MUNI SCI

# C8116 Immunochemical techniques Immunoassays II Spring term 2024

Hans Gorris Department of Biochemistry April 16<sup>th</sup>, 2024

### Competitive immunoassay



**Note:** The sandwich ELISA is not applicable to small molecules such as steroid hormones (e.g. progesterone), because they do not possess <u>two</u> epitopes for binding both the capture Ab and the detection Ab.

# Lateral flow assay

- Separation-based assay using capillary flow in nitrocellulose membrane
- qualitative result: yes/no answer
- pregnancy test measures hCG (human chorionic gonadotropin)



# Digital (single-molecule) assays

based on:

- life-time luminescence
- upconversion nanoparticles
- enzyme labels
- fluorescent labels

# Minimizing the size of wells



# Femtoliter arrays generated by photolithography



### SEM images of femtoliter arrays



Expected number of mole-

|                       |      |                     |                    | cules in a given volume: |                   |  |
|-----------------------|------|---------------------|--------------------|--------------------------|-------------------|--|
| Volume                |      |                     | 1 µM               | 1 nM                     | 1 pM              |  |
| (1 mm) <sup>3</sup>   | 1 µL | 10 <sup>-6</sup> L  | 6×10 <sup>11</sup> | 6×10 <sup>8</sup>        | 6×10 <sup>5</sup> |  |
| (100 µm) <sup>3</sup> | 1 nL | 10 <sup>-9</sup> L  | 6×10 <sup>8</sup>  | 6×10 <sup>5</sup>        | 6×10 <sup>2</sup> |  |
| (10 µm) <sup>3</sup>  | 1 pL | 10 <sup>-12</sup> L | 6×10 <sup>5</sup>  | 6×10 <sup>2</sup>        | < 1               |  |
| (1 µm) <sup>3</sup>   | 1 fL | 10 <sup>-15</sup> L | 6×10 <sup>2</sup>  | < 1                      |                   |  |
| (100 nm) <sup>3</sup> | 1 aL | 10 <sup>-18</sup> L | < 1                |                          |                   |  |



#### Here:

Volume of well: 40 fL Enzyme conc.: 1.8 pM ~5 % of the wells contain a single enzyme molecule

#### **Poisson distribution:**

$$P_{\mu}(v) = e^{-\mu} \frac{\mu^{\nu}}{\nu!}$$

with:

 $\mu$  = average occupancy (0.05)  $P_{\mu}(v)$  = probability of finding exactly v (i.e. 0,1,2,3 ...) molecules in any given well

# Single enzyme molecule reaction



# Observing single enzyme molecules



# Counting individual enzyme molecules



β-galactosidase in bulk solution (pM)

11

Anal. Bioanal. Chem. (2015) 407, 7443

# Surpassing the traditional detection limit

#### Conventional immunoassay (analog readout)





=> Millions of molecules needed to reach detection limit

#### Serial dilution

#### Single-molecule immunoassay (digital readout)









=> One molecule needed to reach detection limit

# Single-molecule ELISA on beads (Quanterix)







# Single-molecule ELISA on beads (Quanterix)



# Single-molecule ELISA on beads (Quanterix)



=> Digitization of enzyme-linked complexes greatly increases sensitivity compared with bulk, ensemble measurements.

15

### Digital assays: Single fluorophore counting (Singulex)



=> A separtion between antigen capture and detection is required to avoid optical background interference.

# UCNPs as background-free optical labels



... and completely photostable

# UCNPs for digital assays



Single UCNPs are detectable as diffraction-limited spots Excitation power: ~640 W/cm<sup>2</sup>

18

Anal. Chem. (2017) 89, 11825

# Analog vs. digital readout



# Detection limits of various immunoassays



#### **Digital Assays**

- 1 Digital ULISA Ab-silica UCNPs (42 fM)
- 2 Digital ELISA in femtoliter arrays (52 aM)
- 3 Single-particle time-resolved fluorescence (50 fM)
- 4 Singulex Erenna (single molecule counting in capillaries) (3.9 fM)\* \*LOD for cardiac troponin 1

#### Analog Assays

- 5 Analog ULISA SA-PEG UCNPs (14 fM)
- 6 Analog ULISA Ab-silica UCNPs (0.7 pM)
- 7 AuNP-based bio-barcode assay (11 fM)
- 8 AuNP-enhanced surface plasmon resonance (10 pM)
- 9 Chemiluminescence imaging immunoassay (0.24 pM)
- 10 Colorimetric assay with Mesoporous silica NPs (12.5 fM)
- 11 Electrochemical sensor with Au-Ag-Cu<sub>2</sub>O NPs (105 aM)
- 12 Electrochemical sensor with AuNP hybrid nanomaterial (4.2 fM)
- 13 Electrochemical sensor with peptide-DNAzyme conjugates (70 aM)
- 14 Electrochemiluminescence immunoarray (1.7 fM)
- 15 Electrochemiluminescence with conductive nanospheres (1.4 aM)

- 16 Electrochemiluminescence with MOF/Au/G-Quadruplexes (2 pM)
- 17 Immuno-PCR (0.14 pM)
- 18 Localized SPR (3.5 fM)
- 19 Microbead-based immunoassay (4.7 pM)
- 20 Photoelectrochemistry with rolling circle amplification (11 fM)
- 21 Plasmon excited quantum dots (3.5 pM)
- 22 Quantum dot-based FRET immunoassay (28 pM)
- 23 Quantum dot-encoded microbeads (35 pM)
- 24 Time-resolved fluorescence (56 fM)
- 25 Multianalyte microarray (5.9 pM)

#### **Commercial Assays**

- 26 Abcam ab113327 (0.28 pM)
- 27 Abcam ab188389 (0.17 pM)
- 28 Biorbyt orb339660 (17 pM)
- 29 LifeSpan BioSciences LS-F25971 (0.67 pM)
- 30 LifeSpan BioSciences LS-F5207 (7.0 pM)
- 31 OriGene EA100514 (0.35 pM)
- 32 Roche Elecsys total PSA (0.07 pM)
- 33 R&D Systems DKK300 (2.4 pM)
- 34 Thermo Fisher Scientific EHKLK3T (0.28 pM)

# We only see the tip of the iceberg



Current protein blood tests (ELISA)

Large unused potential of diagnostic biomarkers (human genome: 25000 genes)

#### Challenges:

- Limited sensitivity
- Limited dynamic range
- Imprecision of results
- Large sample size needed

### From microarrays to bead assays

# Various applications of microarrays



- G) I) Reverse microarrays

# Protein micorarrays (Invitrogen)

48 subarrays with 4000 different yeast proteins

 $\longleftarrow 4 \text{ rows} \longrightarrow$ 



#### **Protocol:**

(1) Add the biotinylated protein MOG1 (involved in nuclear import)

(2) Add fluorescence-labeled streptavidin

=> Binding to interaction partner GSP1

# TestLine



2) check functionality and sensitivity

| PROPERTIES                      | <b>BLOT-LINE</b> | MICROBLOT-ARRAY |
|---------------------------------|------------------|-----------------|
| Maximum antigens per strip/well | 19               | 44              |
| Tests per kit                   | 20               | up to 96        |
| Maximum capacity per strip/well | 21 bands         | 200 spots       |
| Sample consumption per test     | 30 µl            | 10 µl           |

25

# Microarrays: Ambient analyte assays



- Very small amounts of capture antibody do not reduce the analyte concentration of the sample: "Ambient analyte assay"
- On a small detetction area, there is less space for non-specific binding
- => High signal density correlates with high sensitivity

### Planar array ⇔ Bead array



# Beads: magnetic separation

Beads can be separated by applying an external magnetic field



=> Allows for washing steps to remove excess reagents

# Microarrays: Multiplexing



#### **Planar array**

- Antibodies are immobilized on fixed positions on a solid support
- Each type of analyte can be directly addressed by its spatial location



#### **Bead array**

- Antibodies are immobilized on the surface of beads
- An encoding strategy is required (e.g. code of different fluorophore combinations)

Each encoded bead carries a different type of antibody

# **Beads: Fluorescent codes**





### Readout of fluorescent codes



# Three types of array formats

#### Planar (directed) arrays

Positional encoding of probe elements on array

#### Advantages:

Simple readout Very common

#### **Disadvantages:**

Probe molecules must be attached to each spot individually

- $\Rightarrow$  Batch-to-batch variation
- $\Rightarrow$  limited throughput



#### => Enables thousands of measurements in a small volume

### Homogeneous immunoassays

# Heterogeneous vs. homogeneous immunoassay



### Heterogeneous assay

### non-competitive "sandwich" immunoassay



### Homogeneous assay

### non-competitive "sandwich" immunoassay



# Examples how to modulate the detection signal

### => "smart" reporters for homogeneous assays

- Fluorescence resonance energy transfer (FRET)
- Luminescent oxygen channeling
- Fluorescence polarization
- Lanthanide complementation

# Fluorescence Resonance Energy Transfer (FRET)



### FRET: A nanoscale ruler





# FRET: A nanoscale ruler

| Donor           | Acceptor                | Förster Distance<br>(Nanometers) |  |
|-----------------|-------------------------|----------------------------------|--|
| Tryptophan      | Dansyl                  | 2.1                              |  |
| IAEDANS (1)     | DDPM (2)                | 2.5 - 2.9                        |  |
| BFP             | DsRFP                   | 3.1 - 3.3                        |  |
| Dansyl          | FITC                    | 3.3 - 4.1                        |  |
| Dansyl          | Octadecylrhodamine      | 4.3                              |  |
| CFP             | GFP                     | 4.7 - 4.9                        |  |
| CF (3)          | Texas Red               | 5.1                              |  |
| Fluorescein     | Tetramethylrhodamine    | <b>4.</b> 9 - 5.5                |  |
| Cy3             | Cy5                     | >5.0                             |  |
| GFP             | YFP                     | 5.5 - 5.7                        |  |
| BODIPY FL (4)   | BODIPY FL (4)           | 5.7                              |  |
| Rhodamine 6G    | Malachite Green         | 6.1                              |  |
| FITC            | Eosin Thiosemicarbazide | 6.1 - 6.4                        |  |
| B-Phycoerythrin | Cy5                     | 7.2                              |  |
| Cy5             | Cy5.5                   | >8.0                             |  |

(1) 5-(2-iodoacetylaminoethyl)aminonaphthalene-1-sulfonic acid

(2) N-(4-dimethylamino-3,5-dinitrophenyl)maleimide

(3) carboxyfluorescein succinimidyl ester

(4) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

# **Detection of FRET**



# Competitive immunoassay based on FRET

### In solution (cuvette, microtiterplate) => Immobilization not required



# Luminescence oxygen channeling



# Luminescence oxygen channeling immunoassay



# Fluorescence Polarization Immunoassay (FPIA)



# Fluorescence Polarization Immunoassay (FPIA)



# Fluorescence Polarization Immunoassay (FPIA)

In solution (e.g in microtiter plate)

Reagents needed: (a) labeled antigen; (b) antibody (a secondary antibody is not needed)

Reaction: competitive binding of free antigen and labeled antigen to labeled antibody.

Labeled antigen ("FP conjugate") in solution tumbles and depolarizes light.

Labeled antigen bound to antibody tumbles more slowly => less depolarized light.



# Immune agglutionation / precipitation

# Blood type: different antigens on red blood cells



# Immune agglutination

antigen-covered microscopic particles in suspension (e.g. bacteria, blood cells, or latex particles) ╋ Specific immune serum / antibodies Ш V cross-linking forms large aggregates that are not stable in suspension (agglutination) visible sedimentation

Advantages: Cheap, easy, very sensitive, but semi-quantitative

# Immune agglutination: blood type



#### Determination of blood type in microtiter plate



#### **Evaluation:**

positive: agglutination, bead formation negative: erythrocytes remain in suspension (homogeneous red fluid)

# Immunoprecipitation



# Nephelometry



# Classification of immunoprecipitation systems



# 1-dimensional immune diffusion (Oudin)



# 2-dimensional immune diffusion (Mancini)



# 2-dimensional immune diffusion (Ouchterlony)



### Immune diffusion



# Protein electrophoresis



Migration of proteins/antigens:

$$v = q * E / f_c$$

# Matrices for protein electrophoresis



=> both types of matrices are electrically non-conductive

### Immune electrophoresis



### **Cross electrophoresis**



# Immunofixation

- 1) electrophoresis in e.g. agarose gel
- 2) diffusion from the agarose gel onto a cellulose acetate membrane (**does not** bind proteins)
- 3) immune complexes precipitate on membrane and are not washed out



### Guest lecture: next week

#### Prof. Tero Soukka

University of Turku, Finland Department of Life Technologies/Biotechnology

- 1 pm: Evolution of lanthanide-based labels for immunoassays
- 2 pm: Research talk open for all



# Thank you for your attention