Spektroskopické metody charakterizace nanomateriálů

1. Spektroskopie multifunkčních koloidálních nanostruktur

- reprezentativní strategie kondenzace polymérních a nanočásticových solů
- příklady spektroskopického pozorování fyzikálních a strukturálních vlastností

2. Polovodičové nanočástice v elektrotechnickém sektoru (ZnO, "CdZnSSe")

- Transparentní planární elektrody
- Elektrochromie
- Elektro/fotoluminescenčí systémy

3. TiO₂ v solárním nanosektoru

- Úvod do solární technologie
- Nanofotokatalytické systémy
- Nanofotovoltaika

Chemické inženýrství anorganických nanokoloidů

Multiparametrální syntézy:

Cíl: Monodisperzita, stabilita, bez toxicity, jednoduchou cestou

Sol-gelová Nanochemie

- 1. Molecular bottom-up approach
- 2. High homogeneity of multi-atomic compositions
- 3. Macroscopic property tuning on the molecular scale

Oxidy kovů v alkoholu

Kov = V, W, Sn, Ti, Zr, Ce, Al, Y, Zn,...

L. Spanhel

Komplexace alkoxidů

Snížení reaktivity a protekce vůči srážení

Strategie organizace nanočástic na substrátech

Kontrolované ponořování/tažení substrátu (angl. dip coating)

Centrifugální pokrytí :

Roztok na rotujících substrátech, angl. Spin-on coating

Doctor Blade, spray

Flexible substrates (textiles, plastics)

fs-Laser Printed Freeform 3D Structures

S. Steenhusen, R. Houbertz FhG, ISC, Würzburg, Germany

Laser source: 100-400 fs, MHz-kHz

SHG $\omega \rightarrow 2\omega$ initiates 2PP (340 nm – 540 nm)

Sub-100 nm voxel

Low NA focus

auditory ossicles human middle ear

New generation of nanoinks to come...

Analytic methods employed to study structural evolution in the sol-gel process

NMR, FTIR, Raman, SAXS

Nomenclature and chemical shift in ²⁹Si- and ³¹P-NMR

Control questions:

- 2. Structural formula of the Si-Q² state?
- 3. Structural formulas of X⁰ states (X: M,D,T,Q)?

Condensation degree

NMR-Spectroscopy of ZnO co-doping

FTIR characterizations

Group	λ (cm ⁻¹⁾	Observations
Si-OH	3700-3300	streching Si-O-H
	955-835	streching Si-O
	982-950	bending Si-O-H
Si-O-Si	1090-1020	streching Si-O-Si
	800-780	bending Si-O-Si
Si-O- CH ₃	~ 2860	streching $-CH_3$
	~ 1190	CH ₃ rocking
	~ 1100	streching Si-O-C
	850-800	streching Si-O-C
H ₂ O	3600-3100	
	1640-1615	
CO2	2349	

Interfacial chemistry of TiO₂ xerogel formed in ethanol

Raman spectroscopy in sol-gel process

TEOS/THF/water/HCI

GPTES/APTES/water

What happened?

Small Angle Scattering

 R_g – gyration radius (primary particles and aggregates) V_p – pore and particle volume m_p – particle mass A – specific surface area D_f – fractal dimension Shape of primary particles and aggregates

Orientation and self-organisation

Random porous/2-phase

Crowded particles

Liquid crystalline

Hydrated DNA

Fig. B2. Small-angle scattering curve for a disordered particle network. All structural features appear in the corresponding regions of scattering vector q. R and r denote a mean cluster and particle size, respectively; exponents D and D_s , determining a power-law decay, are a measure of the morphology of network aggregates and particle surfaces, respectively.

1 Chapter, revision

- 1. What are the principal molecular precursors of the sol-gel process used to elaborate glasses, ceramics and hybrid composites;
- To transform Ti(OC₃H₇)₄ into polymeric heterosol containing "Zn-O-Ti" moieties, Zn- acetate dehydrate is used. Hereby, an isopropanolic reactants mixture is refluxed during several hours;

Give the principal chemical reactions taking place in the reaction mixture;

- 3. Using FTIR, various surface states of carboxylates can be identified; explain how?
- 4. Interpret the previous Raman data of the GPTES/APTES/water reaction mixture
- 5. How the Si²⁹ NMR spectrum would look like in the case of a complete TEOS condensation?
- Explain the usefulness of the Porod region in the experimental SAXS and SANS data? (see the log I – log Q plot)

Chapitre 2 Nanocomposites in telecommunication

- **(4)** *Photoluminescing nanoparticles*
- Spectral profile and quantum yield of photoluminescence
- Chemical activation strategies (« core-shell », lanthanide doping, FRET)

Energy diagram macro versus nano

Note:

- $\Delta \psi$ = energy barrier at the interface (> 100 nm)
- E_{gap} = gap energy varies with size

Nanoparticulate agregates

Note:

Surface chemistry, nanoporosity And size are the key parameters !

Transparent Conducting Oxides TCO's

Figure of merit ~ T / R_s

- T = optical transmission (UV : 400-900 nm)
- R_s = surface (sheet) resistance (< 20 Ω)

T and R_s are controled by :

Morphology (porosity, degree of crystallinity) Surface chemistry (traps, oxidizing agents) Defects – intrinsic and extrinsic Doping ionic/cationic

$$R_{s} = \rho / e = 1 / q n_{e} \mu t$$

 $R_s: sheet resistance (Ω/□)$ ρ: electyric resistivity (Ω cm)t: film thickness (< 2 μm) $n_e: number of free electrons / cm³$ μ: electron mobility (cm²V⁻¹s⁻¹)q: elementary chargeN μ q = conductivity (Ω⁻¹ cm⁻¹)

↑µ via morphology& surface chemistry

Optical Spectral Profiles of TCO's

Elaboration methods

JACS 1991, 113, 2826

AZO electrode via sol-gel (ZnO/Al³⁺)

 n_D = refractive index (ZnO bulk: = 2.1)

 Δ O.D. = optical density change (contrast) Q = injected charges (C/cm²)

green to brownish

Electrochromic cells design (global overview)

Viologenes (methyl-, ethyle-) at the TiO₂ NP's interface

TiO₂/MV²⁺⁺LiI

bleached

$TiO_2/MV^{+} + e^{-} + Li^{+} + I^{3}$

darkened

Thin film technologies

- 1. rf-sputtering
- 2. CVD (molecular precursors of W, Nb, Ti)
- 3. Sol-gel
 - WO(OEt)₄, WO₂(OEt)₂
 - W/H₂O₂/(COO)₂
 - Nb(OR)₅
 - Ti(OR)₄
 - Ni(Ac)₂ 4H₂O/MeOH/dimethylaminoethanol

Pilkington, St Gobain, Daimler Chrysler, Renault, Toyota, Skoda etc...

Electroluminescence

EL - Energy diagram

EL- Figure of merit $\eta_{el} = \eta_{el}$, N_{photons} / N_{el,injected}

Global design of hybrid cells for intersectorial applications

Source: QD Vision Texas

Photoluminescing nanoparticles

(2) NP carriers of lanthanides

③ NP carriers of FRET

CdS, CdSe, ZnS, CdTe, ZnTe, Silicium, Carbon! etc...

Cations TR (III): Er, Yb, Tm ZnO, CdSe, NaYF₄

Silica, Au, Ag Organic chromophors (Er, Yb)@NaGdF₄

1 General introduction

Φ < 0,1%

L. Spanhel

Luminescence Activation via « core-shell »

2. Shell nanochemistry (epitaxy, strong chemical bonds)

Nanocomposites "Core-Shell" CdS-M(OH)₂

JACS 1987

Core-shell activated luminescence

Bawendi et al, MIT; Alivisatos et al, Berkley

2 Lanthanide doped Nanoparticles (Ln@NP's)

Figure of merit ~ N_{Ln} (cm⁻³) τ (ms) T (%) / η (p_{phonon})

- 1. $N_{Ln} = 10^{20} 10^{21} \text{ Er}^{3+}/\text{cm}^{3}$
- 2. τ = life time of luminescence Er³⁺: 10-25 ms
- 3. Film transparency
- 4. Luminescence efficiency (phonon energy!)

Luminescence efficiency

$$\eta = \frac{W_{r}}{W_{r} + W_{nr}} = \frac{W_{r}}{W_{r} + Ae^{-Bp}}$$

W_r = probability of recombination (radiative)
W_{nr} = Probabilité de la recombination (non-radiative)
p = number of phonons bridging the fundamental gap
A,B = empirical constantes

À savoir:

Phonon = elastic waves produced by collective atomic vibrations

$p = \Delta E / \hbar \omega = 6537 \text{ cm}^{-1} / \hbar \omega$

Vibration	ħω (cm ⁻¹)	p - phonons
O-H	3000-3500	2
С-Н	2800	2-3
P-O-P	1300	5
Si-O-Si	1000	6
M _x O _y M _x Chalc _y	300-800	8-20
fluorides	200-400	15-30

Note:

To maximize the fluorescence intensity

1. Avoid Ln- ionic agregations

2. Avoid high energy phonons (OH, CH)

Sciences Chimiques V&C L. Spanhel

Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF₄ Nanocrystals**

By Stephan Heer, Karsten Kömpe, Hans-Ulrich Güdel, and Markus Haase*

Adv. Mater. 2004

3 Nanoparticles = Carriers and Activateurs of FRET

FRET = « Förster resonant energy transfer »

Nanoparticules de NaGdF₄ dopées par Er³⁺ et Yb³⁺ pour l'upconversion de la luminescence

Vetrone et al, Adv. Funct. Mater. 2009

Wang&Tang, Nanoletters 2006

Greffage de trois chromophores organiques en tandem sur les NP de la silice

L. Spanhel

Chapter 2. Revision, questions:

- 1. Explain energy diagram differences between macro- and nanoelectrodes in contact with electrolyte
- 2. Knowledge of crucial phys. parameters governing the performance of TCO electrodes
- 3. Strategy of controlling mobility and concentration of free electrons
- 4. Describe the component design and chemical composition of catodic and anodic electrochromy device
- 5. What are the competing processes taking place in photoexcited semicondutor nanoparticles?
- 6. What are the strategies of photoluminescence activation?
- 7. Explain the energy diagramme of strongly luminscent SC NP's
- 8. Explain the close relation between photovoltaics and electroluminescence
- 9. What are the crucial parameters of lanthanide based luminescing devices?

nanostructures, metamatériaux

Photocatalysis applications

- 1. Organic preparative synthesis
- 2. Environmental detoxification
- 3. Self-cleaning windows
- 4. Solar water splitting (solar fuels, O_2 , H_2)

ZnO/Fe³⁺

TiO

coatings

- 5. Carbon dioxide transformations
- 6. Biosystems in photocatalysis

ZnO

Crucial parameters and issues in Nanophotocatalysis

spectral profile based selection visible light active nano's are needed (400 – 600 nm)

thermodynamics based selection comparison of band energy levels with redox potentials

kinetics oriented selection heterostructures, dopings and surface modifications

morphology of immobilized nanostructures particle shapes, aggregate architectures and mesoporosity

integration into photoreactor prototypes on various scales nanocolloids, powders, thin coatings, photoreactor design

Photocata selection :

- 1. Optical Gap
- 2. Energy levels of VB and CB
- 3. Photostability
- 4. Toxicity
- 5. Applications (energie/environnement/preparative synthesis

© Belin Éducation/Humensis, 2020 Enseignement scientifique Terminale

Note:

- 1. To eliminate the rapid thermal relaxations and recombination's is the biggest challenge
- 2. Efficient photo catalysis requires a closed contact (covalent, electrostatic) at the interface NP/molecule
- 3. The best actual approach is the spatial charge separation

Spatial separation of charge carriers

Viologen photoreduction in CdS/TiO₂

Solar water splitting

Photocatalyse environnementale

*TiO*₂ + UV + *dioxygène* + *l'eau*

Photo-minéralisation de polluants organiques

C _x H _y Cl _z	$\rightarrow \rightarrow \rightarrow$	$CO_2 + HCI + H_2O$
C _x H _y P _z		phosphates
C _x H _y N _z		nitrates
C _x H _y S _z		sulphates

Purification des eaux industrielles

Super-Hydrophilie

Auto-nettoyage et stérilisation solaire Interfaces résistantes aux bactéries et virus

Florence Benoit, Toulouse

Superhydrophilic ZnTiO₃/TiO₂ films in Photocatalysis

Photodegradation of Fetty Acids, Xe-lamp, air, rel. humidity: 80%

Photovoltaics: forecasts and actual efficiency statistics

General introduction to solar cells

Characterisation of solar cells

ŋ

Cellules solaires à base de semiconducteurs oxydes photo-sensibilisés

Sciences Chimique de Renne L. Spanhel

Organic Perowskite solar cells (AMX₃)

JACS, 136, 622, 2014

HTM = hole transporter zone Organic polymers

MA: Methylammonium (CH₃NH₃)⁺

HA HA

FA: formamidinium $HC(NH_2)_2^+$

Préparation simple de cellules de Pérovskite

Small Volume 11, Issue 1, pages 10-25, 30 OCT 2014

Chapter 3. Questions, revision

- 1. Difference between « nano versus macro » in semiconductor photocatalysis.
- 2. How many elementary charges are needed to transform :
 - a) water into hydrogen and oxygen
 - b) CO₂ into CH₄?
- 3. What are the essential radical states formed in photoexcited titania? Which applications are related to this process?
- 4. How function classical macroscopic and modern nanoscaled solar cells?
- 5. Give ay least three solar antennas used in nanoscale photovoltaics.

