MUNI SCI

C8116 Immunochemical techniques Advanced microscopy III Spring term 2024

Hans Gorris Department of Biochemistry May 14th, 2024

Epifluorescence microscopy

Total internal reflection fluorescence mic. (TIRF)

Total internal reflection leads to emergence of an evanescent field (with exponential decay of intensity):

=> reduces the excitation volume to a depth of ca. 100 nm

TIRF is suitable for investigating phenomena close to the glass slide => e.g. cell membranes

Confocal microscopy

Additional features of confocal microscopy

Fluorescence lifetime measurements (FLIM)

Advantages:

- Extremely low optical background
- independent of fluorophore concentration

Analyzing protein-protein interactions by FRET

FRET microscopy: Experimental setup

Single-molecule FRET

Single-molecule FRET in vivo

- Protein-protein interactions are investigated in their natural environment
- Fusion with fluorescent proteins (e.g. GFP) are used
- The location of the interaction can be determined (=> super-resolution microscopy)
- Real-time imaging
- Heterogeneous and dynamic biological processes can be observed

Requires dedicated equipment:

- ⇒ Strong background reduction (autofluorescence): confocal microscopy or TIRF
- \Rightarrow Sensitive cameras or avalanche photodiodes
- \Rightarrow Reduction of photobleaching (GFP is not very photostable)

Raw data

Each time when a fluorescent molecule passes through the confocal volume, there is a **burst of light**

Data analysis: autocorrelation

Calculation of increments: $\delta F(t) = F(t) - \langle F(t) \rangle$

Calculation of $G(\tau)$ for the time series of the increments:

$$G(\tau) = \frac{\langle \delta F(t) * \delta(t+\tau) \rangle}{\langle F(t) \rangle^2}$$

- brackets:

averaging over time

- F(t):
- δF(t):

fluorescence signal at time t

deviation of the fluorescence signal at time *t* from the average fluorescence signal

Investigating the mobilitiy of biomolecules

Investigating the mobilitiy of biomolecules

18

Investigating the mobilitiy & emission fluctuation

- τ_d : diffusion time through confocal volume
- au_f : fluctuation time in confocal volume

Interaction analysis

The size of a molecular complex changes the diffusion time

Cross correlation spectroscopy

Interaction analysis with two fluorophores

Interaction analysis with two fluorophores

Both binding partners carry a fluorescent label

Interaction analysis with two fluorophores

Cross-correlation spectroscopy: immunoassay

1. High background fluorescence: Conventional wide field microscopy => A single fluorophore molecule

=> A single fluorophore molecule
 cannot be detected
 (ultimate detection limit)

2. Diffraction limit of light:

The image resolution was defined by Ernst Abbe (1873):

$$d = \frac{\lambda}{2n\sin\alpha}$$
Numerical apperture (NA)

ca. 200 nm

Near-field optical microscopy (NSOM)

Diffraction only occurs in far-field imaging, where spherical wave-fronts leaving the aperture can be regarded locally as plane waves

=> "Simple" solution: avoid diffraction in the first place

=> Near field illumination (evanescent field)

Detection of single fluorescent molecules

Near-field fluorescence image (4.5 mm by 4.5 mm) of single oxazine 720 molecules dispersed on the surface of a poly(methylmethacrylate) film. Each subdiffraction peak (full width at half maximum, 100 nm) comes from a single molecule (X. S. Xie, *Acc. Chem. Res.* 29, 598 (1996)).

Advantages:

- resolution ~ 20 nm in lateral (depending on tip size) and ~ 2-5 nm in axial direction
- optical <u>and</u> topological information

Limitations:

- only applicable to surfaces
- tip may break in contact with specimen (scanning)
- far-field microscopy has many advantages (except the diffraction limit)

Far-field optical microscopy

=> Using freely propagating light waves

Optical resolution of light microscopy

Optical resolution of light microscopy

Rayleigh criterion: when are two objects visible as separate points

Optical resolution of light microscopy

Source Nikon: http://www.microscopyu.com
Optical resolution of light microscopy

Diffraction limited spot: Point spread function

Point spread function: Max. axial und lateral resolution

(Far-field) microscopy beyond the diffraction limit

Nobel prizce for Chemistry in 2014

Stefan Hell

William Moerner

Eric Betzig

STED

- Detection of single N fluorescent molecules - S
- switchable fluorophores
- Near field microscopySTORM

Microscopy beyond the diffraction limit

z.B. STED (STimulated Emission Depletion)³⁹

STochastic Optical Reconconstruction Microscopy

STORM

=> based on wide-field microscopy (frequently in combination with TIRF)

Single Molecule Tracking ⇔ Imaging (STORM)

=> Rather than using a highly diluted solution of fluorophores, individual fluorophores are switched on/off in a sequential manner

Maximum of the point spread function of a single fluor. molecule can be determined precisely But: 1000-10.000 images required to put together a high-resolution image
Need for high computational power / appropriate "switchable" fluorophores

Pointillism in modern art

Target structure

Localizing activated subset of probes

Super-resolution image

STORM microscopy: images

photoswitchable fluorophores are required:

Photoswitchable Activator-Reporter Fluorophore Pairs for STORM Imaging

Switching on to fluorescent state by supporting dye (e.g. Cy3) Switching off to dark state: spontaneously

Yield: 6000 photons per activated fluorescent molecule

Variation: PALM (Photoactivated Localization Microscopy) => based on FP

Switching on by UV-Licht Switching off by photobleaching Yield: ~500 photons ⁴⁶

Resolution:

2 points that can just be distinguished by using STORM:

$$d = \frac{\lambda}{2n\sin\alpha\sqrt{N}}$$

N: Number of photons emitted by a single fluorophore molecule that can be detected

In praxis, resolution of 10 - 20 nm: > factor 10!

Other factors are limiting: e.g. antibodies have a diameter of 15 nm

STimulated Emission Depletion Microscopy

STED

=> is based on Confocal Microscopy

STED microscopy

Light can interact with matter:

1. Absorption

3. Stimulated emission

49

2. Spontaneous emission

STED microscopy: instrumental setup

EXC und STED are pulsed lasers with defined timing of pulses

STED microscopy: improved lateral resolution

Excitation spot

Depletion spot

Remaining spot

STED microscopy: improved lateral resolution

STED microscopy: improved lateral resolution

Conventional confocal microscopy

STED microscopy

I: Intensity of the STED laser

I_s: Required intensity to completely deplete the excited state

In praxis, resolution of < 10 nm

I: Intensity of the STED laser

 I_s : Required intensity to completely deplete the excited state

Conventional CLSM

Conventional CLSM

STED-CLSM (low power STED)

STED-CLSM (high power STED)

=> A higher resolution requires more scanning steps

Histone distribution in the nucleus

HeLa cells, blue: microtubular network (Oregon Green); red: Histone H3 (ATTO 647N)

higher magnification

Dr. Brian Bennett, Lake Placid Biochemicals, NY, USA Secondary antibody from LakePlacid Biochemicals

Membrane domains

Analyis of the spatial distribution of syntaxin STED STED within the basal plasma membrane of PC12 cells. STED microscopy allowed the py investigation of cluster density and the determination of average cluster sizes of 50 – 60 nm. [Science, Sieber JJ., 2007]

Light Sheet Microscopy

=> based on wide-field microscopy

Light sheet microscopy

Light sheet microscopy: planar illumination

=> Separate light paths for excitation and emission light
Light sheet microscopy: advantages

Intrinsic optical sectioning

- => only the focal plane is illuminated
- => avoids photobleaching outside the sheet

Fast image acquisition

 => Whole image taken in a single exposure (no scanning required, but scanning techniques also exist)
=> more than 100 full images can be taken per second (depending on camera)

Applicable to larger biological samples

- => 3-D imaging
- => small living organisms
- => embryo development

Light sheet microscopy: images

A sea horse: detection of autofluorescence for imaging

Light sheet microscopy: images

Formation of lymph vessels in a mouse embryo

pink: progenitor cells green: aorta blue: vein

Light sheet microscopy: video

red: (1) red blood cells (2) myocard

(heart muscle)

cyan: endocard (inner lining of heart)

Expansion Microscopy

=> Blows up sample before imaging

Expansion microscopy

78

Expansion microscopy: images

Different types of microtubles

Expansion + light sheet microscopy: images

Brain of fruit fly *Drosophila*: Mapping of more than 40 million synapses in 62 hours

4x expanded => 60 nm resolution

⁸⁰ Gao et al. (2019) Science 363, 245

Expansion + light sheet microscopy: video

Labeling of neuronal cells in the brain