
E7441: Scientific computing in biology and
biomedicine

Stochastic methods

Vlad Popovici, Ph.D.

RECETOX

Outline

1 Introduction to Monte Carlo methods
Random number generators
Non-uniform random variable generation
Monte Carlo methods for inference
Inference about the mean

2 Bootstrapping
Introduction
Empirical distribution and the plug-in principle
Improved bootstrap confidence intervals
Bootstrapping for hypothesis test

3 Permutation tests
Introduction
Example/exercise

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 2 / 56

Introduction to Monte Carlo methods

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 3 / 56

Numerical experiments: simulations

General approach:
1 identify the random variable of interest X
2 identify/postulate its distributional properties
3 generate one or several large samples identical and independely

distributed X1, . . . ,Xn from the distribution of X
4 estimate the quantity of interest (e.g. estimate EX using sample

average) and assess its accuracy (e.g. via confidence intervals)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 4 / 56

Random number generators (RNGs)

all random variables can be generated by transforming a uniformly
distributed random variable X ∈ U(0, 1)

there is no algorithmic (deterministic) way of generating infinitely long
sequences of true random numbers

computers generate pseudorandom numbers

there exist devices to generate (believed to be) random sequences:
e.g. radioactive decay: the time elapsed between emission of two
consecutive particles (α, β, γ). See: http://www.fourmilab.ch/hotbits

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 5 / 56

http://www.fourmilab.ch/hotbits

RNGs, cont’d

two aspects:
1 generate good pseudorandom numbers in U(0, 1): independent and

uniformly distributed
2 find proper trasformations to the desired distribution

you cannot prove that an RNG is truly random

there are a batteries of tests that an RNG must pass to be acceptable

for any RNG, one can find a statistical test that will reject it as a good
generator

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 6 / 56

RNGs, cont’d

Formalism:
an RNG is a structure (S, µ, f ,U, g) where

▶ S is a finite set of states
▶ µ is a probability distribution on S used to select the initial seed (state)

s0
▶ f : S → S is a transition function. The state of the RNG evolves

according to the recurrence si = f(si−1) for i ≥ 1
▶ U is the output space. Usually U = (0, 1)
▶ g : S → U is the output function. The numbers ui = g(si) are called

random numbers produced by the RNG

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 7 / 56

RNGs, cont’d

S is finite⇒ ∃l ≥ 0, j > 0 finite such that sl+j = sl

this implies that ∀i ≥ l, ui+j = ui since both f and g are deterministic

the smallest positive j for which this happens is called period lenght of
the RNG and is denoted by ρ

obviously, ρ ≤ |S |

ex.: if the state is represented on k bits, then ρ ≤ 2k

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 8 / 56

RNGs, cont’d

Quality criteria:

extremly long period ρ

efficient implementation

repeatability

portability

availability of jump-ahead property: quickly compute the si+v given si ,
so you can partition a long sequence in subsequences to be used in
parallel

randomness

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 9 / 56

RNGs, cont’d

Coverage:

let Ψt = {(u0, . . . , ut)|s0 ∈ S}

is Ψt uniformly covering the hypercube (0, 1)t?

tests of discrepancy between the empirical distribution of Ψt and the
uniform distribution

figure of merit: a measure of the coverage quality

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 10 / 56

RNGs, cont’d

Randomness and i.i.d:

statistical tests: try to detect empirical evidence against H0: "ui are
realizations of i.i.d U(0, 1)". Example: diehard tests (Marsaglia, 1995)

passing more tests improves the confidence in RNG, but cannot
prove the RNG is foolproof for all cases

good RNG passes a set of simple tests

polynomial time perfect RNG: there is no polynomial-time algorithm
the can predict any given bit of ui with a probability of success
≥ 1/2 + 2−kϵ , for some ϵ > 0, after observing u0, . . . , ui−1

the usual RNGs are not polynomial time perfect

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 11 / 56

RNGs, cont’d

Multiple Recursive Generator has a general recurrence

xi = (a1xi−1 + · · ·+ ak xi−k)modm

where m (modulus) and k (order) are integers carefully selected, and
coefficients a1, . . . , ak ∈ Zm.
The state is si = (xi−k+1, . . . , xi)

T .
When m is prime, it is possible to select ai such that the period length
ρ = mk − 1.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 12 / 56

RNGs, cont’d

Example (historical, not in serious use anymore): MLCG (Lehmer, 1948):
multiplicative linear congruential generator:

si+1 = (a1si + a0)modm

This generates integers that are converted to (0, 1) by division with m.
Weakness: (Marsaglia, 1968): if (si , . . . , si+d) represent some points in a
d−dimensional space, they have a lattice structure: they lie in a number of
specific hyperplanes.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 13 / 56

RNGs, cont’d

Famous multipliers (a0 = 0):

a1 = 23,m = 108 + 1: original
version, has higher order
correlations

a1 = 65539,m = 229: infamous
RANDU generator (IBM 360
series, in the 1970s):
catastrophic higher order
correlations

a1 = 69069,m = 232

(Marsaglia, 1972): good
properties and converage up to
6 dimensions

(x, y, z) coordinates taken as
consecutive values generated by
RANDU (a1 = 65539,m = 229) -
from Wikipedia

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 14 / 56

RNGs, cont’d - Exercise

write a function

random_sample_mlcg(n, a0=0, a1=20, m=53, s0=21)

which implements the procedure MLCG (with some default
parameters), and returns a sequence of n numbers.

generate a sequence and plot ui+1 vs ui

u = random_sample_mlcg(200)
plt.scatter(u[2:],u[:-1])

discuss!

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 15 / 56

RNGs, cont’d - Exercise
let n = 20000
execute

n = 20000
u = random_sample_mlcg(n, a0=0, a1=65539, m=2**31, seed=10)
z = (u - 0.5) / (2**31-1)

is the histogram reasonably uniform?

_ = plt.hist(z, bins=20)

what about the coverage of (0, 1) × (0, 1)?

z1 = z[:-2]; z2 = z[1:-1]; z3 = z[2:]; plt.scatter(z1, z2)

any structure?

i = np.argwhere(z3 < 0.01); plt.scatter(z1[i], z2[i])

discuss!
Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 16 / 56

RNGs, cont’d

In general: don’t let the RNG to be "randomly" selected!

for serious work, always set the seed, check the RNG, etc: they might
be version-dependent; also you want other to be able to reproduce
your results

read the help for numpy.random

using numpy one can specify the generator and a wide range of
distributions using something like

numpy.random.<GENERATOR>.<DISTRIBUTION>(<parameters>)

like numpy.random.default_rng(seed=42).uniform(0, 1, 20)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 17 / 56

Non-uniform r.v. generation (NRNG)

Requirements:

correctness: a good approximation of the theoretical distribution

robustness: RNG should work well on a large range of parameters

efficiency

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 18 / 56

NRNG: inversion method

best choice, when feasible

to generate X with distribution function F , starting from a uniform
variate U ∈ (0, 1), apply the inverse F−1 to U:

X = F−1(U) := min{x |F(x) ≥ U}

easy to see that the distribution of X is as required:

P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F(x)] = F(x)

for some distributions, F−1 can be obtained analytically. Ex.: Weibull
distribution F(x) = 1 − exp(−(x/β)α), with α, β > 0; has the inverse
F−1(U) = β[− ln(1 − U)]1/α

other distributions do not have a close form inverse: e.g. normal,
χ2,... ⇒ approximations

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 19 / 56

NRNG: inversion method, cont’d

Example (principle of inversion):

r e t u r n X wi th cdf F , f o r a
uni form r . v . 0 < U < 1
(look −up tab le method)
X = 0
whi le (F (X) < U) X = X + 1
r e t u r n (X)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 20 / 56

NRNG: Rejection method

consider F with a compact support and
bounded F(x) ≤ k

consider a series of points (Xi ,Yi) uniformly
distributed under the density function

the distribution of Xi is the same as the
distribution of X (F): P[a < Xi < b] =
probability of a point falling in the region =∫ b

a F(x)dx
procedure:

1 generate X ∼ U[a, b] and Y ∼ U[0, 1]
independently

2 if Y < F(X) return X , otherwise repeat

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 21 / 56

NRNG: Rejection method - Exercise

Implement the rejection method for generating
random variates from the pdf

F(x) =

x if 0 < x < 1

2 − x if 1 ≤ x < 2

0 otherwise

Generate n = 5000 r.v. in [0, 2] and plot their
histogram.

Histogram of z

z

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 22 / 56

Generating normally distributed r.v.

you can use the rejection method

alternative: Box-Muller algorithm: based on the observation that the
coordinates of points in a 2D Cartesian system described by 2
independent normal distributions correspond to polar coordinates that
are realizations of 2 independent uniform distributions

Box-Muller transform: if U1,U2 are independent uniformly distributed
on (0,1), then

Z1 = r cos θ =
√
−2 lnU1 cos(2πU2)

Z2 = r sin θ =
√
−2 lnU1 sin(2πU2)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 23 / 56

Improved Box-Muller algorithm, with rejection step:
1 generate U1,U2 ∼ U(−1, 1)
2 accept S2 = U2

1 + U2
2 if S2 < 1, else go to step 1

3 set W =
√
−2 lnS2

S2

4 return X = U1W and Y = U2W

Exercise: Implement the procedure above in Python!

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 24 / 56

Other methods for NRNG

kernel density estimation: approximate the inverse using a kernel for
which efficient generators exist

composition: consider F to be a convex combination of several
distributions Fj :

F(x) =
∑

j

pjFj(x)

To generate from F , one generates J with probability pj and then
generates X from Fj

convolution: if X = Y1 + · · ·+ Yn, with Yj independent with specified
distributions, then generate the Yj ’s and sum them

etc etc

numpy.random has efficient implementations for many standard
distributions

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 25 / 56

MC methods for inference

General approach:
1 identify the random variable of interest X
2 identify/postulate its distributional properties
3 generate one or several large samples identical and independently

distributed X1, . . . ,Xn from the distribution of X
4 estimate the quantity of interest (e.g. estimate EX using sample

average) and assess its accuracy (e.g. via confidence intervals)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 26 / 56

MC inference about the mean
Reminder:

problem: compute z = EZ when z is not available analytically, but Z
can be simulated

consider n replicates Z1, . . . ,Zn of Z and estimate z by the empirical
mean ẑ =

∑
i Zi/n

denote σ2 = Var{Z} < ∞

central limit theorem:
√

n(ẑ − z)→ N(0, σ2), as n → ∞

from this, an 1 − α confidence interval can be obtained as(
ẑ − z1−α/2

σ
√

n
, ẑ − zα/2

σ
√

n

)
where zα denotes the α−quantile of the normal distribution
(Φ(zα) = α)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 27 / 56

MC for inference about the mean - Exercise

Implement the following procedure:

write the Python function pdf1(n) to generate n = 1000 r.v. drawn
from

f(X) = 0.2N1(X) + 0.3N2(X) + 0.5N3(X)

where Ni are Gaussians with parameters µ1 = 0, σ1 = 0.5,
µ2 = 6.5, σ2 = 1.25, µ3 = 14.5, σ3 = 0.75. Do not use for loops or
any function from the various nonstandard packages!

plot the histogram

repeat the procedure for n = 10000 and n = 100000. what do you
see?

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 28 / 56

generate p = 1000 samples of n = 1000 r.v.: X [p × n]

compute x̂i as the sample average for each of the p samples and the
grand average X̂

what is the true mean of this mixture of Gaussians?

test the normality of the distribution of x̂i (find an appropriate test!)

estimate the 95% empirical confidence interval (using quantiles of the
distribution of x̂i) and compare it with the theoretical one (using
sample variance for σ2) obtained from a single sample (say, X[1,])

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 29 / 56

Introduction to bootstrapping

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 30 / 56

Introduction

resampling technique for statistical inference: assess uncertainty

especially useful when no assumptions can be made on the
underlying model

confidence intervals without distributional assumptions

there are many versions of bootstrapping

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 31 / 56

Example (from Efron, Tibshirani, 1993):

Group Heart attacks Subjects
aspirin 104 11037
placebo 189 11034

The odds ratio:
θ̂ =

104/11037
189/11034

= 0.55

so it seems that aspirin reduced the incidence of heart attacks.

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 32 / 56

Log-odds can be approximated by the normal distribution, so we use it to
construct a 95% CI. Standard error is

SE(log(OR)) =
√

1/104 + 1/189 + 1/11037 + 1/11034 = 0.1228

giving a 95% CI for log θ:

log θ̂ ± 1.96 × SE(log(OR)) = (−0.839,−0.357)

with a corresponding 95% for θ obtained by exponentiating: (0.432, 0.700).

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 33 / 56

At the same time, aspirin seems to have a detrimental effect on strokes

Group Stroke Subjects
aspirin 119 11037
placebo 98 11034

which leads to an odds ratio of θ̂ = 1.21 with a 95% CI of (0.925, 1.583).

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 34 / 56

...and how bootstrap would proceed to infering the CI:

create a sample for the treatment (s1) and one for the placebo (s2)
group as vectors containing as many 1s as case there are

draw with replacement a random sample from s1 and from s2, of the
same size as the groups

compute the odds ratios based on the drawn samples

repeat the process a number of times and record all the odds ratios
computed

using their empirical distribution, estimate the CI of interest

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 35 / 56

A naive implementation
n1 = 11037
n1_cases = 119
n2 = 11034
n2_cases = 98

s1 = np.ones((n1,), dtype=np.int64); s1[n1_cases:] = 0
s2 = np.ones((n2,), dtype=np.int64); s2[n2_cases:] = 0

B = 1000 # no. of bootstraps
p = n2 / n1
theta = np.zeros((B,), dtype=np.float64)

for i in np.arange(B):
theta[i] = p * np.sum(
np.random.choice(s1, n1, replace=True)) /
np.sum(np.random.choice(s2, n2, replace=True))

_ = plt.hist(theta, 50)
print("95% Confidence interval for theta: ",
np.quantile(theta, q=(0.025, 0.975)))

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 36 / 56

Histogram of theta

theta

F
re
qu
en
cy

0.8 1.0 1.2 1.4 1.6 1.8

0
50

10
0

15
0

20
0

25
0

the CI estimate by the quantiles is not
the most precise nor efficient that can
be obtained by bootstrapping

it works for symmetric, close to normal
distributions of the bootstrap replicate

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 37 / 56

The empirical distribution

the underlying probability distribution F generates the observed
sample:

F → (x1, . . . , xn) = x

the empirical distribution F̂ is the discrete distribution that puts
probability 1/n at each value xi , i = 1, . . . , n

F̂ assigns to a set A in the sample space of x its empirical probability:

P̂rob{A } =
#{xi ∈ A }

n
= ProbF̂ {A }

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 38 / 56

a parameter is a functional of the distribution function, θ = t(F).
Example: the mean

µ(F) =
∫

xdF(x)

a statistic is a function of the sample x. Example: the sample average,

µ̂ =
1
n

n∑
i=1

xi

the plug-in estimate of a parameter θ = t(F) is defined to be

θ̂ = t(F̂)

(sometimes called summary statistics, estimates or estimator)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 39 / 56

Bootstrap estimate of the standard error

bootstrap sample: F̂ → (x∗1 , . . . , x
∗
n) = x∗ (resampling with

replacement)

let θ̂ = s(x) be an estimate for the parameter of interest

the question is: what is the standard error of the estimate?

bootstrap replication of θ̂ is

θ̂∗ = s(x∗)

ideal bootstrap estimate of SE:

seF̂(θ̂
∗)

i.e. the standard error of θ̂ for data sets of size n randomly sampled
from F̂

unfortunately, close-form formulas exist only for some estimators

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 40 / 56

General form of the bootstrap method

by resampling with replacement
from x one samples from the
empirical distribution F̂

x∗b are the bootstrap samples of
size n

s(x∗b) = θ̂
∗
b are the bootstrap

replications of the parameter of
interest θ

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 41 / 56

Bootstrap estimation of standard errors

1 select B independent bootstrap samples x∗1, . . . , x
∗
B

2 evaluate the bootstrap replicate of each bootstrap sample θ̂∗b = s(x∗b),
b = 1, 2, . . . ,B

3 estimate the standard error seF̂(θ̂) by the sample standard deviation
of the B replications:

ŝeB =

√√√
1

B − 1

B∑
b=1

[
θ̂∗b − θ̂

∗
0

]2

where θ̂∗0 = 1
B

∑B
b=1 θ̂

∗
b

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 42 / 56

Homework

Implement the previous procedure in Python:

write a function bstrap_nonparam(x, B, s, ...) which will
generate B bootstrap samples x∗b and for each of them will compute
the bootstrap replicate of the parameter: θ̂∗b = s(x∗b , · · ·)

write a function bstrap_theta0(T) which computes the bootstrap
estimate of the parameter, given the bootstrap replicates in the vector
T (θ̂∗0)

write a function bstrap_se(T) which computes the bootstrap
estimate of the standard error of the parameter, given the bootstrap
replicates in the vector T (ŝeB)

use the Rainfall data set to compute the bootstrap estimate of the
mean, median and corresponding standard errors - see the Jupyter
notebook for data.

compare with textbook results! (discuss!)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 43 / 56

Bias–corrected and accelerated CI

the quantile-based CI is not tight enough nor robust
idea: better exploit the quantiles of the empirical distribution by:

▶ correcting the bias
▶ improving convergence

simple bootstrap quantile-based CI: for an (1 − 2α) coverage, the
bounds of the CI are given by (θ̂∗(α), θ̂∗(1−α)) where θ̂∗(q) is the q−th
quantile of the bootstrap replicates

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 44 / 56

The BCa CI is given by (θ̂∗(α1), θ̂∗(α2)) where

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1 − â(ẑ0 + z(α))

)
α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1 − â(ẑ0 + z(1−α))

)
where

Φ(·) is the standard normal CDF

z(q) is the q−th quantile of standard normal distribution

â and ẑ0 are cleverly chosen

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 45 / 56

The parameters of BCa CIs:

ẑ0 = Φ−1

#{θ̂∗b < θ̂}B

â =

∑n
i=1

(
θ̂(·) − θ̂(i)

)3

6
[∑n

i=1

(
θ̂(·) − θ̂(i)

)2
]3/2

where

θ̂(i) is the value of the parameter computed on the vector x with the
i−th component removed (jackknife values of the parameter)

θ̂(·) =
∑n

i=1 θ̂(i)/n

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 46 / 56

Exercise: implement the BCa procedure in R: (yes, not in Python)

write a function bstrap.bca(x, B, s, ..., alpha=c(0.025, 0.05)) that
returns the low and upper bounds of the CI computed by BCa method

you can use (call) the previous function bstrap.nonparam

compute the 90% and 95% BCa CIs for the mean of Rainfall data:
bstrap.bca(Rainfall, 2000, mean)

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 47 / 56

Important properties of BCa CIs

transformation respecting: the bounds of the CIs transform correctly if
the parameter is changed by some function: e.g. the CIs for
√
·-transformed parameter are obtained by taking √ of the bounds of

the parameter itself

second order accurate: convergence rate of 1/n to true coverage

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 48 / 56

Bootstrapping for tests

consider two possibly different distributions F and G,

F → z = (z1, . . . , zn)

G → y = (y1, . . . , ym)

hypotheses:

H0 : F = G

H1 : F , G

F = G ⇔ ProbF {A } = ProbG{A } for all sets A

observe a test statistic θ̂ (e.g. mean difference)

achieved significance level (ASL): probability of observing that large a
value under H0:

ASL = ProbH0{θ̂
∗ ≥ θ̂}

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 49 / 56

Bootstrapping hypothesis testing procedure
1 choose a test statistic (not necessary a parameter): t(x) (for example:

t(x) = z̄ − ȳ)
2 draw B samples of size n + m from x = (z, y) and call the first n

observations z∗ and the remaining m y∗

3 evaluate t(·) for each sample: t(x∗b)
(for example

t(x∗b) = z̄∗b − ȳ∗b

)
for b = 1, 2, . . . ,B

4 approximate ASLboot by

ÂSLboot = #{t(x∗b) ≥ t(x)}/B

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 50 / 56

Permutation tests

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 51 / 56

Permutation tests

nonparametric testing procedure

allow testing hypotheses when the properties of the test statistic
under the null hypothesis are not known

do not make assumptions on the data

work on small data sets

idea: generate the distribution of the test statistic under the null
hypothesis from the data

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 52 / 56

exact permutation tests: for (very) small data sets, generate all
permutations and compute the corresponding test statistics

random test: for large data sets, generate a number of random
permutations, for which compute the test statistic

test procedure: count how many times the test statistic from the
permutations is more extreme than the real test statistic and reject H0

if the proportion is below the predefined α−level

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 53 / 56

Example - two populations tests

consider the data vectors mouse.c and mouse.t for the control and
treatment arms of an experiment (some clinical variable)

implement a permutation testing procedure for testing
H0 : there is no significant difference in the clinical variable between
control and treatment
vs
H1 : there is a significant difference in the clinical variable between
control and treatment

which test statistic? what to permute? how many permutations?

what should be changed if the test was about superiority of treatment
vs control?

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 54 / 56

Histogram of d

d

F
re

qu
en

cy

−50 0 50

0
50

0
10

00
15

00

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 55 / 56

Questions?

Vlad Popovici, Ph.D. (RECETOX) E7441: Scientific computing in biology and biomedicine 56 / 56

	Introduction to Monte Carlo methods
	Random number generators
	Non-uniform random variable generation
	Monte Carlo methods for inference
	Inference about the mean

	Bootstrapping
	Introduction
	Empirical distribution and the plug-in principle
	Improved bootstrap confidence intervals
	Bootstrapping for hypothesis test

	Permutation tests
	Introduction
	Example/exercise

