MUNI SCI

C8116 Immunoaffinity techniques Advanced microscopy II Spring term 2024

Hans Gorris Department of Biochemistry May 7th, 2024

Proximity ligation

Preparation of recombinant proteins

GST pulldown assay

Y2H: Protein fragment complementation assay

Light microscopy: Upright microscope

Imaging light path of an optical microscope

We obtain a real image (upside down) if object is placed:

(A) in focal plane ($p_{obi} = f$): parallel rays emerge after lens; i.e. image is not focused (B) between simple and double focal length ($f < p_{obj} < 2f$): magnified image (C) in double focal length ($p_{obj} = 2f$): image has the same size as object (D) beyond double focal length ($p_{obj} > 2f$): demagnified image

We obtain a real image (upside down) if object is placed:

(A) in focal plane ($p_{obi} = f$): parallel rays emerge after lens; i.e. image is not focused (B) between simple and double focal length ($f < p_{obj} < 2f$): magnified image (C) in double focal length ($p_{obj} = 2f$): image has the same size as object (D) beyond double focal length ($p_{obj} > 2f$): demagnified image

We obtain a real image (upside down) if object is placed:

(A) in focal plane (p_{obj} = f): parallel rays emerge after lens; i.e. image of light bulb is not focused

- (B) between simple and double focal length ($f < p_{obj} < 2f$): magnified image
- (C) in double focal length ($p_{obj} = 2f$): image has the same size as object
- (D) beyond double focal length ($p_{obj} > 2f$): demagnified image

We must distinguish between: (1) Imaging light path

- (2) Illumination light path
- => First implemented in microscopy in 1893 by August Köhler (Zeiss company)

Conjugate planes in an optical microscope

=> Köhler

As the light source is **not** focused at the level of the specimen, the light at specimen level is essentially grainless and extended, and does not suffer deterioration from dust and imperfections on the glass surfaces of the condenser.

Optical defects in lens systems (1)

Optical defects in lens systems (2)

Objective

2 color correction

3 color correction

4 color correction

Objective

Objektive descriptions

Objective: refractive index mismatch

=> Immersion liquid reduces the refractive index mismatch

Objective: numerical aperture

It is not the magnification but rather the numerical aperture (NA) of the objective that determines the quality of on image.

 $NA = n \times sin\alpha$

n: refractive indexα: acceptance angleof the objective

Width of the acceptance cone => How much light can be focused?

High NA improves

- 1. Resolution
- 2. Brightness (also contrast)

Optical resolution of light microscopy

Requirement for an objective with a wide acceptance cone (NA) to focus diffracted light efficiently => high-resolution objective Diffraction increases with wavelength!

Optical resolution of light microscopy

Resolution is diffraction limited!

Possibilities to attain a higher resolution?

Bright-field microscopy

Light from the condenser passes through sample (transmission mode), is attenuated by absorbing materials and collected by the objective

Total magnification $(M_{tot}) = M_{objective} \times M_{eyepiece}$

- but there is a fundamental limit of resolution depending only on the objective: $\lambda/(2n*\sin\alpha) - \text{note: M does not appear in this equation!}$
 - with λ : wavelength of light *n*: refractive index α : half of acceptance cone
- higher magnifications are called empty magnification
- The objective forms an image in the the intermediate image plane that contains all information on the specimen accessible by the microscope! Any further image magnification by eyepiece or camera lenses only changes the size for easier observation or to fit the camera chip, but does not add any information.

=> The resolution and brightness/contrast of an objective are essential

Dark-field microscopy

Dark-field microscopy prevents non-diffracted light from entering the objective. Only light rays diffracted by the specimen are collected by the objective. Thus, a bright image appears against a **dark background**, resulting in a much better image contrast compared to bright-field microscopy. => Enables observation of living cells/organisms.

In biology, dark-field microscopy has been replaced by improved techniques, but it has recently reemerged for the analysis of strongly light scattering (plasmonic) nanomaterials.

Dark-field and phase contrast microscopy

Source: https://toutestquantique.fr/en/dark-field-and-phase-contrast/

Phase contrast microscopy

Phase contrast microscopy

Phase contrast microscopy

Bright-field image

Phase contrast image

=> Phase contrast microscopy enables label-free detection of living cells

Fluorescence microscopy

Epifluorescence microscopy

Setup of epifluorescence microscope

Comparision of microscopy in the life sciences

Setup of epifluorescence microscope

Fluorescence microscopy

3-fold fluorescence labeling of keratinocyte \rightarrow detection in 3 color channels

- A) GFP-coupled pallidin=> binds to actin
- B) AlexaFluor546-phalloidin=> binds to F-actin
- Cy5-coupled antibody
 => binds to cell-substrateadhesion protein (immune fluorescence)
- D) Overlay of three fluorescence signals

=> Sensitivity through dark background

Fluorescent dyes

 $\begin{array}{ccc} \underline{natural\ fluorophores} \\ Try, NADH, FADH_2 & \longrightarrow & UV excitation \\ GFP, EGFP, EYFP etc. & \longrightarrow & Excitation with UV or visible light \\ \end{array}$

<u>fluorescent labels</u> labeling of cell components that are non-fluorescent by themselves proteins (directly or via antibodies): FITC, TRITC, Cy-3, Cy-5 DNA, RNA: ethidium bromide, DAPI lipids: DPH, Pyrenyl-PC low molecular weight ions: Fluorescein (pH), Fura-2 (Ca²⁺)

problems:

- autofluorescence
- light scattering
- photobleaching
- cytotoxicity
- labeling

reasons:

using shortwavelength light strong excitation intensities non-specific binding consequences: high background short imaging times artifacts

Green fluorescent protein (GFP)

Originally isolated from jellyfish. => Enormous importance via recombinant expression! (Nobel Prize in 2008)

GFP and its derivatives

Enhanced Green Fluorescent Protein

day light

under UV light

GFP chimera

ECFP - marker protein for endoplasmic reticulum EYFP - marker for Golgi
Subcategories of fluorescence microscopy

1. High background fluorescence:

Conventional wide field microscopy

=> A single fluorophore molecule
 cannot be detected
 (ultimate detection limit)

2. Diffraction limit of light:

The image resolution was defined by Ernst Abbe (1873):

$$d = \frac{\lambda}{2n\sin\alpha} \qquad \qquad \text{ca. 200 nm}$$

=> Both problems have been solved over the last 30 years

Fluorescence microscopy: limitations

1. High background fluorescence:

Conventional wide field microscopy

=> A single fluorophore molecule
 cannot be detected
 (ultimate detection limit)

2. Diffraction limit of light:

The image resolution was defined by Ernst Abbe (1873):

ca. 200 nm

=> Both problems have been solved over the last 30 years

State of the art microscope systems and cameras/photomultipliers are sensitive enough to visualize single fluorescent molecules => A single fluorophore can emit up to 1.000.000 photons before it photobleaches

Problem: Background signal

(Autofluorescence / Rayleigh scattering / Raman scattering)

Background can be reduced by reducing the excitation volume

- Confocal microscopy / Multi-photon microscopy
 (ellipsoid excitation volume of ca. 1 x 1.5 µm = 10⁻¹⁵ L = 1 Femtoliter)
 => contains 1 molecule of fluorophore but also 10¹⁰ solvent molecules
- Total internal reflection microscopy (TIRF)
 (planar excitation volume of ca. 100 nm depth, evanescent field)

Confocal laser scanning microscopy (CLSM)

Confocal laser scanning microscopy (CLSM)

The pinhole restricts the observed volume of the sample to a single point (the size of which is restricted by the pinhole size). Excitation by a collimated beam (point source optically conjugated to the pinhole) focused to a diffraction limited spot

whole image at once

Confocal vs. wide-field microscopy

Elimination of out-of-focus light improves contrast and, thus, resolution

Confocal microscopy: improved lateral resolution

confocal aperture open no depth of field (hloupka pole)

confocal apterture (optimal) depth of field, z-resolution

Confocal microscopy

Preparation of "optical sections" through thick samples: z resolution

From the optical sections: Calculation of side views 3D-reconstruction

Confocal microscopy

Pollen Grain Serial Optical Sections by Confocal Microscopy

Focusing only in one plane \rightarrow axial sectioning of the sample to ~ μm slices

Summary of confocal microscopy

Advantages

- improved contrast
- optical sectioning (z stacks)
- multiple fluorescence measurements can be performed in individual points (e.g. lifetime, spectra, fluorescence correlation spectroscopy)

Limitations

- more expensive and complicated setup
- slower than wide-field imaging
- longer imaging time needed
 more photobleaching

Multi-photon microscopy (2p-, 3p-, 4p-microscopy)

Two-photon microscopy

Two-photon microscopy

Two-photon microscopy: Axial resolution

conventional 1p-excitation

2p-excitation

Two-photon microscopy

Comparison of emission profiles 1p vs 2p

Ζ

Х

Two-photon microscopy

Illumination spot

Summary of two-photon microscopy

Fig. 5. Multiple fluorescence image. Nuclear DNA (N), mitochondrial distribution (M), and actin filaments (A) are visible after TPE at 720 nm. Sample is a bovine pulmonary artery endothelial cell (F-147780, Molecular Probes). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Advantages

- improved axial resolution
- reduced bleaching out of focus
- higher light collection efficiency (no pinhole)
- higher depth of light penetration ($\approx 5 \text{ x}$)
- broader excitation spectra: simultaneous excitation of more dyes

Limitations

- more expensive and complicated instrumental setup: pulsed (femtosecond) solid state lasers required for extremely high excitation powers (100 kW)
- higher bleaching in the focus
- broader excitation spectra: decreased selectivity of excitation
- scanning technique is slower
 (=> confocal microscopy)

From two- to multi-photon microscopy

Sequential absorption of two or more photons

Sequential absorption of 2 or more photons via long-lived transition states => More time for absorbing a further photon

The process is ca. 1 million times more efficient than 2-photon excitation => a continuous wave (CW) laser diode can be used

Upconversion microscopy

Upconversion microscopy

 \Rightarrow Small differences in protein expression levels can be dected.

Total Internal Reflection Fluorescence microscopy (TIRF)

Snell's law:

 $n_1 \sin \alpha = n_2 \sin \alpha$

Holds until reaching the critical angle (θ), then: Total internal reflection

$$d = \frac{\lambda}{4\pi \sqrt{n_1^2 \sin^2 \vartheta - n_2^2}}$$

d: depth of evanescent field λ : wavelength of light θ : critical angle

Total internal reflection leads to emergence of an evanescent field (with exponential decay of intensity):

=> reduces the excitation volume to a depth of ca. 100 nm

TIRF is suitable for investigating phenomena close to the glass slide => e.g. cell membranes

Vesicle budding by endocytosis

Cytoplasm

green: Staining of actin red: Soluble dye rhodamine

Fluorescence recovery after photobleaching

How fast are photobleached fluorophores replaced by diffusion (D)?

D can be determined by fitting the recovery curve with a model accounting for the size and shape of the bleached area.

(frequently in combination with TIRF)

Conditions:

- Fluorescent probes with high quantum yield / low bleaching rates further problems can be avoided by the choice of buffer systems:
 e.g. "blinking" by transition into a triplet state or oxidation by O₂
- Wide field epifluorescence microscopy with TIRF => very low background
- Wide field microscopy provides a much better time resolution compared to scanning techniques (video rates = up to 100 images / sec)

=> Each fluorophor molecule is visible as a diffraction limited spot.

67

=> Single Particle Tracking (SPT)

Analysis of trajectories: Random Walk

Diffusion coefficient (D) given by Stokes Einstein equation:

$$\mathsf{D} = \frac{\mathsf{k}_{\mathfrak{h}} * \mathsf{T}}{3 * \pi * \eta * \mathsf{d}}$$

=> Diffusion coefficients of single molecules (single molecules vs. ensemble) 69

Trajectory of a single molecule temporal sequence: violet, blue, green, yellow

=> Fluorophores in membrane can be well excited in evanescent field
Fluorescence resonance energy transfer (FRET) microscopy

Analyzing protein-protein interactions by FRET

FRET: Experimental setup

Single-molecule FRET

Single-molecule FRET in vivo

- Protein-protein interactions are investigated in their natural environment
- Fusion with fluorescent proteins (e.g. GFP) are used
- The location of the interaction can be determined (=> super-resolution microscopy)
- Real-time imaging
- Heterogeneous and dynamic biological processes can be observed

Requires dedicated equipment:

- ⇒ Strong background reduction (autofluorescence): confocal microscopy or TIRF
- \Rightarrow Sensitive cameras or avalanche photodiodes
- \Rightarrow Reduction of photobleaching (GFP is not very photostable)