MUNI SCI

C8116 Immunochemical techniques Immune system, part II Antibodies as immunochemical tools Spring semester 2024

Hans Gorris Department of Biochemistry February 27th, 2024

Topics of the lecture

- Part A: The immune system and its sharpest weapon: antibodies
- Part B: Antibodies as immunological tools
- Part C: Immunoassays
- Part D: Immunoaffinity and other protein-protein affinity techniques
- Part E: Advanced fluorescence microscopy for (life) cell imaging

Structure of IgG

Clonal selection theory

Antibody classes

PROPERTIES	lgM	CLASS C lgD	OF ANTIB IgG	ODY IgA	lgE
Heavy chains	μ	δ	γ	α	E
Light chains	κorλ	κorλ	κorλ	κorλ	κorλ
Number of four-chain units	5	1	1	1 or 2	1
Percentage of total Ig in blood	10	<1	75	15	<1
Activates complement	++++	-	++	-	-
Crosses placenta	-	-	+	-	-
Binds to macrophages and neutrophils	-	-	+	-	-
Binds to mast cells and basophils	-	-	-	-	+
	primary		secondary		

=> B cells can switch between the production of antibody classes

classes of antibody

T cells and T cell receptor (TCR)

B and T cell maturation follow a similar course

Antigen presentation

5 μm

Larger picture: initiation of immune response

Better double check!

⇒ Minimizing the risk of wrong classification (friend/foe) to prevent e.g. autoimmune diseases, allergies

T cell receptor (TCR)

Generation of TCR diversity

Generation of TCR diversity

Unlike BCR no somatic hypermutation => only lower affinity ($K_a = 10^5 - 10^7 \text{ M}^{-1}$)

T cell activation

A TCR recognizes the antigen only in context of an MHC

Major histocompatibility complex (MHC)

Properties of Human Class I and Class II MHC Proteins

	CLASS I	CLASS II
Genetic loci	HLA-A, HLA-B, HLA-C	DP, DQ, DR
Chain structure	α chain + β_2 -microglobulin	α chain + β chain
Cell distribution	most nucleated cells	dendritic cells, B cells, macrophages, thymus epithelial cells, some others
Presents antigen to	cytotoxic T cells	helper T cells, regulatory T cells
Source of peptide fragments	mainly proteins made in cytoplasm	mainly endocytosed plasma membrane and extracellular proteins
Polymorphic domains	$\alpha_1 + \alpha_2$	$\alpha_1 + \beta_1$ 15
Recognition by co-receptor	CD8	CD4

Major histocompatibility complex (MHC)

Peptide bound to MHC

Peptide bound in the groove of MHC

Peptides bound to **MHC-I**: 8-10 amino acids long Peptides bound to **MHC-II**: 10-12 amino acids long

Allelic variation in MHC genes

Red: peptide binding regions

Human MHC genes

Structural comparison: antibody, MHC and TCR

21

Large diversity in the recognition of antigens

BCR and antibodies: gene rearrangement + somatic hypermutation => Each individual can recognize any hapten/epitop (linear and conformational epitopes)

TCR: gene rearrangement

=> Each individual can recognize any linear peptide in context with MHC molecule

MHC: no gene rearrangement but 3 genes and several thousand alleles in a population
=> Can bind a large variety of peptides (but not all)
=> a whole population is well protected but there is an individual risk of missing
some pathogenic peptides

=> populations with a large gene pool are more resistant to an epidemic

Interaction of TCR with a peptide on MHC class I

Friend / foe recognition by T cells

T cell recognition of antigens is MHC restricted

T cell recognizes viral antigen and host target cell

Co-receptors on T cells

Excursion: HI virus infecting T cell

=> depletion of T_H cells: AIDS (Aquired Immunodeficiency Syndrome)

Classification of T cells

Topologically equivalent compartments

Antigen acquisition sites

	Cytosolic pathogens	Intravesicular pathogens	Extracellular pathogens and toxins	
	o o o o o o o o o o o o o o o o o o o	° macrophage	B cell	
Degraded in	Cytosol	Endocytic vesicles (low pH)	Endocytic vesicles (low pH)	
Peptides bind to	MHC class I	MHC class II	MHC class II	
Presented to	Effector CD8 T cells	Effector CD4 T cells	Effector CD4 T cells	
Effect on presenting cell	Cell death	Activation to kill intravesicular bacteria and parasites	Activation of B cells to secrete Ig to eliminate extracellular bacteria/toxins	

Antigen presentation by MHC-I

Activation of cytotoxic T cells

Cytotoxic T cells induce apoptosis

Activation of a B cell by an antigen and T_H cell

Antigen presentation by MHC-II

Summary of interplay between T_H and B cells

Antibodies as immunochemical tools

Antigenic determinants: hapten

- Immunization generates antibodies only against large molecules, e.g. proteins
- Antibodies against small molecules (haptens) must be produced by coupling (typically derivatized) small molecule onto the surface a large carrier protein.

Definition of hapten:

A low-molecular weight molecule which contains an antigenic determinant but which is not by itself antigenic unless bound to an antigenic carrier

> => Why do we need a carrier protein to launch an immune response against DNP? 39

Cross reactivity (CR)

Polyclonal vs. monoclonal antibodies

Antibodies that are collected from sera of exposed animal

Individual B cell hybridoma is cloned and cultured.

Secreted antibodies are collected from culture media

recognize <u>multiple</u> antigenic sites of injected substance

recognize <u>ONE</u> antigenic site of injected substance

Polyclonal antibodies (Pab, antiserum)

Antibody generation:

- (1) Immunization of animal with pure antigen (immunogen) and with adjuvant (substance that strengthens the immune response)
- (2) Immunization is repeated (boost)
- (3) Collection of animal's blood
- (4) Purification of antibodies (IgG)

Antibody production: fast and inexpensive

Common animals for obtaining antibodies:

- Mice: easy breeding, but only small amounts
- Rabbits: larger amounts => for polyclonal antibodies
- Sheep/Goats: large amounts (commercial use) => for polyclonal antibodies
- => ease of breeding vs. antibody yields

Other considerations for choosing a host species:

- it is not possible to obtain anti-mouse IgG by immunizing mice (=> immunological tolerance)
- if a mouse antigen is the target, mouse IgG may show cross-reactivity with other (non-target) mouse antigens

Polyclonal antibodies: + and -

- Fast development, typically available first
- Fast preparation
- Inexpensive
- Greater reagent versatility
- Sometimes very high affinity which is difficult to obtain with monoclonal antibodies (e.g. anti-steroid antibodies)
- May be advantageous for the detection of very heterogenous antigens

- Limited amounts (typically not sufficient for in excess reagent systems)
- High batch-to-batch variability
- Often lack full antigen specificity
 - Cannot discriminate between closely related antigens (potential for reduced specificity)
 - Pure antigen required for immunization

From polyclanal to monoclonal antibodies

Until the 1970s, polyclonal antibodies were the only source of capture elements for immunochemical assays

For the continuous supply of monoclonal antibodies (and their commercialization), we need plasma cells that live forever.

Problem: B cells (like most body cells) can only undergo a limited number of cell divisions and die after a few days in cell culture

Monoclonal antibodies (Mab)

Generation of monoclonal antibodies

Generation of monoclonal antibodies

Generation of monoclonal antibodies

1. Hyperimmunize mouse with antigen and adjuvant (immunostimulant)

HAT Selection

- 2. Fuse B cells with tumor (*myeloma*) cell line in PEG (*polyethylene glycol*) or by electrofusion
- 3. Limiting dilution in 96 well MTPs to fractionate fused cells in **HAT** medium (<u>hypoxanthine</u>, <u>aminopterin</u>, <u>thymidine</u>)

Genotype:* TK -**TK+/TK** -TK+ immortal fused mortal hybrid HAT-sensitive splenic **Cell type:** olas macytoma B-cell HAT fate: DIES DIES SURVIVES Unable to synthesize Immortal and restored Mortal: **Explanation:** DNA: **DNA synthesis:** (1) Thymidine kinase* (1) Immortality from (1) Functional DNA synplasmacytoma and mutation causes a lossthesis, but of-function in the "sal-(2) rescued ability to (2) eventually dies vage" pathway and synthesize DNA due to because of limited (2) Aminopterin blocks restored thymidine number of replication "De novo" pathway. kinase* function. cycles

Expand in mice or in vitro

50

Monoclonal antibodies: + and -

- Constant supply of the same antibody (from *in vitro* culture)
- Consistent performance: constant affinity and specificity
- 100 % epitope specificity
- IgG fraction yields in practice an almost 100 % active antibody preparation
 - Enables the design of very specific assays for closely related antigens, and posttranslational variants (fragments, cleaved forms, sugar variants etc.)
 - Does not require 100 % antigen purity for immunization

- Longer time for development
- Expensive
- Often of lower affinity than polyclonal antibodies
 => especially important if used in a competitive assay
 (in sandwich assay antibody excess compensates for lower affinity)
- Can be too specific (do not recognize a genetic or other variant)

Monoclonal antibodies can be too specific

if there is a common genetic variant of a protein

-> false negative result !

An antibody reagent differs in the way how it is produced against the analyte.

The production determines the **recognition specificity for analyte epitopes***.

Polyclonal and monoclonal antibodies are very similar protein reagents **except for the amino acids in the paratope region**.

*In the context of antibodies, we only talk about **B cell epitopes**!

Handling of antibodies (IgG)

Advantages as chemical reagents:

- well soluble (unlike IgM)
- also active with low salt content
- binding over wide pH range (pH 4-9.5)

Storage:

- can be stored in sterile serum for several months up to a few years at 4 $^\circ\,$ C
- long-time storage after snap freezing in liquid nitrogen at -20° C or better at -80° C
- freeze drying (lyophilization): mainly from commercial suppliers

Problems:

- damage through bacterial growth
 => add 0.02% (final concentration) of sodium azide (NaN₃) or 0.01% thimerosal
- isolated, purified antibodies are prone to aggregation after freezing and at low concentrations lead to losses by attachment to plastic surfaces
 add 1% bovine serum albumin (BSA)
- the freezer **should not have a de-frosting cycle**!
- avoid repeated thawing / freezing; better prepare small aliquots
- some antibody-enzyme conjugates (e.g. horseradish peroxidase) lose activity after freezing
 - => dilute with glycerol (50%) and store at -20 $^{\circ}$ C (sample does not freeze) ⁵⁴

Labeling of antibodies with fluorescent dyes

Acidic conditions

Optimal: pH 2.6; with very high affinity antibodies harsher conditions are required pH 1.8 at 4° C for a short time, but leads to some damage.

Alkaline conditions

Optimal: pH 11.2; harsher conditions damage the antibody even more strongly than acidic conditions.

Chaotropic ions

Cl⁻, l⁻, Br⁻, SCN⁻, typical eluents: 3 M MgCl₂, 1-3 M NaSCN.

Epitopes

Higher concentration of competing free antigen, hapten, synthetic peptides

Elevated temperatures

Not in use any more