Physiology and Cultivation of Algae and Cyanobacteria

Definition

- Algae formal tax. standing, polyphyletic origin, artificial assemblage of O₂ evolving photosynthetic organisms
- Algae vs. Plants

the same storage compounds, similar defence strategies against predators & parasites

Plants

- •hi degree of differentiation
- •repr. organs surrounded by jacket of sterile cells
- •multicell. embryo remains developmentally & nutrit. independent on parents
- meristems on root/shoot apices
- •digenetic life cycles with alterations betw. hapl. gametophyte & dipl. sporophyte

Algae

- •don't have roots, stems, leaves, not well defined vasc. tissue
- •don't form embryo
- •mono- & digenetic life cycles
- •occur in dissimilar forms (micro algae, macro a. multicellular, colonies, branched,...)
- •less complexity of the thalli
- •hi diversity 0.2 60m ecology & habitats reserve & structural

polysaccharides

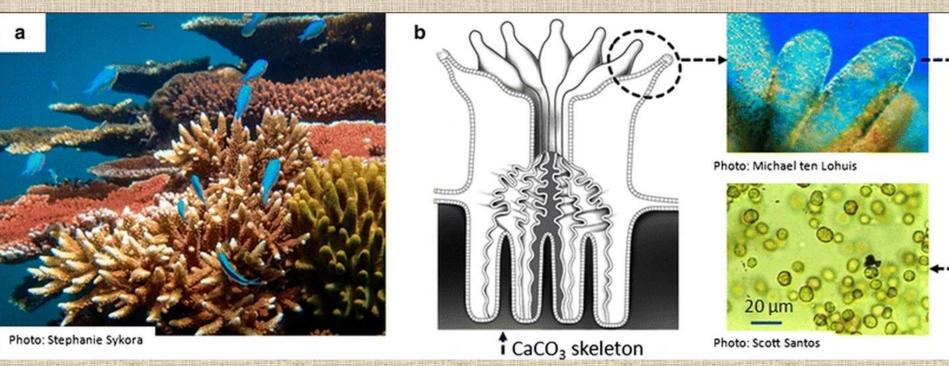
evolutionary origin

- •1 10 mil. species
- •½ primary production in biosphere

Classification

under constant revision
 (Van Den Hoek *et* al. 1995)

Proch Glauc Rhodo	ophyta lorophyta ophyta ophyta ophyta okontophyta	Class Cyanophyceae Prochlorophyceae Glaucophyceae Bangiophyceae Florideophyceae		
Proch Glauc Rhodo	ophyta ophyta ophyta	Prochlorophyceae Glaucophyceae Bangiophyceae Florideophyceae		
Glauc	ophyta	Glaucophyceae Bangiophyceae Florideophyceae		
Rhodo	ophyta	Bangiophyceae Florideophyceae		
		Florideophyceae		
Hetero	okontophyta			
Hetero	okontophyta			
		Chrysophyceae		
		Xanthophyceae		
		Eustigmatophyceae		
		Bacillariophyceae		
		Raphidophyceae		
		Dictyochophyceae		
		Phaeophyceae		
Hapto	phyta	Haptophyceae		
Crypto	ophyta	Cryptophyceae		
Eukaryota Dinop	hyta	Dinophyceae		
Eugle	nophyta	Euglenophyceae		
Chlor	arachniophyta	Chlorarachniophyceae		
Chlor	ophyta	Prasinophyceae		
		Chlorophyceae		
		Ulvophyceae		
		Cladophorophyceae		
		Bryopsidophyceae		
		Zygnematophyceae		
		Trentepohliophyceae		
		Klebsormidiophyceæ		
		Charophyceae		
		Dasycladophyceae		


Occurrence & distribution

Aquatic

- almost everywhere (from freshwater spring to salt lakes)
- tolerance of wide range of pH, temp., turbidity, O₂ & CO₂ conc.
- planctonic
- » unicellular, suspended throughout lighted regions of all water (inc. polar ice)

benthic

- » within sediments
- » limited to shallow areas (because of rapid attenuation of light with depth)
- → attached to stones epilithic, on mud/sand epipelic
- » on other algae/plants epiphytic, on animals epizoic
- marine benthic after habitat
 - supralitoral above high-tide level within reach wave spray
 - **intertidal** exposed to tidal cycles
 - sublitoral from extreme low-water to cca 200m deep
- ocean 71% of earth surface, more than 5000 spec. of planktonic algae
 - phytoplankton
 - » base of marine food chain
 - » produce 50% of O₂ we inhale life
 - » death blooms too large populations (decrease water transparency, prod. toxins & poisons)
 - kelps
- e giant algae temperate **pelagic** marine environment, till 60m submerged forests
- » also beneath polar ice sheet
- » can survive at very low depth
- record of 268m u.s.l. dark blue red algae (blue-green ligh, 0.0005% of surface intensity)
 - » have accessory pigments, channel the energy to chl a
- accessory & protective pigments give algae wide variety of colors <> names

https://doi.org/10.1007/s00338-017-1594-5

Occurrence & distribution

Freshwater phytoplankton & benthic algae

- » base of aquatic food chain
- » not exhibit size range of marine relatives

Subaerial

- » life on land
- » tree trunks, animal fur, snow, hot springs, desert rocks
- » activity

- convert rock > soil
- to minimize soil erosion & increase water retention & nutrient availability for plants

Symbiosis

- lichens, corals
 - » to survive in environments that they could not alone

Distribution of Algal Divisions

Division	Common Name	Habitat				
		Marine	Freshwater	Terrestrial	Symbiotic	
Cyanophyta	Blue-green algae	Yes	Yes	Yes	Yes	
Prochlorophyta	n.a.	Yes	n.d.	n.d.	Yes	
Glaucophyta	n.a.	n.d.	Yes	Yes	Yes	
Rhodophyta	Red algae	Yes	Yes	Yes	Yes	
Heterokontophyta	Golden algae	Yes	Yes	Yes	Yes	
	Yellow-green algae					
	Diatoms					
	Brown algae					
Haptophyta	Coccolithophorids	Yes	Yes	Yes	Yes	
Cryptophyta	Cryptomonads	Yes	Yes	n.d.	Yes	
Chlorarachniophyta	n.a.	Yes	n.d.	n.d.	Yes	
Dinophyta	Dinoflagellates	Yes	Yes	n.d.	Yes	
Euglenophyta	Euglenoids	Yes	Yes	Yes	Yes	
Chlorophyta	Green algae	Yes	Yes	Yes	Yes	

Note: n.a., not available; n.d., not detected.

Structure o thallus

Unicells & unicell colonial algae

• solitary cells, unicells with/w-out flagella, motile (*Ochromonas*)/non-motile (*Nannochloris*)

· colony

- aggregates of several single cells held together ±organized
- grow cell division
- each cell can survive solely

coenobium

 colony with number of cells & arrangement determined at the time of origin (e.g. Volvox – motile, Pediastrum – non-motile)

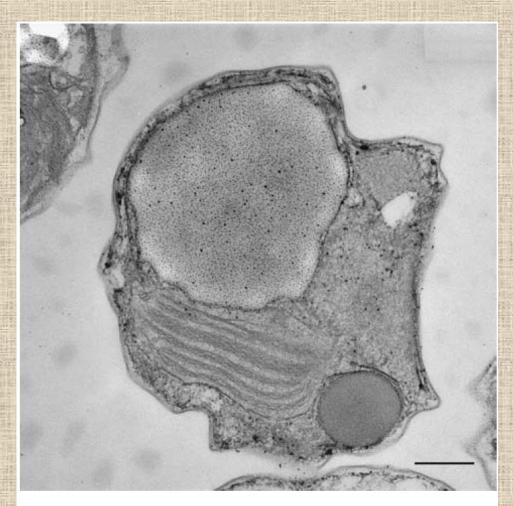


FIGURE 1.1 Transmission electron micrograph of *Nannochloropsis* sp., non-motile unicell. (Bar: 0.5 μm.)



FIGURE 1.2 Ochromonas sp., motile unicell.
(Bar: 4 μm.)

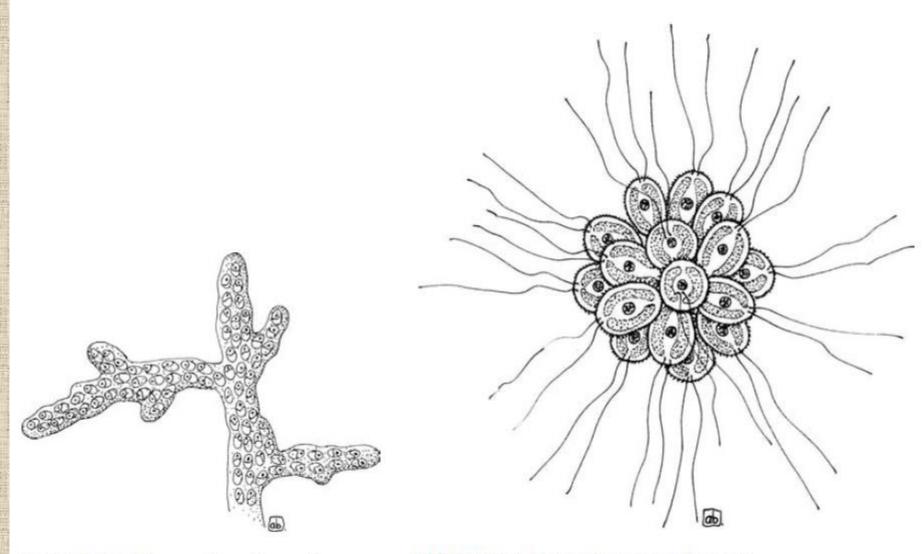


FIGURE 1.3 Non-motile colony of *Hydrurus foetidus*.

FIGURE 1.4 Free-swimming colony of *Synura uvella*.

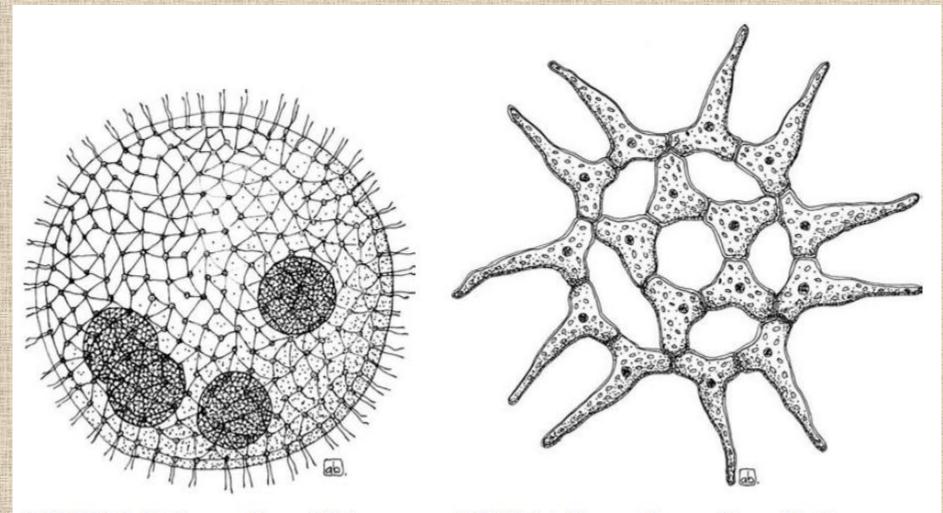


FIGURE 1.5 Motile coenobium of Volvox aureus.

FIGURE 1.6 Non-motile coenobium of *Pediastrum simplex*.

Structure of thallus

Filamentous algae

 result from cell division in plane perpendicular to axis of filament – cell chain

-simple

Lbranched – true/false

—uniseriate — 1 layer of cells

Lmultiseriate – up to multiple layer

Syphonous algae

- siphonous/coenocytic construction of tubular filaments lacking transverse cell walls
- unicellular but multinucleate (coenocytic)

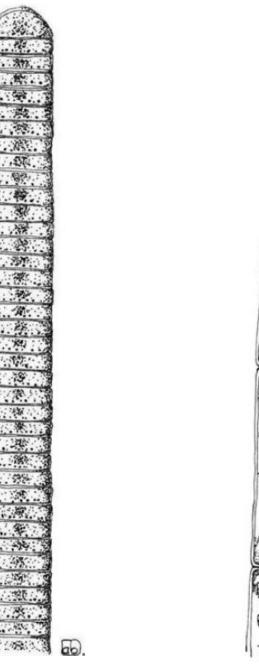


FIGURE 1.7 Simple filament of Oscillatoria sp.

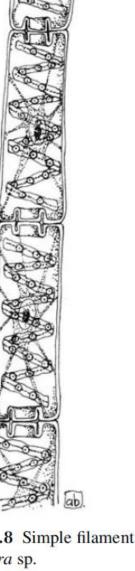


FIGURE 1.8 Simple filament of Spirogyra sp.

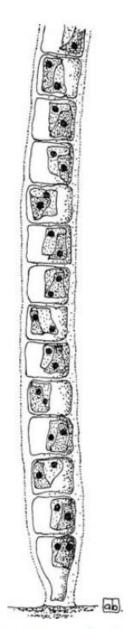


FIGURE 1.9 Simple filament of Ulothrix variabilis.

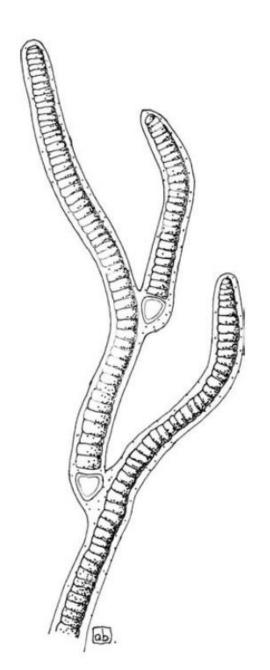
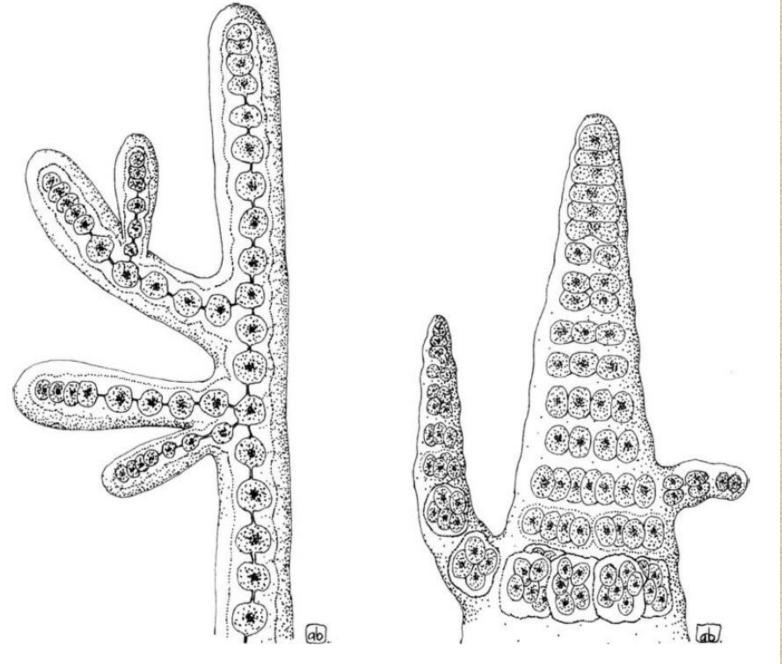



FIGURE 1.10 False branched filament of Tolypothrix byssoidea.

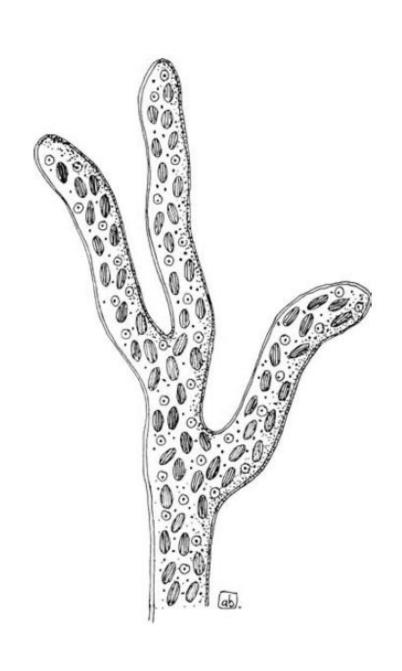


FIGURE 1.11 True branched filament of *Cladophora glomerata*.

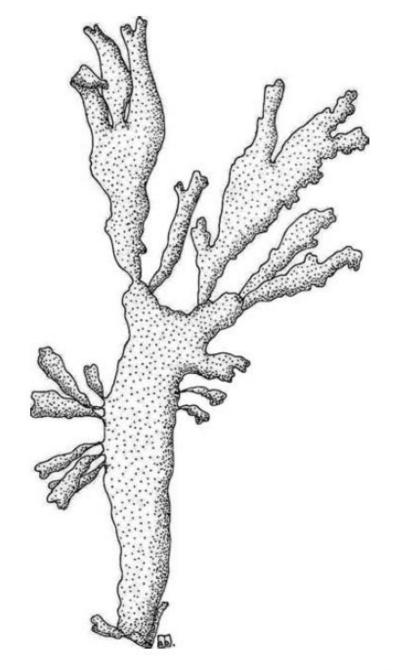


FIGURE 1.12 Uniseriate filament of *Stigonema* ocellatum.

FIGURE 1.13 Multiseriate filament of *Stigonema* mamillosum.

FIGURE 1.14 Siphonous thallus of *Vaucheria* sessilis.

FIGURE 1.15 Pseudoparenchymatous thallus of *Palmaria palmata*.

Structure o thallus

Parenchymatous & pseudoparenchymatous algae

mostly macroscopic

parenchymatous

- » originated from division of primary filament (all directions)
- » lost filamentous structure

pseudoparenchymatous

» originated from close aggregation of branched filaments, forming thallus held together with mucilages (red algae)

Thallus Morphology in the Different Algal Divisions

	Unicellular	Unicellular	Colonial	Colonial			
Division	and non-motile	and motile	and non-motile	and motile	Filamentous	Siphonous	Parenche- matous
Cyanophyta	Synechococcus	n.d.	Anacystis	n.d.	Calothrix	n.d.	Pleurocapsa
Prochlorophyta	Prochloron	n.d.	n.d.	n.d.	Prochlorothrix	n.d.	n.d.
Glaucophyta	Glaucocystis	Gloeochaete	n.d.	n.d.	n.d.	n.d.	n.d.
Rhodophyta	Porphyridium	n.d.	Cyanoderma	n.d.	Goniotricum	n.d.	Palmaria
Heterokontophyta	Navicula	Ochromonas	Chlorobotrys	Synura	Ectocarpus	Vaucheria	Fucus
Haptophyta	n.d.	Chrysochro-	n.d.	Corym-	n.d.	n.d.	n.d.
		mulina		bellus			
Cryptophyta	n.d.	Cryptomonas	n.d.	n.d.	$\it Bjornbergiella$	n.d.	n.d.
Dynophyta	Dinococcus	Gonyaulax	Gloeodinium	n.d.	Dinoclonium	n.d.	n.d.
Euglenophyta	Ascoglena	Euglena	Colacium	n.d.	n.d.	n.d.	n.d.
Chlorarachniophyta	n.d.	Chlorarachnion	n.d.	n.d.	n.d.	n.d.	n.d.
Chlorophyta	Chlorella	Dunaliella	Pseudo-	Volvox	Ulothrix	Bryopsis	Ulva
			sphaerocystis				

Note: n.d., not detected.

Nutrition

- algae = phototrophs
- most algal divisions contain colorless heterotrophic spec.
 - osmotrophy, phagotrophy
 - auxotrophy cannot synthesize essential components (vitamin B₁₂, fatty acids,...) and have to import them
- algae can use wide spectrum of <u>nutritional strategies</u> combining:
 - phototrophy
 - heterotrophy
 - mixotrophy (relative contribution of photo.&hetero. can vary)
 - » often in extreme environment (limiting light,...)
 - after nutritional strategies:
 - obligate heterotrophic algae primarily heterotrophs, but capable phototrophy in limiting prey concentration (Gymnodium gracilentum - Dinophyta)
 - obligate phototrophic algae primarily phototrophs, but capable <u>phagotrophy/osmotrophy</u> when light is limiting (*Dinobryon divergens* - *Heterocontophyta*)
 - facultative mixotrophic algae can equally well grow as photo-/heterotrophs (Fragilidinium subglobosum - Dinophyta)
 - obligate mixotrophic algae primary mode is phototrophy & phago-&/osmotrophy provides essential substances (e.g. photoauxotrphs, Euglena gracilis Euglenophyta)

Reproduction

- **vegetative** by division of single cell or fragmentation of colony
- asexual by production of motile spores
- sexual by union of gametes
 - vegetative & asexual
 - » allow stability of adapted genotypes from generation to the next
 - » fast & economical increase of number of individual
 - » lack genetic variability

sexual

- » involves plasmogamy (union of cells)
 - **karyogamy** (union of nuclei) chromosome/gene association & meiosis >> genetic recombination
- » allow variation, but is more costly

Vegetative & Asexual reproduction

Binary fission & Cellular bisection

- simplest form
- parent org. divides into two equal parts of the same hereditary info as parent
- unicellular a. <u>longitudinal</u>
 - transverse
- growth of population lag > exponential > log > stationary (plateau) phase
- in multicellular a. & colonies leads to the growth of individual

Zoospore, Aplanospore & Autospore

- zoospores flagelate motile spores that may be produced within parental vegetative cell (Clamydomonas Chlorophyta)
- aplanospores aflagelate spores that begin their development within parent cell wall before being released
 can dvelop into zoospores
- <u>autospores</u> aflagelate daughter cells released from ruptured cell wall of parental cell, replicas of vegetative cells that produce them & lack the capacity to develop into zoospore (Nannochloropsis Heterocontophyta, Chlorella Chlorophyta)

spores - may be produced within - ordinary cells
- specialized sporangia

Vegetative & Asexual reproduction

Autocolony formation

- coenobium/colony each cell can produce new colony similar to parent.
- cell division produce multicellular group (not the unicellular individuals) > differs from the parent in cell size not in number e.g. Volvox (Chlorophyta)
 - gonidia series of cells which produce a hollow sphere within the hollow of parental colony (released after its ruptur

Fragmentation

 ± random process whereby non-coenobic colonies/filaments break into two/several fragments having capacity to develop into new individual

Vegetative & Asexual reproduction

Resting stages

- under unfavourable conditions (desiccation)
- thick-walled cells
 - hypnospores & hypnozygotes
 - thick-walled, produced ex novo from cells previoully separated from parent cells
 - » hypnospores Ulothrix spp., Chlorococcum (Chlorophyceae)
 - » hypnozygotes Spyrogyra spp. (Chlorophyceae), Dinophyta
 - enables algae to survive temporary drying out of small water bodies & allow transport to another (e.g. via birds)

statospores

- endogenous cysts formed within vegetative cells by members of *Chrysophyceae e.g. Ochromonas spp.*
 - » cyst walls consist of silica >> preserved as <u>fossils</u>
- spherical, ellipsoidal, often ornamented with spines or other projections
- wall with pores sealed by unsilicified bung
- within cysts lie nucleus, chloroplasts, reserve material
- after dormancy germination form one/several flagellate cells
- akinetes occurrence in blue-green algae
 - enlarged vegetative cells that develop thickened wall in response to limiting env. nutrients or light (e.g. Anabaena cylindrica - Cyanophyta)
 - extremely resistant to drying & freezing
 - long-term anaerobic storage of genetic material, remain viable in sediments for many years in hard conditions
 - in suitable conditions > germination into new vegetative cells

Sexual reproduction

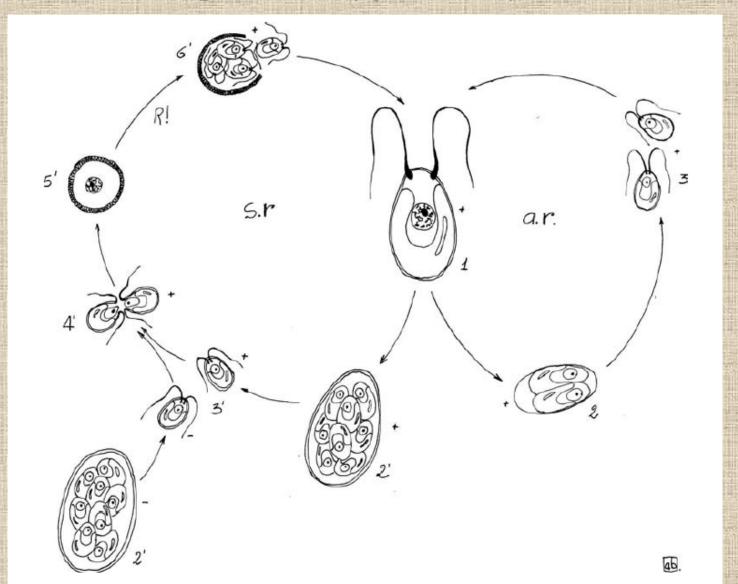
Gametes

- morphologically identical/different with/from vegetative cells (a. group speciphic sign)
- haploid DNA content
- possible different gamete types
- isogamy both gametes types motile & indistinguishable
- heterogamy gametes differ in size
 - anisogamy both gametes are motile, 1. small sperm 2. large egg
 - oogamy 1. motile, small sperm
 2. non-motile, very large egg

Algae exhibit 3 different life cycles with variation within different groups

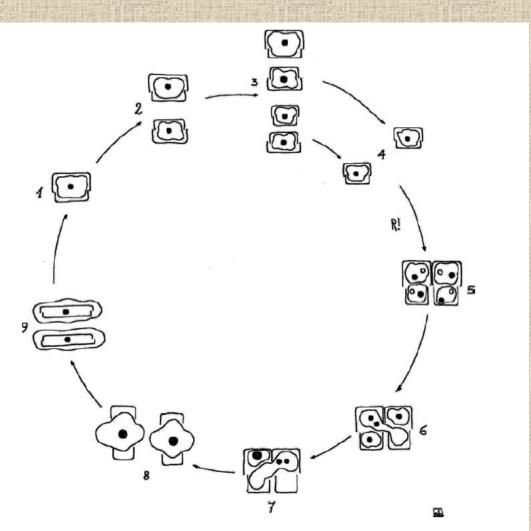
• main difference - where meiosis occur & type of cells it produces & whether there is more than one free-living stages

Sexual reproduction


Haplontic or zygotic life cycle

- single predominant haploid vegetative phase, with meiosis after germination of zygote
 - » Chlamydomonas (Chlorophyta)

Diplontic or gametic life cycle


- single predominant diploid vegetative phase
- meiosis gives rise to haploid gametes
 - » Fucus (Heterocontophyta), Diatoms

Haplontic or zygotic life cycle

FIGURE 1.19 Life cycle of *Chlamydomonas* sp.: 1, mature cell; 2, cell producing zoospores; 2', cell producing gametes (strain+ and strain-); 3, zoospores; 3', gametes; 4', fertilization; 5', zygote; 6', release of daughter cells. R!, meiosis; a.r., asexual reproduction; s.r., sexual reproduction.

Diplontic or gametic life cycle

FIGURE 1.20 Life cycle of a diatom: 1, vegetative cell; 2, 3, vegetative cell division; 4, minimum cell size; 5, gametogenesis; 6, 7, fertilization; 8, auxospores; 9, initial cells. R!, meiosis.

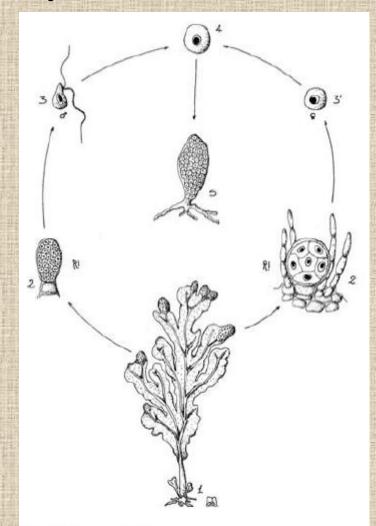


FIGURE 1.21 Life cycle of *Fucus* sp.: 1, sporophyte; 2, anteridium; 2', oogonium; 3, sperm; 3', egg; 4, zygote; 5, young sporophyte. R!, meiosis.

Sexual reproduction

Diplohaplontic or sporic life cycle

- present alternations of generation between two different phases consisting of haploide gametophyte & diploid sporophyte
 - gametophyte produce gamete by mitosis
 - **sporophyte** produce spore by meiosis
- alternation of generations can be
 - <u>isomorphic</u> both phases morphologicaly identical » *Ulva (Chlorophyta)*
 - heteromorphic with predominance of
 - <u>sporophyte</u> *Laminaria* (*Heterocontophyta*)
 - gametophyte Porhyra (Rodophyta)

Diplohaplontic or sporic life cycle

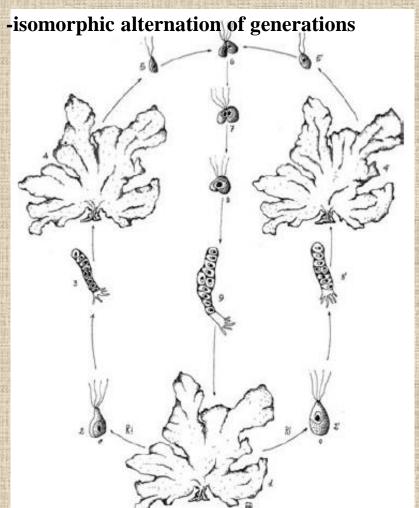


FIGURE 1.22 Life cycle of *Ulva* sp.: 1, sporophyte; 2, male zoospore; 2', female zoospore; 3, young male gametophyte; 3', young female gametophyte; 4, male gametophyte; 4', female gametophyte; 5, male gamete; 5', female gamete; 6–8, syngamy; 9, young sporophyte. R!, meiosis.

Diplohaplontic or sporic life cycle

-heteromorphic alternation of generations

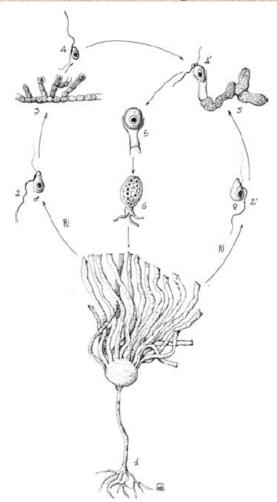


FIGURE 1.23 Life cycle of *Laminaria* sp.: 1, sporophyte; 2, male zoospore; 2', female zoospore; 3, male gametophyte; 3', female gametophyte; 4, sperm; 4', egg and fertilization; 5, zygote; 6, young sporophyte. R!, meiosis.

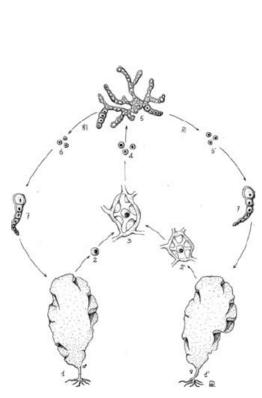


FIGURE 1.24 Life cycle of *Porphyra* sp.: 1, male gametophyte; 1', female gametophyte; 2, sperm; 2', egg; 3, fertilization and zygote; 4, spores; 5, sporophyte; 6, male spore; 6', female spores; 7, young male gametophyte; young female gametophyte. R!, meiosis.