimize macromolecular interface
- mutations for improvement of the binding affinity
- up to 50 multiple-point mutants for protein synthesis

Parameter	Value			
Minimal number of mutations per design	3			
Maximal number of mutations per design	5			
Minimal PSSM threshold	-1 ~			
ΔΔG	5.5 ~			
Sequence space	143A FY			
	144A P			
	151A FMY			
	177A LAGNST			
	211A ILMV			
	247A AGMSTVY			
	248A LIMV			
Total number of designs in tolerated sequence space	3,313			
Reset Verify Proceed				

Design of mutations

Design of mutations

- design of modified enzymes by in silico screening
 - study of effects of all relevant mutations
 - selection and combination of the best mutations

PROTEIN ENGINEERING

8. Directed evolution

Loschmidt Laboratories Department of Experimental Biology Masaryk University, Brno