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Additional references:

Golub, Van Loan, Matrix Computations, Johns Hopkins Univ. Press,
3rd Ed. 1996
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A motivating example - Multiple linear regression

Linear model

y = Xβ+ ϵ

y = [y1, . . . , yn]
T is the vector of observed values,

X = [xij] ∈ Mn,p(R) is the matrix of independent variables, and

ϵ is a vector of residuals (errors).

β can be found by minimizing the sum of squared residuals, which leads to
solving:

Normal equations

XT Xβ = XT y
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Naïve numerical solution - DO NOT USE!:

β = (XT X)−1XT y

implemented as

import numpy as np
...
beta_hat_direct = np.linalg.inv(X.T @ X) @ X.T @ y

Much better:

beta_hat_solve = np.linalg.solve(X.T @ X, X.T @ y)
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Vectors and norms

Let x be a vector, x =


x1
...

xn

 = [x1, . . . , xn]
T . The p−norm is defined as

∥x∥p =

 n∑
i=1

|xi |
p


1
p

Special cases:

p = 1: (Manhattan or city-block norm)
∥x∥1 =

∑
i |xi |

p = 2: (Euclidean norm) ∥x∥2 =
√∑

i x2
i

p → ∞: (∞−norm) ∥x∥∞ = maxi |xi |
The unit circles.
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Vector norms - properties

∀x, y ∈ Rn and for any norm,

∥x∥ ≥ 0 with ∥x∥ = 0⇔ x = 0

∥αx∥ = |α| · ∥x∥, ∀α

∥x + y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality); also | ∥x∥ − ∥y∥ | ≤ ∥x − y∥

∥x∥1 ≥ ∥x∥2 ≥ ∥x∥∞
∥x∥1 ≤

√
n∥x∥2, ∥x∥2 ≤

√
n∥x∥∞ → norms differ by at most a constant,

hence they are equivalent

Python: numpy.linalg.norm(x, p) or scipy.linalg.norm(x,p)
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Matrix norms

Let

A =

a11 a12 a1n

. . .

an1 an2 ann


be a square matrix.

defined based on a vector norm

∥A∥ = max
x,0

∥Ax∥
∥x∥

the maximum "stretching" applied to a vector by the matrix A

∥A∥1 = maxj
∑n

i=1 |aij | (maximum absolute column sum)

∥A∥∞ = maxi
∑n

j=1 |aij | (maximum absolute row sum)

∥A∥2 =? (we’ll see it later)
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Matrix norms - properties

Let A and B be two square matrices

∥A∥ > 0 if A , 0

∥αA∥ = |α| · ∥A∥, for any scalar α

∥A + B∥ ≤ ∥A∥+ ∥B∥

∥A · B∥ ≤ ∥A∥ · ∥B∥

∥Ax∥ ≤ ∥A∥ · ∥x∥ for any vector x

Python: numpy.linalg.norm(A, p) or scipy.linalg.norm(A, p)
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Linear systems

In general, a system of linear equations has the form:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .

am1x1 + am2x2 + · · ·+ amnxn = bm

or, in matrix format,
Ax = b

where A is an m × n matrix (say, A ∈ Mm,n(R)), b and x are vectors with m
and n elements, respectively.
In other words: can the vector b be expressed as a linear combination of
columns of matrix A?
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In Python

Python: x = numpy.linalg.lstsq(A, b[, rcond])

if A is square and of full rank, the “exact” solution is returned

otherwise performs least squares regression

NOTE: numpy.linalg.solve() works only for full rank matrices
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Square matrices case (m = n)

A ∈ Mn,n(R) is singular if it has any of the following equivalent properties:

A has no inverse (A−1 does not exist)

det(A) = 0

rank(A) < n (rank: maximum number of rows or columns that are
linearly independent)

Az = 0 for some vector z , 0

Otherwise, the matrix is nonsingular.
If A is nonsingular, there is a unique solution; otherwise, depending on b,
there might be zero or infinitely many solutions.
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Geometrical interpretation (2D):

a linear equation defines a line

if A is nonsingular, the two lines intersect

if A is singular, the two lines may be parallel (no solution) or identical
(infinitely many solutions)

If A is singular and b ∈ span(A) the system is consistent and has infinitely
many solutions. (span(A) is the vector space generated by the columns of
A.)
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Examples

let A =

[
1 2
3 4

]
and b =

[
−1
−1

]
, then A is nonsingular and there is a

unique solution, x =

[
1
−1

]
let A =

[
1 2
2 4

]
and b =

[
−1
−2

]
, then A is singular and there is no

unique solution

try out in Python and check the documentation for solve() and
lstsq() functions
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Singularity, norm and conditioning

condition number of a nonsingular square matrix is

cond(A) = ∥A∥ · ∥A−1∥

convention: cond(A) = ∞ for singular A

ratio between maximum streching and maximum shrinking of a
nonzero vector

large cond(A) indicates a matrix close to singularity

small det(A) does not imply large cond(A)
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Condition number - properties

cond(A) ≥ 1

cond(I) = 1 (I is the identity matrix - Python: eye(n))

cond(αA) = cond(A), for any A and scalar α

for a diagonal matrix D = diag(di), di , 0 we have cond(D) = max |di |

min |di |

condition number is used for assessing the accuracy of the solutions
to linear systems
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Condition number:
exact computation requires matrix inverse:

▶ ∥A∥ is easy to compute
▶ computing at low cost ∥A−1∥ is difficult→ expensive (even more than

finding the solutions to the problem) and prone to numerical instability

in practice: estimated as a byproduct of the solution process

One approach: find lower bounds on ∥A−1∥ and, thus, on cond(A).
If Ax = y it follows that

∥x∥
∥y∥
≤ ∥A−1∥,

with "=" achieved for some optimal y. So one needs to find y such that the
lhs above is maximized to get a good estimate of ∥A−1∥.
Python: numpy.linalg.cond().
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Ill-conditioned matrices - example

Consider the Hilbert matrix H with elements hij =
1

i+j−1 . It arises, for
example, from least square approximation of functions by polynomials, and

hij =

∫ 1

0
x i+jdx

In Python use the hilbert() and invhilbert() (from scipy.linalg
package) for H and H−1 respectively.
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for n in np.arange(5, 15):
H = scipy.linalg.hilbert(n)
invH = scipy.linalg.invhilbert(n) # exact inverse for n <

15!
c = np.linalg.cond(H)
d1 = np.linalg.det(H) * np.linalg.det(np.linalg.inv(H))
d2 = np.linalg.det(H) * np.linalg.det(invH)
print(’n={:2d}\tcond={:e}\tdet1={:10.7f}\t\tdet2={:10.7f}\n

’.format(n, c, d1, d2))

The floating-point representation of hij damages more the results than the
inversion process.
n= 5 cond=4.766073e+05 det1= 1.0000000 det2= 1.0000000
. . .
n=10 cond=1.602498e+13 det1= 1.0000229 det2= 1.0000879
n=11 cond=5.224781e+14 det1= 1.0014194 det2= 1.0023949
n=12 cond=1.642592e+16 det1= 1.0681547 det2= 0.9870101
n=13 cond=4.493668e+18 det1 =−9.5735009 det2= 0.3085276
n=14 cond=3.219842e+17 det1= 1.1823510 det2 =1728.5395280
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Accuracy of solutions

condition number→ error bounds

let x be the solution to Ax = b and x̂ the solution to Ax̂ = b +∆b

let ∆x = x̂ − x, then

b +∆b = Ax + A∆x,

from which
∥∆x∥
∥x∥

≤ cond(A)
∥∆b∥
∥b∥
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∥∆x∥
∥x∥

≤ cond(A)
∥∆b∥
∥b∥

Relative change in solution
The condition number bounds the relative changes in the solution due to a
relative change in rhs, regardless of the algorithm used to compute the
solution.
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The condition number cond(A) defines the uncertainty in x, given the
uncertainty in b.

Similarly, if (A + D)x̂ = b, then

∥∆x∥
∥x̂∥

≤ cond(A)
∥D∥
∥A∥
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if data (A, b) is accurate to machine precision, then the relative error
in solution can be approximated by

∥x̂ − x∥
∥x∥

≈ cond(A)ϵmach

i.e. the solution loses about log10(cond(A)) decimal digits of accuracy
with respect to input data

the analysis is about relative error in the largest components of the
solution vector; relative error can be larger in the smaller components.
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the condition number is affected by the scaling of A, so one way of
improving the solution is by rescaling - this does not improve a matrix
near singularity.

example: A =

[
1 0
0 ϵ

]
,b =

[
1
ϵ

]
the matrix A is ill-conditioned for small ϵ: cond(A) = 1/ϵ.

by scaling the 2nd eq with 1/ϵ, the matrix becomes well conditioned.

in general, it is more difficult...
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Example:
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Residuals

residual vector: r = b − Ax̂ for x̂ being the approximate solution to
Ax = b

theoretically: if A is nonsingular then ∥x̂ − x∥ = 0⇔ ∥r∥ = 0

practically, small residual is not necessarily equivalent to small error

since
∥∆x∥
∥x̂∥

≤ cond(A)
∥r∥

∥A∥ · ∥x̂∥

small relative residual implies small relative error, only if A is
well-conditioned
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Residuals - backward error analysis

let D be the "delta" matrix, such that x̂ is the exact solution of

(A + D)x̂ = b,

then
∥r∥

∥A∥ · ∥x̂∥
≤
∥D∥
∥A∥

large relative residual implies large backward error and indicates an
unstable algorithm

stable algorithms yield small relative residuals, regardless
conditioning of nonsingular A
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General strategy

transform the system (mainly A) such that the solution is easier to
compute (but unchanged)

if M is a nonsingular matrix the systems

Ax = b

and
MAx = Mb

have the same solution.
trivial transformations:

▶ permutation of rows in the system: use a permutation matrix (has
exactly one 1 in each row and column, rest is 0).

▶ diagonal scaling: may improve the accuracy
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A few relevant functions in Python

Please, use ? <name> or the online documentation for details!

solve(): solves linear systems Ax = B via various methods, for A
square matrix. You can specify the properties of A in
scipy.linalg.solve().

check out the other scipy.linalg.solve*() functions!

scipy.linalg.lu() computes LU factorization

numpy.triu() returns upper triangular part of a matrix

numpy.tril() returns lower triangular part of a matrix

numpy.diag() returns the diagonal of a matrix

numpy.linalg.cond() used for estimating the condition number
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Diagonal systems

The simplest linear system is
a11 0 . . . 0
0 a22 . . . 0

. . .

0 0 . . . ann



x1

x2
...

xn

 =

b1

b2
...

bn


with obvious solution x = [bi/aii]i .

def diagsolve(A, b):
# Solve A x = b for a diagonal matrix A.
d = np.diag(A)
if np.any(np.isclose(d, 0)) :

raise RuntimeError(’A is singular!’)
x = b / d # this is element-wise

return x
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a11x1 + a12x2 + a13x3 = b1

a22x2 + a23x3 = b2

a33x3 = b3

which is equivalent to

a11x1 = b1 −a12x2 −a13x3

a22x2 = b2 −a23x3

a33x3 = b3
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Triangular systems

A is lower triangular if aij = 0 for i < j or upper triangular if aij = 0 for
i > j

solution is obtained by back-substitution: for

A =



a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n
. . .

0 0 0 . . . ann


xn = bn/ann

xi =

bi −

n∑
j=i+1

aijxj

 /aii , for i = n − 1, n − 2, . . . , 1
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Back-substitution algorithm

(not vectorized!)

Algorithm: Back-substitution algorithm

for j = n to 1 do
if ajj = 0 then
stop;

xj ← bj/ajj ;
for i = 1 to j − 1 do

bi ← bi − aijxj ;
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Exercise

derive the forward substitution method for lower triangular matrices

implement in Python the functions fwsolve() and bksolve() for
forward and backward substitution
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Elementary elimination matrices

Goal
Find tranformations of nonsingular matrices that would lead to triangular
systems.

Example: let z = [z1, z2]
T with z1 , 0, then[

1 0
−z2/z1 1

] [
z1

z2

]
=

[
z1

0

]
→ use linear combinations or rows
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In general,

Mk z =



1 . . . 0 0 . . . 0
...
. . .

...
...
. . .

...

0 . . . 1 0 . . . 0
0 . . . −mk+1 1 . . . 0
...
. . .

...
...
. . .

...

0 . . . −mn 0 . . . 1





z1
...

zk

zk+1
...

zn


=



z1
...

zk

0
...

0


where mi = zi/zk , for i = k + 1, . . . , n.

pivot: zk

Gaussian transformation or elementary elimination transformation:
Mk
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Properties of the Gaussian transformation

Mk is nonsingular (it is lower triangular, full rank matrix)

Mk = I −meT
k , where m = [0, . . . , 0,mk+1, . . . ,mn]

T and ek is the
k−th column of the identity matrix

M−1
k = I + meT

k : just the sign is changed for the inverse. Denote
Lk = Mk

if Mj = I − teT
j , j > k , then

Mk Mj = I −meT
k + teT

j ,

so the result is sort of "union" of the two matrices.
Note that the order of multiplication is important.

a similar result holds for the inverses
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Gaussian elimination

transform the system Ax = b into a triangular system:
▶ choose M1 with a11 as pivot to eliminate the 1st column below a11. The

new system is M1Ax = M1b. The solution stays the same.
▶ next choose M2 with a22 as pivot to eliminate the 2nd colum below a22.

The new system is M2M1Ax = M2M1b. The solution stays the same.
▶ . . . until we get a triangular system

solve the system

Mn−1 . . .M1Ax = Mn−1 . . .M1b

by back-substitution
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LU factorization

let M = Mn−1 . . .M1 and L = M−1

L = (Mn−1 . . .M1)
−1 = M−1

1 . . .M
−1
n−1 = L1 . . .Ln−1

which is unit lower triangular.

by design, U = MA is upper triangular

then A = M−1U = LU with L lower triangular and U upper triangular

Gaussian elimination is a factorization of a matrix as a product of two
triangular matrices: LU factorization

LU factorization is unique up to a scaling factor of diagonal scaling of
factors
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if A is factorized into LU, the system becomes LUx = b and is solved
by forward-substitution (reverse order of backward s.) in lower
triangular system Ly = b followed by back-substitution in Ux = y

Gaussian elimination and LU factorization express the same solution
process

in Python, check
scipy.linalg.lu(), ...lu_factor(), ...lu_solve()

Python example:

A = np.array([[0, 1, 1], [2, -1, -1], [1, 1, -1]])
b = np.array([2, 0, 1])
res = scipy.linalg.lu(A) # check the documentation!
L = res[1]
U = res[2]
y = scipy.linalg.solve_triangular(L, b, lower=True)
x = scipy.linalg.solve_triangular(U, y, lower=False)
print(x)
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Note: det(A) = det(L) det(U)

if at any stage, the leading entry on the diagonal is zero→ cannot
choose the pivot→ interchange the row with some row below with a
non-zero pivot

if there is no way to choose a proper pivot, the matrix U will be
singular

but the factorization can be performed! the back-substitution will fail
however.
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Experiment

(from C. Van Loan, "Introduction to scientific computing")

Consider the system [
ϵ 1
1 1

] [
x1

x2

]
=

[
1 + ϵ

2

]
with the solution [1 1]T .
Write a Python code to solve it using LU factorization, for
ϵ = 10−2, 10−4, . . . , 10−18.
Discuss the results!
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Another application of LU decomposition

Consider you have to compute the scalar

α = zT A−1b ∈ R,

with z,b ∈ RN and A ∈ Rn×n nonsingular.
But

x = A−1b

is the solution of the linear system Ax = b. So, you should use LU
decomposition, compute x and then α = zT x. In Python:

# ...define A, b, z
res = scipy.linalg.lu(A) # check the documentation!
L = res[1]
U = res[2]
y = scipy.linalg.solve_triangular(L, b, lower=True)
x = scipy.linalg.solve_triangular(U, y, lower=False)
alpha = z.T * x
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Improving stability

chose the pivot to minimize error propagation

choose the entry of largest magnitude on or below the diagonal as
pivot

this is called partial pivoting

each Mk is preceded by a permutation matrix Pk to interchange rows

still MA = U, but M = Mn−1Pn−1 . . .M1P1

L = M−1 is triangular, but not necessarily lower triangular

in general
(Pn−1 . . .P1)A = PA = LU

check again previous Python example and try P = res[0]
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if the pivot is sought as the largest entry in the entire unreduced
submatrix, then you have complete pivoting

requires permutations or rows AND columns

there are 2 permutations matrices, P,Q, such that

PAQ = LU

better numerical stability, but much more expensive in computation

in general, only partial pivoting is used with Gaussian elimination
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Pivoting is not required if:

the matrix is diagonally dominant:

n∑
i=1,i,j

|aij | < |ajj |, j = 1, . . . , n

the matrix is symmetric positive definite:

A = AT and xT Ax > 0,∀x , 0

Examples of symmetric positive (semi-)definite matrices from
practice?
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Residuals

r = b − Ax̂ where x̂ was obtained by Gaussian elimination

it can be shown that

∥r∥
∥A∥ ∥x̂∥

≤
∥E∥
∥A∥
≤ ρnϵmach

where E is the backward error in data matrix: (A + E)x̂ = b and
ρ = max(uij)/max(aij) is the growth factor

without pivoting, ρ is unbounded so the algorithm is unstable

with partial pivoting, ρ ≤ 2n−1

in practice, ρ ≈ 1, so ∥r∥
∥A∥ ∥x̂∥ ⪅ nϵmach
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Residuals, cont’d

Gaussian elimination with partial pivoting yields small relative
residuals, regardless of the conditioning

however, computed solution is close to real solution only if the system
is well-conditioned

yet a smaller growth factor can be obtained with complete pivoting,
but the extra cost may not be worth
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Example: in a 3-digit decimal arithmetic, solve[
0.641 0.242
0.321 0.121

] [
x1

x2

]
=

[
0.883
0.442

]

the exact solution is [1 1]T

the Gaussian elimination leads to x̂ = [0.782 1.58]T

the exact residual is r = [−0.000622 − 0.000202]T → as small as can
be expected with 3 digits precision

the error is large: ∥x̂ − x∥ = 0.6196 which is ≈ 62% relative error!

this is because of ill-conditioning, cond(A) > 4000
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What happened? The Gaussian elimination led to[
0.641 0.242

0 0.000242

] [
x1

x2

]
=

[
0.883

−0.000383

]
so x2 was the result of the division of quantities below ϵmach, yielding an
arbitrary result. The x1 is computed to satisfy the 1st eq., resulting in small
residual but large error.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 50 / 67



Implementation and complexity

The general form of the Gaussian elimination is

for i do
for j do

for k do
aij ← aij − (aik/akk )akj

order of the loops is not important (for the final result)

...but, depending on the memory storage, they have different
performance
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Implementation and complexity (cont’d)

there are about n3/3 floating-point operations→ the complexity is
O(n3)

the forward-/back-substitutions require about n2 multiplications and n2

additions (for a single b)

if you try to invert A, x = A−1b, you need n3 operations→ 3× more
than for LU factorization

inversion is less precise: difference between 3−1 × 18 and 18/3 in
fixed-precision arithmetic

matrix inversion is convenient in formulas, but in practice you do
factorizations!

Ex: A−1B should use LU factorization of A and then forward- and
back-substitutions with columns of B
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Gauss-Jordan elimination

idea: for each element of the diagonal, eliminate all the elements
below AND above in the column using combinations of rows

the elimination matrix has the form

1 . . . 0 −m1 0 . . . 0
...
. . .

...
...

...
. . .

...

0 . . . 1 −mk−1 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 −mk+1 1 . . . 0
...
. . .

...
...

...
. . .

...

0 . . . 0 −mn 0 . . . 1


where mi = ai/ak for i = 1, . . . , n

do the same to the right hand side term, too
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Gauss-Jordan elimination, cont’d

the result is a diagonal matrix on lhs

the solution is obained by dividing the entries on the transformed rhs
by the terms of the diagonal

it requires n3/2 multiplications and the same number of additions→
50% more expensive than LU decomposition

despite being more expensive, it is sometimes preferred to LU
decomposition for parallel implementations

if the rhs is initialized with an identity matrix, after G-J elimination the
rhs becomes A−1
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Solving series of similar problems

idea: try to reuse as much as possible from previous computations

if only rhs changes, LU decomposition does not have to be
recomputed

if A suffers only rank one changes, one can still use pre-computed
A−1 (Sherman-Morrison formula):

(A − uvT )−1 = A−1 + A−1u(1 − vT A−1u)−1vT A−1

this has a complexity of O(n2) compared to O(n3) that is needed by a
new inversion
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For a modified equation,
(A − uvT )x = b

the solution is

x = A−1b + A−1u(1 − vT A−1u)−1vT A−1b

and is solved by the following procedure

solve Az = u, so z = A−1u

solve Ay = b, so y = A−1b

compute x = y + ((vT y)/(1 − vT z))z

If A is already factored, this approach has a complexity O(n2)
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Comments on scaling

theoretically, multiplying the terms on diagonal of A and
corresponding entries of b would not change the solution

in practice, it affects conditioning, choice of pivot and, by
consequence, accuracy

Example: [
1 0
0 ϵ

] [
x1

x2

]
=

[
1
ϵ

]
is ill-conditioned for small ϵ, since cond(A) = 1/ϵ. It becomes
well-conditioned if the second equation is multiplied by 1/ϵ.
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Iterative refinements

let x0 be the approximate solution to Ax = b and r0 = b − Ax0 be the
corresponding residual

let then z0 be the solution to Az = r0

an improved approximate solution is then x1 = x0 + z0

HOMEWORK: prove that Ax1 = b

repeat until convergence

the process needs higher precision for computing a useful residual

not often used, but sometimes useful
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Special forms of linear systems

For some special cases of A storage and computation time can be saved.
For example, if A is

symmetric: A = AT , aij = aji for all i, j

positive definite: zT Az > 0, ∀z , 0

band diagonal: aij = 0 if |i − j| > β, where β is the bandwidth

sparse: most of the elements of A are zero

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 59 / 67



Symmetric positive definite systems

Cholesky decomposition:

A = LLT

where L is lower triangular.

A admits a Cholesky decomposition if and only if it is symmetric
positive definite

if the decomposition exists, it is unique
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Cholesky decomposition algorithm with overwriting of A

Algorithm: Cholesky decomposition algorithm

for j = 1 to n do
for k = 1 to j − 1 do

for i = j to n do
aij ← aij − aik ajk ;

ajj ←
√

ajj ;
for k = j + 1 to n do

akj ← akj/ajj ;
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Cholesky decomposition - properties

does not need pivoting to maintain stability

only n3/6 multiplications and n3/6 additions are required

for the algorithm presented, only the lower triangle of A is modified,
and can be restored, if needed, from the upper triangle

requires about half the computations and half of the memory
compared with LU factorization

there are variations of Cholesky decomposition for banded matrices,
for positive semi-definite matrices (semi-Cholesky decomposition)
and for symmetric indefinite matrices
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Suggestions of methods to use

If A is a real dense square matrix...

...use LU decomposition with partial pivoting: A = PLU

...and is a band matrix, use LU decomposition with pivoting and row
interchanges

...and is tridiagonal, use Gaussian elimination

...and is symmetric positive definite, use Cholesky decomposition

...and is symmetric tridiagonal, use special Cholesky with pivoting,
A = LDLT

...and is symmetric indefinite, use special Cholesky

In Python (scipy.linalg), check the documentation for functions:
cholesky(), ldl(), lu().
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Polynomial interpolation

a function p(x) interpolates a set of points {(xi , yi)|i = 0, . . . ,N} if it
satisfies yi = p(xi) for all i = 0, . . . ,N.

this leads to a system of N + 1 equations. If p(x) is a polynomial of
degree M, p(x) = aMxM + · · ·+ a1x + a0, the system is of the form

a0 + a1x0 + · · ·+ aMxM
0 = y0

. . .

a0 + a1xN + · · ·+ aMxM
N = yN

where the unknowns are a0, . . . , aM .

if M = N → Vandermonde matrix

in Python check the functions numpy.polyfit() and
numpy.polyval()

write the Python function to solve the interpolation problem for M = N.
Do NOT use the functions above for interpolation!
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1D Poisson problem

A two-point boundary problem,

−u′′(x) = y(x), x ∈ [0, 1], u(0) = u(1) = 0,

where y is a given continuous function on [0, 1]. If y cannot be integrated
exactly, approximate solutions are sought. Using finite differences,

u′(x) = lim
h→0

u(x + h
2 ) − u(x − h

2 )

h

u′′(x) = lim
h→0

u(x + h) − 2u(x) + u(x − h)
h2

Divide the interval [0, 1] in m + 1 equal subintervals of length
h = 1/(m + 1) and let xi = ih be the limits of these subintervals,
i = 0, . . . ,m + 1.
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Denote y(xi) = y(ih) = yi and u(xi) = u(ih) = ui . Then, the problem
becomes

−
ui+1 − 2ui + ui−1

h2
= yi , i = 1, . . . ,m, u0 = um+1 = 0.

This can be written as a linear system:

Tu =



2 −1 0
−1 2 −1

0
. . .

. . .
. . .

0
−1 2 −1
0 −1 2





u1

u2
...

um−1

um


= h2



y1

y2
...

ym−1

ym


where the matrix T is a Toeplitz matrix. The system can be solved using
the Levinson algorithm - see scipy.linalg.solve_toeplitz() function
in Python.
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Questions?
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