Trypanosomes:

their genomes and
two example of their extreme biology
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genome of Trypanosoma
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,EXCAVATA": kinetoplastida S

> mitochondria, nucleus

> unique organelle called the kinetoplast

)
)
)

accumulation of mitochondrial DNA

kDNA

an appendix of their single mitochondrion located
near the basal body of the flagellum
(kinetosome)

contains a giant network of thousands of small
interlocking circular DNAs

flagellum

"-'.fi;:,-_”,;; kinetosom
%t = basal body
o oe—— |

Gaolgl body

1910-20 Feulgen reaction + , kinetonucleus”
(J. Kulda a E. Nohynkova ,Burika prvoku*, 2006)



,EXCAVATA": kinetoplastida S

» mitochondria, nucleus

> unique organelle called the kinetoplast
» accumulation of mitochondrial DNA

> KkDNA

Kin.etuplaat
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» an appendix of their single mitochondrion located near the g
basal body of the flagellum (kinetosome) Wiockonn iR Yy
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Kinetoplast

» contains circular DNA in two forms
> maxicircles and minicircles

» 10 —20% cell DNA (trypanoplasms 40%)
» system of circular molecules

» makxicircles: between 20 and 40kb in size, a few dozen identical copies per

kinetoplast

> minicircles: between 0.5 and 10kb in size, several thousand copies usually

nearly identical in size but heterogeneous in sequence

kDNA network structure. (A) Electron micrograph of the periphery of an
isolated kDNA network from T. avium. Loops represent interlocked
minicircles (the arrowhead indicates a clear example). Bar, 500 nm. (B)
Diagrams showing the organization of minicircles. (I) Segment of an
isolated network showing interlocked minicircles in a planar array. (1) Section
through a condensed network disk in vivo showing stretched-out minicircles.

The double-headed arrow indicates the thickness of the disk, which is about
half the circiimfarance of A minicirela
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kinetoplast

maxicircles
» encode typical mitochondrial gene products
» e.g. rRNAs and subunits of respiratory chain complexes
» some of the protein-coding genes are encrypted
» to generate functional mMRNAs, the cryptic maxicircle transcripts undergo
posttranscriptional modification via an intricate RNA editing process
» involves insertion and deletion of uridine residues at specific sites in
the transcripts
» the genetic information for editing is provided by guide RNAs (gRNAs)
» mostly encoded by minicircles, although a few are encoded by maxicircles

L. infantum (JPCMS3) maxicircle
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kinetoplast

minicircles

» encoding gRNAs is the only known function

» some organisms that edit extensively (such as Trypanosoma brucei)
possess about 200 different minicircle sequence classes in their network
to provide sufficient gRNAs

mitochondrialni DNA (kDNA)

65 ND8 l
ND7 RNA 1 transkripce

ND5 OMUREs N l
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kinetoplast

»  kinetoplasts not forming networks and forming

networks A 8 C D
H > O > %—»

process of network structure formation
(molecule ,relaxation” is required!)

»  different members of kinetoplastida reveals different
structure

Proposed evolution of kinetoplastids, emphasizing differences in kDNA
organization and compaction. kDNA (k) is the structure within the mitochondrial
matrix. fl, flagellum; m, mitochondrion; n, nucleus. KDNA in C. helicis is pan-kDNA,
that in T. borreli is mega-kDNA, that in D. trypaniformis is poly-kDNA, that
in B. saltans is pro-kDNA, and that in T. brucei is a kDNA network.

Cryptobia
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kinetoplast: replication of the kDNA network

replication of the kinetoplast occurs simultaneously to the duplication of the adjacent flagellum and just prior to
the nuclear DNA replication

minicircles are released from the network into a kinetoflagellar zone (region between the kinetoplast and
the mitochondrial membrane) in which they initiate replication
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kinetoplast: replication of the kDNA network

this process occurs one minicircle at a time, and only a small number of minicircles are unlinked at any given
moment

to keep track of which minicircles have been replicated, upon rejoining to the kDNA network a small gap

remains in the nascent minicircles, which identifies them as having all_readg/ been replicate
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kinetoplast: replication of the kDNA network

» to prevent the build-up of new minicircles, the entire

y./ kDNA network will rotate around the central axis of
i = =gy .
'd the disk

» the rotation is believed to be directly connected to

the replication of the adjacent rlagelium
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kinetoplast: replication of the kDNA network

» the exact mechanisms for maxicircle KDNA have yet to be determined in the same

detail
» a structure called a nabelschnur (German for "umbilical cord")

Kinetoplast replication is linked to nuclear DNA replication 1 2

and cell division
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RNA editing

site-specific posttranscriptional changes in an RNA sequence

)

(other than pre-mRNA splicing and 3’-polyadenylation)
was first described in trypanosomatids

a widespread phenomenon throuahout eukarvotes

ARCHAEPLASTIDA EXCAVATA

Kinetoplastid mt
Plant organelles U-InDel editing:

C-U; U=C o
(deamination) _ C—U tRNA editing
Discoba (deamination)

|

Chloroplastida AMOEBOZOA

Physarum mt mono-
and dinucleotide
insertion and

substitution editing

Tubu”nea Acanthamoeba mt
tRNA substitution
editing by insertion

Alveolata

Various
substitution editing
in dinoflagellate
organelles

SAR

Fungi

Chytridiomycete
tRNA substitution
editing by
insertion

A—l; C=U
(deamination)

Metazoa

OPISTHOKONTA

FIGURE 1 | Distribution of multiple types of RNA editing across eukaryotes. Phylogenetic tree based on Adl et al.* Only branches with clades
that have a demonstrated type of RNA editing are labeled. Adjacent red text summarizes the type of editing.



RNA editing in Trypanosomes

Kinetoplast DNA!

mitochondridlni DNA (kDNA)
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RNA editing in Trypanosomes
T. brucei A6 RNA editing
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M F L F F F C D
L F W L R L L L C M Y ¥ C V W S R L C F

I v Yy F N C L ML I F D F L L C L F
D L Y L vV G L C L F L L L W F M L
F N L ¥ S L I L Y Y C I T Y L N L Y
L L Fr C I V F L L ¥ I A F L F L F C F
L ¢ b F F L F NNILUL V G D S F M D
v F F I R F L L ¢ F L E C F S L L C R

c L s T F L R L F CNLL L S S H F L L
L. M F F D F F ¥ F I F V F F F W C F L
L L I ¥ Ff I ¥ F C V L F L F I I L C V F
I F v 6 F I C R H I T v I Y F L ter



RNA editing in Trypanosomes

pre-mRNA

<—— Editing Block ———

UVAGUUAUUAUAUUGUUGUUGAAAUUUGGUUUGUUA

UUUUUUUUUUUUAUUAAUAGUAUAGUGACAGUUUUAGACUAAGCAAUAGCCUCAAUAUC

gRNA

U Tail Information Anchor

Vice gRNA je nuthch- jednoho transkriptu




RNA editing in Trypanosomes

the uridine (U) insertion/deletion editing

occurs in the kinetoplast

trans-acting guide RNAs and entails the insertion of hundreds and deletion
of dozens of U residues from mitochondrial RNAs to produce mature,

translatable mRNAs
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RNA editing in Trypanosomes

/e 3’ Pre-edited mRNA
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Multi-round editing entails sequential
utilization of multiple gRNAs. Because the
anchor region of a given gRNA basepairs with
edited mRNA sequence specified by the prior
gRNA, editing progresses in a 3’ to 5 direction
along an mRNA. Multiple black arrowheads
symbolize multiple editing sites within an editing
block, as defined by the hybridized gRNA.
Dashed gRNA labels indicate that they are
turned over during/after an editing block has
been processed. An editing domain is a stretch
of mMRNA sequence that requires the gRNA
cascade for its processing.



RNA editing in Trypanosomes

gRNA-mRNA
duplex

® mRNA @ gRNA 3

Enclosed hairpin
gRNA
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RNA-editing substrate-binding complex

Structures of RESCs. (Laft) RESC-A sequesters gRNA termini, premoting hairpin formation and blocking
mRMNA access. (Right) RESC-A conversion into RESC-B unfolds gRMNA and allows mRNA recognition, likely
exposing editing sites to RECC-embedded enzymes.

RESEARCH ARTICLE SUMMARY

Structural basis of gRNA stabilization and mRNA
recognition in trypanosomal RNA editing

Shiheng Liu|, Hong Wang|. Xiaorun Li, Fan Zhang, Jane K.J. Lee, Zihang Li, Clinton Yu, Jason J. Hu,
Xiaojing Zhao, Takuma Suematsu, Ana L. Alvarez-Cabrera, Qiushi Liu, Liye Zhang, Lan Huang,
Inna Aphasizheva, Ruslan Aphasizhev*, Z. Hong Zhou™



Antigenic variation:
Trypanosoma
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Consequences of antigenic variation
— prolonging infection

A
Traditional view

» each growth peak contains one variant
» reduction of each growth peak is due to §
antibodies against each VSG

Parasita

Reality
» each growth peak generally contains many variants

%
'

Parasites/ml
S

Parasites/ml

parasitel
NNNNNN f

: parasites
. ( expressing
— J individual VSG

25 30 96 99

o 105
Day post infection

15 20
Day post infection

» reduction of each growth peak depends on two factors:
» differentiation to the non-dividing stumpy stage
» anti-VSG antibodies



Trypansoma antigenic variation
VSG (variant sufrace glycoprotein)

TRYPANOSOME'S SURFACE COAT of VSG's is visible as a diffuse, dark layer in an electron
micrograph. A cross section of the parasite's body and flagellum. The double membrane just
inside the surface coat is the cell membrane.



Variable surface glycoprotein (VSG)

C cC C cccc
: * ‘ H‘ GPIl anchor
Helix A Helix B Surface Helix S C terminal
loops domain
100 200 300 400 500 amino acids GPI anchor
® Phosphate
Ethanolamine
@ Mannose
Inositol

Glucosamine
© Galactose

Glycosylphosphatidylinositol is a phosphoglyceride attached to the C-terminus of a protein during posttranslational modification. The
hydrophobic C-terminal sequence is then cleaved off and replaced by the GPI-anchor.

GPI is composed of a phosphatidylinositol group linked through a carbohydrate-containing linker (glucosamine and mannose glycosidically

bound to the inositol residue) and via an ethanolamine phosphate (EtNP) bridge. The two fatty acids within the hydrophobic phosphatidyl-
inositol group anchor the protein to the cell membrane.
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VSG in the surface coat: PROTECTION

... like a dense homogenous forest

Antibody cannot access invariant antigen, only the VSG (this is why coat change is required).



VSG in the surface coat: PROTECTION

Host antibodies are removed from the surface

N-terminal
domain

C-terminal
domain

GPIl-anchor

Plasma
membrane

Engstler et al., Cell



plasma membrane

Variable surface glycoprotein (VSG)

metacyclic form

cytoplasm
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ANTIGENIC VARIATION IS BASED ON SILENT

INFORMATION
— A LARGE ARCHIVE OF SILENT VSG GENES ()

(a) Silent subtelomeric

(b)

VSG arrays Telomeres
1500+ VSGs 200+ VSGs
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Monoallelic gene expression

,one gene at a time*

more than 1,000 VSG genes and pseudogenes are packed as gene arrays or located at subtelomeres

transcription occurs only from specialised subtelomeric transcription units known as Bloodstream Expression Sites, BESs
(sometimes called telomeric expression sites, ESs)

VWV

» ~15BESsin a cell
> polymorphic in size and structure
» reveal a surprisingly conserved architecture in the context of extensive recombination

v

in a given cell only one BES is active at any time, and therefore only one VSG protein expressed
a diverse range of polymorphic genes called Expression Site Associated Genes (ESAGs)
> membrane-associated or membrane-targeted proteins, transmembrane receptors, etc.

A [ Polycistronic transcript

50 bprepeats 7 6 5 4 & &b 3 2 1 70bprepeats VSG
ESAGs

N

»  polycistronic unit contains a number of ESAGs all expressed along with the active VSG
» BES transcription results from the recruitment of RNA polymerase | (pol I) on a promoter of the ribosomal type, in a
non-nucleolar nuclear structure termed the “BES body*



Monoallelic gene expression

Bloodstream Expression Sites, BESs

. spatial integration of transcription and splicing
. VEX2 - sustains exclusive interaction between a single VSG ES and SL-array
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VSG SWITCHING

two main mechanisms are used to change the expressed VSG gene and therefore perform antigenic

variation (but there more mechanisms!)

» transcriptional switching between BESs (a process called “in situ activation”), which turns off the
active BES and turns on a new one
» homologous recombination (gene conversion or telomere exchange), which replaces the VSG gene

in the active BES

Monotelomeric VSG expression
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Early switches:

»  <10% are transcriptional switching
among the BES pool

» >90% are duplicative switching from
silent archive (mostly from
minichromosomes)

Late switches:

» duplicative switching from silent archive
(from array intact genes)

» mosaic gene formation (by partial
duplication from array pseudogenes)



VSG SWITCHING

transcriptional switching: “in situ activation”

to silence the active expression site and activate a new one (an in situ
switch)

this method of switching accesses a relatively small pool of ~15 VSG
genes

on and off states differ at the level of transcript elongation

recent evidence indicates at the different VSG expression sites
each contain genes encoding receptor proteins that are optimized
for different hosts

this could mean that in situ switches are important during the
establishment of the Trypanosoma in a new host species

Transcriptional
switch

VSG




VSG SWITCHING

recombination(al) switching

>

recombination is central to antigenic variation, allowing the parasite to
utilise complete VSG archive, typically by copying (duplication of) a
different gene into the active BESs

gene conversions or telomere exchange

gene conversions (array conversions)

» access the largest pool of VSG genes (virtually all
of them)

» asilent VSG gene is copied and inserted into
the active expression site, replacing the old
VSG gene

> 1. array gene conversion
» 2. telomere conversion

telomere exchange
» a silent VSG gene at a chromosome end is
flipped into the active VSG expression site

Gene Telomere
conversion exchange
VSG VSG
A t A
/ - =
VSG VSG VSG ¥ vsG
B C D . F
s EeeE = o W

VSG
L—é—‘
—_—

VSG VSGVSG
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VSG

VSG
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VSG SWITCHING

Segmental VSG conversion: mosaic genes

VSG

A
» during chronic infection, novel MOSAIC GENES are expressed L!d

» they are assembled from segments of damaged VSG genes 7 71
(pseudogenes) vgs vge vga
—H ] B

[ vsG Al ot o
VSG pseudogenes| VSG B | T T | G

vsec e e e— —

Multiple segmental

i —_—
gene conversions
Expressed VSG VSG VSG
chimeric Vs ~ VSGE | ' = e B C D

Segmental gene conversion of multiple VSG pseudogenes can result in the creation of a new functional chimeric VSG. Three different VSG
pseudogenes are indicated above, with disruptions of the ORF indicated with arrow heads and vertical lines. Multiple successive gene conversion
reactions can take place, resulting in the creation of a new functional VSG which is a mosaic of segments of the different VSG pseudogenes.



VSG SWITCHING
Most VSG switching is recombinational...

» initially, mosaics were found only late in infection, or in distinct infections

Early switches:
» <10% are transcriptional switching among the BES pool
» >90% are duplicative switching from silent archive (mostly from minichromosomes)

Late switches:
» duplicative switching from silent archive (from array intact genes)
» mosaic gene formation (by partial duplication from array pseudogenes)



VSG SWITCHING
Most VSG switching is recombinational...

These DNA rearrangements probably are triggered by a DNA double strand break (DSB) in the 70-bp

repeats of the BES.
» artificial induction of a DSB triggers recombinational switching
> DSB appear naturally in the 70-bp repeats of the BES

» DSB formation is followed by creation of a gap (which removes the expressed
VSG gene)
. . . Gene promoter Endonuclease
» the gap requires repair — from a silent gene ™
- - . » T N WY I A "ﬁJ
> mosaic formation probably occurs S G e o T it a g
. . . “p s 70-bp Transcribed VSG gene
differently, by recombination within the l bt
VSG coding sequence L >D-H—P-pem DSB o
W
il /'/" ' : :
83% f_,:::-”"" Switch by repair
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Expression sites 5-15 V5G genes 17% //'
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THE END




