MUNI SCI

C8116 Immunochemical techniques Immunoassays Spring term 2024

Hans Gorris Department of Biochemistry March 26th, 2024

Antibodies as immunochemical reagents

=> Antibodies are used as bioanalytical reagents to specifically detect and quantify other molecules

From heavy chain antibodies to nanobodies

common antibody

heavy chain antibodies (velbloud, dromedár, lama) (žralok)

Phage display

4

Aptamers

Binding through:

- (1) 3-dimensional, shape-dependent interactions
- (2) hydrophobic interactions, base-stacking, intercalation

Molecularly imprinted polymer (MIP)

"Plastic antibodies"

Immunoassays

A rough categorization of immunoassays

Sandwich immunoassay

Enzyme-linked immunosorbant assay (ELISA)

Enzyme	Properties	
peroxidase galactosidase	rarely found in biosamples, high activity	} very common
phosphatase glucose oxidase	rarely found in biosamples, moderate activity	
catalase	high activity but often present in samples	less suitable
protease	low activity	

=> Effect: strong signal amplification

(one enzyme label generates 100 - 1000 chromophores / fluorophores per second!)

Enzyme-mediated signal generation

(a) a chromogenic substrate (3,3',5,5'-Tetramethyl-benzidine (TMB)):

HO

HRP

CH³

- Coloration depends on the amount of enzyme-labeled secondary Ab;
- microtiter plate reader; absorbance at 450 nm expressed as Optical₁₁ Density (OD)

Alternative non-competitive ELISA formats

one-step assay

=> analyte is detected directly, i.e. signal from immune complexes containing analyte

When capture antibody becomes saturated, free analyte in solution binds to the detection antibody and prevents it from binding to the antigen on the solid phase

two-step assay

=> avoids high dose hook effect

ELISA: data analysis

An-Ab binding:

$$[An] + [Ab] \xrightarrow[k_1]{}_{k_2} [AnAb] \qquad K = \frac{[AnAb]}{[An][Ab]} \qquad Surface-bound immune complex$$

4-parameter logistic function

Variables: "optical density" (OD

= absorbance) and [An]

Fitted parameters:

- *OD*_{max} (signal at saturation)
- *bg* (background signal)
- C₅₀ (midrange concentration)
- s (slope)

Detection limit of non-competitive assay

[labeled detection Ab] ¹⁷

Amount

Limit of detection (LoD) vs. limit of quantification (LoQ)			
LoD	LoQ		
The smallest concentration of an analyte in a test sample that we can easily distinguish from zero	The smallest concentration of an analyte in a test sample that we can determine with acceptable repeatability and accuracy 18		

Optimization of immunoassays

Labeling strategies

Fluorescence/luminescence => high-specific activity	Various detection modes can be combined with each other
Signal amplification	Background reduction
 brighter fluorescence improved quantum yield / quantum dots 	 electrochemistry amperometry, voltametry, impedimetry
 multiple labeling attaching several reporter molecules / dye-doped nanoparticles / liposomes 	- (electro-)chemiluminescence luminol / ruthenium-bipyridyl-complex
 signal cascades subsequent amplification steps 	 time-resolved fluorescence lanthanide complexes
 enzyme amplification horseradish peroxidase 	 anti-Stokes photoluminescence photon-upconversion, UCNPs
S ↑ S/	B↓

Here we only talk about the **optical signal and background** => even the best S/B is useless if the label binds to the surface (non-specific binding)

Signal cascades

- only one type of secondary antibody is needed for many types of primary antibodies
- higher sensitivity => polyclonal secondary antibody can bind to different sites of the primary antibody

Immuno-PCR

Chemiluminescent labeling

acridinium ester

=> no enzyme required, but only **one photon per molecule** (low specific-acitivity label)

> 23 Weeks, I. (1983) *Clin. Chem.* 29, 1474-1479

Chemiluminescent labeling

=> HRP oxidizes luminol: one photon per catalytic turnover event

Electro-chemiluminescent labeling systems

- => no enzyme required
- => the label can cycle between an oxidized and reduced state to generate many photons per molecule

Advantages: no need for excitation light

- => Simpler and more compact instrumentation
- => No autofluorescence or light scattering: background-free detection

Disadvantages:

Each (electro-)chemical or enzymatic turnover event only results in the emission of a single photon => weaker overall signal / not the highest activity (as compared to fluorescence)

Time-resolved lanthanide fluorescence => Guest lecture on April 23rd

Photon-upconversion nanoparticles (UCNPs)

van de Rijke et al. (2001) *Nature Biotechnology* 19, 273–276

Sequential absorption of two or more photons

Sequential absorption of 2 or more photons via long-lived transition states => More time for absorbing a further photon

Upconversion luminescence of UCNPs

NaYF₄:Yb,Tm

Luminescence of UCNPs depends on lanthanide dopant composition

Emission depends on lanthanide composition

58

Ĵе

 $4f^{1}5d^{1}6s^{2}$

Cerium

UCNPs as background-free optical labels

Hexagonal

crystal structure

Photon-upconversion is ca. 1,000,000 x more efficient than 2-photon excitation

=> excitation by using a continuous 980-nm laser source³³

UCNPs as background-free optical labels

... and completely photostable

Advantages of UCNPs

Features	Unlike	Enables
Excitation by NIR light (980 nm)	Organic fluorophores / QD	 Background-free diagnostic assays Deep tissue / small animal imaging
Large anti-Stokes shifts	Org. fluorophores	Excellent separation of detection channels
Narrow and multiple emission bands of UV, visible or NIR light	Org. fluorophores	Multiplexing / ratiometric measurements
No photobleaching	Org. fluorophores	Long-time imaging
Paramagnetic (co-dopant: Gd ³⁺)	Org. fluorophores	Hybrid nanoparticles: Magnetic resonance imaging (MRI)
Low toxicity	QD / radionuclides	Cellular imaging / easier handling

Instruments for the detection of UCNPs

36

Surface functionalization of UCNPs

Upconversion-linked immunosorbent assay (ULISA)

Microtiter plate

Mickert MJ (2019) Anal. Chem. 91, 9435

Gold nanoparticles

Introduction to gold nanoparticles (colloidal gold)

- known since ancient times (glass staining)
- modern synthetic approaches: size control in the range of 2 to 100 nm
- synthesis: reduction of HAuCl₄ in aqueous solution e.g. by citrate
- simple surface modification e.g. via self-assembled monolayer (SAM): thiols
- properties:
 - 1. chemically stable
 - 2. high electron density
 - 3. collective oscillations of valence electrons in metal grid in resonance with frequency of visible light

absorption by localised surface plasmon resonance

Lateral flow assay

- Separation-based assay using capillary flow in nitrocellulose membrane
- qualitative result: yes/no answer
- pregnancy test measures hCG (human chorionic gonadotropin)

Lateral flow assay

(1) Analyte is bound to labeled antibody

(2) Analyte-labeled antibody complex and non-bound labeled antibody move with flow

(3) Analyte-labeled antibody complex is bound to immobilized capture antibody; labeled antibody is bound to immobilized anti-antibody antibody

Lateral flow assay

Excursion: Biosensors

Injection of sample urine (containing hCG) to the dorsal lymph sac of femal frog => Frog starts ovulation within 12 hours

=> an example of a "biosensor"

Scheme of a biosensor

=> What is the difference between an immunoassay and a biosensor?

A rough categorization of immunoassays

Note: The sandwich ELISA is not applicable to small molecules such as steroid hormones (e.g. progesterone), because they do not possess <u>two</u> epitopes for binding both the capture Ab and the detection Ab.

antibody against analyte either recognizing

- single epitope = monoclonal ab, or
- multiple epitopes = polyclonal ab

limited amount of antibodies

analyte and labeled analogue are added; incubation for binding

limited amount of antibodies

non-bound analyte and analogue are washed away

competition in binding to a limited number of antibodies

signal of the label is measured

limited amount of antibodies

Radioimmunoassay (RIA)

- First kind of immunoassay: 1950s (Rosalyn Yalow, Nobel price in 1977) and still in use (very sensitive and background-free)
- In addition to the analyte, a second antigen that carries a radioactive ("hot") label is needed (concentration must be known) => tracer
- Radionuclides: typically ¹²⁵I, ³H => safety precautions are needed
- Mainly used for small molecule analytes such as hormones in a competitive immunoassay (originally developed for insulin), other example: renin, a marker for hypertension (concentration in serum: 10⁻¹² M)

Radioimmunoassay (RIA)

Radioimmunoassays (RIA)

- On the first sight: radionuclides are perfect labels for immunoassays => background-free (there is no intrinsic radioactivity in sample, test tube of instrument)
- It is obvious: radioactive labels (e.g. ¹²⁵I, ³H) require special safety precautions
- But also: Each decay event of a radionuclide is detectable only once

¹²⁵I (gamma rays): t_{1/2} = 60 days / 20 - 48% of radiation is detected
 → if there is one radiolabel per detection antibody molecule, more than 2500 labeled Ab molecules are needed to detect one decay event / hour
 → "low-activity" labels need long signal acquisition times

 Using nuclides of shorter half-lives (providing more decay events / second) is not an option because
 => their shelf life is reduced accordingly
 => a higher activity leads to radiodamage of biomolecules

solid phase separation

=> analyte is measured indirectly

i.e. signal from those binding sites where the analyte is absent

=> typically not as sensitive (i.e. higher LOD) than immunometric immunoassay

Cross reactivities (%) for structurally related compounds are determined in comparison to the main analyte at test mid points (IC_{50}) and are expressed in %:

$$CR(\%) = \frac{IC_{50} \text{ (main analyte)}}{IC_{50} \text{ (cross reactant)}} x100$$

High cross reactivity:CR (%) > 10Low cross reactivity:1 < CR (%) < 10No cross reactivity:CR (%) < 1

Trends Anal. Chem. 1995, 14:415–425

Competitive ULISA I

58 Hlavaćěk (2016) *Anal. Chem. 88,* 6011-6017

Competitive ULISA II

Competitive ULISA II

60 Peltomaa, R. (2020) *Biosens. Bioelectron. 170, 112683*

Competitive immunoassay: alternative formats

Labeled analyte serves as tracer

Labeled antibody serves as tracer

Indirect competitive immunoassay

Determination of saliva immunoglobulin IgA (this test is commercially available)

