E7441: Scientific computing in biology and biomedicine

Non-linear equations and optimization

Vlad Popovici, Ph.D.

RECETOX

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Outline

[Nonlinear equations](#page-2-0)

- \bullet [Numerical methods in](#page-7-0) $\mathbb R$
- [Systems of nonlinear equations](#page-19-0)

2 [Fundamental concepts in numerical optimization](#page-25-0)

- [Problem setting](#page-26-0)
- \bullet [Optimization in](#page-35-0) $\mathbb R$
- [Optimization in](#page-41-0) \mathbb{R}^n [Unconstrained optimization in](#page-41-0) \mathbb{R}^n
- [Important classes of optimization problems](#page-54-0)
	- [Linear programming](#page-54-0)
	- [Quadratic programming](#page-59-0)
	- [Constrained nonlinear optimization](#page-61-0)

Nonlinear equations

 \leftarrow

Nonlinear equations

- scalar problem: $f : \mathbb{R} \to \mathbb{R}$, find $x \in \mathbb{R}$ such that $f(x) = 0$
- vectorial problem: $f : \mathbb{R}^n \to \mathbb{R}^n$, find $\mathbf{x} \in \mathbb{R}^n$ such that $f(\mathbf{x}) = \mathbf{0}$
- \bullet in any case, here we consider f to be continuously differentiable everywhere in the neighborhood of the solution
- an interval [a, b] is a bracket for the function f if $f(a)f(b) < 0$
- f continuous $\rightarrow f([a, b])$ is an interval
- Bolzano's thm.: if $[a, b]$ is a bracket for f than there exists at least one $x^* \in [a, b]$ s.t. $f(x^*) = 0$
- if $f(x^*)=f'(x^*)=\cdots=f^{(m-1)}(x^*)=0$ but $f^{(m)}\neq 0$ then x^* has multiplicity m
- note: in \mathbb{R}^n things are much more complicated

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B}$

Conditioning

- for a *scalar problem*, the **absolute condition number** is $1/|f'(x^*)|$
- the problem is is ill-conditioned around a multiple solution
- for a *vectorial problem*, the **absolute condition number** is $||\mathbf{J}_f^{-1}(\mathbf{x}^*)||$,
where J_k is the Jacobian matrix of f where \mathbf{J}_f is the Jacobian matrix of f ,

$$
[\mathbf{J}_f(\mathbf{x})]_{ij} = \frac{\partial f_i(\mathbf{x})}{\partial x_j}
$$

• if the Jacobian is nearly singular, the problem is ill-conditioned

Sensitivity and conditioning

- possible interpretations of the approximate solution:
	- $\|\mathbf{f}(\hat{\mathbf{x}}) \mathbf{f}(\mathbf{x}^*)\| \leq \epsilon$: small residual
► $\|\hat{\mathbf{x}} \mathbf{x}^*\| < \epsilon$ closeness to the true
	- ▶ ∥**x**ˆ − **x** ∗ ∥ ≤ ϵ closeness to the true solution
- the two criteria might not be satistfied simultaneously
- if the problem is well-conditioned: small residual implies accurate solution

Convergence rate

- usually, the solution is found iteratively
- let $\mathbf{e}_k = \mathbf{x}_k \mathbf{x}^*$ be the error at the k-th iteration, where \mathbf{x}_k is the approximation and **x** ∗ is the true solution
- \bullet the method converges with rate r if

$$
\lim_{k \to \infty} \frac{\|\mathbf{e}_{k+1}\|}{\|\mathbf{e}_k\|^r} = C, \quad \text{for } C > 0 \text{ finite}
$$

- **•** if the method is based on improving the bracketing, then $\mathbf{e}_k = b_k a_k$ o if
	- $\rightarrow r = 1$ and $C < 1$, the convergence is linear and a constant number of digits are "gained" per iteration
	- $\rightarrow r = 2$ the convergence is quadratic, the number of exact digits doubles at each iteration
	- \rightarrow r $>$ 1 the converges is superlinear, increasing number of digits are gained (depends on r)

≮ロト (母) (ヨ) (ヨ)

Bisection method

Idea: refine the bracketing of the solution until the length of the interval is small enough. Assumption: there is only one solution in the interval.

Implement the above procedure in Python.

Bisection, cont'd

- convergence is certain, but slow
- convergence rate is linear ($r = 1$ and $C = 1/2$)
- after *k* iterations, the length of the interval is $(b a)/2^k$, so achieving
a tolerance ∈requires a tolerance ϵ requires

$$
\left\lceil \log_2 \frac{b-a}{\epsilon} \right\rceil
$$

iterations, idependently of f.

 \bullet the value of the function is not used, just the sign

Fixed-point methods

- a fixed point for a function $g : \mathbb{R} \to \mathbb{R}$ is a value $x \in \mathbb{R}$ such that $f(x) = x$
- \bullet the fixed-point iteration

$$
x_{k+1}=g(x_k)
$$

is used to build a series of successive approximations to the solution

• for a given equation $f(x) = 0$ there might be several equivalent fixed-point problems $x = g(x)$

Example

The solutions of the equation

$$
x^2-x-2=0
$$

are the fixed points of each of the following functions:

\n- $$
g(x) = x^2 - 2
$$
\n- $g(x) = \sqrt{x+2}$
\n

$$
g(x) = 1 + 2/x
$$

$$
\bullet \hspace{.1cm} g(x) = \frac{x^2+2}{2x-1}
$$

 $g(g(1)) = 1.(6)$ $g(g(g(1))) = 2.2$ $g(g(g(g(1)))) = 1.(90)$

 \cdot . .

 \overline{a}

Conditions for convergence

- a function $g : S \subset \mathbb{R} \to \mathbb{R}$ is called Lipschitz-bounded if $\exists \alpha \in [0,1]$ so that $|f(x_1) - f(x_0)| \le \alpha |x_1 - x_0|, \forall x_0, x_1 \in S$
- in other words, if $|g'(x^*)| < 1$, then g is Lipschitz-bounded
faceusly functions, then exists an internal explaining x^* o
- for such functions, there exists an interval containing x^* s.t. iteration

$$
x_{k+1}=g(x_k)
$$

converges to x^* if started within that interval

- if $|g'(x^*)| > 1$ the iterations diverge
- in general, convergence is linear
- smoothed iterations:

$$
x_{k+1} = \lambda_k x_k + (1 - \lambda_k) f(x_k)
$$

with
$$
\lambda_k \in [0, 1]
$$
 and $\lim_{k \to \infty} \lambda_k = 0$

Stopping criteria

If either

- $\bigcup_{k+1} |x_{k+1} x_k| \leq \epsilon_1 |x_{k+1}|$ (relative error)
- 2 $|x_{k+1} x_k| \leq \epsilon_2$ (absolute iteration error)
- \bigcirc |f(x_{k+1}) f(x_k)| $\leq \epsilon_3$ (absolute functional error)

stop the iterations.

Newton-Raphson method

• from Taylor series:

$$
f(x+h) \approx f(x) + f'(x)h
$$

so in a small neighborhood around x $f(x)$ can be approximated by a linear function of h with the root $-f(x)/f'(x)$

• Newton iteration:

$$
x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}
$$

Implement the above procedure in Python.

Newton-Raphson method, cont'd

- convergence for a simple root is quadratic
- to converge, the procedure needs to start close enough to the solution, where the function f is monotonic

Secant method (lat.: Regula falsi)

• secant method approximates the derivative by finite differences:

$$
x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}
$$

- convergence is normally superlinear, with $r \approx 1.618$
- it must be started in a properly chosen neighborhood

Implement the above procedure in PYTHON.

Interpolation methods and other approaches

- **•** secant method uses linear interpolation
- o one can use higher-degree polynomial interpolation (e.g. quadratic) and find the roots of the interpolating polynomial
- inverse interpolation: $x_{k+1} = \rho^{-1}(y_k)$ where ρ is an interpolating polynomial
- **•** fractional interpolation
- special methods for finding roots of the polynomials

Fractional interpolation

- **•** previous methods have difficulties with functions having horizontal or vertical asymptotes
- linear fractional interpolation uses

$$
\phi(x)=\frac{x-u}{vx-w}
$$

function, which has a vertical asymptote at $x = w/v$, a horizontal asymptote at $y = 1/v$ and a zero at $x = u$

Fractional interpolation, cont'd

- let x_0, x_1, x_2 be three points where the function is estimates, yielding f_0, f_1, f_2
- find u, v, w for ϕ by solving

$$
\begin{bmatrix} 1 & x_0 & t_0 \\ 1 & x_1 & t_1 \\ 1 & x_2 & t_2 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}
$$

- the iteration step swaps the values: $x_0 \leftarrow x_1$ and $x_1 \leftarrow x_2$
- the new approximate solution is the zero of the linear fraction, $x_2 = u$. This can be implemented as

$$
x_2 \leftarrow x_2 + \frac{(x_0 - x_2)(x_1 - x_2)(f_0 - f_1)f_2}{(x_0 - x_2)(f_2 - f_1)f_0 - (x_1 - x_2)(f_2 - f_0)f_1}
$$

Systems of nonlinear equations

- **o** much more difficult than the scalar case
- no simple way to ensure convergence
- **•** computational overhead increases rapidly with the dimension
- **•** difficult to determine the number of solutions
- difficult to find a good starting approximation

Fixed-point methods in \mathbb{R}^n

- $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{x} = \mathbf{g}(\mathbf{x}) = [g_1(\mathbf{x}), \dots, g_n(\mathbf{x})]$
- fixed-point iteration: $\mathbf{x}_{k+1} = \mathbf{g}(\mathbf{x}_k)$
- denote $\rho(\mathbf{J}_q(\mathbf{x}))$ the spectral radius (maximum absolute eigenvalue) of the Jacobian matrix of **g** evaluated at **x**
- if $\rho(\mathbf{J}_g(\mathbf{x}^*))$ < 1, the fixed point iteration converges if started close enough to the solution
- the convergence is linear with $C = \rho(\mathbf{J}_g(\mathbf{x}^*))$

Newton-Raphson method in \mathbb{R}^n

$$
\bullet \ \mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}_f^{-1}(\mathbf{x}_k) \mathbf{f}(x_k)
$$

• no need for inversion; solve the system

$$
\mathbf{J}_f(\mathbf{x}_k)\mathbf{s}_k = -\mathbf{f}(\mathbf{x}_k)
$$

for **Newton step** s_k and iterate

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k
$$

Broyden's method

- uses approximations of the Jacobian
- the initial approximation of **J** can be the actual Jacobian (if available) or even **I**

Algorithm 2: Broyden's method

for
$$
k = 0, 1, 2, \ldots
$$
 do

\nSolve $\mathbf{B}_k \mathbf{s}_k = -\mathbf{f}(\mathbf{x}_k)$ for \mathbf{s}_k

\n $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$

\n $\mathbf{y}_k = \mathbf{f}(\mathbf{x}_{k+1}) - \mathbf{f}(\mathbf{x}_k)$

\n $\mathbf{B}_{k+1} = \mathbf{B}_k + ((\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k) \mathbf{s}_k^T) / (\mathbf{s}_k^T \mathbf{s}_k)$

\nif $\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \geq \epsilon_1 (1 + \|\mathbf{x}_{k+1}\|)$ then

\nContinue

\nif $\|\mathbf{f}(\mathbf{x}_{k+1})\| < \epsilon_2$ then

\n $\mathbf{x}^* = \mathbf{x}_{k+1}$ break

\nelse

\nUse

\nalgorithm failed

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biom 24/62

Ε

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Further topics

- secant method is also extended to \mathbb{R}^n (see Broyden's method)
- **•** robust Newton-like methods: enlarge the region of convergence, introduce a scalar parameter to ensure progression toward solution
- in Python: scipy.optimize.root_scalar(), scipy.optimize.root(), scipy.optimize.fsolve(), etc.

See Python notebook for examples.

Numerical optimization

Problem setting

- minimization problem: $f : \mathbb{R}^n \to \mathbb{R}, S \subseteq \mathbb{R}^n$, find $\mathbf{x}^* \in S$: $f(\mathbf{x}) \leq f(\mathbf{v}), \forall \mathbf{v} \in S \setminus \{\mathbf{x}\}\$
- **x** ∗ is called minimizer (minimum, extremum) of f
- maximization is equivalent to minimizing $-f$
- \bullet f is called objective function and considered, here, differentiable with continuous second derivative
- constraint set S (or feasible region) is defined by a system of equations and/or inequations
- **•** $y \in S$ is called a feasible point
- if $S = \mathbb{R}^n$ the optimization is unconstrained

If f, **g** and h_k functions are linear: linear programming.

イロト イ押 トイヨ トイヨ トー

メロメメ 御 メメ きょく きょうき

Some theory

- Rolle's thm: f cont. on [a, b] and differentiable on (a, b) with $f(a) = f(b)$, then $\exists c \in (a, b) : f'(c) = 0$
- Weierstrass' thm: f cont. on a compact set with values in a subset of $\mathbb R$ attains its extrema
- Fermat's thm: f : (a, b) → R then in a stationary point $x_0 \in (a, b)$, $f'(x_0) = 0$. Generalization: $\nabla f(\mathbf{x}_0) = 0$.
- convex function: $f''(x) > 0$; concave function: $f''(x) < 0$
- if $f'(x_0) = 0$ and $f''(x_0) < 0$ then x_0 is a minimizer
- if $f'(x_0) = 0$ and $f''(x_0) > 0$ then x_0 is a maximizer
- if $f'(x_0) = f''(x_0) = 0$, then x_0 is an inflection point

K 何 ▶ K 三 ▶ K 三 ▶ 「三 」 つQ (^

Set convexity

Formally: a set S is convex if $\alpha x_1 + (1 - \alpha x_2) \in S$ for all $x_1, x_2 \in S$ and $\alpha \in [0, 1].$

Function convexity

Formally: f is said to be convex on a convex set S if $f(\alpha x_1 + (1 - \alpha)x_2) \leq \alpha f(x_1) + (1 - \alpha)f(x_2)$ for all $x_1, x_2 \in S$ and $\alpha \in [0, 1]$.

Uniqueness of the solution

- any local minimum of a convex function f on a convex set $S \subseteq \mathbb{R}^n$ is global minimum of f on S
- any local minimum of a *strictly* convex function f on a convex set $S \subseteq \mathbb{R}^n$ is unique global minimum of f on S

Optimality criteria

For $\mathbf{x}^* \in S$ to be an extremum of $f : S \subseteq \mathbb{R}^n \to \mathbb{R}$

first order condition: x^{*} must be a critical point:

$$
\nabla f(\mathbf{x}^*) = 0
$$

second order condition: the Hessian matrix **H**_f(x[∗]) must be positive or negative definite

$$
[\mathbf{H}_f(\mathbf{x})]_{ij} = \frac{\partial f(\mathbf{x})}{\partial x_i \partial x_j}
$$

If the Hessian is

- ▶ positive definite, then **x** ∗ is a minimum of f
- ▶ negative definite, then **x** ∗ is a maximum of f
- ► indefinite, then **x**^{*} is a saddle point of f
- \triangleright singular, then different degenerated cases are possible...

Saddle point

source: Wikipedia

目

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Unimodality

Unimodality allows discarding safely parts of the interval, without loosing the solution (like in the case of interval bisection).

14

Golden section search

- \bullet evaluate the function at 3 points and decide which part to discard
- ensure that the sampling space remains proportional:

$$
\frac{c}{a}=\frac{a}{b}\Rightarrow\frac{b}{a}=\frac{1+\sqrt{5}}{2}=1.618...
$$

• convergence is linear, with $C \approx 0.618$

Successive parabolic interpolations

Convergence is superlinear, with $r \approx 1.32$.

Newton's method

From Taylor's series:

$$
f(x+h) \approx f(x) + f'(x)h + \frac{f''(x)}{2}h^2
$$

whose minimum is at $h = -f'(x)/f''(x)$. Iteration scheme:

$$
x_{k+1} = x_k - f'(x) / f''(x)
$$

(That's Newton's method for finding the zero of $f'(x) = 0$.)
Quadratic convergences, but needs to start close to the so Quadratic convergences, but needs to start close to the solution.

Hybrid methods

- idea: combine "slow-but-sure" methods with "fast-but-risky"
- **•** most library routines are using such approach
- popular combination: golden search and successive parabolic interpolation

PYTHON functions for optimization in \mathbb{R}

- **many packages, check scipy.optimize module**
- an interesting project: PyOMO
- scipy.optimize.fminbound(): bounded function minimization
- you can use functions for multivariate case as well

Exercise in Python...

Nelder-Mead (simplex) method

- direct search methods simply compare the function values at different points in S
- Nelder-Mead selects $n + 1$ points (in \mathbb{R}^n) forming a simplex (i.e. a segment in $\mathbb R,$ a triangle in $\mathbb R^2,$ a tetrahedron in $\mathbb R^3,$ etc)
- along the line from the point with highest function value through the centroid of the rest, select a new vertex
- the new vertex replaces the worst previous point
- repeat until convergence
- \bullet useful procedure for non-smooth functions, but expensive for large n

Nelder-Mead in Python

Use the function scipy.optimize.fmin() to find the minimum of the function

 $f(\mathbf{x}) = \sin(||\mathbf{x}||^2).$

Try different initial conditions.

Steepest descent (gradient descent)

- $f: \mathbb{R}^n \to \mathbb{R}$: the negative gradient, $-\nabla f(\mathbf{x})$ is locally the steepest descent towards a (local) minimum
- $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha_k \nabla f(\mathbf{x}_k)$ **where** α_k **is line search parameter**

- $\alpha_k = \arg \min_{\alpha} f(\mathbf{x}_k \nabla f(\mathbf{x}_k))$
- **•** the method always progresses towards minimum, as long as the gradient is non-zero
- the convergence is slow, the search direction may zig-zag
- the method is "myopic" in its choices

Newton's method

- exploit the 1st and 2nd derivative
- **Newton iteration**

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{H}_f^{-1}(\mathbf{x}_k) \nabla f(\mathbf{x}_k)
$$

• no need to invert the Hessian; solve the system

$$
\mathbf{H}_f(\mathbf{x}_k)\mathbf{s}_k = -\nabla f(\mathbf{x}_k)
$$

and then

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k
$$

• variation: damped Newton method uses a line search along the direction of s_k to make the method more robust

Newton's method, cont'd

- close to minimum, the Hessian is symmetric positive definite, so you can use Cholesky decomposition
- if initialized far from minimum, the Newton step may not be in the direction of steepest descent:

$$
(\nabla f(\mathbf{x}_k))^T \mathbf{s}_k < 0
$$

• choose a different direction based on negative gradient, negative curvature, etc

Quasi-Newton methods

- improve reliability and reduce overhead
- **o** general form

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{B}_k^{-1} \nabla f(\mathbf{x}_k)
$$

where α_k is a line search parameter and \mathbf{B}_k is an approximation to the Hessian

BFGS (Broyden-Fletcher-Goldfarb-Shanno) method

Algorithm 3: BFGS method

 x_0 = some initial value **initial approximation of the Hessian for** $k = 0, 1, 2, ...$ **do** solve $\mathbf{B}_k \mathbf{s}_k = -\nabla f(\mathbf{x}_k)$ for \mathbf{s}_k $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$ $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$ $\mathbf{B}_{k+1} = \mathbf{B}_k + (\mathbf{y}_k \mathbf{y}_k^{\mathsf{T}})/(\mathbf{y}_k^{\mathsf{T}} \mathbf{s}_k) - (\mathbf{B}_k \mathbf{s}_k \mathbf{s}_k^{\mathsf{T}} \mathbf{B}_k)/(\mathbf{s}_k^{\mathsf{T}} \mathbf{B}_k \mathbf{s}_k)$

BFGS, cont'd

- **•** update only the factorization of B_k rather than factorizing it at each iteration
- no 2nd derivative is needed
- **•** can start with $\mathbf{B}_0 = \mathbf{I}$
- **B**_k does not necessarily converge to true Hessian

Conjugate gradient (CG)

- does not need 2nd derivative, does not construct an approximation of the Hessian
- **•** searches on conjugate directions, implicitly accumulating information about the Hessian
- \bullet for quadratic problems, it converges in n steps to exact solution (theoretically)
- two vectors **^x**, **^y** are conjugate with respect to a matrix **^A** is **^x** ^T**Ay** = 0
- **•** idea: start with an initial guess \mathbf{x}_0 (could be **0**); go along the negative gradient at the current point; compute the new direction as a combination of previous and new gradients

Algorithm 4: CG method

 x_0 = some initial value $\mathbf{g}_0 = \nabla f(\mathbf{x}_0)$ $s_0 = -g_0$ **for** $k = 0, 1, 2, ...$ **do** $\alpha_k = \arg \min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{s}_k)$ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{s}_k$ $\mathbf{g}_{k+1} = \nabla f(\mathbf{x}_{k+1})$ $\beta_{k+1} = (\mathbf{g}_{k+1}^T \mathbf{g}_{k+1})/(\mathbf{g}_k^T \mathbf{g}_k)$ $s_{k+1} = -g_{k+1} + \beta_{k+1}s_k$

source: Wikipedia

Other methods

- we barely scratched the surface!
- **•** heuristic methods
- genetic algorithms
- stochastic methods
- **•** hybrid methods
- \bullet etc etc etc

Some Python functions in scipy.optimize

- linear and quadratic optimization: linprog()
- linear least squares: nnls(), lsq_linear()
- **o** nonlinear minimization:
	- \triangleright fminbound() scalar bounded problem;
	- \triangleright fmin_bfqs(), etc. multidimensional nonlinear minimization
	- \triangleright fmin() Nelder-Mead unconstrained nonlinear minimization
	- \triangleright fmin_1_bfgs_b(), etc. multidimensional constrained nonlinear minimization

▶ ...

Linear programming (LP)

General form:

minimize $\mathbf{f}^{\mathsf{T}}\mathbf{x}$

subject to

 $A_{eq}x = b_{eq}$ $Ax < b$ lb ≤ **x** ≤ ub

Python:

 $X = \text{linprog}(f, A, b, Aeg, beq, bounds=(lb, ub), x0=...)$

←ロト ←何ト ←ミト ←ミトー

LP - Example

Solve the LP:

maximize $2x_1 + 3x_2$

such that

 $x_1 + 2x_2 \le 8$ $2x_1 + x_2 \le 10$ $x_2 \leq 3$

> and the first \overline{a}

See the PYTHON notebook.

э

LP - A "practical" example

A company produces two types of microchips: C1 (1g silicon, 1g plastic, 4g copper) and C2 (1g germanium, 1g plastic, 2g copper). C1 brings a profif of 12 EUR, C2 a profit of 9 EUR. The stock of raw materials: 1000g silicon, 1500g germanium, 1750g plastic, 4800g copper. How many C1 and C2 should be produced to maximize profit while respecting the availability of raw material stock?

LP - A "practical" example

A company produces two types of microchips: C1 (1g silicon, 1g plastic, 4g copper) and C2 (1g germanium, 1g plastic, 2g copper). C1 brings a profif of 12 EUR, C2 a profit of 9 EUR. The stock of raw materials: 1000g silicon, 1500g germanium, 1750g plastic, 4800g copper. How many C1 and C2 should be produced to maximize profit while respecting the availability of raw material stock?

Let x denote the quantity of C1, and y the quantity of C2. The problem is

$$
\max_{x,y} 12x + 9y
$$
\n
$$
\text{s.t.} \quad x \le 1000
$$
\n
$$
y \le 1500
$$
\n
$$
x + y \le 1750
$$
\n
$$
4x + 2y \le 4800
$$
\n
$$
x, y \ge 0
$$

The problem can be written as

$$
\max_{\mathbf{x}} \mathbf{c}^T \mathbf{x}
$$

s.t. $A\mathbf{x} \leq \mathbf{b}$
 $\mathbf{x} \in \mathbb{R}_+^2$

where

$$
\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 12 \\ 9 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 4 & 2 \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1000 \\ 1500 \\ 1750 \\ 4800 \end{bmatrix}
$$

and the first

See Python notebook for a possible approach.

Quadratic programming (QP)

General form:

$$
\text{minimize } \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{f}^T \mathbf{x}
$$

subject to

 $Ax < b$ $A_{ea}x = b_{ea}$ $lb < x < ub$

with $H \in \mathbb{R}^{n \times s}$ symmetric.

Python: you need to install some extra packages e.g., qpsolvers

X = qpsolvers . solve_qp (H, f , A, b , A_eq , b_eq , lb , ub , solver =" proxqp ") # other solvers are a v a i l a b l e

QP - Example

Solve:

minimize $x_1^2 + x_1x_2 + 2x_2^2 + 2x_3^2 + 2x_2x_3 + 4x_1 + 6x_2 + 12x_3$ subject to

 $x_1 + x_2 + x_3 > 6$ $-x_1 - x_2 + 2x_3 > 2$ $x_1, x_2, x_3 > 0$

See PYTHON notebook.

∍

Constrained nonlinear optimization

Problem: minimize f(**x**) subject to

 $c(\mathbf{x}) \leq 0$ $c_{eq}(\mathbf{x})=0$ $Ax < b$ $A_{eq}x = b_{eq}$ $\mathsf{lb} \leq \mathbf{x} \leq \mathsf{ub}$

Python: various functions - see, for example, scipy.optimize.minimize()

Questions?

E

メロトメ 御 トメ 君 トメ 君 トッ