
E7441: Scientific computing in biology and
biomedicine

Introduction to parallel computing

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

Outline

1 A historical perspective

2 Why parallel computing?

3 Principles of parallel computing
Introduction
Programming models
Implementations

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 2 / 38

"I think there is a world market for maybe five computers." (Thomas
Watson, chairman of IBM, 1943)

"There is no reason for any individual to have a computer in their
home." (Ken Olson, founder Digital Equipment Corporation, 1977)

"640K of memory ought to be enough for anybody." Bill Gates,
chairman of Microsoft, 1981

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 3 / 38

∼ 2500 BC: Babylon - the first abacus

∼ 100 BC: Antikythera device - believed
to be the first mechanical computer

first half of the 19th century: Charles
Babbage’s differential machine (to
tabulate polynomials) and analytical
machine (only design)

1941: Z3 computer by Konrad Zuse:
first programmable, fully automatic
computing machine

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 4 / 38

∼ 1840 Charles Babbage produces the differential machine, a mechanical
computer.

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 5 / 38

1941: Z3 computer: electro-mechanical computer, ∼ 2000 relays, 22-bit
words, operating at 5-10 Hz.

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 6 / 38

1946: ENIAC - Electronic Numerical Integrator And Computer used initially
by US Army to compute tables for artilery. Uses vacuum tubes as
switches.

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 7 / 38

1976: Cray-1 - the first successful supercomputer

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 8 / 38

...fast forward: Tianhe-2 (top supercomputer as Nov. 2013): 33.86
PFlop/s, 3,120,000 cores; 1,024,000 GB, CPU: Intel Xeon

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 9 / 38

Moore’s law

Gordon E. Moore (co-founder Intel): "Cramming More Components onto
Integrated Circuits", Electronics Magazine, 1965

source: Wikipedia

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 10 / 38

Software and hardware

Software crises:

’60s-’70s: assembly language difficult to use for large complex
problems→ Fortran, C: provide abstraction and portability for
uniprocessors

’80s-’90s: problems in maintaining complex systems→
object-oriented programming (C++, Java)

∼ 2000s: sequential performance lags behind Moore’s law→
programmers are oblivious to hardware better compilers, higher level
languages, virtual machines

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 11 / 38

parallel computing: using multiple execution units concurrently to
solve a problem
examples:

▶ multi-core processors: several processors (cores) in a chip
▶ shared memory processors (SMP): several processors interconnected

through a shared memory
▶ cluster computer: several computers interconnected through

high-speed network

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 12 / 38

Issues with the traditional model: power density

(Ross: Why CPU Frequency Stalled, IEEE Spectrum Magazine, 2008)

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 13 / 38

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 14 / 38

Issues cont’d: gains from implicit parallelism tapped out

Example: instruction-level parallelism. Machine instruction: decomposed
into 4-stages: fetch, decode, execute and write-back

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 15 / 38

Issues cont’d

Other issues:

increase in production costs (decrease in "chip yield")

increase in amount of data to be processed

Solution: explicit parallelism

multi-core

multi-processor

multi-machine

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 16 / 38

Principles

identifying parallelism

granularity: more smaller or fewer larger tasks?

locality: data and instruction location

load balance: aim: no lost CPU cycles

synchronization

overhead

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 17 / 38

Identifying parallelism

Amdahl’s law:
Sn =

T1

Tn
≤

1
α+ (1 − α)/n

≤
1
α

where α is the fraction of the program that is strictly sequential, Ti is the
execution time on i processors and Si is the speed-up obtained by using i
processors instead of 1.

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 18 / 38

Identifying parallelism

implicit parallelism
▶ hardware level: superscalar processors, multi-core, cluster computing
▶ compiler level: parallelizing compilers

explicit parallelism
▶ programming language level
▶ library level

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 19 / 38

Processing architectures

Flynn’s taxonomy ("old way"): Single/Multiple Instruction × Single/Multiple
Data

Source: Wikipedia

Examples: SISD: mainframes; SIMD: GPUs; MISD: fault tolerant systems;
MIMD: most computers nowadays

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 20 / 38

Locality: a box in a box in a box...

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 21 / 38

Computing topologies

Source: Grama - Introduction to Parallel Computing

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 22 / 38

Shared memory: multicore or
multi-CPU machines

Distributed memory: clusters with
single CPUs nodes

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 23 / 38

Hybrid systems

a limited number of CPUs have access to a pooled memory

using more CPUs implies communication over network through
message-passing

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 24 / 38

Hybrid systems with multicore CPUs

extension of the hybrid model

communication becomes increasingly complex

many levels in the memory hierachy: cache(s), local main memory,
other node’s memory, etc

you can add accelerators: e.g, GPUs

requires a new programming model, and different communication
protocols

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 25 / 38

Load balancing

aim: distribute evenly the load (work) on all available resources...

...and thus minimize the time a resource is idle
causes of imbalanced load:

▶ insufficient paralelism
▶ unequal task size (poor design?)

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 26 / 38

Types of parallelism

data parallelism: each processor performs the same task on different
data (h/w: SIMD, MIMD)

task parallelism: each processor performs a different task on the
same data (h/w: MISD, MIMD)

usually, both types of parallelism are present

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 27 / 38

Example: re-annotation of a microarray chip

(embarrassingly parallel problem)
Problem: map (BLAST) each probe from a microarray against the latest
version of the human genome (RefSeq).
Naive implementation on 2 CPUs:

program :
. . .
i f CPU == ’CPU1’ then

idx = 1 , . . , Np/2
e l s e i f CPU == ’CPU2’ then

idx = Np/2 + 1 , . . . ,N
end i f

BLAST(Probes [idx])
. . .

program :
. . .
i dx = 1 , . . , Np/2

BLAST(Probes [idx])
. . .

program :
. . .
i dx = Np/2 + 1 , . . . ,N

BLAST(Probes [idx])
. . .

Better ways of distributing the data exists for this problem! Ex: distribute
also the RefSeq...

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 28 / 38

Problem decomposition

split the computations into concurrent tasks

build the task-dependency graph

there is no one-size-fits-all technique

some methods: recursive decomposition, data-decomposition,
exploratory decomposition and speculative decomposition

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 29 / 38

Recursive decomposition: example

Problem: find the minimum of a vector

proc se r ia l_m in (A, n)
min = A [1]
f o r i = 2 to n do

i f A [i] < min
then min = A[i]

end f o r
r e t u r n min

end se r ia l_m in

proc rec_min (A, i , j)
i f i == j
then min = A[i]
e lse

lmin = rec_min (A, i , j / 2)
rmin = rec_min (A, j /2+1 , j)
i f lmin < rmin
then min = lmin
e lse min = rmin
end i f

end i f
r e t u r n min

end rec_min

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 30 / 38

Data decomposition: example

Matrix multiplication: A · B = C. Write it as[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
and distribute the four tasks:

Task 1: C11 = A11B11 + A12B21

Task 2: C12 = A11B12 + A12B22

Task 3: C21 = A21B11 + A22B21

Task 4: C22 = A21B12 + A22B22

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 31 / 38

Other decompositions

exploratory decomposition: decompose the search space for the
solution and search for a solution in each subspace; then choose
among the solutions

speculative decomposition: launch alternative computation branches
in parallel while waiting for input for deciding which branch to use

hybrid decompositions

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 32 / 38

Mapping techniques

problem decomposition→ tasks

the tasks need to be allocated (mapped) to processors/processes

objective: minimize the execution time
overheads: time spent for everything else but actually solving the
problem:

▶ inter-process interaction - synchronization and control
▶ time spent being idle - poor load balancing

reduce the process inter-dependencies and communication: e.g.
maximize data locality

improve load balancing

reduce blocking operations

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 33 / 38

Implementations on multihtread/multicore machines

POSIX threads (pthreads): OS-level paralelism.
▶ threads: lightweight processes
▶ the same program runs on single- or multi-core machines
▶ OS has the responsibility of mapping the threads
▶ needs low-level programming, dedicated library

OpenMP: built on top of pthreads for SIMD-kind of parallelism
▶ implemented through compiler directives
▶ easier to use than pthreads
▶ performance depends on compiler’s ’intelligence’

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 34 / 38

OpenMP: how does it look like? (
∑

i aibi)

double a [N] ;
double sum = 0 . 0 ;
i n t i , n , t i d ;

#pragma omp p a r a l l e l shared (a) p r i v a t e (i)
{

t i d = omp_get_thread_num () ;

/ * Only one of the threads do t h i s * /
#pragma omp s i n g l e

{
n = omp_get_num_threads () ; p r i n t f ("Number␣of␣ threads␣=␣%d \ n " , n) ;

}
/ * I n i t i a l i z e a * /

#pragma omp for
for (i =0; i < N; i ++) {

a [i] = 1 . 0 ;
}

/ * P a r a l l e l f o r loop computing the sum of a [i] * /
#pragma omp for reduc t ion (+ :sum)

for (i =0; i < N; i ++) {
sum = sum + (a [i]) ;

}

} / * End of p a r a l l e l reg ion * /

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 35 / 38

Implementations on distributed-memory systems

MPI: Message Passing Interface
▶ de facto standard for distributed memory programming (clusters)
▶ data must be manually decomposed
▶ use special libraries
▶ based on sending and receiving messages: data and synchronization

PVM: Parallel Virtual Machine
▶ previous library for cluster programming
▶ based on message-passing principle
▶ supplanted by MPI

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 36 / 38

MPI: how does it look like?

#include <mpi . h>
i n t main (i n t argc , char * argv [])
{

i n t numprocs , myid ;

MPI_ In i t (& argc ,& argv) ;
MPI_Comm_size (MPI_COMM_WORLD,&numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD,& myid) ;

/ * p r i n t out my rank and t h i s run ’ s PE s ize * /
p r i n t f (" He l lo␣ from␣%d␣of␣%d \ n " , myid , numprocs) ;

MPI_Final ize () ;
}

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 37 / 38

Implementations in R

parallelism came as an after thought

target: massive data applications

tries to bring to R some of the libraries existing to other languages

snow: for traditional clusters, supports PVM, MPI,...; is portable
(UNIX, Windows)

multicore: targets multi-core/-CPU machines; simple; does not run on
Windows; does not handle parallel RNGs

parallel: snow+multicore in new R (>=2.14); strange interactions with
OS

R+Hadoop: based on Hadoop cluster

RHIPE: based on Hadoop, targets map-reduce operations

Segue: apply-like calculations on Hadoop clusters, using Amazon’s
Elastic MapReduce

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 38 / 38

Questions?

Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E7441: Scientific computing in biology and biomedicine 39 / 38

	A historical perspective
	Why parallel computing?
	Principles of parallel computing
	Introduction
	Programming models
	Implementations

