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Gammagilognormal

B Gamma and lognormal data arise:
e precise measurements of small quantities (concentration),
weight, time, etc.

* measurements are continuous
- negative values and zeros are not allowed
- distribution is skewed to the right



Lognormal model

» logarithmic transformation of measurements will homogenise
variance and adjust asymmetry of distribution

* moments - 2 parameters (i, o,,)

- while on log scale variance is independent of mean, on original
scale variance is a function of expected mean

oy
E(y) = eXP[ﬂtr T zt j Var(y) = exp(afr —1)exp(2utr o+ afr)

- predicted values:  [Re(OIEIUEeED



Gamma model

* used to model inverse polynomials
moments - 2 parameters (u, ¢)

« dispersion parameter () = Var(y) / u?

| | | | | |
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Analytical methods

* Welch test (t . test) to compare two means with heterogenous
variances

*glm(formula, Gamma (link= ...))

e links: 1
- Inverse (default)

- logarithmic (1og)

- Identity (identity)

* Im(log(y)~..)



Simple Regression

Background

In euryphagous predators the size of prey is positively related to
their body size. There is an upper limit due to e.g. morphological
constraints.

Design
In the laboratory, acceptance of food was studied in 36 species of

granivorous beetles. Each carabid beetle was offered seeds of
various sizes [g]. Preferred seed size was recorded. For each beetle
body size [mm] was recorded too.



Hypotheses
Is size of seeds related to the carabid body size?
What is the shape of the relationship?

Variables
body
seed
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kde seed. ~ Gama(u,, ¢), nezavisle pro kazdého jedince.

> ml <- glm(seed ~ I(1l/body), family=Gamma)
> anova(ml, test="F")
Analyslis of Deviance Table

Model: Gamma, link: inverse
Response: seed

Terms added sequentially (first to last)

Df Deviance Eesid. Df Resid. Dew F Pr (>F)
NULL 35 15.3681
I(l/body) 1 8.3662 34 7.0019 42.624 1.787e-07 **x*

L a+ f 1 + ) 1
u body. : body; :

seed, ~ Gama(u, ¢), nezavisle pro kazdého jedince.




> m2 <- glm(seed ~ I(1l/body) + I(1l/body”2), Gamma)
> anova(ml, m2, test="F")
BAnalysis of Deviance Table

Model 1: seed ~ I(l/body)
Model 2: seed ~ I(l/body) + I(1l/body”2)
Resid. Df Resid. Dev Df Deviance F Pr(>F)
34 7.0019
33 7.001e 1 0.0003 0.0013 0.9713

A
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> summary (ml)

Call:
glm(formula = seed ~ I(l/body), family = Gamma)

Deviance Residuals:
Min 10 Median 30 Max
-0.7530027 -0.4237538 0.0008676 0.2527096 0.7024871

Coefficients:

Estimate Std. Error t wvalue Pri(=|t])
(Intercept) 1.7418 0.3162 5.508 3.76e-06 ***
I(1l/body) 11.862¢ 2.44¢63 4,849 2.6%9e-05 ***

Signif. codes: 0 Y***/ (,001 ***7 Q0,01 **" 0,05 *." 0.1 v " 1
(Dispersion parameter for Gamma family taken to be 0.1562785)
Null deviance: 15.3681 on 35 degrees of freedom

Residual deviance: 7.0019 on 34 degrees of freedom
ATC: -49.676

Ol 1T =l o) lo Sl I aaal g d o) Al (1 5.3681 — 7.0019) / 15.3681 = 0.54.

Asymptote:
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Body size

seed, = a + Sbody, + ybody + ¢, ,

kde &, ~ N(0, ¢%), nezavisle pro jednotlivé jedince.



> m3 <- lm(seed ~ poly(beody,2))
> summary (m3)

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 0.30842 0.02318 13.305 B8.17e-15
poly(body, 2)1 0.55682 0.13908 4,004 0.000333
poly(body, 2)2 -0.41591 0.13908 -2.990 0.005235

Signif. codes: 0 “***r (_ 001 ‘**’ Q.01 *** 0.05 .7 0.1 ®
Residual standard error: 0.1391 on 33 degrees of freedom

Multiple R-Squared: 0.4307, Adjusted R-squared: 0.3962
F-statistic: 12.49 on 2 and 33 DF, p-value: 9.173e-05

B
Residuals vs Fitted
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Im(seed ~ poly(body, 2))




2.way ANOVA

In the gift-giving spider a male brings a prey to a female in order to
avold being cannibalised. Several variables can potentially
Influence how quickly female will accept the gift.

Design NN g
In the laboratory, effect of two variables was studied: satiation of

female (satiated, starved) and their mating experience (mated,
virgin). Time [s] of the gift presentation was recorded. Experiment
was fully factorial, for each combination 10 males and females
were used.



Hypotheses

Is presentation time affected by any of the two variables?
If it Is what Is the difference between factor levels?

Variables

MATING: mated, virgin
FEED: satiated, starved
time

feed

— satiated
— starved
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time, = a + MATING, + FEED, + MATING:FEED, + ¢, ,

s &, ~ N(0, 0?), nezavisle pro jednotlivd pozorovani.

> ml <- lm(time ~ mating*feed)
> anova (ml)
BEnalysis of Variance Table

sSum Sc
mating ' 165122
feed ' 5625000
mating: feed
Eesiduals

> anova (m3)
BAnalysis of Variance Table

Response: time
DE Ssum Sgq Mean Sg F value Pr (=F)
5625000 5625000 9.1177 0.004507 *=*

Residuals 38 23443250




Residuals

A
Residuals vs Fitted

400 4600

Fitted values

Im(time ~ feed)

Residuals vs Fitted

Residuals
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Predicted values
glm(time ~ feed)




l{)g(y}k} =+ ﬁ-:fATINGj + FEED, + MATI I\'T{'_?:FEEE{I.& ,

s time,, ~ Gama(u,, ¢), nezavisle pro jednotliva pozorovani,

- m4 <- glm(time ~ mating*feed, Gamma (link=logqg))

- anova(m4,

NULL
mating

feed

test="F")

Df Deviance

0.564

.258

Eesid.

=

oy o=l 0 LD Hh

L0570

- anova(mé, test="F")

Dev
.018

5.096

Df Deviance Resid.

NULL
feec 1

y I:I

0.001 Y**r Q.01 1*




> summary (mé)

Coefficients:

- exXp (6.

[1] 918.

- exp(6.8222-1.6982)

[1] 168.0061

- tapply(time, feed,

satiated starved
918 168




log( I‘-ff’ﬂﬁ,}-k) =« + MATING,; + FEED, + MATING:FEED,; + &,

s & ~ N(0, 0%), nezavisle pro jednotlivd pozorovani.

> m7 <- 1lm(log(time) ~ mating*feed)
> anova (m7)
Bnalysis of Variance Table

llrt_]’l[ ime)
Df Sum Sg Mean Sc

11.432

%1

l_l

[:,'
[n] |'['I

mating

=

[ s
oy =

T
1

feed 1 19.262
1 0.019

oy

Eesiduals 36 1456.226

mating: feed

> m8 <- lm(leg(time) ~ feed)
> summary (m8)

Error t wvalue
] -l"'_]""i
0.6503

(Intercept)
feedstarvec
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2-way ANCOVA

Background

The nutritional quality of the diet affects growth of organisms in
a various ways. To find optimal diet for cockroaches the
following experiments was performed.

Design
Effect of five diet types (control, lipid1, lipid2, proteinl,

protein2) was tested on body weight [g] of male and female
cockroaches. For each diet 10 females and 7 males were used.
Their body weight [g] was recorded before and after the
experiment.



Hypotheses

Is weight influenced by the diet type?

If so which diet resulted in largest weight?

Is weight on diets similar for males and females?

Variables
DIET: control, lipidl, lipid2, proteinl, protein2
SEX: male, female
start

weight

-
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crl lipid1 lipid2  protein] protein2
diet
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log(weight;) = a« + DIET, + SEX, + fstart, + DIET:SEX;;, +
0,

il
kde e, ~ N(0, 0%), nezdvisle pro jednotlivd méfeni.

start, + 0,,start, + Q.ksmrtj + &t




> ml <- 1lm(log(weight) ~ diet*sex*start)
> anova(ml)
Bnalysis of Variance Table

Response: log(weight)
Df Sum Sg Mean Sq F walue Pr (>F)
16.1349 4.0337 150.3981 <Ze-16 ***
0.0Ze1 0.0261 0.9732 0.3275
.0455 . 0455 1.6956 0.1975
.0866 .0217 .8073 0.5250
L0244 .0061 L2272 0.9222
.0315 .0315 1.1743 0.2825
.1829 . 0457 1.7048 0.159¢
. 7433 .0268

diet

sex

start

diet:sex
diet:start
sex:start
diet:sex:start

[y

Eesiduals

> anova(lm(log(weight) ~ sex*diet*start))

Analysis of Variance Table

Response: log(welght)

Df Sum Sq Mean Sq F wvalue Pr(>F)
0.02el 0.02Zel 0.9732 0.3275
16.134%9 4.0337 150.3981 <Ze-1l6
0.0455 .0455 1.6956 0.1975
.0866 L0217 .8073 0.5250
.0196 .0196 . 7302 0.3959
L0363 .0091 .3382 0.8512
.1829 L0457 1.7048 0.15%9¢6

L7433 .0268

sex
diet

start

sex:diet
sex:start
diet:start
sex:diet:start

sy

Eesiduals




log(weight,,) = a + DIET, + SEX, + fstart, + ystart? + DIET:SEX,, + 0, start, +
Oystart, + Oystart, + w start? + w start? + w gstart? + &, (9-13)

kde ¢, ~ N(0, ¢°), nezavisle pro jednotliva méfeni.

> m2 <- lm(log(weight) ~ diet*sex*poly(start,2))
> anova(ml, m2)
Lnalysis of Variance Table

Model 1: log(weight) ~ diet * sex * start
Model 2: log(weight) ~ diet * sex * poly(start, 2)
Res.Df RSS Df Sum of Sqg F Pr (>F)
65 1.7433
55 1.4122 10 0.33113 1.2896 0.2592

> anova (m3)
Lnalysis of Variance Table

Response: log(welght)
Df Sum Sg Mean Sg F value
diet 4 16.1349 4,0337 144.4941
0.0261 0.0261 0.9350
.0455 .0455 1.6290
diet:sex .0866 .0217 L7756

sex 1
1
4
diet:start 4 0244 0061 .2183
1
9

start

L0315 .0315 1.1282
.9262 L0275

sex:start
REesiduals 6




> summary (m8)

Call:
Im(formula = log(welight) -~

Eesiduals:
Min 10 Median
-0.33311 -0.09764 -0.02934

Coefficients:
Estimate Std.
(Intercept) -0.05319
dietlipidl 0.55181
dietlipid2 0.52190
dietproteinl 1.17298
1

dietprotein2 .12984

> summary (m9)

Coefficients:

Estimate std. Error t

3Q

Max

0.1114e 0.41505

Error t wvalue

.03%6e7 -1.341
.05610 9.836
.05610 9.303
.05610 Z0.908
05610 20.139

(Intercept) -0.05319%9 0.03940 -1.35
diet2lipid 0.5368¢6 0.04825 11.13
dietZprot 1.15141 0.04825 23.86

Pr(>|t])

0.184
2.02e-15
2.23e-14
< Ze-16
< Ze-16

value Pri(=|t])

0.181
<Ze-lg ***
<Z2e-1lg ***
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¥ Analyses
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ROISSOI)

B Poisson data arise when data are:

- counts/frequencies of individuals, species, cells
- events of behaviour, etc.

- always positive integers

- counts are often low (including 0)

« We count how many times an event occurred but we do not know
how often it did not occur (we do not know n)

B0l E(y) = u=Var(y)



Analytical methods

« v test (chisq. test) to analyse 2-dimension tables
 Fisher exact test (fEisher. test) to analyse 2x2 tables
» Mantel-Haenszel test (mantelhaen. test) to analyse 3-

dimension tables for independence

 Log-linear analysis (1oglin) to study complex frequency tables
 Contingency tables (xtabs) to study effect of factors
 Standard regression (1m) can be used after transformation

- squareroot transformation

- can predict values out of bounds (negative)

 Poisson GLM (glm) to study effect of both factorial and
continuous predictors



Poisson model

eglm(..., family = poisson(link=...))

link functions:

- logarithmic (1og)
- squareroot (sgrt)
- Identity (identity)

« estimated parameters are on logaritmic scale (-oo, +0)

» Inverse function to log is exp E



Background 1 W ay A N OVA

Diversity of organisms changes with the age of the habitat.
According to the intermediate disturbance hypothesis, the diversity
Increases and then decreases with age, thus being highest at
medium age.

Design
In 15 apple orchards diversity of arachnids was studied on trees.

The orchards were of variable age, classified into 3 classes: 0-9,
10-19 and 20-30 years old. Each class was represented by 5
orchards.



Hypotheses
Is diversity related to the age of orchards?
What is the trend of change?

Variables
ORCHARD: young, older, oldest
divers

oldest




log(1;) = a + ORCHARD;,

kde divers; ~ Poi(y,), nezavisle pro jednotlive sady.

> ml <- glm(divers ~ orchard, family=poisson)
> anova(ml, test="Chi")

Analysis of Deviance Table
Model: poisson, link: log
Response: divers

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev BP(>|Chi]|)
14 38.964
26.246 12 12.718 1.999e-06

Coefficients:
Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) 2.2192 0.1474 15.051 < 2e-leg ***
orchardolder 0.8442 0.1763 4.788 1.68e-06 ***
0

orchardoldest .3457 0.1927 1.794 0.0727




> contrasts (orchard) <- "contr.helmert"
> m2 <- glm(divers ~ orchard, family=poisson)

> summary (m2)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) 2.61585 0.07186 36.404 < 2e-16 ***
orchardl 0.42209 0.08815 4.788 1.68e-06 ***
orchard? -0.02545 0.05072 -0.502 0.6l16

> orchardl <- ordered (orchard)

> m3 <- glm(divers ~ orchardl, family=poisson)

> summary (m3)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) .61585 0.07186 36.404 < 2e-16 ***
orchardl . L 0.24448 0.13624 1.794 0.0727
orchardl.Q -0.54813 0.11144 -4.919 8.71le-07 ***




> m3 <- glm(divers ~ orchard - 1, poisson)
> summary (m3)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)

orchardyoung

orchardoldest .Hbed95 0.12403 20.68 <Ze—1lg ***

> exp (confint (m3) )

Walting for profiling to be done..
2.5% 97.5%

orchardyoung 6.790864 12.12010

orchardolder 17.597063 25.71441

2.21920 0.14744 15.05 <2e-1lg ***
orchardolder 3.06339 0.09667 31.69 <2e-1lg ***
2

orchardoldest 10.090235 16.42096

Diversity

oldest




DUERVAINTETSHISHESION
« arises when dispersion parameter ¢

I.e. the residual deviance is not similar to the residual degrees of

freedom
E(y) =Var(y)=u

- overdispersion: variance Is larger - ¢ > 1
- underdispersion: variance is smaller - ¢ <1

* Causes:
- If the distribution Is aggregated
- If counts are not independent

- lack of important variables, etc.
- suspicious data



* solution: use quasipoisson family

« this will influence SE of parameter estimates
- If ¢ > 1 then SE will be larger
- If ¢ <1 then SE will be smaller

 without correction for overdispersion there would be too many
false positive results (in favour of H,)

« when using quasipoisson y?- and z- tests have to change to
F- and t- tests



Background Mu‘tlp‘e Regr953|0n

Abundance of carabid beetles in cereals depends on abiotic and
biotic factors. If we understand how abiotic factors influence
abundance of carabids then we can adapt certain management
practices to increase the abundance when needed.

Design
In the field, on 21 wheat plots the abundance of carabid beetles

was studied by means of pitfall traps. At every site average day
temperature [°C] and average sun activity [W/m?] was recorded.



Hypotheses
Was abundance of beetles affected by any of the two variables?
If so what is the model of the relationship?

Variables
temp

sun

abun




I I [ I
100 150 1000 2000




log(u,) = a + B temp, + B sun. + dtemp sun_,

kde abun, ~ Poi(u.), nezavisle pro jednotlivé porosty.

> ml <- glm(abun ~ temp*sun, family=poisson)

> summary (ml)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) .195e+00 4.745e-01 8.840 < 2e-16 ***
temp .386e-02 2.258e-02 .385 0.0171 =*
sun 1.151e-03 2.364e-04 .869 1.12e-0¢6
temp:sun 6.257e-05 1.006e-05 6.221 4.95e-10

Signif. codes: 0 Y***xr (Q_,001 “**r Q.01 “** 0.05 '’ 0.1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 317.229 on 20 degrees of freedom
Residual deviance: 98.657 on 17 degrees of freedom
> m2 <- update(ml, family=quasipoisson)
> anova(m2, test="F")

Df Deviance Resid. Df Resid. Devw F Pr(>F)
NULL 20 317.23
temp i 153.10 19 1led4.12 24.5836 0.00011%96 ***
sun i 27.90 18 136.23 4.479¢ 0.0493541 *
temp:sun 37.57 17 98.66 6.0324 0.0251002 =*




Cook's distance

A
Residuals vs Fitted

Residuals
Cook's distance

T I
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Predicted values
glm{abun ~ temp * sun)

glm{abun ~ temp * sun)
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> m3 <- glm(abun ~ temp*sun, poisson,
> anova(m3, test="Chi")

Df Deviance Resid.
NULL
temp 1 40.291
sun 1 12.165
temp:sun 1 0.117
- m4 <- update(m3, ~.-temp
- anova(m4, test="Chi")

Df Deviance Resid.
NULL
temp 1
sSun

- library (car)
- Anova (m4)

subset=-21)

Analysis of Deviance Table (Type II tests)




> vif(m4)

ten
[y
5

summary (m4)

Coefficients:
Zz value Pr (=
(Intercept) :
temp
sun 1.954e-04 5.655e-05 3.455 0.000550

Signif. codes: 0 Yxkxx7 () (0] Vkx’!
(Dispersion parameter for poisson family taken to be
Null deviance: 75.292 on 19

Residual deviance:
ATC: 135.7¢

(75.292-22.836)/75.292
[1] 0.6967008




p(2.283 + 0.038sun + 0.0002temp).




{-way ANCOVA
Background

Some spiders are specialised in their diet. Specialisation can involve
evolution of physiological and behavioural traits, such as prey-
specific venom and number of attacks.

Design
In the lab, the number of attacks of an ant-eating spider on ants of

two subfamilies was observed. For each subfamily 20 species of
ants were used. Each ant species was tested once. For each ant body
size was recorded as it may influence its susceptibility to venom.



Hypotheses

Was the number of attack related to ant size?

Was the number of attacks similar for ants of both subfamilies?
What is the shape of the relationship?

Variables

ANT: famA, famB
Size

number




P ANT 2 in S cirp
log(p,) = « + ANT, + fsize, + dsize,

kde number, ~ Poi(u,), nezavisle pro jednotliva pozorovani.

- ml <- glm(number ~ size¥*ant, family=poisson)

- anova(ml, test="Chi")

Df Deviance Resid. Df Resid. Dev P(>|Chi]|)
NULL 39
size ' 93.395 38 122.167 4.284e-22
ant ' /5.55! 37 46.612 3.554e-18

size:rant 36 20.808 3.77%9e-07




> summary (ml)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) .89794 .64904 1.383 0.1e66512
size .02154 .12456 .173 0.862735

0
antfamB .66924 .80637 3.310 0.000932
1

size:antfamB .70407 .14579 .829 .37e-06

Signif. codes: (0 Y***/ (Q,001 ‘**f Q.01 '** 0.05 . 0.1 " 1

(Dispersion parameter for polisson family taken to be 1)

Null dewviance: 215.5el1 on 39 degrees of freedom
Residual deviance: 20.808 on 36 degrees of freedom
ATC: 153.15




Residuals vs Fitted

340
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Predicted values
glm({number ~ size * ant)

> m2 <- glm(number ~ poly(size,2)*ant, poisson)
> anova(ml, m2, test="Chi")

Analysis of Deviance Table

Model 1: number ~ size * ant
Model 2Z: number ~ poly(size, 2) * ant
Resid. Df Resid. Dev Df Deviance P(>|Chi]|)
36 20.8084

34 20.76e73 2 0.0411 0.9797



. i 2
\/numbe:-;. = o + fsize, + ysize; + €,

kde ¢, ~ N(0, 0*), nezdvisle pro jednotlivd pozorovani.

> m3 <- lm(sgrt(number) ~ size + I(size”*2), subset=(ant=="famB"))
> anova (m3)
Analysis of Variance Table
Response: sqrt (number)
Df Sum Sg Mean Sq F wvalue Pr (>F)
size 1 28.3476 28.3476 161.0631 4.253e-10 **=*
I(size™2) 1 1.1930 1.1930 6.7783 0.01855 *
Residuals 17 2.9921 0.1760

A

Residuals vs Fitted

Residuals
0.0

T T
2 3 4

Fitted values
Im(sqrt{number)~size + I(size"2))
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J-way ANOVA
Background

Some predators use conditional strategies to catch prey. The use of
strategy often depends on the characteristics of prey.

Design
In the field, it was observed which of three strategies spiders used to
capture prey. For each trial, size (two size classes) and movement

(slow or fast) of prey was recorded. Altogether 88 trials were
observed.



Hypotheses
Is use of strategy influenced by prey size and its movement?
If so which prey Is captured by strategy A, B and C?

Variables

PREY: fast, slow

SIZE: large, small

STRATEGY: stratA, stratB, stratC
freq

slow fast
small large small large

stratA 19 10 21 12
stratB 4 10 0 8
stratC 0 1 1 2




15

10

mean of freq
mean of freq

5
1

stratA stratB stratC stratA stratB
strategy strategy

log(u;;) = « + STRATEGY, + SIZE, + PREY, + STRATEGY:PREY, +
STRATEGY:SIZE, + SIZE:PREY; + STRATEGY:SIZE:PREY ; ,

kde freq,; ~ Poi(u;), nezavisle pro jednotliva pozorovani.




> ml <- glm(freq ~ strategy*size*prey,

> summary (ml)

Call:
glm(formula = freq ~ strateqgy *
Deviance Residuals:

[1] O 0o o o 0O O 0o o o0 o0

Coefficients:

(Intercept)
strategystratB
strategystratC

sizesmall

preyslow
strategystratB:sizesmall
strategystratC:sizesmall
strategystratB:preyslow

[ A o o T O [ 8

strategystratC:preyslow
sizesmall :preyslow
strategystratB:sizesmall :preyslow

strategystratC:sizesmall:preyslow -

size *

Prey,

0

.485e+00
.055e-01
. 792e+00
.5%6e-01
.8323e-01
.594e+01
.253e+00
.055e-01
.108e-01
224e-02
.438e+01
.269e+01

family=poisson)

family = poisson)

[ T o T B e = R TS S FF I B C N

Estimate Std. Error
.887e-01
.56d4e-01
.638e-01
.61%e-01
.282e-01
.965e+04
27 7e+00
.390e-01
.297e+00
.325e-01
.965e+04
.965e+04 -0.000326

0.

z value Pr(>|z]|)

8.608
-0.888
-2.346

1.546
-0.42¢6

.000372
-0.981
0.635
-0.394
0.154
000350

<Ze-1l6
.3744
.0190
.1220
.6702
.9997
.3266
.5257
. 6938
.8773
.9997
.9997

L TR v TR s Y s R s T e T e T s Y s T s T




anova (ml, test="Chi")

Df Deviance EResid. Df Resic ey P {_-::, | Chi | )
NULL 11
ﬂtrategy 2 64 .205 9 23.76" 1.143e_14

strategy:prey
size:prey

L)
]

b




> m2 <- update(ml, ~.-strategy:size:prey)
> anova(m2, test="Chi")

Df Devliance Resid. Df Resid. P(>|Ch1i])
NULL 11 g87.
.205 9 23. 1.143e-14
.045 23. 0.831
.000 23. 1.000
.939 . 3.458e-04
. 962 . . 0.227
.507 . 0.476

strateqgy

size

prey
strategy:size

strategy:prey

[ o B B T Sl e

silze:prey

> m3 <- update(m2, ~.-strategy:prey)
> anova(m3, test="Chi")

Df Deviance Resid. Df Resid. P(>|Chi])
NULL 11 87.
strategy .205 9 23. 1.143e-14
size ' .045 23. 0.831
prey ' . 000 23. 1.000
strategy:size 15.939 7. 3.458e-04
slze:prey ' .045 7. 0.831




> summary (m3)

Call:
glm(formula = freq ~ strategy + size prey + strategy:size +

size:prey, family = poisson)

Deviance Residuals:
1 2 : 5 6 7
-0.3233 1.2076 -—-1. .3990 -0.4079 0.3227
8 9 ' 1. 12
-1.9777 .6395 . .3585

Coefficients:

Estimate Std. Error z wvalue Pr(>|z]|)
(Intercept) .42088 .26010 9.307 < Z2e-1lg ***
strategystratB .20067 .31782 -0.631 0.527782
strategystratC 1.99243 .6154e —-3.2] 001207
sizesmall .55237 .340472 1.62: .104669
.30508 . .878805
.61318 3. .000608
.18481 1.4 .152193
42662 .21 .831142

preyslow 04652
strategystratB:sizesmall -2.10191
strategystratC:sizesmall -1.69645

(ST TR i T s T T T s T

sizesmall :preyslow 0.09097




> attacks <- tapply(predict (m3,type="response"), list(size,strateqgy), mean)
> attacks
stratA stratB stratC
large 11
small 20

stratA stratB stratC
| | |

small

T LIS T

No. of attacks

stratA stratB stratC
Strategy




~ Analyses
of COUNts W




NEDAUVEEIINDMIatiSTuuton

B NB is a parametric alternative to Poisson model with
overdispersion
« distribution of y iIs strongly asymmetric with many zeros

* NB has two parameters, x and 6
Var ( p
- @ 1s aggregation parameter (0,0)

e moments:
-1f 6 >1 .. random distribution, 8 < 1 .. aggregated distribution

- @ can be estimated from




NB model

glm.nb (formula) from MASS library

e links:

log (default)
sqgrt
identity

* begin with Poisson model, if overdispersion is large switch to
glm.nb



-way ANOVA
Background

Grain beetles are serious pests in grain stores. They may occur not
only in the grain but also in crevices of corridors. It is essential to
know where they occur before control methods are applied.

Design
Density of grain beetles was surveyed In a grain store by means of

sticky traps. Traps were installed in two places: 25 traps in the
corridors and 25 traps in the grain. After few days number of
beetles was recorded.



Hypotheses
Is density of beetles similar on both places?
If not how different it is?

Variables
PLACE: floor, grain
density




log(y;) =« + PLACE,,

kde density, ~ Poi(u,), nezavisle pro jednotliveé pasti.

> ml <- glm(density ~ place, family=quasipoisson)

> anova(ml, test="F")

Df Deviance Resid. Df Resid. Dev F  Pr(>F)
NULL 49 8026.5
place 1 1350.1 48 ce76.4 6.0434 0.01762 *

> summary (ml)
Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 4.516l1 0.3125 14.45 <Ze-16 ***
placegrain -1.6280 0.7715 -2.11 0.0401 *

Signif. codes: 0 Y***' (Q,001 ‘**f 0.01 “** 0.05 '." 0.1 Y " 1

(Dispersion parameter for quasipoisson family taken to be 223.3983)




log(y;) =« + PLACE,,

kde density, ~ NB(u, 0), nezévisle pro jednotlivé pasti.

- tapply (density, place, var)/tapply(density, place, mean)
floor graln

386.58096 60.20546

- tapply(density, place, function(x) mean (x) "2/ (var (x)-mean(x)))
floor grain

0.3033504




> library (MASS)
> m2 <- glm.nb(density ~ place)
> anova (m2)

Analysis of Deviance Table
Model: Negative Binomial (0.3318), link: log
Response: density
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi]|)
NULL 49 70.174

place 1 9.877 485 60.297 0.002
Warning message:

In anova.negbin(mZ) : tests made without re-estimating 'theta'




> summary (m2)

Call:
glm.nb (formula = density ~ place, init.theta = 0.331844006124825,

link = loqg)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.5161 0.3478 12.984 < 2e-16 ***
placegrain -1.6280 0.4937 -3.297 0.000976 ***

Signif. codes: 0 ‘***7 (,001 ***' 0.01 *** 0.05 '.» 0.1 v 1
(Dispersion parameter for Negative Binomial (0.3318) family taken to be 1)
Null deviance: 70.174 on 49 degrees of freedom
Residual deviance: ©0.297 on 48 degrees of freedom
ATC: 430.95
Number of Fisher Scoring iterations: 1
Theta: 0.3318

Std. Err.: 0.0610

2 x log-likelihood: -424.9480




a <- split(x=density, f=place)
> m3 <- glm.nb (floor ~ 1)

summary (m3)

Null deviance: 31.307 on 24
Residual deviance: 31.307 on 24
ATC= 245 _477
Number of Fisher Scoring literations:

Theta: 0.2915

std. Err.: 0.0719

log-likelihood: -241.4670




- md <- glm.nb(grain ~ 1)
summary (md)

Null
Residual

ATC: 186.78

Number of Fisher Scoring iterations:
Theta:

Std. Err.:

®x log—-likelihood:

l-pchisqg(0.701,1)
[1] 0.4024479




- m5 <- glm.nb(density ~ place-1)
- exp (confint (m5) )
Walting for profiling to be done...

2.5% 97.5%

aow

placefloor 49 . 57777 197.24605

placegrain 9.67290




Analyses o\
proportions




BINoMIAIUISIHINHoN

m Binomial data arise:

« wWhen we count response to a certain stimulus — dose-response
studies

« whenever we record whether an event has occurred or not within
a known population (n)

« events: death, birth, germination, attack, consumption, reaction,
etc.

» there are no classical replications - records are clustered to p or g

* p .. probability of successes, ( .. probability of failures
» clustering of responses:

_ 100 200 ~ 300 _

200 300 500




» distribution is bounded [0 < p < 1]
e variance 1s not constant, maximal when p =g =0.5

e moments Var(y) =nz(1-x)

« estimated parameters are on logit scale (-co0, +)
* logistic model will always asymptote at 0 and 1
Iog(ij = a+bx
1-p

- predicted values are then always within [0, 1]

* Inverse function to logit is anti-logit where Q Is
a parameter estimate

 0dds ratio




Analytical methods

« Exact binomial test (binom. test) to compare a single
proportion

 Proportion test (prop . test) to compare two proportions
« Contingency tables (xtabs) to study effect of factors

* Logistic regression to study effect of continuous predictors
 Standard regression (1m) can be used after transformation

- angular transformation  EelONAY

- can predict values out of bounds (negative or >1)

« Binomial GLM (glm) to study effect of both factorial and
continuous predictors



Binomial model

eglm(..., family = binomial (1link=...))
link functions:

- logit (Logit) m(ﬁ]

- probit (probit)

- complementary logit (c1logloq)

log(—log(1- p))




Data format:

« Binomial distribution ... individuals within a group are
homogenous
- two vectors (y, n-y) or (y, n) of integers

 Bernoulli (binary) distribution ... individuals within a
group are heterogenous, each characterised by a continuous
character

-n=1

- single vector of 0’s or 1’s



f-way ANOVA
Background

Some weed seeds may germinate following water priming (by rain)
more than others thus attaining likely competitive advantage.

Design
The effect of water priming on the germination of weed seeds of 4

genera was studied in the laboratory. Each of 5 days 400 seeds of
each genus were sown (200 seeds on control and 200 seeds on wet
soil). Altogether 2000 seeds per genus were sown. Germination was
recorded thereafter. Based on assumption of similar conditions
during 5 days, data from 5 days were pooled.



Hypotheses

» Does water priming promote germination?

« |f it does was the effect similar for all four genera?
« Which species germinated most and least?

Variables:
TREATMENT: control, water
GENUS: genA, genB,

treatment

genC, genD water

— — control

germ
n




=a + TREATMENT, + GENUS, + TREATMENT: GENUS 4,

kde germ, ~ Bin(m,, n,), nezavisle pro jednotlivé pudy.

> y <- cbind(germ, n-germ)
> ml <- glm(y ~ genus*treatment, family=binomial)
> anova(ml, test="Chi")

Analysis of Deviance Table
Model: binomial, link: logit
Response: vy

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi])
NULL 7 669.34
genus 3 636.74 4 30.60 4.026e-138
treatment 1 30.23 3 0.37 3.840e-08
0

genus:treatment 3 0.37 1.212e-13 0.95




> m2 <- update(ml, ~.-genus:pesticide)

summary (m2)

Estimate
(Intercept) 0.56138
genusgenB 1.5993% 0.06860
genusgenC 1.15462 0.06614
genusgenD 1. 0.06583

Lreatmentwater D.25859 0.04710

1/(1+ exp(-0.56138))
[1] 0.6367718

1/(1 + exp(-0.56138+1.59933))
[1] 0.2615457




> genusl <- genus

> levels (genusl)

[1] "genA"™ "genB" "genC" "genD"

> levels (genusl) [3:4] <- "genCD"

> m3 <- glm(y ~ genusl + treatment, binomial)
> anova(m2, m3, test="Chi")

Analysis of Deviance Table

Model 1: y ~ genus + treatment
Model Z: vy ~ genusl + treatment
Resid. Df Resid. Dev Df Deviance P(>|Chi]|)
3 0.37316
4 2.49523 -1 -2.12207 0.14519

> summary (m3)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)

(Intercept) 0.56141 .05256 10.68 <
genuslgenB -1.59933 .06800 -23.31 <
genuslgenCD -1.10723 .05749 -19.26 <

Ze-16
Ze-16
Z2e—-16

treatmentwater 0.25852 .04709 5.49 4.02e-08




> genus2 <- genusl

> levels (genus2)

[1] "genA" "genB" "genCD"

> levels (genus2) [2:3] <- "genBCD"

> md <- glm(y ~ genus2 + treatment, binomial)
> anova(m3, m4d, test="Chi")

Analysis of Deviance Table

Model 1: y ~ genusl + treatment
Model 2: y ~ genusZ + treatment
Resid. Df Resid. Dev Df Deviance P(>|Chi]|)
4 2.495
73.684 -1 -71.189 3.Z24ce-17

> ge <- tapply (predict (m3, type="response"), list(treatment,genusl), mean)

> ge

genh genB genCD
control 0.6367787 0.2615513 0.366835
water 0.6942213 0.3144487 0.428665




Effect size

» statistical and biological effects are not identical

» statistical effects are affected by precision of measurements,
number of measurements, type of test

» Cohen’s coefficient:

. . [
h =|2arcsin M'E — 2arcsin, | p,

*h<0.2 ... weak effect
*h>0.8 ... strong effect

> abs(2*asin(sqrt(ge[1,1]))-2*asin(sqrt(ge[2,1])))

[1] 0.1218512



> md <- glm(y ~ factor (both)
1/ (1+exp (-confint (m4) ))

bhoth
both

control
control
ontrol

geni
genB
genCh
both

both

both

)
) C
both) ¢t
) w
) w
) w

Germination

- 1, binomial)

Waiting for profiling to be done...

.6048442

0.2315221

4477560

B control
Owater




DUERVAINTETSHISHESION
« arises when dispersion parameter ¢

- overdispersion: variance Is larger - ¢ > 1
- underdispersion: variance is smaller - ¢ <1

* causes:
- If the model i1s mispecified

- lacks important explanatory variables

- relative frequency is not constant within a group

» solution: use quasibinomial family in which variance is

NIV Var (y) = nz(1— 7)o RUScee R il Var (Y) = nz(1— )




« this will influence SE of parameter estimates

- If ¢ <1 then SE will be smaller

« when using quasibinomial y?- and z- tests
have to change to F- and t- tests



Regression
Background

Production of eggsac Is influenced by a number of variables, such
as body size, 1.e. amount of consumed food. For an experimental
study we need to be able to predict probablllty of productlon at a
range of body sizes. . --

Design
In the laboratory, production of eggsacs was studied in a spider

with a variable body size [mm]. As the body size was measured
with the precision of 0.5 mm, all 160 individuals were classified
Into size classes each containing 15 to 30 specimens. Females that
produced eggsac were recorded.



Hypotheses

* |s eggsac production related to the body size?

o IT It Is what Is the shape of the relationship?

« What is the model that can be used to predict eggsac production
for spider sizes of 3-12 mm?

Variables:
body
n

eggs




arcsin.,/p, = a + fBbody, + ybody® + &,

kde ¢, ~ N(0, 0%), nezavisle pro jednotlivé pavouky.

> tr <- asin(sqrt(p))
> ml <- lm(tr ~ body + I (body”2), weights=n)
> summary (ml)

Coefficients:

Estimate d. t value Pr(>|t])
(Intercept) -2.34592 . 3.954 0.01le76 *
body 1.3016l . .254 0.00628 **
I (body™2) -0.11121 . .571 0.01025 *

> m2 <- update(ml, ~.-I(body”"2))
> summary (m2)

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 0.28836 0.31429 0.918 0.4010
body 0.17649 0.06279 2.811 0.0375




= a + fbody, + ybody]

kde eggs. ~ Bin(m, n,), nezavisle pro jednotlivé pavouky.




> y <- cbind(eggs, n-eggs)
> m3 <- glm(y ~ body + I(body”*2), family=binomial)
> summary (m3)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) -13.7857 3.8482 -3.582 0.000340
body 5.7218 1.6771 3.412 0.000645
I (body™2) —0.4825 0.1695 —-2.846 0.004427

Signif. codes: 0 Y***f (_,001 ‘**r 0.01 **" 0.05 ‘.7 0.1 " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.2136 on 6© degrees of freedom

Residual deviance: 3.3357 on 4 degrees of freedom




> summary (md)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) -3.9270 1.1038 —-3.558 0.000374 ***
body 1.2079 0.2756 4.383 1.17e-05 ***

Signif. codes: 0 ‘Y***xr (_,001 Y**r 0.01 *** 0.05 '." 0.1 Y " 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.214 on © degrees of freedom
Residual deviance: 11.072Z on 5 degrees of freedom

> mb <- update(md4d, family=quasibinomial)
> summary (mb)

(Dispersion parameter for guasibinomial family taken to be 3.332466)

> anova (m5, test="F")

Df Deviance Resid. Df Resid. Devw F Pr(>F)
NULL = 44,214
body 1 33.141 5 11.072 9.945 0.02528 *







{-way ANCOVA
Background

Synthetic insecticides often have a species-specific efficiency. The
recommended doses or concentrations then have to adjusted.

Design
In the laboratory an effect of an insecticide on the mortality of two

aphid species was studied. The insecticide was applied at 6

concentrations [ppm]. Each concentration was tested on 30
Individuals of both aphid species.



Hypotheses

« |s mortality affected by the concentration?

 Was the efficiency similar for both species?

« What is the LC;, (i.e. 50% lethal concentration) for both species?

Variables:
SPECIES: A, B
conc

n

dead




= a + SPECIES ; + Blog(conc,) +0; log(conc, ),

kde dead, ~ Bin(m, n,), nezavisle pro jednotliva pozorovani.

> y <- cbind(dead, n-dead)
> ml <- glm (y ~ log(conc) *species, binomial)

> anova (ml)

Deviance Resid. Df Resid. Dev P(>|Chi]|)
NULL 11 185.807
log (conc) ' 110.170 10 75.638 8.996e-26
species ' 62.087 9 13.551 3.286e-15
log (conc) :species 1.343 8 12.207 0.246

> m2 <- update(ml, ~.-log(conc) :species)
> anova (m2)

Df Deviance Resid. Df Resid. Dev P(>|Chi])
NULL 11 185.807
log(conc) 1 110.170 10 75.638 8.9%96e-26
species 1 62.087 9 13.551 3.286e-15




summary (m2)

Estimate St« Error z wvalue
(Intercept) 1.3825 0.2201
log (conc) 1.2328 0.1348
speciesB 2.2117 0.3180

0.001 VMN*=*xr

(Dispersion parameter for binomial

Null deviance: 185.807 on 11

Residual deviance: 3.551 on 9




100/(1 + exp(-1.383 - 1.233log(conc)))

=
S
S
b

0.5 1.0
Log(Concentration)

100/(1 + exp(0.829 - 1.233log(conc)))



> m3 <- glm(y ~ species + log(conc) - 1, binomial)
- summary (m3)
Coefficients:
r z value Pr(=|z|)
©.280 3.3%e-10
-4.106 4.0
9.14¢

> library (MASS)
- dose.p(m3, cf=c(1,3), p=0.5)
: SE
-1.121418 0.1627097

exp(-1.121) = 0.326

- dose.p(m3, cf=c(2,3), p=0.5)
SE exp(0.673) = 1.96.

0.159251




{-way Binary ANCOVA
Background

Granivorous ants collect various seeds and bring them into nest.
Sympatrically occurring species may show trophic niche partitioning
related to the size of collected seeds.

Design
Seed preference of two ant species was studied in the laboratory.

Each of 25 ants of both species was offered seeds of variable size
expressed as Its weight [mg]. Response of ants was classified as
“yes” or “no” 1f 1t took or refused to take a seed, respectively.



Hypotheses

* |s acceptance related to the seed size?

* Did both species have similar preference for seed sizes?

* If not what is the threshold size of seeds for both species?

(The threshold size is defined as a size that Is accepted with higher
than 90% probability) 0.0 05 1.0 1.5 2.0 2.5

Variables:

SPECIES: specA, specB
seed

take

0.0 05 1.0 1.5 20 2.5

seed



= a + SPECIES | + Bseed ; + J seed ;|

kde take, ~ Bin(m., 1), nezavislé pro jednotlivé mravence.

> ml <- glm(take ~ seed*species, family=binomial)

> summary (ml)

Coefficients:

Estimate Std. Error z wvalue Pr(>|z|)
(Intercept) 4.012 1.646 2.437 0.01480
seed —8.346 3.315 -2.517 0.01182
speclesspecB -10.957 3.697 -2.964 0.00304
seed:speclesspecB 19.147 6.141 3.118 0.00182
Signif. codes: 0 Y***r (_001 ***r Q.01 *** 0.05 '." 0.1 " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: ©68.593 on 49 degrees of freedom

Residual deviance: 24.726 on 46 degrees of freedom




- anova(ml, test="Chi")

Df Deviance Resid.
NULL

> m2 <- glm(take ~ log(seed) *species, binomial)
- AIC(ml, m2)

df
ml 4

m?2

- m3 <- glm(take ~ seed*species, binomial (link=cloglog))
- ATIC (m3)
[1] 31.63241




Coefficient of determination

 several for GLM models
 McFaden’s coefficient — based on likelihood of models
e ranges from 0 to 1

LogLik,,
L'Og LikM 0

p’ =1

> md <- glm(take ~ 1, binomial)
> l-logLik (ml) /logLik (m4)
'"logLik' 0.6395213 (df=4)




Residuals

'v'r IStd. deviance resid_|

Residuals vs Fitted

17
@38

-10 0

Predicted values

Scale-Location

3817
100
o)

&

¢

| |
-10 0

Predicted values

Std. deviance resid.

Cook's distance

Theoretical Quantiles

Cook’s distance

17

|
0

10

20
Obs. number

40




(log(0.9/0.1)-4.012) /-8.346
[1] 0.2174425

(log(0.9/0.1)-4.012+10.957) /(-8.346+19.147)
[1] 0.8464239

|

1+ exp(6.945 =10.8seed )

Probability of transportation

|

0 15 1+ exp(—4.012 +8.346 seed

Seed mass




