E7441: Scientific computing in biology and biomedicine Systems of linear equations

Vlad Popovici, Ph.D.

RECETOX

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

Systems of linear equations - reminder

- Norms
- Linear systems
- Conditioning
- Accuracy
- Solving linear systems
 - Diagonal systems
 - Triangular systems
 - Gaussian elimination

Special cases

- Symmetric positive definite systems
- Examples and applications

Additional references:

 Golub, Van Loan, *Matrix Computations*, Johns Hopkins Univ. Press, 3rd Ed. 1996

A motivating example - Multiple linear regression

Linear model

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- $\mathbf{y} = [y_1, \dots, y_n]^T$ is the vector of observed values,
- $X = [x_{ij}] \in \mathcal{M}_{n,p}(\mathbb{R})$ is the matrix of independent variables, and
- ϵ is a vector of residuals (errors).

 β can be found by *minimizing the sum of squared residuals*, which leads to solving:

Normal equations

$$X^T X \boldsymbol{\beta} = X^T \mathbf{y}$$

Naïve numerical solution - DO NOT USE !:

$$\boldsymbol{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \mathbf{y}$$

implemented as

```
import numpy as np
...
beta_hat_direct = np.linalg.inv(X.T @ X) @ X.T @ y
```

Much better:

beta_hat_solve = np.linalg.solve(X.T @ X, X.T @ y)

Vectors and norms

Let **x** be a vector,
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = [x_1, \dots, x_n]^T$$
. The *p*-norm is defined as

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

Special cases:

• p = 1: (Manhattan or city-block norm) $||\mathbf{x}||_1 = \sum_i |x_i|$

•
$$p=$$
 2: (Euclidean norm) $\|\mathbf{x}\|_2 = \sqrt{\sum_i x_i^2}$

•
$$p \to \infty$$
: (∞ -norm) $||\mathbf{x}||_{\infty} = \max_i |x_i|$

< A >

Vector norms - properties

 $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and for any norm,

- $\|\mathbf{x}\| \ge 0$ with $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = 0$
- $\|\alpha \mathbf{x}\| = |\alpha| \cdot \|\mathbf{x}\|, \forall \alpha$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality); also $\|\|\mathbf{x}\| \|\mathbf{y}\|\| \le \|\mathbf{x} \mathbf{y}\|$
- $\bullet \|\boldsymbol{x}\|_1 \ge \|\boldsymbol{x}\|_2 \ge \|\boldsymbol{x}\|_{\infty}$
- ||x||₁ ≤ √n||x||₂, ||x||₂ ≤ √n||x||_∞ → norms differ by at most a constant, hence they are equivalent

PYTHON: numpy.linalg.norm(x, p) or scipy.linalg.norm(x,p)

Matrix norms

Let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ & \dots & \\ a_{n1} & a_{n2} & a_{nn} \end{bmatrix}$$

be a square matrix.

defined based on a vector norm

۲

$$\|\mathbf{A}\| = \max_{\mathbf{x}\neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$$

- the maximum "stretching" applied to a vector by the matrix A
- $\|\mathbf{A}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$ (maximum absolute column sum)
- $\|\mathbf{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$ (maximum absolute row sum)
- $\|\mathbf{A}\|_2 = ?$ (we'll see it later)

Matrix norms - properties

Let A and B be two square matrices

- ||A|| > 0 if $A \neq 0$
- $||\alpha \mathbf{A}|| = |\alpha| \cdot ||\mathbf{A}||$, for any scalar α
- $\bullet \|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$
- $\bullet \|\mathbf{A} \cdot \mathbf{B}\| \le \|\mathbf{A}\| \cdot \|\mathbf{B}\|$
- $||\mathbf{A}\mathbf{x}|| \le ||\mathbf{A}|| \cdot ||\mathbf{x}||$ for any vector \mathbf{x}

PYTHON: numpy.linalg.norm(A, p) or scipy.linalg.norm(A, p)

Linear systems

In general, a system of linear equations has the form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

...

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

or, in matrix format,

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where **A** is an $m \times n$ matrix (say, $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{R})$), **b** and **x** are vectors with *m* and *n* elements, respectively. In other words: can the vector **b** be expressed as a linear combination of

columns of matrix A?

In Python

- PYTHON: x = numpy.linalg.lstsq(A, b[, rcond])
- if A is square and of full rank, the "exact" solution is returned
- otherwise performs least squares regression
- NOTE: numpy.linalg.solve() works only for full rank matrices

Square matrices case (m = n)

 $\mathbf{A} \in \mathcal{M}_{n,n}(\mathbb{R})$ is singular if it has any of the following *equivalent* properties:

- A has no inverse (A⁻¹ does not exist)
- det(A) = 0
- rank(A) < n (rank: maximum number of rows or columns that are linearly independent)
- Az = 0 for some vector $z \neq 0$

Otherwise, the matrix is nonsingular. If **A** is nonsingular, there is a unique solution; otherwise, depending on **b**, there might be zero or infinitely many solutions. Geometrical interpretation (2D):

- a linear equation defines a line
- if A is nonsingular, the two lines intersect
- if **A** is singular, the two lines may be parallel (no solution) or identical (infinitely many solutions)

If **A** is singular and $\mathbf{b} \in \text{span}(\mathbf{A})$ the system is *consistent* and has infinitely many solutions. (span(A) is the vector space generated by the columns of **A**.)

Examples

• let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, then **A** is nonsingular and there is a unique solution, $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
• let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$, then **A** is singular and there is no unique solution

 try out in Python and check the documentation for solve() and lstsq() functions

< A >

Singularity, norm and conditioning

• condition number of a nonsingular square matrix is

$$\operatorname{cond}(A) = \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|$$

- convention: $cond(\mathbf{A}) = \infty$ for singular \mathbf{A}
- ratio between maximum streching and maximum shrinking of a nonzero vector

- *large* cond(A) indicates a matrix *close to singularity*
- small det(A) does not imply large cond(A)

Condition number - properties

- $cond(\mathbf{A}) \geq 1$
- cond(I) = 1 (I is the identity matrix Python: eye(n))
- $cond(\alpha A) = cond(A)$, for any A and scalar α
- for a diagonal matrix $\mathbf{D} = diag(d_i), d_i \neq 0$ we have $cond(\mathbf{D}) = \frac{\max |d_i|}{\min |d_i|}$
- condition number is used for assessing the accuracy of the solutions to linear systems

Condition number:

- exact computation requires matrix inverse:
 - ||A|| is easy to compute
 - computing at low cost ||A⁻¹|| is difficult → expensive (even more than finding the solutions to the problem) and prone to numerical instability
- in practice: estimated as a byproduct of the solution process

One approach: find lower bounds on $||\mathbf{A}^{-1}||$ and, thus, on cond(**A**). If $\mathbf{A}\mathbf{x} = \mathbf{y}$ it follows that

$$\frac{|\mathbf{x}||}{|\mathbf{y}||} \le ||\mathbf{A}^{-1}||,$$

with "=" achieved for some optimal **y**. So one needs to find **y** such that the lhs above is maximized to get a good estimate of $||\mathbf{A}^{-1}||$.

PYTHON: numpy.linalg.cond().

Ill-conditioned matrices - example

Consider the *Hilbert matrix* **H** with elements $h_{ij} = \frac{1}{i+j-1}$. It arises, for example, from least square approximation of functions by polynomials, and

$$h_{ij}=\int_0^1 x^{i+j}dx$$

In Python use the hilbert() and invhilbert() (from scipy.linalg package) for H and H^{-1} respectively.

The floating-point representation of h_{ij} damages more the results than the inversion process.

n= 5	cond=4.766073e+05	det1= 1.0000000	det2= 1.0000000
n=10 n=11 n=12 n=13	cond=1.602498e+13 cond=5.224781e+14 cond=1.642592e+16 cond=4.493668e+18	det1= 1.0000229 det1= 1.0014194 det1= 1.0681547 det1=-9.5735009	det2= 1.0000879 det2= 1.0023949 det2= 0.9870101 det2= 0.3085276
n=14	cond=3.219842e+17	det1= 1.1823510	det2=1728.5395280

Accuracy of solutions

- condition number → error bounds
- let **x** be the solution to $A\mathbf{x} = \mathbf{b}$ and $\hat{\mathbf{x}}$ the solution to $A\hat{\mathbf{x}} = \mathbf{b} + \Delta \mathbf{b}$
- let $\Delta \mathbf{x} = \hat{\mathbf{x}} \mathbf{x}$, then

$$\mathbf{b} + \Delta \mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{A}\Delta \mathbf{x},$$

from which

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \mathsf{cond}(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$$

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \mathsf{cond}(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$$

Relative change in solution

The condition number bounds the relative changes in the solution due to a relative change in rhs, *regardless of the algorithm used to compute the solution*.

The condition number cond(A) defines the uncertainty in **x**, given the uncertainty in **b**.

Similarly, if $(\mathbf{A} + \mathbf{D})\hat{\mathbf{x}} = \mathbf{b}$, then

$$\frac{\|\Delta \mathbf{x}\|}{\|\hat{\mathbf{x}}\|} \leq \mathsf{cond}(\mathbf{A}) \frac{\|\mathbf{D}\|}{\|\mathbf{A}\|}$$

 if data (A, b) is accurate to machine precision, then the relative error in solution can be approximated by

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \approx \operatorname{cond}(A)\epsilon_{\mathsf{mach}}$$

i.e. the solution loses about $\log_{10}(\text{cond}(\mathbf{A}))$ decimal digits of accuracy with respect to input data

• the analysis is about relative error in the *largest* components of the solution vector; relative error can be larger in the smaller components.

 the condition number is affected by the scaling of A, so one way of improving the solution is by rescaling - this does not improve a matrix near singularity.

• example:
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}$$

- the matrix **A** is ill-conditioned for small ϵ : cond(**A**) = $1/\epsilon$.
- by scaling the 2nd eq with $1/\epsilon$, the matrix becomes well conditioned.
- in general, it is more difficult...

25/67

< ロ > < 回 > < 回 > < 回 > < 回 >

Residuals

- residual vector: $\mathbf{r} = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$ for $\hat{\mathbf{x}}$ being the approximate solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$
- theoretically: if **A** is nonsingular then $\|\hat{\mathbf{x}} \mathbf{x}\| = 0 \Leftrightarrow \|\mathbf{r}\| = 0$
- practically, small residual is not necessarily equivalent to small error
- since

$$\frac{\|\Delta \mathbf{x}\|}{\|\hat{\mathbf{x}}\|} \leq \mathsf{cond}(\mathbf{A}) \frac{\|\mathbf{r}\|}{\|\mathbf{A}\| \cdot \|\hat{\mathbf{x}}\|}$$

small relative residual implies small relative error, *only if* **A** is well-conditioned

Residuals - backward error analysis

• let **D** be the "delta" matrix, such that $\hat{\mathbf{x}}$ is the exact solution of

$$(\mathbf{A} + \mathbf{D})\hat{\mathbf{x}} = \mathbf{b},$$

then

$$\frac{\|\mathbf{r}\|}{\|\mathbf{A}\| \cdot \|\hat{\mathbf{x}}\|} \leq \frac{\|\mathbf{D}\|}{\|\mathbf{A}\|}$$

- large relative residual implies large backward error and indicates an unstable algorithm
- stable algorithms yield small relative residuals, regardless conditioning of nonsingular A

General strategy

- transform the system (mainly A) such that the solution is easier to compute (but unchanged)
- if M is a nonsingular matrix the systems

$$Ax = b$$

and

$$\mathbf{MAx} = \mathbf{Mb}$$

have the same solution.

- trivial transformations:
 - permutation of rows in the system: use a permutation matrix (has exactly one 1 in each row and column, rest is 0).
 - diagonal scaling: may improve the accuracy

A few relevant functions in Рутном

Please, use ? <name> or the online documentation for details!

- solve(): solves linear systems Ax = B via various methods, for A square matrix. You can specify the properties of A in scipy.linalg.solve().
- check out the other scipy.linalg.solve*() functions!
- scipy.linalg.lu() computes LU factorization
- numpy.triu() returns upper triangular part of a matrix
- numpy.tril() returns lower triangular part of a matrix
- numpy.diag() returns the diagonal of a matrix
- numpy.linalg.cond() used for estimating the condition number

Diagonal systems

The simplest linear system is

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

with obvious solution $\mathbf{x} = [b_i/a_{ii}]_i$.

```
def diagsolve(A, b):
    # Solve A x = b for a diagonal matrix A.
    d = np.diag(A)
    if np.any(np.isclose(d, 0)) :
        raise RuntimeError('A is singular!')
    x = b / d # this is element-wise
    return x
```

ヨト イヨト

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$
$$a_{22}x_2 + a_{23}x_3 = b_2$$
$$a_{33}x_3 = b_3$$

which is equivalent to

$$\begin{array}{rcl} a_{11}x_1 & = b_1 & -a_{12}x_2 & -a_{13}x_3 \\ a_{22}x_2 & = b_2 & -a_{23}x_3 \\ a_{33}x_3 & = b_3 \end{array}$$

æ

ヘロト 人間 ト 人 田 ト 人 田 トー

Triangular systems

- A is lower triangular if a_{ij} = 0 for i < j or upper triangular if a_{ij} = 0 for i > j
- solution is obtained by back-substitution: for

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ & & & \ddots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

$$x_n = b_n/a_{nn}$$

 $x_i = \left(b_i - \sum_{j=i+1}^n a_{ij}x_j\right)/a_{ii}, \text{ for } i = n - 1, n - 2, ..., 1$

< A >

Back-substitution algorithm

(not vectorized!)

Algorithm: Back-substitution algorithm

< A >

Exercise

- derive the forward substitution method for lower triangular matrices
- implement in Рутном the functions fwsolve() and bksolve() for forward and backward substitution

Elementary elimination matrices

Goal

Find tranformations of nonsingular matrices that would lead to triangular systems.

Example: let $\mathbf{z} = [z_1, z_2]^T$ with $z_1 \neq 0$, then

$$\begin{bmatrix} 1 & 0 \\ -z_2/z_1 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} z_1 \\ 0 \end{bmatrix}$$

 \rightarrow use linear combinations or rows

In general,

$$\mathbf{M}_{k}\mathbf{z} = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & -m_{k+1} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & -m_{n} & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} z_{1} \\ \vdots \\ z_{k} \\ z_{k+1} \\ \vdots \\ z_{n} \end{bmatrix} = \begin{bmatrix} z_{1} \\ \vdots \\ z_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $m_i = z_i / z_k$, for i = k + 1, ..., n.

- pivot: z_k
- Gaussian transformation or elementary elimination transformation: \mathbf{M}_k

三下 化三下

Properties of the Gaussian transformation

- **M**_k is nonsingular (it is lower triangular, full rank matrix)
- $\mathbf{M}_k = \mathbf{I} \mathbf{m} \mathbf{e}_k^T$, where $\mathbf{m} = [0, ..., 0, m_{k+1}, ..., m_n]^T$ and \mathbf{e}_k is the k-th column of the identity matrix
- M_k⁻¹ = I + me_k^T: just the sign is changed for the inverse. Denote
 L_k = M_k

• if
$$\mathbf{M}_j = \mathbf{I} - \mathbf{te}_j^T, j > k$$
, then

$$\mathbf{M}_k\mathbf{M}_j = \mathbf{I} - \mathbf{m}\mathbf{e}_k^T + \mathbf{t}\mathbf{e}_j^T,$$

so the result is sort of "union" of the two matrices. Note that the order of multiplication is important.

• a similar result holds for the inverses

Gaussian elimination

• transform the system **Ax** = **b** into a triangular system:

- choose M₁ with a₁₁ as pivot to eliminate the 1st column below a₁₁. The new system is M₁Ax = M₁b. The solution stays the same.
- next choose \mathbf{M}_2 with a_{22} as pivot to eliminate the 2nd colum below a_{22} . The new system is $\mathbf{M}_2\mathbf{M}_1\mathbf{A}\mathbf{x} = \mathbf{M}_2\mathbf{M}_1\mathbf{b}$. The solution stays the same.
- ... until we get a triangular system
- solve the system

$$\mathbf{M}_{n-1} \dots \mathbf{M}_1 \mathbf{A} \mathbf{x} = \mathbf{M}_{n-1} \dots \mathbf{M}_1 \mathbf{b}$$

by back-substitution

LU factorization

- let $\mathbf{M} = \mathbf{M}_{n-1} \dots \mathbf{M}_1$ and $\mathbf{L} = \mathbf{M}^{-1}$
- $\mathbf{L} = (\mathbf{M}_{n-1} \dots \mathbf{M}_1)^{-1} = \mathbf{M}_1^{-1} \dots \mathbf{M}_{n-1}^{-1} = \mathbf{L}_1 \dots \mathbf{L}_{n-1}$ which is unit lower triangular.
- by design, **U** = **MA** is upper triangular

• then $\mathbf{A} = \mathbf{M}^{-1}\mathbf{U} = \mathbf{L}\mathbf{U}$ with \mathbf{L} lower triangular and \mathbf{U} upper triangular

- Gaussian elimination is a factorization of a matrix as a product of two triangular matrices: LU factorization
- LU factorization is unique up to a scaling factor of diagonal scaling of factors

- if A is factorized into LU, the system becomes LUx = b and is solved by forward-substitution (reverse order of backward s.) in lower triangular system Ly = b followed by back-substitution in Ux = y
- Gaussian elimination and LU factorization express the same solution process
- in Рүтном, check
 scipy.linalg.lu(), ...lu_factor(), ...lu_solve()

Pyтном example:

```
A = np.array([[0, 1, 1], [2, -1, -1], [1, 1, -1]])
b = np.array([2, 0, 1])
res = scipy.linalg.lu(A) # check the documentation!
L = res[1]
U = res[2]
y = scipy.linalg.solve_triangular(L, b, lower=True)
x = scipy.linalg.solve_triangular(U, y, lower=False)
print(x)
```

イロト イポト イヨト イヨト 二日

- Note: det(A) = det(L) det(U)
- if at any stage, the leading entry on the diagonal is zero → cannot choose the pivot → interchange the row with some row below with a non-zero pivot
- if there is no way to choose a proper pivot, the matrix **U** will be singular
- but the factorization can be performed! the back-substitution will fail however.

Experiment

(from C. Van Loan, "Introduction to scientific computing")

Consider the system

$$\begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 + \epsilon \\ 2 \end{bmatrix}$$

with the solution $[1 \ 1]^T$. Write a Python code to solve it using LU factorization, for $\epsilon = 10^{-2}, 10^{-4}, \dots, 10^{-18}$.

Discuss the results!

Another application of LU decomposition

Consider you have to compute the scalar

$$\alpha = \mathbf{z}^T \mathbf{A}^{-1} \mathbf{b} \in \mathbb{R},$$

with $\mathbf{z}, \mathbf{b} \in \mathbb{R}^N$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ nonsingular. But

 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

is the solution of the linear system $A\mathbf{x} = \mathbf{b}$. So, you should use LU decomposition, compute \mathbf{x} and then $\alpha = \mathbf{z}^T \mathbf{x}$. In Python:

```
# ...define A, b, z
res = scipy.linalg.lu(A) # check the documentation!
L = res[1]
U = res[2]
y = scipy.linalg.solve_triangular(L, b, lower=True)
x = scipy.linalg.solve_triangular(U, y, lower=False)
alpha = z.T * x
```

Improving stability

- chose the pivot to minimize error propagation
- choose the entry of largest magnitude on or below the diagonal as pivot
- this is called partial pivoting
- each **M**_k is preceded by a permutation matrix **P**_k to interchange rows
- still $\mathbf{M}\mathbf{A} = \mathbf{U}$, but $\mathbf{M} = \mathbf{M}_{n-1}\mathbf{P}_{n-1}\dots\mathbf{M}_{1}\mathbf{P}_{1}$
- $\mathbf{L} = \mathbf{M}^{-1}$ is triangular, but not necessarily *lower* triangular
- in general

$$(\mathbf{P}_{n-1}\ldots\mathbf{P}_1)\mathbf{A}=\mathbf{P}\mathbf{A}=\mathbf{L}\mathbf{U}$$

check again previous Рутном example and try P = res[0]

- if the pivot is sought as the largest entry in the entire unreduced submatrix, then you have complete pivoting
- requires permutations or rows AND columns
- there are 2 permutations matrices, P, Q, such that

$\mathbf{PAQ} = \mathbf{LU}$

- better numerical stability, but much more expensive in computation
- in general, only partial pivoting is used with Gaussian elimination

Pivoting is not required if:

• the matrix is *diagonally dominant*:

$$\sum_{i=1,i\neq j}^n |a_{ij}| < |a_{jj}|, \quad j = 1, \dots, n$$

• the matrix is symmetric positive definite:

$$\mathbf{A} = \mathbf{A}^T$$
 and $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0, \forall \mathbf{x} \neq \mathbf{0}$

Examples of symmetric positive (semi-)definite matrices from practice?

Residuals

- $\bullet \ r = b A \hat{x}$ where \hat{x} was obtained by Gaussian elimination
- it can be shown that

$$\frac{\|\mathbf{r}\|}{\|\mathbf{A}\| \|\hat{\mathbf{x}}\|} \le \frac{\|\mathbf{E}\|}{\|\mathbf{A}\|} \le \rho n\epsilon_{\mathsf{mach}}$$

where **E** is the backward error in data matrix: $(\mathbf{A} + \mathbf{E})\hat{\mathbf{x}} = \mathbf{b}$ and $\rho = \max(u_{ij}) / \max(a_{ij})$ is the growth factor

- without pivoting, ρ is unbounded so the algorithm is unstable
- with partial pivoting, $\rho \leq 2^{n-1}$

• in practice,
$$\rho \approx 1$$
, so $\frac{\|\mathbf{r}\|}{\|\mathbf{A}\| \|\hat{\mathbf{x}}\|} \leq n\epsilon_{\text{mach}}$

- Gaussian elimination with partial pivoting yields small relative residuals, *regardless of the conditioning*
- however, computed solution is close to real solution only if the system is well-conditioned
- yet a smaller growth factor can be obtained with complete pivoting, but the extra cost may not be worth

Example: in a 3-digit decimal arithmetic, solve

$$\begin{bmatrix} 0.641 & 0.242 \\ 0.321 & 0.121 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.883 \\ 0.442 \end{bmatrix}$$

- the exact solution is [1 1]^T
- the Gaussian elimination leads to $\hat{\mathbf{x}} = [0.782 \ 1.58]^T$
- the exact residual is r = [-0.000622 0.000202]^T → as small as can be expected with 3 digits precision
- the error is large: $\|\hat{\mathbf{x}} \mathbf{x}\| = 0.6196$ which is $\approx 62\%$ relative error!
- this is because of ill-conditioning, cond(A) > 4000

What happened? The Gaussian elimination led to

$$\begin{bmatrix} 0.641 & 0.242 \\ 0 & 0.000242 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.883 \\ -0.000383 \end{bmatrix}$$

so x_2 was the result of the division of quantities below ϵ_{mach} , yielding an arbitrary result. The x_1 is computed to satisfy the 1st eq., resulting in small residual but large error.

Implementation and complexity

The general form of the Gaussian elimination is

for *i* do for *j* do for *k* do $a_{ij} \leftarrow a_{ij} - (a_{ik}/a_{kk})a_{kj}$

- order of the loops is not important (for the final result)
- ...but, depending on the memory storage, they have different performance

Implementation and complexity (cont'd)

- there are about $n^3/3$ floating-point operations \rightarrow the complexity is $O(n^3)$
- the forward-/back-substitutions require about n² multiplications and n² additions (for a single b)
- if you try to invert A, x = A⁻¹b, you need n³ operations → 3× more than for LU factorization
- inversion is less precise: difference between $3^{-1}\times 18$ and 18/3 in fixed-precision arithmetic
- matrix inversion is convenient in formulas, but in practice you do factorizations!
- Ex: **A**⁻¹**B** should use LU factorization of **A** and then forward- and back-substitutions with columns of **B**

Gauss-Jordan elimination

- idea: for each element of the diagonal, eliminate all the elements below AND above in the column using combinations of rows
- the elimination matrix has the form

$$\begin{bmatrix} 1 & \dots & 0 & -m_1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & -m_{k-1} & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & -m_{k+1} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & -m_n & 0 & \dots & 1 \end{bmatrix}$$

where $m_i = a_i/a_k$ for $i = 1, \ldots, n$

do the same to the right hand side term, too

Gauss-Jordan elimination, cont'd

- the result is a diagonal matrix on lhs
- the solution is obained by dividing the entries on the transformed rhs by the terms of the diagonal
- it requires $n^3/2$ multiplications and the same number of additions \rightarrow 50% more expensive than LU decomposition
- despite being more expensive, it is sometimes preferred to LU decomposition for parallel implementations
- if the rhs is initialized with an identity matrix, after G-J elimination the rhs becomes A⁻¹

Solving series of similar problems

- idea: try to reuse as much as possible from previous computations
- if only rhs changes, LU decomposition does not have to be recomputed
- if A suffers only rank one changes, one can still use pre-computed A⁻¹ (Sherman-Morrison formula):

$$(\mathbf{A} - \mathbf{u}\mathbf{v}^{T})^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{u}(1 - \mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u})^{-1}\mathbf{v}^{T}\mathbf{A}^{-1}$$

 this has a complexity of O(n²) compared to O(n³) that is needed by a new inversion For a modified equation,

$$(\mathbf{A} - \mathbf{u}\mathbf{v}^{\mathcal{T}})\mathbf{x} = \mathbf{b}$$

the solution is

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} + \mathbf{A}^{-1}\mathbf{u}(1 - \mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u})^{-1}\mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{b}$$

and is solved by the following procedure

- solve Az = u, so $z = A^{-1}u$
- solve Ay = b, so $y = A^{-1}b$
- compute $\mathbf{x} = \mathbf{y} + ((\mathbf{v}^T \mathbf{y})/(1 \mathbf{v}^T \mathbf{z}))\mathbf{z}$

If **A** is already factored, this approach has a complexity $O(n^2)$

Comments on scaling

- theoretically, multiplying the terms on diagonal of **A** and corresponding entries of **b** would not change the solution
- in practice, it affects conditioning, choice of pivot and, by consequence, accuracy
- Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}$$

is ill-conditioned for small ϵ , since cond(**A**) = $1/\epsilon$. It becomes well-conditioned if the second equation is multiplied by $1/\epsilon$.

Iterative refinements

- let x₀ be the approximate solution to Ax = b and r₀ = b Ax₀ be the corresponding residual
- let then \mathbf{z}_0 be the solution to $\mathbf{A}\mathbf{z} = \mathbf{r}_0$
- an improved approximate solution is then $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{z}_0$ HOMEWORK: prove that $\mathbf{A}\mathbf{x}_1 = \mathbf{b}$
- repeat until convergence
- the process needs higher precision for computing a useful residual
- not often used, but sometimes useful

Special forms of linear systems

For some special cases of **A** storage and computation time can be saved. For example, if **A** is

- symmetric: $\mathbf{A} = \mathbf{A}^T$, $a_{ij} = a_{ji}$ for all i, j
- positive definite: $z^T A z > 0$, $\forall z \neq 0$
- band diagonal: $a_{ij} = 0$ if $|i j| > \beta$, where β is the bandwidth
- sparse: most of the elements of A are zero

Symmetric positive definite systems

Cholesky decomposition:

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{T}$$

where L is lower triangular.

- A admits a Cholesky decomposition *if and only if* it is symmetric positive definite
- if the decomposition exists, it is unique

Cholesky decomposition algorithm with overwriting of A

Algorithm: Cholesky decomposition algorithm

for
$$j = 1$$
 to n do
for $k = 1$ to $j - 1$ do
for $i = j$ to n do
 $\begin{bmatrix} a_{ij} \leftarrow a_{ij} - a_{ik}a_{jk}; \\ a_{jj} \leftarrow \sqrt{a_{jj}}; \\ for k = j + 1$ to n do
 $\begin{bmatrix} a_{kj} \leftarrow a_{kj}/a_{jj}; \end{bmatrix}$

A 10

Cholesky decomposition - properties

- does not need pivoting to maintain stability
- only $n^3/6$ multiplications and $n^3/6$ additions are required
- for the algorithm presented, only the lower triangle of **A** is modified, and can be restored, if needed, from the upper triangle
- requires about half the computations and half of the memory compared with LU factorization
- there are variations of Cholesky decomposition for banded matrices, for positive semi-definite matrices (semi-Cholesky decomposition) and for symmetric indefinite matrices

Suggestions of methods to use

If **A** is a real dense square matrix...

- ...use LU decomposition with partial pivoting: **A** = **PLU**
- ...and is a band matrix, use LU decomposition with pivoting and row interchanges
- ...and is tridiagonal, use Gaussian elimination
- ...and is symmetric positive definite, use Cholesky decomposition
- ...and is symmetric tridiagonal, use special Cholesky with pivoting, $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathcal{T}}$
- ...and is symmetric indefinite, use special Cholesky

In Python (scipy.linalg), check the documentation for functions: cholesky(), ldl(), lu().

Polynomial interpolation

- a function p(x) interpolates a set of points {(x_i, y_i)|i = 0,..., N} if it satisfies y_i = p(x_i) for all i = 0,..., N.
- this leads to a system of N + 1 equations. If p(x) is a polynomial of degree M, $p(x) = a_M x^M + \cdots + a_1 x + a_0$, the system is of the form

$$a_0 + a_1 x_0 + \dots + a_M x_0^M = y_0$$
$$\dots$$
$$a_0 + a_1 x_N + \dots + a_M x_N^M = y_N$$

where the unknowns are a_0, \ldots, a_M .

- if $M = N \rightarrow V$ andermonde matrix
- in Python check the functions numpy.polyfit() and numpy.polyval()
- write the Python function to solve the interpolation problem for M = N. Do NOT use the functions above for interpolation!

1D Poisson problem

A two-point boundary problem,

$$-u''(x) = y(x), \quad x \in [0,1], \quad u(0) = u(1) = 0,$$

where y is a given continuous function on [0, 1]. If y cannot be integrated exactly, approximate solutions are sought. Using finite differences,

$$u'(x) = \lim_{h \to 0} \frac{u(x + \frac{h}{2}) - u(x - \frac{h}{2})}{h}$$
$$u''(x) = \lim_{h \to 0} \frac{u(x + h) - 2u(x) + u(x - h)}{h^2}$$

Divide the interval [0, 1] in m + 1 equal subintervals of length h = 1/(m + 1) and let $x_i = ih$ be the limits of these subintervals, i = 0, ..., m + 1.

Denote $y(x_i) = y(ih) = y_i$ and $u(x_i) = u(ih) = u_i$. Then, the problem becomes

$$-\frac{u_{i+1}-2u_i+u_{i-1}}{h^2}=y_i, \qquad i=1,\ldots,m, \ u_0=u_{m+1}=0.$$

This can be written as a linear system:

$$\mathbf{Tu} = \begin{bmatrix} 2 & -1 & 0 & & & \\ -1 & 2 & -1 & & & \\ 0 & \ddots & \ddots & \ddots & & \\ & & & & 0 \\ & & & -1 & 2 & -1 \\ & & & & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{m-1} \\ u_m \end{bmatrix} = h^2 \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{m-1} \\ y_m \end{bmatrix}$$

where the matrix **T** is a *Toeplitz matrix*. The system can be solved using the Levinson algorithm - see scipy.linalg.solve_toeplitz() function in Python.

・ 同 ト ・ ヨ ト ・ ヨ ト

Questions?

э

▲御▶▲臣▶▲臣▶