

Analysis of

R Environment
 Exploratory Data Analysis
 Regression models

Content

- 2) The first exampleSystematic components
- 3) Stochastic componentsAnalyses of continual measurements
- Analyses of continual measurements II Analyses of counts

5) Analyses of counts II Analyses of proportions

Literature

MODERNÍ ANALÝZA **BIOLOGICKÝCH DAT** ZOBECNÉNÉ LINEÁRNÍ MODELY V PROSTŘEDÍ 🖬 STANC TIKAR MAREK MAREC Scientia

MODERNÍ ANALÝZA BIOLOGICKÝCH DAT

> STANO PEKÁR MAREK BRABEC

M A S A R Y K O V A U N I V E R Z I T A

Statistical analysis

- very fast due to use of computers
- chose statistical models that approach data characters

This course

- focuses on regression models in a broad sense
- only on linear models
- with only one response variable (univariate methods)
- with independent observations

Variables

Response variable

• (dependent) is the variable whose variation we aim to understand, the variable that we measure, it goes on ordinate

- continuous measurement, count, proportion (y)

Explanatory variable

(independent) is the variable that we manipulate (select levels), interested to what extent is variation in response associated with variation in explanatory variables, displayed on abscissa
numeric: continuous or discrete measurements (*x*) .. covariate
categorical .. a factor (*A*, *B*) with two or more levels (*A*₁, *A*₂, .. *B*₁, *B*₂, ..)

Statistical Statistical Softistical

Stano Pekár

• software packages that include GLM

What is **R P**

• environment for the manipulation of objects

- data manipulation, calculation and graphical display
- a high-level programming language

• combination of S (developed at AT&T Bell Laboratories and forms the basis of the S-PLUS systems) and Scheme languages

• initially written by Gentleman & Ihaka (1996), nowadays with many contributors (R Development Core Team)

- includes about 30 standard packages
- available 2000 additional packages
- user-unfriendly (limited pull-down menus)
- based on commands
- pull-down menus only for basic commands

Why R P

Pros

- freeware
- one of the largest statistical systems
- open environment with more dynamic development than other systems
- whereas Statistica or SAS will give copious output, R will provide minimal output
- makes you think about the analysis

<u>Cons</u>

- no warranty
- user-unfriendly

Instalation

• software available from www.r-project.com

data from
https://www.press.muni.cz/edicni-rady-munipress/moderni-analyza-biologickych-dat-1

Basic operations

+ - * / > <

- == equal != not equal
- <= less than or equal

^ power

• logical values **T** .. TRUE, **F** .. FALSE

Functions

trigonometric
sin, cos, tan, asin, acos, atan
logarithmic: log, log2, log10
sqrt, exp, abs, sum, prod
seq, c, which, length, cbind, xbind, matrix

- names are case sensitive
- "_" is not allowed to use
- vectors: numeric, character, logical
- arguments (in parentheses): use their names or without at specified order
- centring: to subtract mean scaling: to divide by SD

> mean(y)
[1] 6
> var(y)
[1] 11
> y2 <- scale(y); y2</pre>

```
attr(,"scaled:center")
[1] 6
attr(,"scaled:scale")
[1] 3.316625
> mean(y2)
[1] 0
> var(y2)
      [,1]
[1,] 1
```

Data frames

Created in R:

- use data.frame, rep, factor, levels, relevel
- export: write.table

Imported:

- from Excel via clipboard

dat <- read.delim("clipboard")</pre>

• data matrix:

- number of columns = number of variables

- first row contains names of variables (names without blank spaces)

- each row corresponds to an observation (trial, etc.)
- factors levels can be names or coded as numbers
- all columns must have the same number of rows
- missing data are assigned as NA
- -is.na

- \$

attach(dat) names(dat)

soil	field	distance amount	
moist	pasture	12	0.22
moist	pasture	22	0.11
moist	pasture	43	0.29
moist	pasture	23	0.33
moist	rape	32	0.19
moist	rape	67	0.39
moist	rape	54	0.18
moist	rape	NA	0.29
dry	pasture	11	1.16
dry	pasture	33	1.03
dry	pasture	45	1.11
dry	pasture	NA	1.33
dry	rape	55	1.02
dry	rape	41	1.23
dry	rape	14	1.05
dry	rape	27	1.12

```
> is.factor(size)
[1] FALSE
> size <- factor(size)</pre>
```

> levels(size)						
[1]	"large"	"medium"	"small"			
<pre>> size1 <- relevel(size, ref="medium"); levels(size1)</pre>						
[1]	"medium"	"large"	"small"			

• a visual (tabular or graphical) analysis of the data

Important to

- check errors
- get an idea of the result
- suggest a model
- check assumptions for use of desired methods
- set hypotheses
- look for unexpected trends

• use expected values and variation

Expected value

- E(y), μ : theoretical long-term average of a variable
- one of a few characteristics of a distribution
- for discrete distributions E(y) might not be a possible value
- estimate of E(y) is mean ... mean
- a robust estimate for asymmetric distributions is **median**: ... **median**

- another robust estimate is **trimmed mean**: mean where α *n observations are removed from each tail ... **mean(y, trim=)**

Example

Find mean, median, and mean trimmed by 10% of the *amount* variable. > mean(amount)

[1] 0.690625 > median (amount) [1] 0.705 > mean(amount, trim=0.1) [1] 0.6864286

Variance

- Var(y), σ^2 : a theoretical measure of the variability
- minimum and maximum ... range, min, max
- quantiles (0, 25, 50, 75, 100%) ... quantile
- estimate of Var(y) is s²... **var**
- standard deviation (s) ... **sd**
- standard error of the mean ...

$$SEM = \frac{s}{\sqrt{n}}$$

<u>Example</u>

Find variance, standard deviation, range and standard error of the mean for *amount*.

> var(amount)
[1] 0.2162996
> sd(amount)
[1] 0.4650802
> sem <- sd(amount)/sqrt(length(amount)); sem
[1] 0.1162700</pre>

Confidence Intervals

of a parameter (mean): if large number of samples is taken from a population then α% of intervals will contain mean
based on quantiles of the t distribution qt

- lower CI₉₅
$$\overline{y} - t_{0.975,\nu} \times SEM$$

- upper CI₉₅ $\overline{y} + t_{0.975,\nu} \times SEM$

• for asymmetric distributions CI_{95} is estimated on transformed values \rightarrow asymmetric intervals

<u>Example</u> Find 95% confidence intervals of mean for *amount*.

> mean(amount) + sem*c(qt(p=0.0255,df=15), qt(p=0.975,df=15))
[1] 0.4428013 0.9384487

Tabular analysis

• basic summaries (min, max, Q_{25} , Q_{75} , median, mean) for all variables.. **summary**

- summary table for data with explanatory variable(s) .. tapply
- to count frequencies .. table

Example Make a table of means for *SOIL* and *FIELD*, and table of SEM for *FIELD*.

Graphics

- see demo (graphics) or demo (image)
- graphs
- basic: **plot**
- advanced: **xyplot** (library *lattice*)
- to get all graphic parameters: **?par**
- to split window to subplots: par (mfrow)
- to add legend .. legend
- graph window size: **x11**

plot

Argument	Values		
type=	Style: "n" (empty), "p" (scatter), "l" (lines),		
	"b" (both), "h" (vertical)		
las=	Style of axes values: 0 (parallel), 1 (horizontal)		
	2 (perpendicular), 3 (vertical)		
xlab,ylab=	Text of axes labels: ""		
cex.lab=	Size of axes labels: 1,		
<pre>xlim,ylim=</pre>	Range of axes: c(min, max)		
cex.axis=	Size of axes values: 1,		
log=	Logarithmic scale of x , y or xy		
main=	Text of title: ""		
main.cex=	Size of title: 1,		

points	
Argument	Values
pch=	Type of symbols: 0, , 18, "letters"
cex=	Size of symbols: 1,
col=	Colour: 1, 2, 3, 4, 5, 6, 7, 8
font=	Font type: 1, 2, 3, 4

Distribution plots

- to study distribution of a numeric (response) variable
- histogram .. hist
- stem-and-leaf plot .. stem
- q-q plots to compare distribution of two variables
- compare a single variable with normal: **qqnorm**
- compare distributions of two variables: qqplot
- to add diagonal line: qqline

<u>Example</u>

Make q-q plot of data from normal distribution.

> y1 <- rnorm(n=10, mean=0, sd=1)
> y2 <- rnorm(20,0,1)
> y3 <- rnorm(50,0,1)
> y4 <- rnorm(100,0,1)
> qqnorm(y1); qqline(y1)
> qqnorm(y2); qqline(y2)
> qqnorm(y3); qqline(y3)
> qqnorm(y4); qqline(y4)

Deviations from normal distribution

Scatter plots

- for data with continuous explanatory variables
- to produce plots with points: **plot**

<u>Example</u>

Make scatterplot of *distance* on *amount* without and with different points for two levels of *SOIL*.

Box plots

• when there are categorical explanatory variables

• argument **notch** for boxes with CI_{95} for median

Example Make boxplot of *amount* for *SOIL* without and with notches.

Panel plots

• for data with both categorical and continuous explanatory variables

• **xyplot** from library *lattice*

Example Make panel scatterplot regression plot of *distance* against *amount* for *SOIL*.

Interaction plot

for data with two categorical explanatory variables
to plot means of two factors (A, B) connected by lines

interaction.plot

Example Make interaction plot of *SOIL* and *FIELD* for *amount*.

Bar plot

• when data are counts or proportions

- data are arranged in a matrix or table
- barplot: beside, legend

<u>Example</u>

Make barplot of SOIL and FIELD for amount.

Paired plots

when data include several continuous explanatory variables
pairs produces matrix of all possible plots

3-dimensional plots

when data include 2 continuous explanatory variables
wireframe (*lattice*) produces 3-dimensional plot

Elegant plots

use ggplot2 package
ggplot

Example

Make violinplot of *SOIL* and *amount* and dotplot of *SOIL* and *amount*.

Graphs with functions

• final plot of estimated models use *visreg* package

lines connects points specified by coordinates
abline produces line specified by intercept and slope

lines		
Argument	Values	1
x,y=	Coordinates: c (,)	3 ••••••••••••••••••••••••••••••••••••
lty=	Line type: 1 , , 6	5
col=	Colour: 1, 2, 3, 4, 5, 6, 7, 8	6
lwd=	Width: 1,	

Example

Make lineplots for the following models:

Regression model

• includes systematic and stochastic components

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

• assumptions of the stochastic component:

$$\varepsilon_i \sim N(0, \sigma^2)$$
 $\operatorname{cor}(\varepsilon_i, \varepsilon_{i'}) = 0, i \neq i'$

= variance is equal = **homoscedastic** model

To find real model we need to estimate its parameters: α , β , σ^2

as a, b, s^2 so that we get

$$\hat{y}(x_0) = a + bx_0$$

General Linear Model

• extension of the systematic component

Simple regression

1-way ANOVA

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

$$\beta = 0$$
$$y_i = \alpha + \varepsilon_i$$

$$y_{ij} = \alpha + \beta A_j + \varepsilon_{ij}$$

$$\beta = 0$$

$$y_i = \alpha + \varepsilon_i$$

Linear model (LM) has a general form

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \varepsilon$$

linear predictor

x can include: u^2 , $u^{1/2}$, $\log(u)$, $\exp(u)$, $\sin(u)$, factors

= model is linear in parameters when it includes only linear combinations of parameters

Some nonlinear relationships can be linearised • log-transformation of both sides:

$$y = e^{a+bx_i} + e^{\varepsilon} \rightarrow \log(y) = a+bx+\varepsilon$$

$$z = \log(y) \rightarrow z = a + bx + \varepsilon$$

- e^{ϵ} has lognormal distribution while ϵ has normal distribution
- y has heterogenous variance z has homogenous variance
- e^{ϵ} is multiplicative while ϵ is additive
- curved relationship becomes linear

Other nonlinear relationships can not be linearised

$$y = \alpha(1 - \beta e^{-\gamma x})$$

use Nonlinear regression

Generalised Linear Model

• extension of the stochastic component

- we model transformed expected value of y

$$f(\mu) = \alpha + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

 $y \sim distribution$

 $f(\mu)$.. link function

For example,

$$\mu = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$$

$$y \sim N(\mu, \sigma^2)$$

$$\varepsilon = y - \mu \sim N(0, \sigma^2)$$

GLM has 3 components:

- link function
- linear predictor
- distribution family
- Gaussian (normal), Gamma, Inverse Gaussian, Poisson, Quasipoisson, Binomial, Quasibinomial, Quasi
- measure of fit is deviance not sum of squares
- null deviance = SST
- residual deviance = SSE
- ANODEV table = ANOVA table

Rozdělení	Jméno linku	Link funkce	Rozptyl
Gaussovo (normální)	identity	1	μ
Gama	inverse	$\frac{1}{\mu}$	μ^2
Inverzní Gaussovo		$\frac{1}{\mu^2}$	μ^3
Poissonovo	log	$\log(\mu)$	μ
Quasipoissonovo	log	$\log(\mu)$	$arphi\mu$
Binomické	logit	$\log \frac{\mu}{1-\mu}$	$\frac{\mu(1-\mu)}{n}$
Quasibinomické	logit	$\log \frac{\mu}{1-\mu}$	$\frac{\varphi\mu(1-\mu)}{n}$
Quasi	libovolné v rámci přípustných funkcí	libovolná v rámci přípustných funkcí	odpovídající

Good model

• a useful simplification of the reality

- should include important aspects for which it is being made and ignore aspects that we are not interested in

Principle of parsimony: Simpler model is better if it explains study phenomenon as good as complicated model.
G. E. P. Box: ,,All models are wrong. But some of them are useful."

Modelling procedure

Bottom -up or forward selectionbuilding up a model by adding available variables

Top-down or backward selection

- reducing maximal (saturated) model
- 1. Fit maximal model- all main effects and interactions
- 2. Remove insignificant interactions and main effects
- 3. Group together similar factor levels
- 4. Check diagnostic plots
- 5. Alter model if necessary
- 6. Achieve minimal adequate model

- contains only terms in which all parameters are significantly different

Model criticism

• to assess model quality and assumptions

- study of both systematic and stochastic components
- we can never prove that model is adequate

Residuals

$$\varepsilon_i \sim N(0, \sigma^2) \quad \operatorname{cor}(\varepsilon_i, \varepsilon_{i'}) = 0, i \neq i'$$

should not

- make trends when plotted against explanatory or response variables
- be heteroscedastic
- have unusual distribution
- be interdependent

Checking assumptions

- informal using plots **plot** produces 6 plots
- formal using tests

Predictor's adequacy

- raw (LM) or deviance (GLM) residuals against fitted values
- curved pattern suggests lack of polynomial term

Normality

• q-q plot of standardised (LM) standardised deviance (GLM) residuals

• data from other than normal distribution can not have normally distributed residuals

• when the pattern is "J" or "S" shaped change link function or transform the variable

Variance homogeneity

plot of standardised (LM) standardised deviance (GLM) residuals against fitted/predicted values
when variance increases with the mean use Poisson or gamma distribution or log transformation

Influence

• plot of Cook's distance for each observation shows the influence of individual observations on the model fit

- values of influential observations are close to 1 and higher
- residuals versus leverage
- omit influential observations or transform the explanatory variables (using log, power, reciprocal)

Independence

• dependence on continual explanatory variable

- using standardised (LM) or Pearson residues (GLM)
- serial dependence if explanatory variable is time or space

The first trial

Stano Pekár

1-way ANOVA

Background

Nutritional quality of the diet affects growth of organisms in various ways. To find optimal diet for cockroaches the following experiments was performed.

Design

Effect of five diet types (control, lipid1, lipid2, protein1, protein2) was tested on body weight [g] of cockroaches. For each diet type there were 17 observations.

Biological hypothesis

Is nutritional quality of the diet affecting size of organisms?

<u>Statistical hypotheses</u> H0: Weight is similar among diet groups. HA: Weight is significantly different among diet groups.

<u>Prediction</u>: Protein-enriched diet should lead to highest weight.

<u>Variables</u> *DIET*: control, lipid1, lipid2, protein1, protein2 *weight*

Model:

 $weight_{ij} = DIET_j + \varepsilon_{ij},$ kde $\varepsilon_{ij} \sim N(0, \sigma^2)$, nezávisle pro jednotlivá měření.

Analysis:

Comparisons

- compare individual differences between factor levels
- comparisons are valid only if a factor is significant

Options:

- Apriori contrasts (before analysis)
- *Posteriori* simplification (after analysis)
- Multiple comparisons (after analysis)
- apriori contrasts are preferred to avoid excess of significant results

Contrasts

For a model

$$y_{ij} = A_j + \varepsilon_{ij}$$

a contrast will be

$$K = \sum_{j=1}^{J} w_j A_j$$

where A_i ... mean value of a level, w_i ... contrast coefficient

Creating contrasts

- levels lumped together get the same sign
- levels contrasted get opposite sign
- levels excluded get 0

.. so that sum of each contrast

$$\sum_{j=1}^{J} w_j = 0$$

Contrasts are arranged in a matrix

• only $\overline{k-1}$ (k .. number of levels) contrasts are orthogonal, i.e. each level (combination) is compared only once ... products of any two contrasts = 0

• specified by function **contrasts** prior to analysis

Pre-specified contrasts:

- **Treatment** (default in R) compare specific level with the reference level
- **Helmert** compare specific level with the average of previous levels
- Sum compare specific level with the grand mean
- **Textbook** compare each level with 0

> summary(m1)

Call: lm(formula = weight ~ diet)

Residuals:

Min	1Q	Median	3Q	Max
-0.66471	-0.18294	-0.05294	0.16706	0.91706

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	0.9547	0.0859	11.114	< 2e-16	* * *		
dietlipid1	0.7282	0.1215	5.994	5.59e-08	* * *		
dietlipid2	0.6682	0.1215	5.501	4.41e-07	* * *		
dietprotein1	2.1382	0.1215	17.601	< 2e-16	* * *		
dietprotein2	2.0100	0.1215	16.545	< 2e-16	* * *		
Signif. codes	: 0 `***	0.001 **	• 0.01	* 0.05	·.′ 0.1	` '	1
				-			
Residual stan	idard erro	or: 0.3542 d	on 80 deg	grees of f	reedom		

Multiple R-Squared: 0.8535, Adjusted R-squared: 0.8462 F-statistic: 116.6 on 4 and 80 DF, p-value: < 2.2e-16

```
> contrasts(diet) <- cbind(c(1,-1/4,-1/4,-1/4,-1/4),c(0,-1/2,-1/2,1/2,1/2),
+ c(0,0,0,1/2,-1/2),c(0,-1/2,1/2,0,0))
> contrasts(diet)
        [,1] [,2] [,3] [,4]
ctrl        1.00      0.0      0.0      0.0
lipid1     -0.25 -0.5      0.0   -0.5
lipid2     -0.25 -0.5      0.0      0.5
protein1 -0.25      0.5      0.0
```

protein2 -0.25 0.5 -0.5 0.0

> summary(lm(weight~diet))

Coefficients	:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.06365	0.03842	53.718	<2e-16	***
diet1	-1.10894	0.07683	-14.433	<2e-16	* * *
diet2	1.37588	0.08590	16.017	<2e-16	* * *
diet3	0.12824	0.12148	1.056	0.294	
diet4	-0.06000	0.12148	-0.494	0.623	

> contrasts(diet) <- 'contr.helmert'</pre>

> summary(lm(weight~diet))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.06365	0.03842	53.718	< 2e-16	***
diet1	0.36412	0.06074	5.994	5.59e-08	***
diet2	0.10137	0.03507	2.891	0.00495	**
diet3	0.41819	0.02480	16.864	< 2e-16	***
diet4	0.22526	0.01921	11.727	< 2e-16	***

- > contrasts(diet) <- 'contr.sum'</pre>
- > summary(lm(weight~diet))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.06365	0.03842	53.718	< 2e-16	* * *
diet1	-1.10894	0.07683	-14.433	< 2e-16	* * *
diet2	-0.38071	0.07683	-4.955	3.96e-06	* * *
diet3	-0.44071	0.07683	-5.736	1.66e-07	* * *
diet4	1.02929	0.07683	13.396	< 2e-16	***

Simplification

- levels of a factor are compared using Wald statistics from ouput
- similar factor levels are the grouped together
- test each grouping by **anova**
- compare the final model with the first one

> Tevers	(dieti)[4.5] <- piot
> levels	(diet1)
[1] "ctr]	l" "lipid1" "lipid2" "prot"
> contras	sts(diet1) <- 'contr.treatment'
> m2 <- 1	Lm(weight~diet1)
>	, <u> </u>
> anova(m	1, m2)
Analysis	of Variance Table
Model 1:	weight ~ diet
Model 2:	weight ~ diet1
Res.Df	RSS Df Sum of Sq F Pr(>F)
1 80	10.0357
2 81	10.1755 -1 -0.1398 1.1142 0.2943
> diet2 <	- diet1
> levels(diet2)[2:3] <- "lipid"
> levels(> m3 <- li	diet2)[2:3] <- "lipid" m(weight~diet2)
> levels(> m3 <- ln > anova(m)	diet2)[2:3] <- "lipid" m(weight~diet2) 2, m3)
<pre>> levels(d > m3 <- ln > anova(m2 Analysis d)</pre>	diet2)[2:3] <- "lipid" m(weight~diet2) 2, m3) of Variance Table
<pre>> levels(> m3 <- ln > anova(m) Analysis</pre>	diet2)[2:3] <- "lipid" m(weight~diet2) 2, m3) of Variance Table
<pre>> levels(> m3 <- ln > anova(m2 Analysis (Model 1:)</pre>	diet2)[2:3] <- "lipid" m(weight~diet2) 2, m3) of Variance Table weight ~ diet1
<pre>> levels(> m3 <- ln > anova(m2 Analysis (Model 1: n Model 2: n</pre>	<pre>diet2)[2:3] <- "lipid" m(weight~diet2) 2, m3) of Variance Table weight ~ diet1 weight ~ diet2</pre>
<pre>> levels(> m3 <- ln > anova(m2 Analysis (Model 1: n Model 2: n Res.Df</pre>	<pre>diet2)[2:3] <- "lipid" m(weight~diet2) 2, m3) of Variance Table weight ~ diet1 weight ~ diet2 RSS Df Sum of Sq F Pr(>F)</pre>
<pre>> levels(> m3 <- ln > anova(m2 Analysis (Model 1: n Model 2: n Res.Df 1 81 1</pre>	<pre>diet2)[2:3] <- "lipid" m(weight~diet2) 2, m3) of Variance Table weight ~ diet1 weight ~ diet2 RSS Df Sum of Sq F Pr(>F) 10.1755</pre>

```
> diet3 <- diet2
> levels(diet3)[2:3] <- "other"
> m4 <- lm(weight~diet3)
> anova(m3, m4)
Analysis of Variance Table
Model 1: weight ~ diet2
Model 2: weight ~ diet3
    Res.Df     RSS Df Sum of Sq     F     Pr(>F)
1     82     10.206
2     83     42.388 -1     -32.182     258.56 < 2.2e-16 ***</pre>
```

```
> anova(m3,m1)
Analysis of Variance Table
```

```
Model 1: weight ~ diet2
Model 2: weight ~ diet
    Res.Df    RSS Df Sum of Sq    F Pr(>F)
    82 10.206
    80 10.036 2 0.17038 0.6791 0.51
```

Multiple comparisons

- *post hoc* tests
- Bonferroni correction applied to non-orthogonal contrasts
- Dunn test, Scheffe test, Tukey HSD test
- comparison by means of confidence intervals

```
> library(multcomp)
> m4 <- glht(m1, linfct = mcp(diet = "Tukey"))</pre>
> summary(m4)
        Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: lm(formula = weight ~ diet)
Linear Hypotheses:
                     Estimate Std. Error t value Pr(>|t|)
lipid1 - ctrl == 0 0.7282
                                 0.1215 5.994 <1e-05 ***
lipid2 - ctrl == 0 0.6682 0.1215 5.501 <1e-05 ***
protein1 - ctrl == 0 2.1382 0.1215 17.601 <1e-05 ***
protein2 - ctrl == 0 2.0100 0.1215 16.545 <1e-05 ***
lipid2 - lipid1 == 0 -0.0600 0.1215 -0.494
                                               0.988
protein1 - lipid1 == 0 1.4100 0.1215 11.606 <1e-05 ***
protein2 - lipid1 == 0 1.2818
                                 0.1215 10.551 <1e-05 ***
protein1 - lipid2 == 0 1.4700
                                 0.1215 12.100 <1e-05 ***
                                 0.1215 11.045 <1e-05 ***
protein2 - lipid2 == 0 1.3418
```

protein2 - protein1 == 0 -0.1282 0.1215 -1.056 0.828

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 (Adjusted p values reported -- single-step method)

> plot(m4)

Diagnosis:

We should check as many aspects as possible

- use diagnostic plots
- use formal tests:
- Bartlett test to compare variances
- Shapiro-Wilk test of normality

```
> bartlett.test(weight ~ diet2)
Bartlett test of homogeneity of variances
data: weight by diet2
Bartlett's K-squared = 24.2178, df = 2, p-value = 5.51e-06
> shapiro.test(resid(m3))
Shapiro-Wilk normality test
data: resid(m9)
W = 0.9685, p-value = 0.0356
```


Analytical methods

$$y_i = a + bx_i + \varepsilon_i$$

the same explanatory variable can be taken once as continuous other time as categorical: e.g. two levels of concentration
continuous variable allows interpolation and extrapolation

Key to methods:

Explanatory variable(s)	Method
Continuous	Regression
Categorical	ANOVA
Continuous and categorical	ANCOVA

Linear predictor can include various terms:

- intercept .. α estimated as *a*
- linear term .. βx with *b* as coefficient of linear trend
- quadratic term .. γx^2 with *c* as coefficient of quadratic trend
- cubic term .. τx^3 with *t* as coefficient of cubic trend
- main effect .. A
- interaction between factors .. A:B
- interaction between continuous variables $x_1:x_2$
- linear interaction .. A:x
- quadratic interaction .. $A:x^2$

Regression

simple regression ... 1 explanatory variable
multiple regression ... 2 and more explanatory variables

General linear predictor of multiple regression

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$$

 α ... intercept

- β_k ... linear coefficients of x_k
- x...may represent polynomic functions (x^3), interactions ($x_1.x_2$)

- rule of thumb: less than n/3 parameters in model at any time - number of combinations of explanatory variables will often exceed the number of data so we can not include all terms

Simplification

• linear predictor with 2 explanatory variables (x_1, x_2) should include all main effects, all interactions, and quadratic terms

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + \gamma_1 x_1^2 + \gamma_2 x_2^2 + \delta x_1 x_2$$

with estimates
$$a, b_1, b_2, c_1, c_2, d$$

Nested models are:

• 5 parameters (a, b_1, b_2, c_1, c_2) , at least c_1 and c_2 are significantly different

4 parameters (a, b₁, b₂, c₁), at least c₁ is significantly different
3 parameters (a, b₁, b₂), at least b₁ and b₂ are significantly different

If one explanatory variable (x_2) turns out to be insignificant:

- 3 parameters (a, b, c), at least c is significantly different
- 2 parameters (a, b), at least b is significantly different
- 1 parameter (a) that is significantly different

ANOVA

- 1-way ANOVA .. 1 factor
- 2-way ANOVA .. 2 factors
- k-way ANOVA .. k factors
- k-way ANOVA might be with our without interactions

Given 2 categorical variables A and B each with 2 levels $(A_1, A_2, A_3, B_1, B_2)$ model with treatment contrasts is

$$\alpha + A_i + B_j + A : B_{ij}$$

 α ... mean of A_1B_1 , A_i and B_j ... main effects, $A:B_{ij}$... interaction

- 4 parameters $(A_1B_1, A_2B_1 A_1B_1, A_1B_2 A_1B_1 a A_2B_2 A_1B_2)$: interaction is significant
- 3 parameters $(\overline{A_1B_1}, A_2B_1 \overline{A_1B_1}, B_2 \overline{B_1})$: only A and B are significant
- 2 parameters $(B_1, B_2 B_1)$: only *B* is significant
- 1 parameter (grand mean): null model

ANCOVA

combination of regression and ANOVA
continuous variable = covariate

Given 1 factor (A_i) and 1 covariate (x) linear predictor is:

 $\alpha + A_j + \beta x + \delta_j x$

 α .. intercept, A_i .. effect of factor, β .. slope, δ .. effect of interaction

Given 1 categorical variable A with 2 levels (A_1, A_2) and 1 continual x, the linear predictor will be

$$\alpha + A_j + \beta x + \delta_j x + \gamma x^2 + \omega_j x^2$$

• 6 parameters - 2 intercepts (a_1, a_2-a_1) , 2 slopes (b_1, b_2-b_1) , 3 quadratic (c_1, c_2-c_1) - interaction $A:x^2$ is significant

• 4 parameters - 2 intercepts (a_1, a_2-a_1) , 2 slopes (b_1, b_2-b_1) - interaction A:x is significant, but quadratic terms are not significant

• 4 parameters - 2 intercepts (a_1, a_2-a_1) , 1 slope (b), 1 quadratic (c) - interactions $A:x^2$ and A:x are not significant, but A and quadratic terms are significant

• 3 parameters - 2 intercepts (a_1, a_2-a_1) , 1 slope (b) - only main effects (A and x) are significant

• Further simplification \rightarrow 1-way ANOVA or simple regression

Model formulae

response variable ~ *explanatory variable*(s)

- Operators:
- on left side any mathematical operator can be used
- on the right side only few:
- **+** .. add
- .. delete
- : .. interaction
- * .. all terms
- **1**.. intercept
- ${\tt I}$.. interpreter that translates operators into mathematical meaning
- / .. nested
- | .. conditioned

Model formula	Description	
y ~ 1	Null model $f(\mu_i) = \alpha$	
у ~ х	Linear model with 1 explanatory variable $f(\mu_i) = \alpha + \beta x_i$	
$log(y) \sim x - 1$ Linear model with 1 explanatory variable, without intercept and with log-transformed response $log(\mu_i) = \beta x_i$		
y ~ x + I(x^2) y ~ poly(x,2)	Quadratic model with 1 explanatory variable $f(\mu_i) = \alpha + \beta x_i + \gamma x_i^2$	
v ~ x1 + x2	Linear model with	

2 explanatory variables

$$f(\mu_i) = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i}$$

Model formulaDescriptiony ~ A*B*C3-way ANOVA withy ~ A +B+C+A:Bthree main effects,+ A:C+B:C+A:B:Ctwo 2-way interactionsand one 3-way interaction

 $f(\mu_{ijk}) = \alpha + A_i + B_j + C_k$ $+ A : B_{ij} + A : C_{ik} + B : C_{jk}$ $+ A : B : C_{ijk}$

y ~ (A+B+C) ^2 3-way ANOVA with only three 2-way interactions

x*A

$$f(\mu_{ijk}) = \alpha + A_i + B_j + C_k$$
$$+ A : B_{ij} + A : C_{ik} + B : C_{jk}$$

$$f(\mu_{ij}) = \alpha + A_j + \beta x_i + \delta_j x_i$$

1-way ANCOVA

Stano Pekár

 $y_i = a + bx_i + \varepsilon_i$

- choose distribution if using GLM
- there are many distributions but only some are available for GLM
- decision should be based upon theoretical models or previous experience

Response variable can be

- continuous measurements
- counts
- proportions

Continuous measurements

• measurements that can be made with infinite precision

Gauss (normal) distribution

- bell-shaped, symmetric around mean
- mean = median = modus
- parameters: μ , σ^2
- s² is independent of mean

Lognormal distribution

- positive real values
- asymmetric, skewed to the right
- variance increases with mean at quadratic trend
- after logarithmic transformation variances are similar

Gamma distribution

- positive real values
- asymmetric, skewed to the right
- variance increases with mean at a quadratic trend

Inverse Gaussian distributions

• positive real values

- used to model diffusion processes, dispersion in ecology
- variance increases steeply with mean

Counts

Poisson distribution

- discrete values, made of integers
- asymmetric, skewed to the right
- variance is equal to expected value
- variance increases with mean

Negative-binomial distribution

- discrete values, made of integers
- asymmetric, strongly skewed to the right
- variance is larger than expected value
- variance increases with mean at a parabolic trend

Proportions

- arise when we counts events (y) from a whole population (n)
- p .. relative frequency = y/n
- we study only qualitative character of an event not its quantitative aspect
- p is an estimate of a theoretical value π
- based on logit transformation

$$\log\!\!\left(\frac{p}{1-p}\right)$$

Binomial & Binary distributions

- measurements (y) are integers of *n* independent trials
- π .. a single parameter showing probability of event occurrence
- $0 \le \pi \le 1$
- variance of π is maximal at 0.5

Quasi "distribution"

- is not any distribution
- specifies expected value and the relationship between expected value and variance
- mixture of available settings

Analyses of Analyses of Continuous

Gaussian (normal) distribution

response variable is continuous

- measurements of length, width, distance, concentration, pH, etc.
- data are real numbers
- distribution is symmetric $(-\infty, +\infty)$
- parameters: μ , σ^2 independent of each other

Analytical methods

- **t-test** (**t.test**) to compare one or two means
- Linear model (1m) to study effect of categorical and continuous variables
- inference is exact, reliable for each n
- **GLM** (**glm**) to study effect of categorical and continuous variables
- Gaussian family (default)
- link: identity
- inference is asymptotic, valid only for large *n*

glm(formula, family=Gaussian)

Simple Regression

<u>Background</u> The number of grains in ears affects the yield of cereals.

<u>Design</u>

On 20 plots mean number of seeds per oat ear was estimated. Then at harvest the yield [t/ha] for each plot was estimated.

Hypotheses

Is number of seeds related to the yield? What is the predictive model of this relationship?

<u>Variables</u> grain yield

 $yield_i = \alpha + \beta grain_i + \varepsilon_i,$ kde $\varepsilon_i \sim N(0, \sigma^2)$, nezávisle pro jednotlivé plochy.

Quadratic term

• check for curvature by fitting a separate quadratic term for continuous explanatory variables

$$y = \alpha + \beta x + \gamma x^2 + \varepsilon$$

• quadratic model - a simple description of non-monotonous trend • use either poly(x, 2) or $x + I(x^2)$

> $yield_i = \alpha + \beta grain_i + \gamma grain_i^2 + \varepsilon_i$, kde $\varepsilon_i \sim N(0, \sigma^2)$, nezávisle pro jednotlivé plochy.

```
> m1 <- lm(yield ~ poly(grain,2))</pre>
> summary(m1)
Call:
lm(formula = yield ~ poly(grain, 2))
Residuals:
             10 Median 30
     Min
                                            Max
-0.261562 -0.121112 -0.003686 0.142558 0.281990
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.38205 0.03417 157.520 < 2e-16 ***
poly(grain, 2)1 1.04875 0.15280 6.864 2.75e-06 ***
poly(grain, 2)2 0.15416 0.15280 1.009 0.327
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 0.1528 on 17 degrees of freedom
Multiple R-Squared: 0.739, Adjusted R-squared: 0.7083
F-statistic: 24.06 on 2 and 17 DF, p-value: 1.101e-05
      > summary(lm(yield ~ grain + I(grain<sup>2</sup>)))
      Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
      (Intercept) 5.427559 1.795165 3.023 0.00766 **
```

grain -0.083870 0.159018 -0.527 0.60472 I(grain^2) 0.003507 0.003476 1.009 0.32718

```
yield_i = \beta grain_i + \varepsilon_i,
kde \varepsilon_i \sim N(0, \sigma^2), nezávisle pro jednotlivé plochy.
```

```
> m3 <- update(m2, ~.-1)
> summary(m3)
...
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
grain 0.231855 0.005006 46.32 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 0.518 on 19 degrees of freedom
Multiple R-Squared: 0.9912, Adjusted R-squared: 0.9908
F-statistic: 2146 on 1 and 19 DF, p-value: < 2.2e-16</pre>
```

Removing terms

- remove insignificant interactions
- begin with the higher order terms because main effects are marginal to interactions
- intercept is marginal to slope and both are marginal to the quadratic term
- remove insignificant main effects

Criteria

- test (F or χ^2) and a given p-value (**anova**)
- Akaike Information Criterion (AIC):

$$AIC = -2LogLik + 2p$$

the more there are parameters in the model the better fit but worse explanatory power of the model
the lower AIC the better model

> A	IC (m2, m3)
	df	AIC
m2	3	-14.47461
mЗ	2	33.42234

Weighted Regression

Weighting

- to increase/decrease effect of some measurements
- only positive values are allowed
- instead of least squares weighted least squares are used

Background

Sexual size dimorphism may increases with ambient temperature in spiders.

<u>Design</u>

Males and females of *Zodarion* spiders were sampled on 13 sites with a different temperature [°C]. Of the average size of males and females a size ratio was calculated for each site. The number of individuals varied between sites (2 to 62 specimens).

<u>Hypotheses</u>

Is there relationship between the ratio and the temperature? What is the model?

<u>Variables</u>

temp number ratio

 $ratio_i = \alpha + \beta temp_i + \gamma temp_i^2 + \varepsilon_i$, kde $\varepsilon_i \sim N(0, \sigma^2)$, nezávisle pro různé lokality.

> m2 <- lm(ratio ~ temp)</pre>

Coefficients:							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	1.036897	0.018667	55.547	7.94e-15	* * *		
temp	0.007941	0.001843	4.307	0.00124	* *		

$$\begin{aligned} ratio_i &= \alpha + \beta temp_i + \varepsilon_i \,,\\ \varepsilon_i &\sim N\!\!\left(0,\!\frac{\sigma^2}{number}\right), \, \text{nezávisle pro různé lokality.} \end{aligned}$$

```
> m3 <- update(m2, weights=number)</pre>
```

```
> summary(m3)
```

```
Coefficients:
```

. . .

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.084297 0.015481 70.038 6.24e-16 ***

temp 0.003265 0.001510 2.162 0.0535 .

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.04727 on 11 degrees of freedom

Multiple R-Squared: 0.2982, Adjusted R-squared: 0.2345

F-statistic: 4.675 on 1 and 11 DF, p-value: 0.0535
```


2-way ANOVA

Background

The carcinogenic disease is related to the production of toxins by certain bacteria in the body of patients. Presence of toxins can be used as an indicator of certain carcinogenic disease.

<u>Design</u>

In a clinical study, the amount of a toxin [units/ μ] produced by four bacteria species was measured in patients with two carcinogenic and two non-carcinogenic diseases. For each disease there were 20 patients. In each patient only a single bacterial toxin was measured so there were 5 replications per bacteria species.

Hypotheses

Is the amount of toxin similar for four bacteria species and four diseases?

If not what is the difference? Which species can be used as an indicator?

<u>Variables</u> *SPECIES*:bacterA, bacterB, bacterC, bacterD *DIAGNOSIS*:carc.rectum, carc.intestine, apendicitis, skin.absces *toxin*

$$\begin{split} toxin_{ijk} &= \alpha + SPECIES_j + DIAGNOSIS_k + SPECIES:DIAGNOSIS_{jk} + \varepsilon_{ijk},\\ & \text{kde} \ \varepsilon_{ijk} \sim N(0, \ \sigma^2), \text{ nezávisle projednotlivé pacienty.} \end{split}$$

> m1 <- lm(toxin ~ species*diagnosis)								
> anova(m1)								
Analysis of Varia	nce	Table						
Response: toxin								
	Df	Sum Sq	Mean Sq	F value	Pr(>F)			
species	3	1.3364	0.4455	28.0325	1.077e-11			
diagnosis	3	5.4775	1.8258	114.8965	< 2.2e-16			
species:diagnosis	9	1.2704	0.1412	8.8827	1.528e-08			
Residuals	64	1.0170	0.0159					

* * * * * * * * *

ANOVA Table

- anova uses Type I Sum of Squares
- sequential assessment of effects according to the given order
- at first main effects are assessed then interactions
- in orthogonal the order is not important
- if data are unortogonal it is more appropriate to use Type III SS

Orthogonality

- independent variables are orthogonal effects are straightforward
- correlated variables are unorthogonal effects are complicated

- when there are missing values or unequal number of observations *per* treatment

> summary(m1)

• • •

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.15100	0.05638	20.417	< 2e-16
speciesbacterB	-0.04220	0.07973	-0.529	0.598427
speciesbacterC	0.07000	0.07973	0.878	0.383233
speciesbacterD	0.05580	0.07973	0.700	0.486536
diagnosiscarc.intestine	0.75400	0.07973	9.457	9.07e-14
diagnosiscarc.rectum	0.70040	0.07973	8.785	1.34e-12
diagnosisskin.absces	0.01640	0.07973	0.206	0.837678
<pre>speciesbacterB:diagnosiscarc.intestine</pre>	-0.46760	0.11275	-4.147	0.000101
<pre>speciesbacterC:diagnosiscarc.intestine</pre>	-0.54620	0.11275	-4.844	8.42e-06
<pre>speciesbacterD:diagnosiscarc.intestine</pre>	-0.06420	0.11275	-0.569	0.571083
speciesbacterB:diagnosiscarc.rectum	-0.35700	0.11275	-3.166	0.002366
speciesbacterC:diagnosiscarc.rectum	-0.56340	0.11275	-4.997	4.78e-06
speciesbacterD:diagnosiscarc.rectum	0.06300	0.11275	0.559	0.578282
speciesbacterB:diagnosisskin.absces	-0.03580	0.11275	-0.318	0.751889
speciesbacterC:diagnosisskin.absces	-0.14960	0.11275	-1.327	0.189287
speciesbacterD:diagnosisskin.absces	-0.16520	0.11275	-1.465	0.147771

> tapply	(predict(m1)	<pre>, list(species,</pre>	diagnosis),	mean)
	apendicitis	carc.intestine	carc.rectum	skin.absces
bacterA	1.1510	1.9050	1.8514	1.1674
bacterB	1.1088	1.3952	1.4522	1.0894
bacterC	1.2210	1.4288	1.3580	1.0878
bacterD	1.2068	1.8966	1.9702	1.0580


```
> species1 <- species</pre>
> levels(species1)
[1] "bacterA" "bacterB" "bacterC" "bacterD"
> levels(species1)[2:3] <- "bacterBC"</pre>
> m3 <- lm(toxin ~ species1*diagnosis1)</pre>
> anova(m2, m3)
Analysis of Variance Table
Model 1: toxin ~ species * diagnosis1
Model 2: toxin ~ species1 * diagnosis1
 Res.Df RSS Df Sum of Sq F Pr(>F)
1
  72 1.15974
      74 1.17962 -2 -0.01988 0.6171 0.5423
2
> levels(species1)
[1] "bacterA" "bacterBC" "bacterD"
> levels(species1)[c(1,3)] <- "bacterAD"</pre>
> m4 <- lm(toxin ~ species1*diagnosis1)</pre>
> anova(m3, m4)
Analysis of Variance Table
Model 1: toxin ~ species1 * diagnosis1
Model 2: toxin ~ species1 * diagnosis1
 Res.Df RSS Df Sum of Sq F Pr(>F)
  74 1.17962
1
     76 1.19845 -2 -0.01883 0.5905 0.5566
2
```

```
> anova(m4)
Analysis of Variance Table
Response: toxin
Df Sum Sq Mean Sq F value Pr(>F)
```

```
species1 1 1.3328 1.3328 84.522 5.690e-14 ***
diagnosis1 1 5.4267 5.4267 344.139 < 2.2e-16 ***
species1:diagnosis1 1 1.1434 1.1434 72.508 1.134e-12 ***
Residuals 76 1.1984 0.0158
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
> summary(m4)
. . .
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                         1.90580 0.02808 67.872 < 2e-16 ***
(Intercept)
species1bacterBC
                        -0.49725 0.03971 -12.522 < 2e-16 ***
diagnosis1non
                    -0.76000 0.03971 -19.139 < 2e-16 ***
species1bacterBC:diagnosis1non 0.47820 0.05616 8.515 1.13e-12 ***
```


<pre>> confint(m5)</pre>			
		2.5%	97.5%
bothbacterAD	carc	1.849875	1.961725
bothbacterAD	non	1.089875	1.201725
bothbacterBC	carc	1.352625	1.464475
bothbacterBC	non	1.070825	1.182675

1-way ANCOVA

Background

Rate of population increase is a function of temperature in ectotherms, such as mites. A model of the relationship is essential for the control of mite pests.

<u>Design</u>

In the lab, population increase of two pest mite species was studied at 11 temperatures between 10 and 35 °C. The rate of increase was estimated using formula for exponential population growth. For each temperature a single measurement for each species was available.

Hypotheses

Did temperature affect the rate of increase? Was the rate similar for both species? What is the model of the relationship?

<u>Variables</u> *GENUS:* genA, genB *temp rate*

 $rate_{ij} = \alpha + GENUS_j + \beta temp_i + \gamma temp_i^2 + \tau temp_i^3 + \delta_j temp_i + \omega_j temp_i^2 + \eta_j temp_i^3 + \varepsilon_{ij},$ kde $\varepsilon_{ij} \sim N(0, \sigma^2)$, nezávisle pro jednotlivé populace. (8-12)

<pre>> m1 <- lm(rate ~ poly(temp,3)*genus)</pre>	
> anova(m1)	
Analysis of Variance Table	
Response: rate	
Df Sum Sq Mean Sq F value Pr(>F)	
poly(temp, 3) 3 0.065953 0.021984 210.0675 7.125e-12 *	**
genus 1 0.000028 0.000028 0.2644 0.6152	
poly(temp, 3):genus 3 0.000108 0.000036 0.3454 0.7930	
Residuals 14 0.001465 0.000105	
<pre>> m2 <- lm(rate ~ poly(temp,3)+genus)</pre>	
> anova(m1, m2)	
Res.Df RSS Df Sum of Sq F Pr(>F)	
1 14 0.00146516	
2 17 0.00157360 -3 -0.00010844 0.3454 0.793	
> anova(m2)	
Analysis of Variance Table	
Response: rate	
Response: rate Df Sum Sg Mean Sg F value Pr(>F)	
Response: rate Df Sum Sq Mean Sq F value Pr(>F) polv(temp, 3) 3 0.065953 0.021984 237.5038 4.509e-14 ***	
Response: rate Df Sum Sq Mean Sq F value Pr(>F) poly(temp, 3) 3 0.065953 0.021984 237.5038 4.509e-14 *** genus 1 0.000028 0.000028 0.2989 0.5917	

```
> m3 <- lm(rate ~ temp + I(temp^2) + I(temp^3))
> summary(m3)
. . .
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.675e-01 5.138e-02 -5.205 5.97e-05 ***
     3.191e-02 7.855e-03 4.063 0.00073 ***
temp
I(temp^2) -3.986e-04 3.704e-04 -1.076 0.29608
I(temp^3) -6.178e-06 5.464e-06 -1.131 0.27309
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 0.009432 on 18 degrees of freedom
Multiple R-Squared: 0.9763, Adjusted R-squared: 0.9723
F-statistic: 247.1 on 3 and 18 DF, p-value: 8.234e-15
> m4 <- lm(rate ~ temp + I(temp^2))
```

> summary(m4)

```
•••
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-3.222e-01	1.734e-02	-18.59	1.20e-13	* * *
temp	4.060e-02	1.662e-03	24.42	8.20e-16	* * *
I(temp^2)	-8.154e-04	3.649e-05	-22.35	4.20e-15	* * *

Multiple Regression

Background

Yield of cereals is determined by a number of variables. To predict yield with high accuracy, various effects have to be studied.

Design

On 100 plots, the yield of wheat [t/ha] was estimated together with six other variables: 1. number of overwintering plants, 2. number of ears/m², 3. pH of soil, 4. content of phosphorus [mg/kg], 5. content of potassium [mg/kg], 6. content of magnesium [mg/kg].

<u>Hypotheses</u> Did any of six variables affect the yield? If so which ones? What is the model for prediction of yield?

Variables winter ears pH P K Mg yield

> pairs(yield ~ winter + ears + pH + P + K + Mg, panel=panel.smooth)

Collinearity

- When two or more variables show correlation
- PCA can reduce dimensionability of variables use PCA scores instead

<pre>> pca <- princomp(~ pH</pre>	+ P,cor=T))						
<pre>> summary(pca)</pre>								
Importance of component	cs:							
	Comp.1	Comp.2						
Standard deviation	1.3049566	0.5450579						
Proportion of Variance	0.8514559	0.1485441						
Cumulative Proportion	0.8514559	1.0000000						

> PpH <- pca\$scores[,1]</pre>

 $\begin{aligned} yield_i &= \alpha + \beta_1 winter_i + \beta_2 ears_i + \beta_3 PpH_i + \beta_4 K_i + \beta_5 Mg_i + \varepsilon_i, \\ \varepsilon_i &\sim N(0, \, \sigma^2), \, \text{nezávisle pro různé parcely.} \end{aligned}$

```
> m1 <- lm(yield ~ (winter+ears+PpH+K+Mg)^2 + I(winter^2) + I(ears^2) +
+ I(PpH^2) + I(K^2) + I(Mg^2))
> anova(m1)
```

Analysis of Variance Table

Response: yield

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
winter	1	6.5802	6.5802	30.7489	3.764e-07	* * *
ears	1	0.7288	0.7288	3.4059	0.068712	
РрН	1	2.1751	2.1751	10.1643	0.002053	**
K	1	0.8568	0.8568	4.0039	0.048830	*
Mg	1	0.3331	0.3331	1.5568	0.215821	
I(winter^2)	1	0.0765	0.0765	0.3576	0.551530	
I(ears^2)	1	0.2315	0.2315	1.0818	0.301467	
I(PpH^2)	1	5.1354	5.1354	23.9977	5.029e-06	***
I(K^2)	1	0.5878	0.5878	2.7470	0.101404	
I(Mg^2)	1	0.6129	0.6129	2.8643	0.094507	
winter:ears	1	0.1428	0.1428	0.6672	0.416483	
winter:PpH	1	0.1404	0.1404	0.6561	0.420386	
winter:K	1	0.1144	0.1144	0.5344	0.466933	
winter:Mg	1	0.1899	0.1899	0.8874	0.349062	
ears:PpH	1	0.1256	0.1256	0.5871	0.445817	
ears:K	1	0.0176	0.0176	0.0823	0.774937	
ears:Mg	1	0.1679	0.1679	0.7847	0.378402	
PpH:K	1	0.1648	0.1648	0.7702	0.382831	
PpH:Mg	1	0.1922	0.1922	0.8982	0.346156	
K:Mg	1	0.1277	0.1277	0.5965	0.442209	
Residuals	79	16.9057	0.2140			

```
> m2 <- step(m1)
```

• • •

> anova(m2)

Analysis of Variance Table

Response: yield

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
winter	1	6.5802	6.5802	33.3952	1.018e-07	* * *
ears	1	0.7288	0.7288	3.6990	0.057538	
K	1	1.7444	1.7444	8.8531	0.003737	* *
Mg	1	0.2961	0.2961	1.5026	0.223400	
I(PpH^2)	1	5.9517	5.9517	30.2056	3.446e-07	***
ears:Mg	1	0.6489	0.6489	3.2935	0.072815	
K:Mg	1	1.5297	1.5297	7.7634	0.006475	* *
Residuals	92	18.1276	0.1970			

> summary(m2, corr=T)

Correlat	ion of Coeffi	cients:					
	(Intercept)	winter	ears	K	Mg	I(PpH^2)	ears:Mg
winter	-0.05						
ears	-0.91	-0.02					
K	-0.38	0.00	-0.02				
Mg	-0.99	-0.02	0.91	0.36			
I(PpH^2)	-0.01	0.07	-0.15	0.31	-0.02		
ears:Mg	0.90	0.02	-0.99	0.02	-0.92	0.16	
K:Mg	0.38	-0.02	0.02	-1.00	-0.36	-0.33	-0.03

```
> w1 <- scale(winter); e1 <- scale(ears); pH1 <- scale(pH)
> P1 <- scale(P); K1 <- scale(K); Mg1 <- scale(Mg)
> m3 <- lm(yield ~ (w1+e1+pH1+P1+K1+Mg1)^2 + I(w1^2) + I(e1^2) + I(pH1^2) +
+ I(P1^2) + I(K1^2) + I(Mg1^2))
> anova(m3)
```

Analysis of Variance Table

Response: yield

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
wl	1	6.5802	6.5802	32.3949	2.542e-07	***
el	1	0.7288	0.7288	3.5882	0.062208	
pH1	1	2.1735	2.1735	10.7005	0.001646	* *
P1	1	0.0964	0.0964	0.4748	0.492988	
K1	1	0.9223	0.9223	4.5407	0.036513	*
Mg1	1	0.4403	0.4403	2.1675	0.145310	
I(w1^2)	1	0.0232	0.0232	0.1140	0.736647	
I(e1^2)	1	0.2189	0.2189	1.0776	0.302707	
I(pH1^2)	1	5.2872	5.2872	26.0295	2.629e-06	* * *
I(P1^2)	1	0.0390	0.0390	0.1919	0.662635	
I(K1^2)	1	0.6269	0.6269	3.0861	0.083213	
I(Mg1^2)	1	0.7946	0.7946	3.9120	0.051770	
wl:el	1	0.1109	0.1109	0.5461	0.462318	

w1:pH1	1	0.0001	0.0001	0.0005	0.981871
w1:P1	1	0.3435	0.3435	1.6911	0.197610
w1:K1	1	0.2448	0.2448	1.2051	0.275966
w1:Mg1	1	0.1437	0.1437	0.7072	0.403144
el:pH1	1	0.1750	0.1750	0.8616	0.356386
e1:P1	1	0.3084	0.3084	1.5182	0.221900
e1:K1	1	0.0010	0.0010	0.0048	0.945214
el:Mgl	1	0.0699	0.0699	0.3442	0.559238
pH1:P1	1	0.0076	0.0076	0.0372	0.847532
pH1:K1	1	0.0695	0.0695	0.3421	0.560434
pHl :M gl	1	0.4321	0.4321	2.1272	0.149055
P1:K1	1	0.6919	0.6919	3.4061	0.069067
P1:Mg1	1	0.0921	0.0921	0.4535	0.502830
K1:Mg1	1	0.3609	0.3609	1.7766	0.186774
Residuals	72	14.6249	0.2031		

$$a + b_1 \frac{winter - \overline{y}_{winter}}{s_{winter}} + b_2 \frac{pH - \overline{y}_{pH}}{s_{pH}} + c_1 \left(\frac{pH - \overline{y}_{pH}}{s_{pH}}\right)^2 + b_3 \frac{K - \overline{y}_K}{s_K}$$

> mean(winter); sd(winter)
[1] 275.64
[1] 50.94392
> mean(pH); sd(pH)
[1] 5.852
[1] 0.3812473
> mean(K); sd(K)
[1] 106.66
[1] 40.39657

```
> summary(m26, corr=T)
```

Coefficients:

. . .

	Estimate	Std. Error	t value	Pr(> t)						
(Intercep	t) 8.71416	0.05917	147.278	< 2e-16	* * *					
wl	0.28494	0.04941	5.766	1.00e-07	* * *					
pH1	-0.01134	0.05490	-0.206	0.8368						
K1	-0.09666	0.04885	-1.979	0.0508						
I(pH1^2)	-0.18880	0.03694	-5.111	1.65e-06	* * *					
Signif. c	odes: 0 `*;	**′ 0.001 \	**′ 0.01	`*' 0.05	`.' 0.1 `'	1				
Residual standard error: 0.4652 on 95 degrees of freedom										
Multiple R-Squared: 0.4227, Adjusted R-squared: 0.3984										
F-statistic: 17.39 on 4 and 95 DF, p-value: 9.75e-11										
Correlation of Coefficients:										
	(Intercept)	wl pHl	K1							
wl	-0.06									
pH1	0.25	-0.28								
K1	0.00	-0.10 -0.22	2							
I(pH1^2)	-0.62	0.10 -0.4	0 -0.01							

$$8.714 + 0.285 \frac{winter - 275.6}{50.94} - 0.011 \frac{pH - 5.852}{0.381} - 0.189 \left(\frac{pH - 5.852}{0.381}\right)^2 - 0.097 \frac{K - 106.7}{40.39}.$$