1. Spektroskopie multifunkčních koloidálních nanostruktur - reprezentativní strategie kondenzace polymérnfch a nanočásticových solů - příklady spektroskopického pozorování fyzikálních a strukturálních vlastností 2. Polovodičové nanočástice v elektrotechnickém sektoru (ZnO, „CdZnSSe") - Transparentníplanární elektrody - Elektro/fotoluminescenčí systémy - Elektrochromie - Piezoelektrické nanogenerátory 3. Ti02 v solárním nanosektoru - Úvod do solární technologie - Fotokatalytické systémy - Nanofotovoltaika ; Sciences Chimiques . J L de Rennes ^ L. Spanhel JMI Chemické inženýrství anorganických nanokoloidů Multiparametrální syntézy: Cíl: Monodisperzita, stabilita, bez toxicity, jednoduchou cestou Prekurzor I + Ligand Komplexace Prekurzor II + Ligand Nukleace/Zrání (D Modifikace povrch/interior Čištění v y v v Voda/Etanol/Koordinační solventy (- 40°C < T < +360 °C) Institut desí Sciences Chimiques L ™"SB de Rennes ^ *—s_ v&c L. Spanhel Multifunkcionalita )-L-® Bi-funkcionalita Jádro/Slupka co-dopování °Cbo° El. náboje Stabilizátor Alkoxidy condensation sol polymeric drying * gel alco-aqua- OO o° particulate sintering xerogely Products: fibers, layers, membranes, monolithes, nanocomposites, powders ; Sciences Chimiques -J L de Rennes KMiK/ *—vac ^ L. Spanhel Oxidy kovů v alkoholu Kov = V, W, Sn, Ti, Zr, Ce, AI, Y, Zn,... R R Nanočásticové soly | IUI | Sciences Chimiques Zp UTU í / de Rennes L Spanhel Komplexace alkoxidů Snížení reaktivity a protekce vůči srážení Chelating Agents X X \ / T i Carboxylates R O R O \/f \// O '"o o>~;-o \ / I I y M M Sulfonates R M ľ 1 ? I M |>Diketonates ot-Amino- Phosphonates _ carboxylates _ M(OR)n hydrolýza & kondenzace M = V, W, Sn, Ti, Zr, Ce, Al, Y, Zn,. /On^ kondenzace /Ck /v R-( ^MÍOR),,., -------------------- Q-l ; Sciences Chimiques _J Ĺ ""K de Rennes '""^ L. Spanhe/ H. Polymeric sols based on nano-ZnxTiyOzheterostructures (nano-alloys) EtOH ultra pure, 80° C 4 Zn(Ac)2-2(H20) -► 2 HAc + 7 H20 + [Zn40](Ac)6 EtOH Zn(Ac)22H20 TBT: Ti(OBut)4 TBT: Ti(OBut), Chelation (HAc) Esterification (HAc + EtOH) Hydrolysis / Condensation (H20) Sol polymerique „Ti-0-Ti", „Ti-0-Zn-0-Zn" 80-120°C Z. Phys. Chem. 2007 Adv. Mater. 2006 Sciences Chimiques L UM""" de Rennes L. Spanhel applicable for other heteronanostructures pour les autres composites: NiTiOz, ZnFe204, ZnGeOy ZnGa02, etc.. Molekulární prekurzory sol-gelové nanochemie Polymerizovatelné alkoxyláty kovů M = V, W, Sn, Ti, Zr, Ce, AI, Y, Zn,. Opcionální použití inertních skupin 1 M- Anorganické 1 OR kondenzace Anorganické kondenzace Organické polymerizace (RO)3Si (RO)3Si- o o \7 GPTES MPTES epoxidy, metakryláty m Sciences Chimiques f Rennes L Spanhel Strategie organizace nanočástic na substrátech Tvorba tenkých vrstev • dip-coating • spin-coating • spray • Doctor Blade _ii(OEt)3 Adhéze ! Kovalentní vazby Elektrostatické spojení E m o o (X: SH, NH2/ C00) NP H-O-Si X- n > o > o kW, 6 Sciences Chimiques ř ""ís de Rennes o V&C L. Spanhel Landau- Levichova teorie: r i 0,94(n vt)% (Ygi)/6 (p g)/: e tloušťka vrstvy r| dyn. viskozita Ygi napětí fázového rozhraní p hustota roztoku g gr. zrychlení (9,806 m/s2) vt rychlost ponoru Solgelway Paris ILJI J, Sciences Chimiques mí ( U"K de Rennes iXy^ř *~J~-~ V8.C L. Spanhel Centrifugální pokrytí: Roztok na rotujících substrátech, angl. Spin-on coating e\jjm] = 3-77 tloušťka filmu o počátková tloušťka r| dyn. viskozita co rotační rychlost substrátu p hustota roztoku t doba rotace i„,,i,Jk) ILJI J, Sciences Chimiques Wh' ( U"K de Rennes iXy^ř *~J~-~ V8.C L. Spanhel mobile substrates 'II II ' Institut des) > IUI % Sciences Chimiques 5 Iml 5 r-?,B de Rennes \MIk/ *-^> v&c '""^ L. Spanhe/ S. Steenhusen, R. Houbertz FhG, ISC, Wurzburg, Germany Fraunhofer ISC auditory ossicles human middle ear m XL Sciences Chimiques L U"SS de Rennes 9- o vac L. Spanhel Analytic methods employed to study structural evolution in the sol-gel process NMR, FTIR, DRX, SAXS R,Si-OSi R, — Si Nomenclature and chemical shift in 29Si- and 31P-NMR OSi ' OSi- I R —Si—OSi- OSi- I I OSi- -SiO-Si-OSi- I OSi- TMS M1 OSi D° D2 T° T3 0 NH4H2P04 H3P04 QC Q1 ■20 ■40 -60 ppm -80 OH I 0= P — OP- I OP- Q2 ■100 ■120 Control question: 1. Indicate the structure of P205 and estimate the chemical shift position of the resonance 2. Structural formula of the Si-Q2 state? 3. Structural formulas of X° states (X: M,D,T,Q)? ; Sciences Chimiques -J L de Rennes KMiK/ *—vac ^ L. Spanhel Peak (ppm) Phosphorus Atom A (PsOiu5) -3.750, -3.904 A2 -4 289 1 m p u rity -17.964, -18.118, -18.Z73 Al -20.059 1 m p u rity B (P4O12") 2.757 byproducts/impurity 22 137 Bl -5.474 CI -20.93 Dl HOSPHONATES TERS O O OOO O II II II II II II •/P'"— — 'P> --------P^O^i -"o.r........\ n'? "OH R-0 ^ 'OH R.O | 'OH OH^^ "'0 " pO^^ -"o.(........} of j O H RiOxJ""R3 OR2 Phosphonates OH OR2 Phosphate Phosphate monoesters dieslers O II OH POLYPHOSPHATES 0 o II II 1 OH OH Polyphosphates OH HO^J 'OH OH Phosphate O o B " 0H I i OH OH OH Pyrophosphate 20 15 10 0 6 (ppm) in ■15 —r— -20 Application of 29Si - NMR TEOS Condensation degree -90 -1O0 -110 -120 [ppin] Condensation degree ; Sciences Chimiques C U"SS de Rennes »— vac L. Spanhel NMR-Spektroskopie nanokoloidu Er@ZnO ; Sciences Chimiques _J Ĺ U"K de Rennes ^ L. Spanhel H. Group A (cm1' Observations Si-OH 3700-3300 streching Si-O-H 955-835 streching Si-0 932-950 bending Si-O-H Si-O-Si 1090-1020 streching Si-O-Si 600-730 bending Si-O-Si Si-O-CH3 -2860 streching -CH3 - 1190 CH3 rocking - 1100 streching Si-O-C 650-800 streching Si-O-C H20 3600-3100 1640-1615 C02 2349 HO - Si - O - Si (OCH3)2 TMÖS/EtOH/H20, pH 4,9 2400 1900 [1/cm] 1400 ODO 400 ; Sciences Chimiques -J L de Rennes KMiK/ *—=~ vac ^ L. Spanhel Interfacial chemistry of Ti02 xerogel formed in ethanol Ti(OR)4/HAc/EtOH v(oh) v7Ch) T-1-■-1-1-1-1-J-■-J-1-1-1-1-■ 3800 3400 3000 2600 Wavenumber, cm1 A Cri CH3 o o Av v(coo) purified acetates 1800 1400 1000 600 |A V > 180 cnr |= 130-180 cm1 CH3 \ o o Ti 100 cnr monodentate bridging bidentate chelate bidentate ; Sciences Chimiques .J L de Rennes KMiK/ »- vac ^ L. Spanhel H. Identifikace nanokrystalinity a zjištění velikosti NČ metodou rentgenové difrakce (XRD) Zdroj Detektor Bragova rovnice pro výpočet velikosti NČ LMHxcosG T střední velikost nanokrystalků 29 úhel pozorování HWFM šířka difrakčního peaku X vlnová délka zdroje paprsků X Sciences Chimiques L Spanhel ~ 5 nm ~ 200 nm 46 13 26(deg) 50 Makroskopická reference KCI 20 (deg) ________JL 25 35 45 55 20 deg C IUI 1 Sciences Chimiques % UHÍ1 L de Rennes L Spanhel Small Angle Scattering source X-Rays (SAXS) Neutrons (SANS) Photons UV (QELLS) sols gels powders films X-rays Sensitive to electron density contrast Neutrons Sensitive to nuclear scattering length contrast I =scattered intensity 4tt . (0\ q = —sin q = scattering vector D = dimension of the structure ; Sciences Chimiques .J L de Rennes KMiK/ »- vac ^ L. Spanhel H. (primary particles and aggregates) Vp- pore and particle volume mp- particle mass A - specific surface area Df-fractal dimension Shape of primary particles and aggregates Orientation and self-organisation Dilute particles Crowded particles ^ IP Random porous/2-phase Liquid ciystalline »> V • Hydrated DNA ; Sciences Chimiques .J L de Rennes KMiK/ »- vac ^ L. Spanhel H. Continuum Network Surface Cluster Particle Atoms log scattering vector Fig. B2. Small-angle scattering curve for a disordered particle network. All structural features appear in the corresponding regions of scattering vector q. R and r denote a mean cluster andparticle size, respectively; exponents D and Ds, determining a power-law decay, are a measure of the morphology of network aggregates and particle surfaces, respectively. Note: masse ~ RD Euclidien objects D = 3 Mass fractal objects 1 < Df < 3 i„,,i,Jk) HJI J, Sciences Chimiques mi I "-SK de Rennes iXy^ vac L. Spanhel 1 Chapter, revision 1. What are the principal molecular precursors of the sol-gel process used to elaborate glasses, ceramics and hybrid composites; 2. To transform Ti(OC3H7)4 into polymeric heterosol containing "Zn-O-Ti" moieties, Zn- acetate dehydrate is used. Hereby, an isopropanolic reactants mixture is refluxed during several hours; Suggest the principal chemical reactions taking place in the reaction mixture; 3. Using FTIR, various surface states of carboxylates can be identified; explain how? 5. How the Si29 NMR spectrum would look like in the case of a complete TEOS condensation? 6. Explain the usefulness of the Porod region in the experimental SAXS and SANS data? (see the log I — log Q plot) ; Sciences Chimiques -J L de Rennes KMiK/ *—vac ^ L. Spanhel M 2. Polovodičové nanočástice v elektrotechnickém sektoru (ZnO, „CdZnSSe") - Transparentníplanárnf elektrody - Elektro/fotoluminescenčí systémy - Elektrochromie - Piezoelektrické nanogenerátory Strategie prezentace • Teorie a kritické fyzikální porometry kontrolující kvalitu komponent • Strategie syntézy a integrace nanočástic • Srovnání Nano versus Macro ; Sciences Chimiques .J L de Rennes ^ L. Spanhel n. (D Transparentní elektrody TCO = transparent conducting oxides £ Sciences Chimiques ä L ""is de Rennes # vac L Spanhei (2) Elektroluminescence + i—' toS1** Rekombinace > ~~—1 ~i tT Zona zbarvení Elektrochromlsmus +— — QSklad a lavinaQ Varistory Silové mech. pole Piezoelektrické nanostruktury Srovnání energetických diagramů „macro versus nano" interface interface ® - ■» ÄÉ ■ Instltiitdíí) i ILJI £ Sciences Chimiques w* L. Spanhel v&c Do notýsku: Á\|/ = výška bariéry závisí na velikosti ! Kritické parametry: Ne = koncentrace nositelů náboje (v cm3) Dp = velikost částic E = elektrické pole (V/cm) E[eV] 0 1 H 2 3 4 p-n Diode Nanoparticulate aggregates Nanoporous ceramics OOÜÜ Omatrix w ^ On Nanocomposites ■ ■» ir- Institut dei) IUI % Sciences Chimiques VBr/ *-^> vac W» L spanhe/ anode cathode Note: Surface chemistry, nanoporosity and NP size ar'e crucial parameters! Transparentní elektricky vodivé oxidy angl. « transparent conducting oxides TCOs » Měřítko kvality ~T/RS T = optická transmise (vis : 400-900 nm) Rs = plošný odpor (< 20 Q) Makro (bulk) Specifický povrch ««JM1. Institut des) I ILJI -„ Sciences Chimiques Ĺ ""SB de Rennes «v- vac L. Span hei Ta Rs závisí na : Morfologii (porozita, stupeň krystalizace) Povrchové chemii (elektronické pasti, akceptory elektronů) Mřížkové a povrchové defekty Dopování 24 Rs =p/t = l/eNent Rs: plošný odpor [Q/D) p: relativní odpor (Q cm) t: tloušťka filmu Ne: koncentrace volných elektronů (l/cm3) u.: mobilita elektronů (cm2V V1) e: elementární náboj Ne u. e = el. vodivost (Q 1 cm-1) H20 , h + oh- ^u. morfologie & povrchová chemie 10 i io2N CM O 10 m m Sio21 0 c 1 lO20^ LU 10 -1—i—......1 i i.iiiI-1—i—i ■ * é ié!■ Bi Cu W m -.Na : - '"l0:O'cm" / In O ľ ^.i04O*cm' 10*fi" cm SnO 2-x 0.1 rrrr-1 10 100 *». GaAs '1000 Electron Mobility. ^(cmVV1) t ne : n doping ITO:lnt+xSnx4+03ex ATO: Sn4_+xSb5x+02ex FTO: Sn4+02_xFx ex AZO : Zní_xAľxOex lili ■'. Sciences Chimiques 11*11 £ Ĺ ""-"» de Rennes L. Spanhel -| f* - Band gap around 3 eV 9 3 5 10 JO 30 50 Wavelength (pinl Interference fringes due to the different refractive indices of substrate and ITO film O - - - Jm^ Institut des) ft IUI is Sciences Chimiques t IMI 5 L "™ de Rennes L. Spanhel Elaboration methods Pulsed Laser Deposition Sputtering Sputter cathode - Vacuum chamber J_ TJÜ ó/b O UA) i cf^ Unhealed giass Sputter plasma M(OR)x Spray pyrolysis SPRAV PYROLYSIS Spray nozzle Aerosol 1/ 006 ó o o ü/ü ó ó ü o —1 ' Heated glass H 2 HAc + 7 H20 + [Zn40](Ac)6 (T) Nanoparticulate sol 2.5 nm < size < 5 nm [Zn40](Ac)6 Polymeric sol size < 1 nm Zn(Ac)22(H20) 2-aminoethanol NH O LiOH-H90 OH i IUI S Sciences Chimiques 5 IHII $ L de Rennes vac 'w L. Spanhel TCO based on ZnO/AI3+ c o Doping AI-sec(OC4H9)3 coatings sintering 30 0.5 M Plasmon L ~ 3,9 |nm 3500 2500 1500 Wave number [cm1] 500 - ' Institut des) ILJI k Sciences Chimiques L ™S!B de Rennes ■^mfj •—♦ vac ^ L. Spanhel Ne~ 2 1020 cm3 ue < 10"3cm2/Vs Rs > 1000 Q/D Do notýsku: 1. Doped oxides behave like metal NP's (localized plasmon) 2. Nano- et mesoporous morphologies affect strongly the electron mobilities nD ~ 1.7 u = 0.001 cm2/Vs (Zn40)Ac OH" nD ~ 2.1 Post-condensation: 1. Pore filling 2. Elimination of 02, H20 Creation of conducting chanels u = 9 cm2/Vs nD = refractive index (ZnO bulk: = 2.1) 0.5 1.0 1.5 2.0 2.5 Mum] M $ IUI S Sciences Chimiques L ""SS de Rennes L. Spanhel Electroluminescence cathode 0 photons Electroluminescence yield lei = ^photons ^ ^el,injected ou Tie,- 0,25r|p[ ^ Energy yield lenerg = lei "V /eV Figure de merite - T r|p, Wr/ Vj -Hp, = photoluminescence quantum yield Wr = recombination probability (kinetics!) V = applied electric voltage e = elementary charge hv = photoenergy j = current density I Hut deil & Sciences Chimiques S L ""?>" de Rennes *—•—- vac L Spanhei Strongly fluorescent SC nanostructures for Q-OLED's « Band gap engineering » Avarage size: 3 nm -10 nm I c !_ o ra o QJ Q. ra ra 1 - Sen i conductor LED nano macro ; i 1.55um Semi-metal „----1---^N . / CO a it Vj I TJ V) \— K V O "D ^ /™ £ H H « Q. CO W I- 0 the energy of the lowest excited state becomes i™f mh j 2/T \ m ].8*2 . e "electrostat. "cinetique "interface 4.3 4 0 - 3.0 > > 25 a: u- 5 Z.O 1.5 I C 3.1: 0 "i-1—r-r-|—r—i-1—|-1-r LUMOl HOMO BC BV GaAs \ inSb - . ...i I I_LJ_I_I_L 20 30 4050 60 90 100 150 300 300 500 diameter (a) ■1i ']& ...«.lfc> > IUI ^ Sciences Chimiques % U"U i L de Rennes L. Spanhel i minimi 300 350 400 450 500 550 600 650 700 750 H_ Wavelength (nm) _I Source Gaponik N, et a I, Small 2010;6:1364-78. Talha Erdem and Hilmi Volkan Demir DPI: https://doi.orR/10.1515/nanoph-2012-0031 mm*: Sciences Chimiques ( de Rennes > 0) c 0) — ZnO - - ZnO+A ZnO+B ZnO+C Tnr « T, O<0,1% I ILJI ;; Sciences Chimiques C ""SB de Rennes »- vac L. Spanhel 550 650 Wavelength (nm) Quantum yield of luminescence photons emis 0 = photons absorbes Life time of charge carriers 5 -10 nm light NP 1 ns Do notýsku: Blocking of ultrarapid relaxation and recombination of electron/hole pairs is needed to activate luminescence 1 U.S — logx Life time -T Recombinations/Relaxations of photoexcited charge carriers O- - pjM^ Institut des) 7 IUI & Sciences Chimiques t IMI $ L de Rennes \W/ vac ^ L. Spanhel Thermodynamics of luminescence activation > CD >^ CD l_ CD tz LU electron-hole confinement shell > CD rgie / CD core LU © © T shell 1 VB -corrosion Am mfc IratliiitdJ) - ILJI * Sciences Chimiques L ""SB de Rennes «v- vac L. Spanhel Do notýsku: 1. Choice of SC to be coupled is important 2. Chemical strategy of shell deposition is crucial Nanocomposites "Core-Shell" CdS-M(OH)2 Core-shell activated luminescence Bawendi et al, MIT; Alivisatos et al, Berkley TOPO Cd(CH3)2 Se (s) + TBP (I) Se=P(C4H9)3 (Meß'Oß/Ar Zn(CH3)2 i IUI \ Sciences Chimiques # ^ de Renn« L. Spanhel TOPO: O = P(C8H17)3 Hydrophobic, soluble in org. solvents like toluene !! THE NOBEL PRIZE IN CHEMISTRY 2023 Moungi G. Bawendi Louis E. Brus Alexei I. Ekimov "for the discovery and synthesis of quantum dots" THE ROYAL SWEDISH ACADEMY OF SCIENCES Design of EL components for intersectorial applications cathode anode p-n - diode (organic polymers) Substrate /—\P-SC i \ '—Í — n O SOj Na* PPV PEDOT = poly-(3,4-ethylenedioxythiophene) PSS = poly( styrene sulfonate) PPV = poly(p- phenylene vinylene) Luminophores and conductors p or n Initllut desl Sciences Chimiques ■SS de Rennes vac L. Spanhel Nanoparticles acting either as an antenna or as luminophore Do notýsku: 1. Hybrid cells are useful for both, solar panels or electroluminescent displays 2. Most crucial is to control and to vectorize the transport of charge carriers Source: QD Vision Texas « Q-OLED » Quantum dots cathode OSC = organic semiconductors PEDOT = poly-(3,4-ethylenedioxythiophene) PSS = poly( styrene sulfonate) PPV = poly(p- phenylene vinylene) Source: SAMSUNG ,f ™V ,„„„Jb) - IUI ;; Sciences Chimiques L ""SS de Rennes »—, vac m L. Spanhel CE(^) = n=AO.D. (k)/Q r\ = CE = conversion efficiency O.D. = optical density Q = charge carriers involved (C/cm2) t IIJI is Sciences Chimiques t I HI I 5 L "™ de Rennes \W/ vac 'w L. Spanhel Cathodic coloration : W03, Mo03, V2055 Nb2055 Ti025 Cu20 W03 + ne- + n M+ w6+-o2--w6+ blue MnW05 W6+-02"-H+(W5+) Yellow to blue Anodic coloration : NiO, CoO, Cu205 Ir02 colore Ni(OH)2 NiOOH + H+ + e- NiO + Ni(OH)2 Ni203 + 2H+ + 2 e" Pale green to brown cathode > c LU BC W03/W5+ BV NiO/Ni3+ anode O - - - Jm^ Institut desj t IIJI & Sciences Chimiques t I NI I $ L de Rennes \W/ vac ^ L. Spanhel Cellules multicouches électro-chromiques 1-4V verre ou plastiques 0 Electrode d'insertion(l) Couche active Conducteur ionique Couche OCT Oxyde Conducteur Transparente ITO, FTO, AZO molecules nonoporticules polyměres Paramětres critiques: Mottrise de lo conductivité électronique and ionique Durée de vie: 104 - 10s cycles (5-20 ans) Dynomique de lo coloration/decoloration - ms, sec, min) Temperature : entre - 50°C et + 100°C Transparence optique des multicouches minces ® Electrode d'insertion(2) Stockage des ions H+, Li+, Na+ Couche OCT Oxyde Conducteur Transparente ITO, FTO, AZO verre ou plastiques Conducteurs ioniques: Gels, membranes (organo)céramiques - Zr02, Ta205 - Hybrids organominéraux - polyelectrolytes: PEO, PVA iJMÜ Sciences Chimiques L ""SS de Rennes »- vac L. Spanhel Ti02/MV2+ + Lil Ti02/MV ++e+Li+ + l3- •"^■l ll^- IratlliitdJ) - I Ml * Sciences Chimiques C ""SB de Rennes «v- vac L. Spanhel decolore colore 1. rf-sputtering 2. CVD (orgono-compounds of W, Nb, Ti) 3. Sol-gel - WOiOEt)^ W02(OEt)2 - W/H202/(COO)2 - Nb(OR)5 - Ti(OR)4 - Ni(Ac)2 4H20/MeOH/dimethylaminoethanol P, = induced electric polarisation (C/m2) sr = dielectric permittivity Dp = nanoparticle size Structural key parameters - onisotropy - size, shape and orientation of nanostructures Piezopolymers (synthtic and nartural) Poly-vinylidene-fluoride (PVDF) poly(l-lactic acid) (PLLA) Kollagen, Keratin, muscles, etc. Nanocomposites : (tubes, spirales, plates, etc.) Applications: 1. Piezovoltaics, piezotronics -sdbj 2. Biomedicine (théranostique, tissue regeneration, etc..) IUI «Sciences Chimiques ... ■ > 181/ deRevn&c 3. Telecommunication (sonar, smartpnone speakers etc.) L. Spanhel Do notýsku: 1. Faktor tolerance -1 určuje aktivitu PE: t~(Ro + RA)/(Ro + RB) t = 1, ideální kubická isotropie, PE je neaktivní t< 1, anisotropie, předpoklad PE aktivity 2. Kontribuce iontových a kiovalentních vazeb kontroluje směr P E ; Sciences Chimiques j L ""SB de Rennes vac ^ L. Spanhel m Wurtzite and Zincblende « AB » cations: Zn, Cd, Pb, Hg, Al, Ga, B anions : O, S, Se, Te, N; etc Cubic network (Euclidien) Octahedral cage Y Building stone AB4 ou A4B Cubic network (fractal) Cuboctahedral cavity (cage) To note: Hexagonal nanostructures are PE actif Growth along the c-axis (002) Fractality is the origin of PE Hexagonal anisotropy te. ©* Force field vector G i Sciences Chimiques ' ""SB de Rennf- »—«^-~ v& L. Spanhel Synthesis of ZnO nanorods in water Seed layer via Sputtering or Sol-Gel Zn(N03)2/R-NH2/H20 Zn2+ + 40H = [Zn(OH)4]2" Zn[(OH)4]2" = ZnO + H20 + 20H * IUI S Sciences Chimiques % llflJ J L U"SS de Rennes \H!K# vac ZnO nanorods in hexane Zn(Ac)2-2(H20) 280°C Argon Ligand: kyselina olejová, C18, b.p. 360°C Solvent: trihexylamin, C6, b.p. 270°C tridodecylamin, C12, b.p. 300°C Tvorba a srážení Ultracentrifugace Do roztoku hexanu Group d'O'Brien Journal of Nanomaterials Volume 2007, Article ID 73824, doi:l0.1155/2007/73824 CH3(CH2)4CH2-N CH2(CH2)4CH3 H3C(H2C)ii\ /-(CH2)iiCH3 N CH2(CH2)4CH3 tloušťka: ~ 3 nm 60 nm C IUI 1 Sciences Chimiques % lew 1 L de Rennes L. Spanhel Exemple of piezoelectric nanogenerator Vertical or horizontal alignment inside of insulating polymeric matrix m electrodes Measured parameters: Voc-tension (till 1 V) lsc-current (till 2 mA/cm2) Electricity output -0.4 mW/cm2 Ref.:Pr. Wang iJfe) Georgia Tec 2006 Sciences Chimiques I ""S3 de Rennes 9—— vac L. Spanhel Ground state Applied force field with el. charge flow Control question: How the energy diagram of a Schottky nano-junction would look like? ^593 Revision, questions: 0. Understanding the differences in energy diagrams of macro versus nano 1. Knowledge of crucial phys. parameters governing the performance of TCO electrodes 2. Strategy of controlling mobility and concentration of free electrons 3. Address the key physical parameters controlling the efficiency of piezoelectricity 4. Explain principle functioning (structure related rules) as well as the energy diagram of piezoelectric nanogenerator 5. What are the competing processes taking place in photoexcited semicondutor nanoparticles? 6 What are the strategies of photoluminescence activation? 7. Explain the energy diagramme of strongly luminscent SC NP's 8. Explain the close relation between photovoltaics and electroluminescence 9. Describe the component design and chemical composition of catodic and anodic electrochromy device O- - Jm^ Institut des) 7 IUI is Sciences Chimiques t I HI I 5 L de Rennes \W/ vac 'w L. Spanhel 1. Spektroskopie multifunkčních koloidálních nanostruktur - reprezentativní strategie kondenzace polymérních a nanočásticových solů - příklady spektroskopického pozorování fyzikálních a strukturálních vlastností 2. Polovodičové nanočástice v elektrotechnickém sektoru (ZnO, „CdZnSSe") - Transparentníplanární elektrody - Elektro/fotoluminescenčí systémy - Elektrochromie - Nanovaristory - Piezoelektrické nanogenerátory 3. Ti02 v solárním nanosektoru - Úvod do solární technologie - Fotokatalytické systémy - Nanofotovoltaika ; Sciences Chimiques . J L de Rennes ^ L. Spanhel JMI Veselovskii & Shub 1952 Fujishima & Honda 1972 colloids crystals ZnO powders TiO, h202 h20 h2 + 02 ° o° 8 o o preparative org. synthesis environmental/biomedical applications T\02, ZnO, Fe203/ CdS, ZnS, graphene, fullerene 1839 Photoelectric effect A. Becquerel 1954 1980 nanotechnology 2020 History of solar technology PV1. generation Chapin, Fuller, Pearson mono-Si a-Si, CdTe, CulnSe- PV 2. generation nanostructures PV 3. generation -► metamaterials ů|. ■i^J1. Institut des) é IUI š Sciences Chimiques % IMI S L "™ de Rennes ^ L. Spanhel ..^ Institut dps) i IUI \ Sciences Chimiques g I "*SS de Rennes "A-^i^/ to——- vac -=W L Spanhe/ Solar energy harvesting Sun induced charge creation in Nature, laboratories and some future visions Photosynthesis (~2%) MnxOy H90 1017 photons/cm2 sec ! Photocatalysis (~ 80%) Photoreduction Photooxidation Neutrinolysis Emerging ideas 1011 neutrinos/cm2 sec ! Photocatalysis applications 1. Organic preparative synthesis 2. Environmental detoxification 3. Self-cleaning windows 4. Solar water splitting (solar fuels, 02, H2) 5. Carbon dioxide transformations 6. Biosystems in photocatalysis 5>(B aa^. Institut desj - IUI \ Sciences Chimiques m. L ""Sä de Rennes ■K^i^tf vac ^ L. Spanhel ► spectral profile based selection visible light active nano's are needed (400 - 600 nm) ►thermodynamics based selection comparison of band energy levels with redox potentials ► kinetics oriented selection heterostructures, dopings and surface modifications ► morphology of immobilized nanostructures particle shapes, aggregate architectures and mesoporosity ► integration into photoreactor prototypes on various scales nanocolloids, powders, thin coatings, photoreactor design fimm Institut des) i IUI š Sciences Chimiques r IHU ä C "™ de Rennes J^ L. Spanhel Vacuum level E [ GV ] .0,« jn^r. IratlliitdJ) - Illl & Sciences Chimiques ^ L. Spanhel 0 " 1 H 2 3 4 Physical scale SHE [V] -4 --3 --2 -1 -I 0 +1 ■ +2 " +3-f Electrochemical scale Photo-oxidation EVB > E°(D/D+) ! Thermodynamics of charge carrier transfer CB © Photo-reduction ECB < E°(A/A-) ! Ehn > Eg Eformation of Cu nanoislands on Ti02 1. Cu2+, NaBH4 2. Cu2+, isopropanol in water UV-light —I Acceptor + 0,34 (Cu2+/Cu°) *\ \ \ \ s \ v 0_| + 0,1 (e",Cl5i-Ti02) 0,48 (H3B03/BH4) Donor Cu2+ + 2eCu° BH4" + 3 H20 -> H3B03 + 7H+ +8 e" BH4" + 4 Cu2+ + 3 H20 -> H3B03 + 7H+ +4 Cu $ Sciences Chimiques L. Spanhel Kinetics and photocatalysis Note: 10 nm logt ▲ 1 fs — 10 100 1 ps Reacting \ species 1 ns 3. To eliminate the rapid thermal relaxations and recombination's is the biggest challenge Efficient photo catalysis requires a closed contact (covalent, electrostatic) at the interface NP/molecule The best actual approach is the spatial charge separation 1 |XS — Recombination/Relaxation of charge carriers Brownian motion fluorescence i Sciences Chimiques L ""SS de Rennes *—» vac L. Spanhel Highly efficient photoreactions in nanocolloidal CdS/Ti02 (ZnO) - heterojunctions 0 0.4 D.B 12 U [TlOjl iiü-3m: i A2* i (-)o-p-o-(-p-oH—p-0 (-) 1 n-2 ' o o. o - - - -aj\ Institut desí í ILJI š Sciences Chimiques L Spanhel Solar water splitting -.V, InMItutd«) ' 1111 % Sciences Chimiques ttssdeRenv'kecs W L. Spanhel Fujishima-Honda Quantum yield < 0,1% K. Maeda et al, Nature 2006 H20 Nature 1972, 238, 37 C02 photo-transformations via surface plasmons 540 nm LED D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188 5>(fm aa>f. Institut del} -- IUI % Sciences Chimiques e L ""'SB de Rennes ^ L. Spanhe/ Vacuum (eV) -3- -4-............. -7- NHE (Volts) -2 -1 > o CM CO Fermi level of Au AnataseTi02 COj/HCHO -0.40 v CO,/CH3OH -0.32 V I 0 C0?/CH4 -0.244 V f H20/02 0.82 V - 2 - 3 reaction C02 + 2H+ + 2e C02 + 2H+ + 2c C02 + 4H ' + 4c C02 + 6R+ + 6e CO + H20 HCOOH HC HO CHjOH l(^m2 + SH+ + Sc CH, NO; NH; OH I Au/TiOj-Ag + 3 H3C—C—CH3 -* * j_j Xe lamp (k = 450 GM nm) 0 II + 3 HjC-C—CH3 +2H20 OH Au/Cc02 green LEDs X=N02s CI, CHS, OCH, and NH, Au/rutilc TiO-. Xe lamp (k > 430 nm) X= H, Mc, C) and OMc. R= Me and CH2Ph, In most cases: Yield > 50% Selectivity > 90% M/Ti02 400 run) OH D. Astruc, Univ. Bordeaux RSC-Chem. Soc. Rev. 2014, 43, 7188 Environmental Photocatalysis Ti02 + UV+ oxygen + water Organic compounds Super-Hydrophilicity in the car industry Super-Hydrophilicity in building constructions II J v .13, v Bacteria killing Self-cleaning and sterilisation of textiles .0,« jn^r. IratlliitdJ) - Illl & Sciences Chimiques L. Spanhe/ Polymeric sol route to nanostructured xerogels and coatings ZnxTiyOz 4Zn(Ac)2-2(H20)/Et0H Complexation Ti(OBut)4 AcTi(OR), ^ioo°cj Zn(Ac)22H20 Ti(OBut)4 EtOH Hydrolysis Condensation + [Zn40](Ac)6 „Ti-0-Ti" „Ti-0-Zn-0-Zn" Growth of spinel nanophases in thermal nitridation process T-■-1-•-1-'-1-■-1-■-1 300 400 500 600 700 800 A,(nm) Sciences Chimiques L ""SS de Rennes •—»— v&c L. Spanhel Superhydrophilic ZnTi03/Ti02 films in Photocatalysis Photodegrodotion of Fetty Acids, Xe-lomp, air, rel. humidity: 80% .<>,« m&. IratlliitdJ) - Illl & Sciences Chimiques ^ L. Spanhel 0,0J-'—'—1—'—1—■—1 i-,-■-1-.-1-■-1— 400 500 600 700 1600 1400 1200 1000 Mnm) Wave number (cm-1) f llll S Sciences Chimiques r ImJ * L "™ de Rennes L. Spanhel o 1_I_I_!_I_I_I_ 1990 1995 2000 2005 2010 2015 2020 o- - Jm^ Institut des) t IUI š Sciences Chimiques t IMI 5 Ĺ "™ de Rennes ^ L. Spanhel Introduction to photovoltaics Diode anode cathode n-Si/p-Si n-GaAs/p-GaAs (InP) n-CdS/p-CdTe n-CdS/p-CulnSe2 Tistc = 15-50% Conversion efficiency stc = stondord test condition Pel(W/nf) I stc regu-stc (1kW/m2) 5>(«. mf/f. Institut des} - IUI % Sciences Chimiques M d ""SS de Rennes L. Spanhel I Dark v Y max 1 i i / Illuminate d 'max / - \ he MPP _ pp^oc|sc_ _ ^maxLax in in H = conversion efficiency (0-1) FF = fill factor Voc = open circuit voltage (V) lsc = short circuit current (A/m2) Pin = solar input power (W/m2) Intemipteur + Cellule ä tester Volts uu.u v = Amperes sun at zenith sun at angle ii to zenith Pin = 1 kW / m2 earth's surface ntmosphern - ■» ir*1' Institut des) - IUI Sciences Chimiques ML L ""Sä de Rennes ■^■x^S vac ^ L. Spanhe/ Nanostructured solar cells Organic molecular antenna Sun Mesoporous nanoceramic membranes Macroscopic Ti02 or ZnO < 1% Morphology tuned solar light dissipation 100% Nanocrystalline ZnO or Ti02 ■^|. ■f3J1. Institut des) f IUI TS Sciences Chimiques % IM I * L -'St, de Rennes vac ZnO Concept of regeneration in photo-sensitized cells anode ZnO ouTiO Perovskite ® CH3NH3Pbl3 12% (1987) 5% (1995) 8% (1987) 29% (2024!) Kinetics of Grätzel cell 0 O Wigand hv (L 1.7 e1^ \ v i- Ru2+/Ru3h 1 ps 10 100 1 ns 1 |IS — 1 ms — Charge transfer to titania Regeneration step Electron migration across titania Recombination - ■•» -.X Institut ddi) i IUI & Sciences Chimiques e L ""'SB de Rennes 'ViKF/ *-^> vac ^ L. Spanhe/ Construction rapide d'une cellule d'apres Grätzel Degussa P 25 Ti02 ^^^^^^^ Verre avec FTO Dye infiltration Mesure photoelectrique Infiltration du Kl - ■» 11^ I«tltutdei) I IUI £ Sciences Chimiques e L ""'SB de Rennes L. Spanhel m Sciences Chimiques L ""St de Rennes *—. vac L. Spanhel Methyl ammonium (MA) FA: formamidinium HC(NH2)2+ -2 -3 - -I MAPbBr 3.38 %, "4 " >* e? g -5 ^ HI -6 - -7 J 3 MAPbl, Tuning of energy levels by chemical composition FAPbl, 2.3 -3.88 -3.92 1.55 -4.44 MASnl3 Ti02 -4.17 -4-10 -4.60 1.17 1.3 -5.68 -5.43 -5.42 _5.48 -5.61 -5.47 -5.77 x=0.25 x=0.5 x=0.75 MAPb,.xSnx'3 Small Volume 11. Issue 1. pages 10-25, 30 OCT 2014 Preparation simple de cellules de Perovskite Small Volume 11. Issue 1. pages 10-25. 30 OCT 2014 DOI: 10.1002/smll.201402767 http://onlinelibrary.wilev.eom/doi/10.1002/smll.2Q1402767/full#smll201402767-fiq-0005 ^ (Pbl2 + CH3NH3I)/DMA ONE-STEP COATING CH,NH3I/IPA CH3NH3I TWO-STEP COATING Crucial points 1. photostability and toxicity of Pb 2. Mechanism is not clear Questions, revision 1. Difference between « nano versus macro » in semiconductor photocatalysis 2. How many elementary charges are needed to transform : a) water into hydrogen and oxygen b) C02 into CH4? 3. What are the essential radical states formed in photoexcited titania? Which applications are related to this process? 4. How function classical and modern nanoscaled solar cells; 5. Solar antennas used in nanoscale photovoltaics; f llll S Sciences Chimiques % IMI $ L ""SB de Rennes \HS'/ vac L. Spanhel