E7441: Scientific computing in biology and
biomedicine
Introduction to parallel computing

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Outline

6 A historical perspective
e Why parallel computing?

e Principles of parallel computing
@ Introduction
@ Programming models
@ Implementations

Vlad Popovici, Ph.D. (Fac. of Science - RECET(2/38

@ "l think there is a world market for maybe five computers.” (Thomas
Watson, chairman of IBM, 1943)

@ "There is no reason for any individual to have a computer in their
home." (Ken Olson, founder Digital Equipment Corporation, 1977)

@ "640K of memory ought to be enough for anybody." Bill Gates,
chairman of Microsoft, 1981

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 3/38

@ ~ 2500 BC: Babylon - the first abacus

@ ~ 100 BC: Antikythera device - believed
to be the first mechanical computer

@ first half of the 19th century: Charles
Babbage’s differential machine (to
tabulate polynomials) and analytical
machine (only design)

@ 1941: Z3 computer by Konrad Zuse:
first programmable, fully automatic
computing machine

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 4/38

~ 1840 Charles Babbage produces the differential machine, a mechanical
computer.

= = dE=ig=)d

Jalialallalinn s

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 5/38

1941: Z3 computer: electro-mechanical computer, ~ 2000 relays, 22-bit
words, operating at 5-10 Hz.

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECET(6/38

1946: ENIAC - Electronic Numerical Integrator And Computer used initially
by US Army to compute tables for artilery. Uses vacuum tubes as
switches.

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 7/38

1976: Cray-1 - the first successful supercomputer

\VETe B 2ol o o1V TeT N o s W (=T TRCTR = RS (O] [(E 7441 : Scientific computing in biology and biom 8/38

...fast forward: Tianhe-2 (top supercomputer as Nov. 2013): 33.86
PFlop/s, 3,120,000 cores; 1,024,000 GB, CPU: Intel Xeon

Vlad Popovici, Ph.D. (Fac. of Science - RECETC

Moore’s law

Gordon E. Moore (co-founder Intel): "Cramming More Components onto
Integrated Circuits", Electronics Magazine, 1965

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000-
100,000,000
z curv shows ransisor
€ 10,000,000 count Bouing svery
Q two years
2 P
o
@
2 1,000,000
2
S
s
100,000
woe i
10,000 -
%
o v
2,300 i ek

r T T T J
1971 1980 1990 2000 2011
Date of introduction

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 10/38

Software and hardware

Software crises:

@ ’60s-'70s: assembly language difficult to use for large complex
problems — Fortran, C: provide abstraction and portability for
uniprocessors

@ '80s-'90s: problems in maintaining complex systems —
object-oriented programming (C++, Java)

@ ~ 2000s: sequential performance lags behind Moore’s law —
programmers are oblivious to hardware better compilers, higher level
languages, virtual machines

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 11/38

@ parallel computing: using multiple execution units concurrently to
solve a problem
@ examples:
» multi-core processors: several processors (cores) in a chip
» shared memory processors (SMP): several processors interconnected
through a shared memory
» cluster computer: several computers interconnected through
high-speed network

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 12/38

Issues with the traditional model: power density

(Ross: Why CPU Frequency Stalled, IEEE Spectrum Magazine, 2008)

3
H
[

T
1995

, Ph.D. (Fac. of Science

SOURCE TOMS HAROWARE

1 i T T T
1997 1999 2001 2003 2005

RECE

Watts

1407 cPU power consumption, 1993-2005

120+

100 /"

SOURCE:TOMS HARDWARE
T
1999

T T T T
1997 2001 2003 2005

T
1995

100000007 intel chips, 1970-2010
1000000
166604 Pentium 4 architecture
B
g 10000+ Pentium Pro architecture
& Pentium architecture
2 1000+ /
g 100 486
%
£ B

- anes,."

01—

001 ' |
1970 1980 1990

00 =

2000

1000

W/cm?2

100

Nuclear Reactor}/

10 Hot Plate

* ®
Pentium lll
Pentium Il ®

Source: Fred Pollack, Intel. New Microprocessor Challenges
in the Coming Generations of CMOS Technologies, Micro32

Vlad Popovici, Ph.D. (Fac. of Science - RECETC

14/38

Issues cont’'d: gains from implicit parallelism tapped out

Example: instruction-level parallelism. Machine instruction: decomposed
into 4-stages: fetch, decode, execute and write-back

Clock Cycle
0 1 2 3 4 5 6 7 8
|
Waiting . .
Instructions . . .
[IHEN
% Stage 1: Fetch gD...&&@x
= Jamerone (1] 0 I I I XX X0
E Stage 3: Execute g@&m...@x
Stage 4: Write-bacl E @ & @ D . . . &
m |]|
Completed D . .
Instructions D .
[

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 15/38

Issues contd

Other issues:
@ increase in production costs (decrease in "chip yield")
@ increase in amount of data to be processed
Solution: explicit parallelism
@ multi-core
@ multi-processor
@ multi-machine

Vlad Popovici, Ph.D. (Fac. of Science - RECETC

16/38

Principles

identifying parallelism
granularity: more smaller or fewer larger tasks?
locality: data and instruction location

°
°
°
@ load balance: aim: no lost CPU cycles
@ synchronization

°

overhead

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 17/38

Identifying parallelism

Amdahl’s law:
T4 1

Th " a+(1-a)/n " «a
where « is the fraction of the program that is strictly sequential, T; is the

execution time on j processors and S; is the speed-up obtained by using i
processors instead of 1.

Sn:

- T

800 ——s50% 4

100 0% 4

-]

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 18/38

Identifying parallelism

@ implicit parallelism
» hardware level: superscalar processors, multi-core, cluster computing
> compiler level: parallelizing compilers

@ explicit parallelism

> programming language level
> library level

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 19/38

Processing architectures

Flynn’s taxonomy ("old way"): Single/Multiple Instruction x Single/Multiple
Data

SISD Instruction Pool | MISD Instruction Pool |

i LF- L

8 8

SIMD Instruction Pool | MIMD [Instruction Pool |

[—F i]

2-F- R

i p]
L-r

Source: Wikipedia
Examples: SISD: mainframes; SIMD: GPUs; MISD: fault tolerant systems;
MIMD: most computers nowadays

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 20/38

Locality: a box in a box in a box...

CPU CPU CPU

L1 Cache L1 Cache L1 Cache

L3 Cache
\—J L3 Cache L3 Cache
Memory

Memory

Vlad Popovici, Ph.D. (Fac. of Science - RECET(21/38

Computing topologies

@
nine nodes.

®
Figure 214 (2) A completely-connected network of eight nodes; (b) a Star connected network of

—(O—C0——C0——0— OO0

®
Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.

©
Figure 246 Two and three dimensional meshes: (2) 2-D mesh with no wraparound; (b) 2:D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

Source: Grama - Introduction to Parallel Computing

Vlad Popovici, Ph.D.

(Fac. of Science - RECETC

Distributed memory: clusters with
Shared memory: multicore or single CPUs nodes
multi-CPU machines

MEMORY

Network

Vlad Popovici, Ph.D. (Fac. of Science - RECET(

Hybrid systems

@ a limited number of CPUs have access to a pooled memory

@ using more CPUs implies communication over network through
message-passing

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 24/38

Hybrid systems with multicore CPUs

Network

@ extension of the hybrid model
@ communication becomes increasingly complex

@ many levels in the memory hierachy: cache(s), local main memory,
other node’s memory, etc

@ you can add accelerators: e.g, GPUs

@ requires a new programming model, and different communication
protocols

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 25/38

Load balancing

@ aim: distribute evenly the load (work) on all available resources...
@ ...and thus minimize the time a resource is idle

@ causes of imbalanced load:

» insufficient paralelism
» unequal task size (poor design?)

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 26/38

Types of parallelism

@ data parallelism: each processor performs the same task on different
data (h/w: SIMD, MIMD)

@ task parallelism: each processor performs a different task on the
same data (h/w: MISD, MIMD)

@ usually, both types of parallelism are present

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 27/38

Example: re-annotation of a microarray chip

(embarrassingly parallel problem)
Problem: map (BLAST) each probe from a microarray against the latest

version of the human genome (RefSeq).

Naive implementation on 2 CPUs:

program:

if CPU == 'CPU1’ then
idx = 1,..,Np/2
elseif CPU == 'CPU2’ then
idx = Np/2 + 1,...,N
endif

BLAST (Probes[idx])

program:
idx = 1,..,Np/2

BLAST (Probes[idx])

program:
idx = Np/2 + 1,...,N

BLAST (Probes[idx])

Better ways of distributing the data exists for this problem! Ex: distribute

also the RefSeq...

Vlad Popovici, Ph.D. (Fac. of Science - RECETC

28/38

Problem decomposition

@ split the computations into concurrent tasks
@ build the task-dependency graph
@ there is no one-size-fits-all technique

@ some methods: recursive decomposition, data-decomposition,
exploratory decomposition and speculative decomposition

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 29/38

Recursive decomposition: example

Problem: find the minimum of a vector

proc serial_min (A, n) proc rec_min(A, i, j)
min = A[1] if i ==]
for i =2 to n do then min = A[i]
if A[i] < min else
then min = A[i] Imin = rec_min(A, i, j/2)
end for rmin = rec_min(A, j/2+1, j)
return min if Imin < rmin
end serial_min then min = Imin
else min = rmin
end if
end if
return min

end rec_min

Vlad Popovici, Ph.D. (Fac. of Science - RECET(30/38

Data decomposition: example

Matrix multiplication: A - B = C. Write it as

[An A12] _ [Bn B12] _ [Cn C12]
A Ax| |Bxy Bax Coy Cx
and distribute the four tasks:

Task 1: C11 = A11B11 + A12Bp1
Task 2: C1o = A{1B12 + A12B2»
Task 3: Co1 = Ax1B11 + AxsBoy
Task 4: Coo = Ax1B1s + AxoBoo

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 31/38

Other decompositions

@ exploratory decomposition: decompose the search space for the
solution and search for a solution in each subspace; then choose
among the solutions

@ speculative decomposition: launch alternative computation branches
in parallel while waiting for input for deciding which branch to use

@ hybrid decompositions

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 32/38

Mapping techniques

problem decomposition — tasks
the tasks need to be allocated (mapped) to processors/processes

objective: minimize the execution time

overheads: time spent for everything else but actually solving the
problem:

» inter-process interaction - synchronization and control

» time spent being idle - poor load balancing

@ reduce the process inter-dependencies and communication: e.g.
maximize data locality

@ improve load balancing
@ reduce blocking operations

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 33/38

Implementations on multintread/multicore machines

@ POSIX threads (pthreads): OS-level paralelism.
» threads: lightweight processes
> the same program runs on single- or multi-core machines
» OS has the responsibility of mapping the threads
> needs low-level programming, dedicated library
@ OpenMP: built on top of pthreads for SIMD-kind of parallelism
> implemented through compiler directives
» easier to use than pthreads
» performance depends on compiler’s ’intelligence’

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 34/38

OpenMP: how does it look like? (3, aib;)

double a[N];
double sum = 0.0;
int i, n, tid;

#pragma omp parallel shared(a) private (i)
tid = omp_get_thread_num();

/« Only one of the threads do this ./
#pragma omp single
{
n = omp_get_num_threads (); printf("Number_.of_threads.=.%d\n", n);
/« Initialize a «+/
#pragma omp for
for (i=0; i < N; i++) {
al[i] = 1.0;
}
/« Parallel for loop computing the sum of a[i]
#pragma omp for reduction (+:sum)
for (i=0; i < N; i++) {
sum = sum + (afi]);

}
} /+ End of parallel region «/

+/

Vlad Popovici, Ph.D. (Fac. of Science - RECETC

35/38

Implementations on distributed-memory systems

@ MPI: Message Passing Interface
» de facto standard for distributed memory programming (clusters)
» data must be manually decomposed
» use special libraries
» based on sending and receiving messages: data and synchronization

@ PVM: Parallel Virtual Machine

> previous library for cluster programming
» based on message-passing principle
» supplanted by MPI

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 36/38

MPI: how does it look like?

#include <mpi.h>
int main(int argc, char .argv[])
{

int numprocs, myid;
MPI_Init(&argc,&argv);

MPI_Comm_size (MPl_ COMM_WORLD, & numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &myid) ;

/« print out my rank and this run’s PE size «/
printf ("Helloofrom%d_of_%d\n", myid, numprocs);

MPI_Finalize ();

Vlad Popovici, Ph.D. (Fac. of Science - RECET(37/38

Implementations in R

parallelism came as an after thought
target: massive data applications
tries to bring to R some of the libraries existing to other languages

snow: for traditional clusters, supports PVM, MPI....; is portable
(UNIX, Windows)

@ multicore: targets multi-core/-CPU machines; simple; does not run on
Windows; does not handle parallel RNGs

@ parallel: snow+multicore in new R (>=2.14); strange interactions with
0S

@ R+Hadoop: based on Hadoop cluster
@ RHIPE: based on Hadoop, targets map-reduce operations

@ Segue: aprpLy-like calculations on Hadoop clusters, using Amazon’s
Elastic MapReduce

Vlad Popovici, Ph.D. (Fac. of Science - RECETC 38/38

Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECET(39/38

	A historical perspective
	Why parallel computing?
	Principles of parallel computing
	Introduction
	Programming models
	Implementations

