C8953

NMR structural analysis - seminar 2D NMR spectra, COSY

Jan Novotny 176003@mail.muni.cz

March 20, 2024

▲□▶▲□▶▲□▶▲□▶ ▲□ ▼ ④ ◆ ◎

¹H-¹³C coupled system

15

Problem R-12M. You are asked to interpret the coupled ¹³C NMR spectrum of an oxazoline.

(b) Analyze the spectrum, report all coupling constants in the standard format (${}^{n}J_{X-Y} = 00.0$ Hz).

(c) The spectrum below is of the same compound with one H replaced by D. Where is the deuterium? Place it on the structure, and explain briefly.

▲□▶ ▲□▶ ▲ ミ▶ ▲ ミト 三目 のへで

(d) What is the proton NMR frequency of the spectrometer they were using?_____

¹H NMR spectrum of naringenine in d₆-acetone

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへぐ

¹H NMR spectrum of naringenine in d₆-acetone

2D NMR

Second dimension f₁

- preparation period $\implies \text{coherence}$
- evolution period $t_1 \xrightarrow{FT} f_1$
 - increments
 - evolution of coherence
- mixing period
 - transfer of encoded magnetization
 - measurable signal
- detection of signal $t_2 \xrightarrow{FT} f_2$

2D NMR

2D spektrum

- ► FT in t₁ modulated 1D spectra
- ▶ FT in t₂ 2D spectrum

COSY

- easiest 2D
 experiment
- correlates H nuclei based on ^{2/3}J coupling
- through 2, 3, (4) bonds
- antiphase off-diagonal crosspeak between coupled atoms
- DQF-COSY modification of basic sequence, diagonal crosspeaks in absorption phase

Hints for beginners

- Determination of individual spin systems sharing off-diagonal crosspeaks
- Isolated protons only diagonal crosspeak
- Already known rules: symmetry, diastereotopicity, most shielded/deshielded atoms etc.

COSY : β -cyclodextrine

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

COSY : β -cyclodextrine

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

- direct vs. indirect dimension
- active coupling antiphase crosspeak, passive coupling in-phase

1D¹H of Atropine in DMSO

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 少へ⊙

▲□▶▲□▶▲≡▶▲≡▶ = *)♀(*

¹H-¹H through space correlations (NOESY, ROESY)

